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Abstract

Curriculum learning has been a quiet yet crucial component of many of the high-1

profile successes of reinforcement learning. Despite this, none of the major re-2

inforcement learning libraries support curriculum learning or include curriculum3

learning algorithms. Curriculum learning methods can provide general and com-4

plementary improvements to RL algorithms, but they often require significant,5

complex changes to agent training code. We introduce Syllabus, a library for6

training RL agents with curriculum learning, as a solution to this problem. Syllabus7

provides a universal API for implementing curriculum learning algorithms, a collec-8

tion of implementations of popular curriculum learning methods, and infrastructure9

for easily integrating them into existing distributed RL code. Syllabus provides a10

clean API for each of the complex components of these methods, dramatically sim-11

plifying the process for designing new algorithms or applying existing algorithms12

to new environments. Syllabus also manages the multiprocessing communication13

required for curriculum learning, alleviating one of the key practical challenges of14

using these algorithms. We hope Syllabus will improve the process of developing15

and applying curriculum learning algorithms, and encourage widespread adaptation16

of curriculum learning.17

1 Introduction18

Curricula have been a core component of many of the successes of reinforcement learning. AlphaGo19

[Silver et al., 2016] was trained with self-play, AlphaStar used a novel league training method to20

achieve grandmaster level play in Starcraft II [Vinyals et al., 2019], and GT Sophy [Wurman et al.,21

2022] was recently trained to outrace professionals in Gran Turismo with a manually designed22

curriculum. Curriculum learning methods, both automatic and manual, fit naturally into the RL23

framework by modifying the distribution of states that an agent experiences. Both in theory and24

in practice, these methods often provide orthogonal benefits to reinforcement learning algorithms25

and can be implemented on top of most RL algorithms with minimal restrictions. Despite the26

near ubiquity of curriculum learning in successful applications of reinforcement learning, there27

is relatively little support for these methods in standard RL tools, largely due the complexity of28

curriculum learning code. Curriculum learning methods may modify many parts of the training29

process, such as the environment initialization and reward functions, and might even introduce new30

neural networks to train. Automatic curriculum learning methods may update their internal state31

based on information from the training process or from the environment which typically run in32

separate processes. In practice, this entanglement of curriculum learning and RL code makes it33

challenging to take curriculum learning source code and apply it to a new project with pre-existing34

RL code.35

Syllabus addresses this challenge in a number of ways. Even the task of structuring the software36

architecture for curriculum learning can be daunting. Syllabus clearly designates responsibilities to37

a separate Curriculum class, and implements changes to the environment through a Task Wrapper,38
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limiting curriculum code to two locations in the code base. Within the Task Wrapper, users can also39

define a Task Space for their environment that represents the full space of tasks for an environment.40

These APIs are described in more detail in section 4. We validate our API by implementing several41

popular curriculum learning methods, demonstrating that it is sufficiently general. Some methods42

like league training [Vinyals et al., 2019] may be outside the range of Syllabus’s Curriculum API, but43

Syllabus makes it easy to combine one of its methods with your own custom curriculum code.44

2 Background45

Curriculum Learning has been studied in the context of deep learning for many years [Bengio et al.,46

2009, Elman, 1993]. More recently, it has been used to improve the performance of reinforcement47

learning agents. Curriculum learning encompasses a wide range of methods targeted at changing the48

distribution of data used to train an agent. The goal is to increase the final performance or sample49

efficiency of RL agents on a single environment or range of tasks by sampling tasks that provide the50

maximum learning value. Narvekar et al. [2020] presents a more thorough taxonomy and survey of51

existing curriculum learning methods.52

Many diverse methods fall under the broad definition of curriculum learning. Exploration bonuses53

like curiosity [Pathak et al., 2017] or [Bellemare et al., 2016, Taiga et al., 2021, Henaff et al., 2022]54

induce a curriculum by incentivizing the agent to explore unseen section of the state space. Methods55

like self-play or league-play [Vinyals et al., 2019] create an implicit curriculum by training the56

opponents in a multiplayer game [Leibo et al., 2019]. Progressively more capable opponents lead57

to progressively more difficult tasks for an agent. Most task-based methods follow the general rule58

of proposing tasks that are hard yet solvable or tasks which the agent is recently performing well59

on [Graves et al., 2017, Kanitscheider et al., 2021]. In general, curriculum methods try to create a60

sequence of increasingly complex or difficult tasks.61

Unsupervised Environment Design (UED) is another paradigm for curriculum learning proposed62

by Dennis et al. [2020]. They differentiate UED as a framework in which environments have63

unspecified parameters, thereby forming an underspecified MDP. Those parameters are used to64

produce a distribution of solvable tasks, and the goal of a UED method is to produce a policy that65

generalizes across a large set of tasks.66

3 Design Philosophy67

Syllabus was designed to solve a number of challenges in automatic curriculum learning. Our main68

goal is to simplify the process of testing and developing new curriculum learning methods. Syllabus69

is also built to manage the multiprocessing communication required for curriculum learning, which70

can be challenging to combine with existing distributed reinforcement learning.71

