
Semi-Supervised Fine-Tuning of Vision Foundation
Models with Content-Style Decomposition

Mariia Drozdova
Department of Computer Science

University of Geneva
Switzerland

mariia.drozdova@unige.ch

Vitaliy Kinakh
Department of Computer Science

University of Geneva
Switzerland

vitaliy.kinakh@unige.ch

Yury Belousov
Department of Computer Science

University of Geneva
Switzerland

yury.belousov@unige.ch

Erica Lastufka
Department of Computer Science

University of Geneva
Switzerland

erica.lastufka@unige.ch

Slava Voloshynovskiy∗

Department of Computer Science
University of Geneva

Switzerland
svolos@unige.ch

Abstract

In this paper, we present a semi-supervised fine-tuning approach designed to
improve the performance of pre-trained foundation models on downstream tasks
with limited labeled data. By leveraging content-style decomposition within an
information-theoretic framework, our method enhances the latent representations of
pre-trained vision foundation models, aligning them more effectively with specific
task objectives and addressing the problem of distribution shift. We evaluate our
approach on multiple datasets, including MNIST, its augmented variations (with
yellow and white stripes), CIFAR-10, SVHN, and GalaxyMNIST. The experiments
show improvements over supervised finetuning baseline of pre-trained models,
particularly in low-labeled data regimes, across both frozen and trainable backbones
for the majority of the tested datasets.

1 Introduction

In recent years, vision foundation models have gained significant popularity across a wide range of
applications. These models, which are typically pre-trained on vast publicly available datasets, have
demonstrated their utility in numerous domains, including multimedia applications and scientific
fields such as astronomy[5], biology[12], medical imaging[17], and remote sensing[7]. The common
practice in developing these vision foundation models involves pre-training them in a self-supervised
(DINOv2 [9]) or weakly supervised (CLIP [3, 10], RADIOv2[11]) manner. These training method-
ologies do not target any specific downstream tasks; instead, they aim to find a representation that
can be adapted to a variety of tasks. This characteristic supports the versatility of foundation models

∗Slava Voloshynovskiy (svolos@unige.ch) is the corresponding author.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

but introduces challenges when applying them to downstream tasks (DSTs), particularly when there
is a distribution mismatch between the pre-training data and the DST data.

1.1 Challenges in Fine-Tuning Foundation Models for Downstream Tasks

One of the primary challenges in utilizing vision foundation models for specific DSTs is the issue
of distribution shift. The distribution of data ptrx (x) used during the pre-training phase of vision
foundation models does not necessarily match the distribution of the data px(x) associated with a
particular DST. This mismatch can lead to suboptimal performance when the foundation model is
directly applied to DSTs without appropriate adjustments. Our proposed semi-supervised learning
approach aims not only to adapt the foundation model to the task objective but also to address
this distribution shift by better aligning the learned representations with DST data distributions.
Consequently, fine-tuning becomes essential to adapt the model’s learned representations to align
with the characteristics of the DST data.

Furthermore, the pre-training of vision foundation models often aligns with the principles of the
information bottleneck theory[13], which suggests that a model should retain only the information
relevant to a particular task while discarding irrelevant details. However, self- or weakly-supervised
learning, by its nature, might either retain too much or too little information relevant to a specific DST
since DST is unknown at the pre-training stage. When faced with distribution mismatches between
DST and pre-training, the model may struggle to retain the appropriate information for downstream
tasks. In cases where essential information is overly suppressed, fine-tuning might not fully recover
the necessary details. Conversely, if too much information is retained, targeted fine-tuning can help
prune and specialize the model’s representations for the DST.

1.2 Fine-Tuning Challenges in Scientific Applications

In this study, we focus on fine-tuning vision foundation models for simple datasets, simulating
scenarios often found in scientific applications where labeled data is limited. In these situations,
we typically encounter a moderate number of unlabeled examples, ranging from 10,000 to 70,000,
while the number of labeled examples may vary from just 1-2 to all available samples per class. Our
approach demonstrates how leveraging both labeled and unlabeled data can help address these issues
by improving the representations of foundation models in downstream tasks, even when distribution
shift is present.

