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Abstract

Zero-shot generalization (ZSG) to unseen dynamics is a major challenge for cre-
ating generally capable embodied agents. To address the broader challenge, we
start with the simpler setting of contextual reinforcement learning (cRL), assuming
observability of the context values that parameterize the variation in the system’s
dynamics, such as the mass or dimensions of a robot, without making further
simplifying assumptions about the observability of the Markovian state. Toward
the goal of ZSG to unseen variation in context, we propose the contextual recurrent
state-space model (cCRSSM), which introduces changes to the world model of
Dreamer (v3) [Hafner et al.;,2023]]. This allows the world model to incorporate con-
text for inferring latent Markovian states from the observations and modeling the
latent dynamics. Our approach is evaluated on two tasks from the CARL benchmark
suite, which is tailored to study contextual RL. Our experiments show that such
systematic incorporation of the context improves the ZSG of the policies trained
on the “dreams” of the world model. The code for all our experiments is available
athttps://github.com/sai-prasanna/dreaming_of_many_worlds,

1 Introduction

Model-Based Reinforcement Learning (MBRL) promises to be one of the most data-efficient frame-
works for learning control. With this data efficiency, MBRL could significantly impact real-world
applications, such as robotics and autonomous systems, for which efficient learning and generalization
are paramount. Recent MBRL approaches are capable of achieving performance comparable to
model-free reinforcement learning (MFRL) algorithms while only requiring a fraction of the data
[see, e.g.,[Chua et al., [2018} |Hatner et al., 2020, [2021} 2023, |Wu et al.| 2022, [Hansen et al., [2024].

A key challenge in MBRL is the ability to generalize to unseen environments, particularly in a
zero-shot setting, where an agent must perform effectively in novel scenarios without prior experience.
Although MBRL has shown great improvement in recent years, both MBRL and MFRL algorithms
remain susceptible to small changes in environment dynamics [Kirk et al., [2023]]. This can be
attributed in part to the complexity of the (MB)RL pipeline [Zhang et al.,|2021b| [Parker-Holder et al.|
2022]] but also to a lack of understanding, as zero-shot generalization (ZSG) remains an understudied
domain for MBRL [Kirk et al., [2023]].

An influential family of MBRL algorithms is Dreamer [Hafner et al.,[2020} 2021} 2023]]. Dreamer-
like algorithms learn a latent representation of the world from which plausible trajectories can be
imagined that can be used to improve decision-making. The family of Dreamer algorithms has
achieved impressive results in various domains in both learned policy performance and sample
efficiency during learning. However, Dreamer-like algorithms have not yet been studied in the
zero-shot generalization setting.

Here, we propose to use the contextual reinforcement learning paradigm [|Kirk et al.,2023| Benjamins
et al.,[2023]] to study Dreamers’ learning capabilities within and across many worlds. To this end,

*equal contribution

17th European Workshop on Reinforcement Learning (EWRL 2024).


https://github.com/sai-prasanna/dreaming_of_many_worlds

we assume that we have access to privileged information about how the transition dynamics of the
underlying Markov decision process (MDP) is parameterized, i.e., the context[|Hallak et al.| 2015[. We
use tasks from the Contextual and Adaptive Reinforcement Learning benchmark [CARL; Benjamins
et al.| 2023]] where the context defines some physical properties that affect the dynamics and that an
RL agent can observe while trying to solve a given task. Examples of such properties are gravity
or the mass of a load that a robot might lift. We assume the context parameters are continuous and
hence can be studied meaningfully for interpolation and extrapolation, unlike discrete parameters
where generalization to unseen values is not well-defined.

We analyze Dreamer’s ZSG capabilities, in- and out-of-distribution (OOD), when naively integrating
context, and we propose an improved Dreamer variant that integrates context more intelligently and
demonstrates improved generalization abilities. In particular, our contributions are as follows.