These objectives motivated the following key points of our design philosophy:72

1. Syllabus should be agnostic to the choice of reinforcement learning framework.73

2. Syllabus should be as general as possible to support many popular curriculum learning74

methods.75

3. Using Syllabus should require minimal changes to existing RL code.76

4. If a method requires more complex code, complexity of the code should scale with the77

complexity of the curriculum learning method. Simple methods should remain simple to78

use.79

5. Single-file implementations of individual algorithms.80

The first point motivates many of the implementation choices in Syllabus which may seem odd81

in isolation. It requires that we honor the Gym [Brockman et al., 2016] environment API and82

write systems that work well with the many different forms of multiprocessing used throughout83

reinforcement learning libraries.84

The second, third, and fourth point pertain to the Curriculum API that Syllabus defines. These85

goals often conflict due to the wide range of methods that need to be supported under a single API.86

Some curricula may require metrics from the training process while others only utilize rewards87
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Figure 1: Syllabus with a standard distributed RL training setup.

from the environments. These components typically run in separate processes and therefore require88

very different interfaces. In line with the fourth design goal, when one method requires additional89

changes to the training code, we prefer to have a heterogenous API for different methods rather than90

complicate the API for all methods. To reduce confusion, we thoroughly document these changes91

and raise warnings for common user errors resulting from those differences. We explain our approach92

to multiprocessing and balancing these design challenges more in subsection 5.2.93

Finally, we choose to use single-file or few-file implementations of curriculum methods inspired by94

the success of CleanRL [Huang et al., 2022], a popular RL library which strictly uses single-file95

implementations to simplify research engineering.96

4 Syllabus APIs97

Syllabus defines APIs for the key components of curriculum learning; the Curriculum API, the Task98

Space API, and the Task Wrapper API. These are the main components that users will need to modify99

or interact with to develop or apply curriculum learning methods, so they are each designed to be100

both simple and general enough to support future use cases.101

4.1 Curriculum API102

In Syllabus, a Curriculum is responsible for maintaining a distribution over the task space and103

implementing a sampling function for selecting tasks. Automatic curriculum learning methods104

require feedback from the RL process to update their sampling distribution. Syllabus provides105

multiple optional methods which a Curriculum can implement to receive updates from different106

sources. It can either be updated directly by the main training process, or it can automatically107

receive updates from the environments through Syllabus’s multiprocessing infrastructure. The main108

components of the API are shown in Figure 2.109

4.2 Task Space API110

Most curriculum learning methods operate over a distribution of tasks. The task space API defines111

the range and bounds of this distribution, as well as a conversion between a simple task identifier and112

the full task definition expected by the environment. This simple identifier can be used to index the113

task within the task space which allows us to define a subset of validation tasks.114

One of the design challenges of applying curriculum learning to a new domain is defining the task115

space of the environment. In most benchmark environments (like Procgen [Cobbe et al., 2020] or116

Minigrid [Chevalier-Boisvert et al., 2023]) task spaces are low-dimensional discrete or continuous117
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Figure 2: Syllabus’s Curriculum API.

1 class Curriculum:
2 """API for defining curricula to interface with Gym environments."""
3

4 @property
5 def num_tasks(self) -> int:
6 """Counts the number of tasks in the task space, if countable."""
7

8 @property
9 def tasks(self) -> List[tuple]:

10 """ List all of the tasks in the task space, if enumerable."""
11

12 def update_task_progress(
13 self, task: Any, progress: Tuple[float, bool]
14 ) -> None:
15 """ Update the curriculum with a task and its progress.
16 Progress is defined by the environment's TaskWrapper. """
17

18 def update_on_step(
19 self, obs: Any, rew: float, done: bool, info: dict
20 ) -> None:
21 """ Update the curriculum with the environment outputs
22 for the most recent step. """
23

24 def update_on_demand(self, metrics: Dict):
25 """ Update the curriculum with arbitrary inputs.
26 Typically used to incorporate gradient or error-based
27 metrics from the training process. """
28

29 def _sample_distribution(self) -> List[float]:
30 """ Returns a sample distribution over the task space.
31 Any curriculum that maintains a true probability distribution
32 should implement this method to retrieve the distribution. """
33