2 Information-Theoretic Framework for Fine-Tuning of VFMs

As an alternative to conventional fine-tuning approaches, we propose leveraging methods grounded
in semi-supervised learning, a well-established field that has demonstrated its effectiveness in various
contexts. Specifically, we extend an information-theoretic framework to address the fine-tuning
challenge [15]. This framework enables the model to adapt to the specifics of the downstream task by
optimizing the retention of task-relevant information while discarding irrelevant details.

Rather than applying this approach directly to image data, we focus on the latent representations of
vision foundation models. By improving these representations, our method aims to overcome the
distribution shift that occurs when applying models to downstream datasets by leveraging available
unlabeled data and a limited number of labeled examples.

We demonstrate the applicability of this approach by evaluating its performance across datasets that
are simpler and distinct from large-scale, high-resolution natural image distributions, such as MNIST
dataset variations[6], SVHN[8], CIFAR-10[4], and GalaxyMNIST[16]. More details about these
datasets can be found in Section 2.2. Our results indicate that while certain vision foundation models
struggle with these simpler datasets—particularly in low-labeled sample cases with purely supervised
approaches—others are better suited to these specialized applications. This highlights the importance
of model selection and fine-tuning strategies. This work showcases the advantages of our proposed
approach in enhancing the adaptability and effectiveness of foundation models for handling diverse
data.

2

Figure 1: Architecture of the proposed semi-supervised fine-tuning scheme. The vision foundation
model generates a representation in the form of a [CLS] token ỹx, which is decomposed into content
attribute label ĉax

and generic style ŝax
. These are then used for targeted reconstruction of the [CLS]

token ŷx.

2.1 Proposed Semi-Supervised Fine-Tuning Scheme

The proposed semi-supervised fine-tuning method for the vision foundation model leverages the
principle of content-style decomposition. The foundation model, denoted as an encoder qϕx

(yx|x),
pre-trained on a large dataset with the distribution ptrx (x), maps an input x to a latent representation ỹx.
The latent representation can be in the form of patch tokens and a [CLS] token for transformer-based
models, aggregation or summary tokens, or just a vector output of CNN-based foundation models.
Since in this work DST task is a classification, we proceed with the [CLS] token representation. One
might use patch tokens or CNN latent tensors for more complex tasks such as segmentation or depth
estimation. Therefore, the latent representation ỹx in the form of a [CLS] token is then decomposed
into content cax

and style sax
representations. As this work focuses on classification, the content

cax
is represented as a one-hot encoding of the class. The content and style are then subsequently

combined and passed through a decoder to reconstruct the [CLS] token ŷx.

Each element of the model, namely content representation, style representation, and CLS token
reconstruction, is associated with specific blocks and regularizers. We employ the concept of
adversarial mutual information decomposition [15], which leads to the formulation where mutual
information is decomposed into: (a) a conditional cross-entropy term, which serves as a metric of
similarity between content, style, and the CLS token for the paired data, and (b) a discriminator term,
which represents the Kullback-Leibler divergence for unpaired data.

In the proposed semi-supervised model, the vision foundation model that generates the initial
representations can be kept either frozen or trainable, depending on the setup.

• In the frozen setup, only the content prediction block pθcax
(cax |yx), style prediction block

pθsax
(sax

|yx), and CLS token reconstruction pθyx (yx|cax
, sax

) components are trained,
while the foundation model remains unchanged.

• In the trainable setup, both the foundation model qϕx
(yx|x) and the components

pθcax
(cax

|yx), pθsax
(sax

|yx) and pθyx (yx|cax
, sax

) are trained, but with different learn-
ing rates: the backbone learning rate is set to be 100 times smaller than that of the classifier
and other components to avoid excessive disruption of the foundation model’s pre-trained
features.

The core idea of the fine-tuning process in this semi-supervised model revolves around the availability
of a certain number of paired examples. Let X represent the input data, and CA denote the content
attributes. We define NX ,C as the total number of paired examples {xi, caxi

}NX ,C
i=1 , which is assumed

to be limited. Additionally, let NX denote the number of unpaired samples x, derived from the
downstream task distribution px(x). Here, the downstream task is focused on content attribute
prediction.