* We provide the first principled study in understanding Dreamer’s generalization capabilities
for in- as well as out-of-distribution (OOD) tasks on two tasks from CARL; and

* We propose a novel approach for conditioning the Dreamer architecture on context and show
how it improves Dreamer’s zero-shot generalization ability on the given tasks.

2 Related Work

Our approach aims to improve the ZSG of MBRL agents. As such, in this section, we discuss related
works from meta-RL, an area aimed at improving few- and zero-shot generalization, followed by
MBRL and ZSG in MBRL.

Meta-RL Meta-reinforcement learning (meta-RL) [Beck et al., 2023]] has been proposed as a
promising approach to address the challenge of generalization in RL. Meta-RL aims to learn an
RL agent that can adapt to new tasks in a sample-efficient manner. Meta-RL algorithms [see, e.g.,
Duan et al., 2016} 'Wang et al., 2017, |[Nagabandi et al., [2019, Rakelly et al.,|2019, |[Melo, [2022}, Wen
et al.l [2023]] are designed to quickly adapt to new and unseen settings with limited access to new
experiences (i.e., few-shot adaptation) generated by the RL agent. In contrast, our work focuses on
zero-shot generalization (ZSG) for RL [Kirk et al., |2023|], where we aim to learn policies that are
capable of zero-shot adaptation to new settings without assuming access to further training or the
reward signal.

Model-Based RL. MBRL is believed to be one of the most promising directions to improve the
sample efficiency of RL algorithms. |Young et al.| [2023]] make the case that algorithms that use
experience with a model can generalize to unseen environments better than those that rely purely on
value-function generalization and experience replay. Empirically, MBRL algorithms, such as Dreamer
[Hafner et al., 2020} 2023]] and TD-MPC2 [Hansen et al., [2024] pipelines, achieve state-of-the-art
sample efficiency. While Dreamer’s focus was on achieving a high return in a variety of individual
environments, our focus is to study and improve generalization capabilities in contextual variants of
environments and we evaluate our work on currently available environments tailored for this. Based
on Dreamer’s success, we build our approach on it and study its zero-shot generalization capabilities
before suggesting an improved approach. Dreamer has recently been studied in the meta-RL case for
a few-shot generalization [Wen et al.l 2023|]. However, this work still requires many interactions with
the target domain for the agent to learn to adapt to a test task successfully.

Zero-Shot Generalization in MBRL Studies on zero-shot generalization (ZSG) have mainly
focused on the model-free case [Kirk et al.l [2023]]. The few works that have studied zero-shot
generalization in MBRL assume that the context is not observable by an agent, necessitating context
inference via separate latent variables with different update frequency (forming a hierarchy) or
enforcing latent states to encode such contextual information to allow adaptation [Lee et al., 2020,
Perez et al., [2020, |[Zhang et al., [2021a, |Ball et al., [2021}, |Guo et al., 2022} [Sodhani et al., 2022,
Wen et al., [2023] [Sekar et al. 2020, |Gumbsch et al.| 2024, |Ying et al.l 2024]. In contrast, our
work is more similar to the study of Benjamins et al.[[2023]], which assumes that the context is
observable and accessible by an agent. Benjamins et al.| [2023]] evaluated multiple model-free agents
for ZSG. Beukman et al.| [2023] build on this approach and propose to learn a hypernetwork to
adapt a SAC [Haarnoja et al.| 2018]] agent policy based on the observed context. We believe that
the observable context setting holds a lot of merit, as, on the one hand, various physical contexts



that can be sensed by a real robot, such as the mass of a load it carries, could be used to improve
its policy in different contexts [Escontrela et al., 2020]. On the other hand, insights gained in this
observable context setting will likely be useful for the more challenging setting where context is
hidden and needs to be inferred. Furthermore, while our work assumes an observable context, it
still tackles the challenging setting of partial observability in the underlying latent Markovian state.
Our work contrasts previous work in ZSG that operates under the assumption that the latent state is
observable or can be decoded from purely high-dimensional observations [Du et al.| 2019]]. To tackle
such partial observability, we design a systematic method to use context to estimate latent states when
the context is visible. An early work in this direction learns policies for helicopter control under
partial observability [Koppejan and Whiteson, | 2009].