34 def sample(self, k: int = 1) -> List:
35 """ Sample k tasks from the curriculum. """
36

spaces. In many real environments the space of possible tasks might be a combination of discrete and118

continuous variables, or a complex predicate system such as in Neural MMO [Suarez et al., 2019].119

Curriculum learning algorithms typically only support one specific task space representation. The120

Task Space API is designed to alleviate some of the challenges of defining task spaces and identifying121

which curriculum methods can be used with a particular task space. It automatically encodes tasks122

into a Gym Space which defines the full range of tasks.123

4.3 Task Wrapper API124

Outside of benchmark environments, the user might need to write code to reinitialize an environment125

for each task. Syllabus provides a Task Wrapper API to facilitate this configuration process. The main126

change that this introduces to the standard Gym API is adding a ‘task’ property to the environment127

and a ‘new_task’ argument to the environment’s ‘reset()’ function. This allows the user to optionally128

assign a new task to the environment while resetting the environment. If necessary, this API can also129

be used to add a task system to an environment that does not natively support one. For example, in130

Figure 3 we use this API to add a simple task system to CartPole which changes the range from which131

the initial location of the cart is sampled. Finally, the task wrapper can also define a progress metric,132

a float value in the range [0.0, 1.0] that defines how complete the current task is. In the simplest case,133
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this can be a binary value that is 1.0 when the task is completed and 0.0 while it is not. This is allows134

Syllabus to support learning-progress metrics like the one proposed in Kanitscheider et al. [2021].135

5 Implementation136

5.1 Implemented Curriculum Learning Methods137

Syllabus provides single-file implementations of popular curriculum learning methods including138

Domain Randomization, Prioritized Level Replay [Jiang et al., 2021a] and the learning progress139

curriculum proposed by Kanitscheider et al. [2021], with plans to add many more. Each of these140

methods are tested with Syllabus’s infrastructure and include warnings for common user errors.141

5.2 Multiprocessing Infrastructure142

Syllabus’s multiprocessing infrastructure uses a bidirectional sender-receiver model in which the143

curriculum sends tasks and receives environment outputs, while the environment receives tasks and144

sends outputs. Environments run the provided task in the next episode and the curriculum can use the145

outputs to update its task distribution. This communication layer is implemented in two wrappers146

that add functionality while maintain the same interface. The curriculum synchronization wrapper147

adds multiprocessing functionality to a Curriculum and an environment synchronization wrapper,148

similar to the environment wrappers used extensively in reinforcement learning code, adds the same149

functionality to the environment. You can also call the curriculum directly from the main learner150

process to update it with training metrics. Crucially, adding Syllabus’s functionality to existing RL151

training code requires only a few lines of code. Figure 1 shows a diagram of how these components152

interconnect. These synchronization wrappers automatically send the curriculum environment outputs153

at each step and episodic updates on task progress. All updates are batched to reduce multiprocessing154

overhead, and the per-step updates can be disabled to improve performance if they are not used by155

the chosen curriculum learning method.156

Most of the user facing Curriculum and environment code follows our design goal of single-file157

implementations, while the multiprocessing infrastructure is more engineered to ensure stability158

and reduce the risk of bugs. To guarantee that researchers will not need to spend time reading159

or debugging this code, Syllabus include thorough integration tests, smoke tests, regression tests,160

and optimization benchmarks for the entire multiprocessing infrastructure, tested with all of the161

implemented curriculum learning methods.162

5.3 Integration163

Following our goal of requiring minimal code changes, the example in Figure 3 shows how easy it is164

to add a simulated annealing curriculum to RLLib training code. In addition, because each method165

is implemented with the same API, replacing this curriculum with another only requires a single166

change. Simply initialize a different curriculum (line 28 in Figure 3), and it will work as expected for167

most methods. For the few methods that require additional changes, warnings will be raised if those168

changes are not made. For example, if Prioritized Level Replay does not receive any TD errors from169

the training process after a full batch of environment experience, it will raise and error and direct170

users to documentation for adding the missing code.171

5.4 Optimization172

As a consequence of the choice to use a separate multiprocessing system from the RL training173

loop, Syllabus incurs some unavoidable computational costs. Specifically, receiving and sending174

information in the environments decreases the effective steps per second of each environment, while175

sampling and sending tasks in the actor process increases the computational load on the main process.176

We perform experiments on the NetHack Learning Environment [Küttler et al., 2020] to demonstrate177

the effect of this choice on overall steps per second. We evaluate with Domain Randomization, a178

computationally lightweight method, to isolate the impact of our multiprocessing infrastructure. The179

results are show in Table 1 for experiments run with 128 environments and 50 episodes on a 32 core180

Intel i9-13950HX. We test Syllabus using both Python’s native multiprocessing package and Ray as181

the backend. Syllabus allows you to disable per-step updates for ACL methods that do not require182
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Figure 3: Adding curriculum learning with Syllabus to RLLib training code with just a few lines of
code.