3

The main mechanism of our system is as follows:

• The content predictor, or content attribute estimator, is trained to predict the correct content
attribute cax for paired data {xi, caxi

}NX ,C
i=1 . This attribute is represented as a one-hot

encoded class label.
• For unpaired data {xi}NX

i=1, the system ensures that the predicted content attribute belongs to
one of the predefined classes. The distribution of these attributes is modeled as a categorical
distribution, regulated by the discriminator and its corresponding categorical representation
of content attributes.

In this model, the style distribution is not explicitly constrained and is assumed to follow a Gaussian
distribution. This approach allows the model to adapt flexibly to different styles while maintaining
robustness in content attribute prediction.

As shown in Figure 1, for paired data {xi, caxi
}NX ,C
i=1 , we apply a cross-entropy loss Lcax

(c̃ax
, ĉax

),
which represents the supervised learning step. In contrast, for unpaired data {xi}NX

i=1 the model
performs content-style disentanglement and reconstruction, regulated by discriminators operating
on different spaces. These discriminators, Dcax

for content, Dsax
for style, and Dyax

for the recon-
structed CLS token, enforce Kullback–Leibler divergences on the corresponding spaces. Additionally,
a reconstruction loss for the CLS token, denoted as Lyax

(ỹax , ŷax), is calculated using cosine simi-
larity between the true CLS token ỹax and the predicted one ŷax . These losses are integrated into an
unsupervised learning step. Further architectural details and mathematical definitions can be found in
Appendices A, B.

This formulation follows the approach proposed in [15], where detailed ablation studies were
conducted. Based on these results, we selected the best setup for our work: learnable priors and
enabling all proposed losses.

In the trainable setup, the backbone is updated only during the supervised step and not during the
unsupervised steps. This is because we reconstruct the CLS token, and allowing gradients through
both components and the backbone would lead to degenerate results. The learning process involves
alternating between supervised and unsupervised updates: for the first 20 iterations, we use only
supervised losses. Afterward, we introduce unsupervised losses, performing 1 unsupervised update
for every 2 supervised updates. This configuration was selected after a brief hyperparameter search,
where it showed optimal balance between leveraging labeled data and making effective use of the
unlabeled data.

This semi-supervised fine-tuning scheme provides a robust framework for leveraging the expressive
power of pre-trained vision foundation models while efficiently utilizing limited labeled data and a
larger pool of unlabeled data to adapt to specific downstream tasks.

2.2 Datasets

We conducted experiments on six datasets, including variations of MNIST [6] and other widely-used
image classification datasets. Samples from each dataset are visualized in Figure 2. For all models,
the images were resized to 224x224 using bilinear interpolation with the Python Image Library (PIL)
[14].

MNIST: The MNIST dataset consists of 60,000 training images and 10,000 test images of hand-
written digits, each of size 28x28. These grayscale images were expanded into three-channel images
by treating them as L-mode images and converting them to RGB using PIL.

MNIST with Yellow Stripes: This dataset is a modification of the original MNIST, where yellow
stripes were added across the top of each digit. These stripes can be seen as a type of augmentation
technique or even as a form of adversarial attack, designed to make the images deviate from the
original training set. The yellow stripes partially obscure the digits but remain easily recognizable.

MNIST with White Stripes: This MNIST variation includes white stripes across the top of each
image, making the digits harder to recognize as the stripes overlap with the digits, often blending in
due to the same color. This modification presents a greater challenge than the yellow stripes.

4

Figure 2: Samples per row from each dataset. From top to bottom: MNIST, MNIST with yellow
stripes, MNIST with white stripes, SVHN, CIFAR-10, GalaxyMNIST.

SVHN (Street View House Numbers): The SVHN dataset [8] consists of 73,257 training and
26,032 testing images of real-world house numbers captured from Google Street View. Each 32x32
RGB image contains one or more digits, but the task is to classify the digit in the center, adding
complexity compared to simpler datasets like MNIST.

CIFAR-10: The CIFAR-10 dataset [4] contains 60,000 32x32 color images, with 50,000 for training
and 10,000 for testing, across 10 different classes. Each class represents a distinct object category
such as airplanes, cars, or animals.

Galaxy MNIST: GalaxyMNIST [16] contains 10,000 galaxy images (64x64), categorized into four
morphological classes: smooth and round, smooth and cigar-shaped, edge-on disk, and unbarred
spiral. Derived from Galaxy Zoo DECaLS, it offers a balanced 80/20 train/test split. We use
GalaxyMNIST due to its complexity and domain shift, as its astronomical images differ significantly
from natural images, allowing us to assess model adaptation in specialized domains.

These datasets introduce varying levels of complexity and domain shifts compared to the large-scale
natural image datasets typically used to pre-train foundation models. While MNIST and CIFAR-
10 are relatively simple, the MNIST variations introduce perturbations that challenge the vision
foundation models’ generalization capabilities. Furthermore, datasets like SVHN and GalaxyMNIST
present distinct challenges that highlight the issue of distribution shift. SVHN contains real-world
digit images, often including surrounding digits and complex backgrounds, complicating the model’s
ability to isolate relevant information. GalaxyMNIST, meanwhile, introduces astronomical patterns,
which considerably differ from the natural image distributions on which foundation models were
trained. This divergence leads to suboptimal performance, making targeted fine-tuning essential,

5

especially when labeled data is limited and unlabeled data is insufficient to train a new foundation
model from scratch.

Figure 3: RADIOv2 model results. The y-axis represents the best error rate (1 - accuracy), and the
x-axis represents the number of labeled samples. For each dataset, the classifier is trained with both
supervised learning and our proposed method for frozen and trainable backbone.

3 Results and Discussion

We evaluated the performance of our proposed semi-supervised fine-tuning method across six
datasets: MNIST, MNIST with yellow stripes, MNIST with white stripes, SVHN, CIFAR-10, and
GalaxyMNIST. Experiments were conducted with both trainable and frozen backbones using three
models: RADIOv2.5 Base [11], DINOv2 Small [9], and CLIP Base [3, 10, 1]. We focused on
comparing our semi-supervised method to the purely supervised learning baseline, as it provides a
well-established point of reference. Methods like LoRA[2] were left out of the scope of this work to
avoid introducing additional parameters that would require extensive tuning, allowing us to prioritize
a clearer evaluation of our semi-supervised fine-tuning approach. Results for each backbone are
shown in Figures 3, 4, and 5.

3.1 Performance Across Datasets

Overall, our semi-supervised method consistently improves the performance across all datasets
compared to the purely supervised approach. This is particularly evident in the low-labeled data
regime (10-100 samples), where our method leverages the combination of labeled and unlabeled
data to enhance the learning process. For simpler datasets like MNIST and CIFAR-10, frozen
backbones benefit significantly from our method, while for more complex datasets like SVHN and
GalaxyMNIST, the trainable models take advantage of the extra flexibility provided by fine-tuning.

MNIST and CIFAR-10: Frozen Models Excel In the MNIST and CIFAR-10 datasets, frozen
backbones consistently outperform trainable models under our semi-supervised method, especially in
the low-labeled data regime. The simplicity of these datasets, where the content-label relationship

6

Figure 4: DINOv2 model results. The y-axis represents the best error rate (1 - accuracy), and the
x-axis represents the number of labeled samples. For each dataset, the classifier is trained with both
supervised learning and our proposed method for frozen and trainable backbone.

is straightforward, allows the frozen models to maintain strong initial representations, and further
fine-tuning often leads to overfitting or suboptimal adjustments.

RADIOv2 consistently achieves the best performance across all models, particularly in the frozen
setup. As the number of labeled samples increases, trainable models start to close the gap, but frozen
RADIOv2 remains competitive. CLIP shows similar patterns, although the performance improvement
is less significant compared to RADIOv2; DINOv2, being smaller than RADIOv2 and CLIP, has its
frozen backbone underperforming compared to the trainable one under our method. This suggests
that RADIOv2’s pre-trained representations are better suited to these datasets.

MNIST with Yellow and White Stripes: Trainable Overtakes for RADIOv2 For MNIST with
yellow and white stripes, we observe a different dynamic. In the low-data regime, frozen models
under our method still perform well, particularly for RADIOv2. However, as more labeled data
becomes available, the trainable backbone trained with semi-supervision starts to outperform the
frozen one for RADIOv2. This indicates that the added complexity introduced by the stripes (which
obscure part of the digits) requires the backbone to adapt its features to fully capture the content-label
relationship.