1 import gym
2 from ray.tune.registry import register_env
3 from ray import tune
4 from gym.spaces import Box
5 from .task_wrappers import CartPoleTaskWrapper
6

7 +from syllabus.core import RaySyncWrapper, make_ray_curriculum
8 +from syllabus.curricula import SimpleBoxCurriculum
9 +from syllabus.task_space import TaskSpace

10

11 if __name__ == "__main__":
12 + # Define a task space
13 + task_space = TaskSpace(Box(-0.3, 0.3, shape=(2,)), [])
14

15 def env_creator(config):
16 env = gym.make("CartPole-v1")
17 # Wrap the environment to change tasks on reset()
18 env = CartPoleTaskWrapper(env)
19 + # Add environment sync wrapper
20 + env = RaySyncWrapper(
21 + env, default_task=(-0.02, 0.02), task_space=task_space
22 + )
23 return env
24

25 register_env("task_cartpole", env_creator)
26

27 + # Create the curriculum
28 + curriculum = SimpleBoxCurriculum(task_space)
29 + # Add the curriculum sync wrapper
30 + curriculum = make_ray_curriculum(curriculum)
31

32 config = {
33 "env": "task_cartpole",
34 "num_gpus": 1,
35 "num_workers": 8,
36 "framework": "torch",
37 }
38

39 tuner = tune.Tuner("APEX", param_space=config)
40 results = tuner.fit()
41

them, instead only sending updates and new tasks at the end of each episode. We show results for183

both of these scenarios. Note that the NLE is an extremely fast environment, and often RL training184

with larger architectures is bottle-necked by policy optimization rather than environment iteration185

time. We expect Syllabus’s impact on performance (as a percentage of total computation) to be much186

lower for more computationally intensive environments and when combined with RL training.187

5.5 Implemented Curriculum Learning Methods188

Curriculum learning algorithms vary as much as RL algorithms in complexity. The simplest methods189

like Domain Randomization never update their sampling distributions and have simple logic for190

sampling tasks. The most complex methods, such as league training, might need to train entire191

new agents and maintain many sets of network weights. Syllabus aims to eventually support all192
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Table 1: Syllabus Performance Costs

Multiprocessing NLE Syllabus (Episodic Updates) Syllabus (Step Updates)

Native Python 58.5s 63.0s (+7.7%) 93.0s (+59.0%)
Ray 71.12s (100%) 84.7s (+19.1%) 134.2s (+88.7%)

curriculum learning paradigms, but it is currently limited to a subset of paradigms that minimally193

alter the training code. Table x shows some of the key implementation requirements of curriculum194

learning methods and how they correspond to some popular methods.195

6 Related Work196

The closest work to Syllabus is RLLib [Liang et al., 2018], which is a large library of reinforcement197

learning algorithms. RLLib allows you to set the task of an environment, which is similar to Syllabus’s198

Task Environment API, and it manages all of the multiprocessing through Ray. RLLib does not199

implement any curriculum learning methods or provide utilities for updating a curriculum using200

metrics from the environment or training process, though it would be possible to implement these201

through a combination of callbacks and Ray Actors.202

Another related library is the Dual Curriculum Design library [Jiang et al., 2022], which incorporates203

multiple Unsupervised Environment Design Methods in a single repository. It includes implementa-204

tions of PLR [Jiang et al., 2021a], PAIRED [Dennis et al., 2020, Mediratta et al., 2023], Robust PLR,205

REPAIRED [Jiang et al., 2021b], and ACCEL [Parker-Holder et al., 2022]. Unlike Syllabus, which206

provides tools for adding curriculum learning to existing RL code, the DCD library encourages users207

to iterate on top of it by adding new RL algorithms or environments.208

7 Conclusion209

Curriculum learning is a sub-field of reinforcement learning that is under-utilized and under-210

researched relative to its impact on well-known RL applications and empirical benefits. We believe211

that this is largely due to the practical and engineering challenges associated with these methods.212

Syllabus is open-sourced on GitHub with a complete documentation website, and can be installed as213

a pip package. We are continuing to actively develop Syllabus and hope that it will help to encourage214

the more widespread use of curriculum learning.215
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