For CLIP and DINOv2, trainable backbones perform better consistently, even in the low-data
regime, suggesting that these models require more flexibility to handle the added complexity. Again,
RADIOv2 shows the strongest overall performance, indicating that its initial representations are more
resilient to perturbations like the stripes.

SVHN and GalaxyMNIST: Trainable Models Are Essential In more complex datasets like
SVHN and GalaxyMNIST, the trainable models clearly outperform the frozen models across all
backbones. These datasets exhibit larger intra-class variability and a significant distribution shift
from the pre-trained representations. In these cases, fine-tuning the backbone is necessary to adapt
the model’s features to the specific task, especially as more labeled samples become available.

7

Figure 5: CLIP model results. The y-axis represents the best error rate (1 - accuracy), and the
x-axis represents the number of labeled samples. For each dataset, the classifier is trained with both
supervised learning and our proposed method for frozen and trainable backbone.

Our semi-supervised method shows improvements in the low-labeled data regime for both frozen and
trainable models, though the trainable backbones benefit much more. RADIOv2 continues to show
the best performance overall, followed by CLIP and then DINOv2. Our method’s improvements on
CLIP are rather limited, which means that the model does not benefit much from the extra unlabeled
samples. In contrast, RADIOv2 demonstrates greater capacity to leverage unlabeled data, making it
the most adaptable model across datasets.

3.2 Discussion: Frozen vs Trainable with Our Method

Our semi-supervised method reveals interesting dynamics between frozen and trainable models.
In simpler datasets like MNIST and CIFAR-10, frozen models benefit more from our method,
likely because the backbone representations are already well-suited to the task, and fine-tuning
may introduce unnecessary changes. This is particularly true for RADIOv2, which consistently
outperforms the other models in frozen setups. However, as dataset complexity increases (e.g.,
MNIST with stripes, SVHN, GalaxyMNIST), fine-tuning backbones become necessary. The trainable
models can adapt to more complex content-label relationships and handle the increased intra-class
variability, especially in datasets with significant distribution shifts like GalaxyMNIST.

Overall, our method improves the scores compared to the purely supervised approach for most of the
studied datasets with both frozen and trainable backbones.

4 Conclusion

This paper emphasizes the critical role of fine-tuning in adapting foundation models to specific
downstream tasks, especially in scientific domains with limited labeled data. By leveraging content-
style decomposition within an information-theoretic framework, we can effectively tailor the latent
representations of foundation models, ensuring their suitability for specific applications. Our findings

8

underscore the importance of aligning model training with the ultimate objectives of downstream
tasks to achieve optimal performance.

Our experiments demonstrate that the proposed semi-supervised approach improves performance
across both frozen and trainable backbones. The method consistently delivers better results than
purely supervised baselines in the majority of the cases. Our method offers a step toward mitigating
distribution shift, particularly in the early stages of fine-tuning. However, further research is required
to fully understand how different backbone architectures respond to domain shifts and how unlabeled
data can be leveraged more effectively in various scientific tasks.

Future work will focus on extending this framework to image reconstruction tasks, expanding
the scope of downstream applications and studied foundation models, and exploring alternative
fine-tuning strategies to address distribution mismatch effectively.

9

References
[1] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade

Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws
for contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2818–2829, 2023.

[2] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[3] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. If you use this software, please cite it
as below.

[4] Alex Krizhevsky, Vinod Nair, Geoffrey Hinton, et al. The cifar-10 dataset. online: http://www.
cs. toronto. edu/kriz/cifar. html, 55(5):2, 2014.

[5] Erica Lastufka, Omkar Bait, Olga Taran, Mariia Drozdova, Vitaliy Kinakh, Davide Piras, Marc
Audard, Miroslava Dessauges-Zavadsky, Taras Holotyak, Daniel Schaerer, and Svyatoslav
Voloshynovskiy. Self-supervised learning on meerkat wide-field continuum images, 2024.

[6] Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

[7] Siqi Lu, Junlin Guo, James R Zimmer-Dauphinee, Jordan M Nieusma, Xiao Wang, Parker
VanValkenburgh, Steven A Wernke, and Yuankai Huo. Ai foundation models in remote sensing:
A survey. arXiv preprint arXiv:2408.03464, 2024.

[8] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 4. Granada, 2011.

[9] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[10] Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

[11] Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Am-radio: Agglomera-
tive vision foundation model reduce all domains into one. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 12490–12500, June
2024.

[12] Samuel Stevens, Jiaman Wu, Matthew J Thompson, Elizabeth G Campolongo, Chan Hee Song,
David Edward Carlyn, Li Dong, Wasila M Dahdul, Charles Stewart, Tanya Berger-Wolf, et al.
Bioclip: A vision foundation model for the tree of life. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 19412–19424, 2024.

[13] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[14] P Umesh. Image processing in python. CSI Communications, 23, 2012.

[15] Slava Voloshynovskiy, Olga Taran, Mouad Kondah, Taras Holotyak, and Danilo Rezende.
Variational information bottleneck for semi-supervised classification. Entropy, 22(9):943, 2020.

[16] Mike Walmsley, Chris Lintott, Tobias Géron, Sandor Kruk, Coleman Krawczyk, Kyle W Willett,
Steven Bamford, Lee S Kelvin, Lucy Fortson, Yarin Gal, et al. Galaxy zoo decals: Detailed
visual morphology measurements from volunteers and deep learning for 314 000 galaxies.
Monthly Notices of the Royal Astronomical Society, 509(3):3966–3988, 2022.

10

[17] Shaoting Zhang and Dimitris Metaxas. On the challenges and perspectives of foundation models
for medical image analysis. Medical Image Analysis, page 102996, 2023.

11

A Information-Theoretic Details

Content Decoder Loss

For the content decoder, the Kullback-Leibler (KL) divergence measures the difference between the
true distribution pcax

(cax) of the content label and the model’s predicted distribution pθcax
(cax).

The KL divergence is defined as:

Dcax
:= DKL(pcax

(cax)||pθcax
(cax)) = Epcax

(cax)

[
log

pcax
(cax

)

pθcax
(cax

)

]
. (1)

This term ensures that the model’s content prediction aligns with the true content distribution.

Additionally, we include the cross-entropy loss for the supervised content prediction:

LCE = −Ep(cax ,x)

[
log pθcax

(cax
)
]
. (2)

Style Decoder Loss

For the style decoder, the KL divergence measures the difference between the true prior distribution
psax

(sax
) and the model’s predicted distribution pθsax

(sax
). The KL divergence is defined as:

Dsax
:= DKL(psax

(sax
)||pθsax

(sax
)) = Epsax

(sax)

[
log

psax
(sax

)

pθsax
(sax

)

]
. (3)

[CLS] Token Decoder Loss

For the [CLS] token, the KL divergence is computed between the true prior distribution pyx(yx) and
the model’s predicted distribution pθyx (yx):

Dyx
:= DKL(pyx

(yx)||pθyx (yx)) = Epyx (yx)

[
log

pyx
(yx)

pθyx (yx)

]
. (4)

Additionally, we include the cosine similarity loss for the reconstruction of the [CLS] token:
Lyx

(ỹx, ŷx) = 1− cos (ỹx, ŷx) . (5)
This loss can be considered as a conditional cross-entropy for the reconstrcution.

Total Loss Function

The total loss combines the content, style, and [CLS] token losses, along with their respective KL
divergence regularizers and the cross-entropy loss for supervised content prediction:

Ltotal = LCE + λcDcax
+ λsDsax

+ λyDyx
+ λyŷLyx

. (6)

In our experiments λc = λs = λy = λyŷ = 1 following ablation studies conducted in [15].

B Model Descriptions

This appendix provides a detailed description of the models used in our experiments. The architecture
includes an encoder content and style outputs (pθcax

(cax
|yx) and pθsax

(sax
|yx)), a decoder for

reconstruction (pθyx (yx|cax
, sax

)), and three discriminators: one for content (Dcax
), one for style

(Dsax
), and one for the CLS token (Dyx

). Each component plays a crucial role in ensuring that the
model performs well under semi-supervised learning.

Encoder

The encoder is responsible for processing the input features through a shared MLP structure that
maps them into meaningful representations. The shared MLP is shown in Table 1.

Content and Style Heads: After passing through the shared MLP, the features are split into two
separate heads: for content cax

and one for style sax
.

12

Table 1: Shared Encoder Structure

Size Layer
CLS Token size Input

8000 Linear
8000 Leaky ReLU (slope = 0.01)
8000 Dropout (probability = 0.3)

Content Head

The content encoder pθcax
(cax

|yx) outputs the content representation. The structure of the head is
shown in Table 2.

Table 2: Content Head Structure

Size Layer
8000 Linear
1024 Leaky ReLU (slope = 0.01)

Number of classes Output (Linear)

Style Head

The style encoder pθsax
(sax |yx) generates the style representation. Its head structure is shown in

Table 3.

Table 3: Style Head Structure

Size Layer
8000 Linear
100 Output

Decoder

The decoder, denoted by pθyx (yx|cax
, sax

), reconstructs the CLS token by stacking the content and
style. The decoder structure is shown in Table 4.

Table 4: Decoder Structure

Size Layer
Content size + Style size Input

2560 Linear
2560 Leaky ReLU (slope = 0.01)
2560 Dropout (probability = 0.3)
2560 Linear
2560 Leaky ReLU (slope = 0.01)
2560 Dropout (probability = 0.3)

CLS Token size Output (Linear)

Discriminators

Our method uses binary cross entropy for discriminator losses. The model has three discriminators
: one for content cax

, one for style sax
, and one for the CLS token yx. The structure of each

discriminator is outlined below.

Content Discriminator

The content discriminator Dcax
ensures that the content vector has one-hot representation for all

unpaired inputs. The structure of this discriminator is shown in Table 5.

13

Table 5: Content Discriminator Structure

.

Size Layer
Number of classes Input

500 Linear
500 Linear

1 Sigmoid

Style Discriminator

The style discriminator Dsax
ensures that the style representation is Gaussian. The structure of this

discriminator is shown in Table 6.

Table 6: Style Discriminator Structure

Size Layer
100 Input
50 Linear

500 Linear
1 Sigmoid

Class Token Discriminator

The CLS token discriminator Dyax
evaluates the final CLS representation, ensuring that given the

combination of one-hot content and Gaussian style the decoder can generate the CLS token. The
structure of this discriminator is shown in Table 7.

Table 7: Class Token Discriminator Structure

Size Layer
CLS Token size Input

128 Linear
128 Leaky ReLU (slope = 0.02)
64 Linear
64 Leaky ReLU (slope = 0.02)
32 Linear
32 Leaky ReLU (slope = 0.02)
1 Sigmoid

Training Setup

The training process involves optimizing the network using the AdamW optimizer and a learning rate
of 5 × 10−5. A warmup schedule of 0 for components and 0.1 for transformers is applied. Batch
sizes are set to 512 for frozen models (unsupervised losses) and 32 for trainable models.

The following losses are used:

• Adversarial losses: Applied for all discriminators.
• Supervised loss: Cross-entropy loss applied to the content head.
• Reconstruction loss: Cosine similarity loss for the CLS token reconstruction.

C t-SNE in the classifier features for RADIOv2

Here, we visualize classifier features before the last linear layer, where the features have a dimen-
sionality of 1024, for both frozen and trainable RADIOv2 models. We first apply PCA to reduce the
features to 5 components, followed by t-SNE for visualization. The images are from the test set, and
the colors correspond to the classes. The classifier is fully trained. The upper row shows our model,
and the lower row shows the supervised method. The images are ordered by an increasing number of
labeled data available for supervised updates.

14

increasing available labeled data

supervised

our method

Figure 6: Latent space (dimensionality of 1024) of the classifier for the MNIST dataset with a frozen
backbone. The first row shows our method, and the second row shows the supervised method. From
left to right, the total number of labeled samples increases: 10, 19, 96, 480, 2,400, 12,000, 60,000.

increasing available labeled data

supervised

our method

Figure 7: Latent space (dimensionality of 1024) of the classifier for the MNIST dataset with yellow
stripes with a frozen backbone. The first row shows our method, and the second row shows the
supervised method. From left to right, the total number of labeled samples used for training increases:
10, 19, 96, 480, 2,400, 12,000, 60,000.

increasing available labeled data

supervised

our method

Figure 8: Latent space (dimensionality of 1024) of the classifier for the MNIST dataset with white
stripes with a frozen backbone. The first row shows our method, and the second row shows the
supervised method. From left to right, the total number of labeled samples used for training increases:
10, 19, 96, 480, 2,400, 12,000, 60,000.

15

increasing available labeled data

supervised

our method

Figure 9: Latent space (dimensionality of 1024) of the classifier for the SVHN dataset with a frozen
backbone. The first row shows our method, and the second row shows the supervised method. From
left to right, the total number of labeled samples used for training increases: 10, 23, 117, 586, 2,930,
14,651, 73,257.

increasing available labeled data

supervised

our method

Figure 10: Latent space (dimensionality of 1024) of the classifier for the CIFAR-10 dataset with a
frozen backbone. The first row shows our method, and the second row shows the supervised method.
From left to right, the total number of labeled samples used for training increases: 10, 16, 80, 400,
2,000, 10,000, 50,000.

increasing available labeled data

supervised

our method

Figure 11: Latent space (dimensionality of 1024) of the classifier for the GalaxyMNIST dataset
with a frozen backbone. The first row shows our method, and the second row shows the supervised
method. From left to right, the total number of labeled samples used for training increases: 4, 12, 64,
320, 1,600

16

increasing available labeled data

supervised

our method

Figure 12: Latent space (dimensionality of 1024) of the classifier for the MNIST dataset with a
trainable backbone. The first row shows our method, and the second row shows the supervised
method. From left to right, the total number of labeled samples increases: 10, 19, 96, 480, 2,400,
12,000, 60,000.

increasing available labeled data

supervised

our method

Figure 13: Latent space (dimensionality of 1024) of the classifier for the MNIST dataset with yellow
stripes with a trainable backbone. The first row shows our method, and the second row shows the
supervised method. From left to right, the total number of labeled samples used for training increases:
10, 19, 96, 480, 2,400, 12,000, 60,000.

increasing available labeled data

our method

our method

Figure 14: Latent space (dimensionality of 1024) of the classifier for the MNIST dataset with white
stripes with a trainable backbone. The first row shows our method, and the second row shows the
supervised method. From left to right, the total number of labeled samples used for training increases:
10, 19, 96, 480, 2,400, 12,000, 60,000.

17

increasing available labeled data

supervised

our method

Figure 15: Latent space (dimensionality of 1024) of the classifier for the SVHN dataset with a
trainable backbone. The first row shows our method, and the second row shows the supervised
method. From left to right, the total number of labeled samples used for training increases: 10, 23,
117, 586, 2,930, 14,651, 73,257.

increasing available labeled data

supervised

our method

Figure 16: Latent space (dimensionality of 1024) of the classifier for the CIFAR-10 dataset with
a trainable backbone. The first row shows our method, and the second row shows the supervised
method. From left to right, the total number of labeled samples used for training increases: 10, 16,
80, 400, 2,000, 10,000, 50,000.

increasing available labeled data

supervised

our method

Figure 17: Latent space (dimensionality of 1024) of the classifier for the GalaxyMNIST dataset with
a trainable backbone. The first row shows our method, and the second row shows the supervised
method. From left to right, the total number of labeled samples used for training increases: 4, 12, 64,
320, 1,600

18

	Introduction
	Challenges in Fine-Tuning Foundation Models for Downstream Tasks
	Fine-Tuning Challenges in Scientific Applications

	Information-Theoretic Framework for Fine-Tuning of VFMs
	Proposed Semi-Supervised Fine-Tuning Scheme
	Datasets

	Results and Discussion
	Performance Across Datasets
	Discussion: Frozen vs Trainable with Our Method

	Conclusion
	Information-Theoretic Details
	Model Descriptions
	t-SNE in the classifier features for RADIOv2