3 Background

Zero-Shot Generalization in Contextual Markov Decision Processes To empirically study ZSG
in a partially observable setting, we use a definition of the contextual MDP [cMDP; Hallak et al.|
2015, Modi et al., 2018] similar to the one proposed by |Kirk et al.| [2023]. A cMDP is a tuple
M = (S,A,0,R,T,C,$,p(s0 | ¢),p(c)) where S is the state space, A is the action space, O is
the observation space, R: S x C x A — R is the reward function, T': S x A x C' — dist(S) is the
stochastic Markov transition function over the states. C' is the context space. ¢: .S x C' — O is the
observation emission function, p(sq | ¢) is the initial state distribution for a given context, and p(c) is
the context distribution with ¢ € C'. For the commonly used discrete-time case, the timesteps are
t € [0, H], with H as the horizon per episode. Context remains the same during an episode, but may
change across episodes. For a given cMDP, we can train a policy 7 : p(a; | o<y, a<y, ¢) that is trained

with the objective of maximizing the expected sum of rewards Eﬂ(Zio r¢) in the distribution of
the training contexts py.in(¢). We can then study the generalizability of this policy in the zero-shot
setting by evaluating transfer on an evaluation context distribution peya(c).

Importance of Context We often face partial observability of latent Markovian states in real-world
RL tasks. Providing context to an agent may help infer such latent Markovian states. As a motivating
example, consider a wheeled robot that has to deliver goods to various locations, encountering varying
terrains along the way, including rough terrains that may damage the robot’s wheels and, ultimately,
the robot. Now, assume that the robot has a sensor to measure its velocity. If the robot must navigate
without damaging itself, it may be useful to estimate the coefficient of friction of the surface on which
it moves. This coefficient of friction is a non-stationary latent state variable that changes within an
episode. Here, the mass of the load on the robot (context), the coefficient of friction of the terrain
(latent state), and the torque applied to the wheels (action) causally affect the velocity (observation)
of the robot. The robot must use its context, observations, and actions to infer the friction. The robot
could then use this estimate of the friction to improve its policy and decide whether to apply more or
less torque. This example, though oversimplified, gives us an idea of how effective the context might
be to learn to infer latent states in partially observable settings and to use the latent state to improve
its policy. It motivates the design of our contextual Dreamer agent, which we describe now.

4 Method

We now discuss how we incorporate context into the Dreamer (v3) [Hafner et al., [2023]] algorithm.
We first introduce our novel approach to contextual dreaming and then contrast it with naive ways of
learning from and with context information.

4.1 Contextual Dreamer

We employ a novel contextual recurrent state space model (cCRSSM) that builds on Dreamer’s RSSM
world model and systematically introduces context. Here, we discuss how it can be used to imagine
trajectories in the contextual RL setting and describe how we alter Dreamer’s actor-critic policy
network to use the context and the latent states inferred by the contextual world model.



(a) Generative Model for a cMDP (b) cRSSM

Figure 1: Latent dynamics models. The models shown observe the first two time steps and predict
the third. Circles represent stochastic variables, and squares represent deterministic variables. Solid
lines denote the generative process, and dashed lines denote the inference model. The context node
and edges are highlighted in red. @ The generative model for a cMDP. @ Our cRSSM.

4.1.1 Contextual Recurrent State-Space Model (cCRSSM)

We first define a non-linear latent space model (see Figure[Ta) for the general formulation of a cMDP
(see Sectlon' with partial observability. This defines the generatlve process of observations { ot} i—1

and rewards {r;};_, from latent states {s;}._,, actions {a;}._,, and context c. This generative
model describes the influence of context on the transition dynamics, rewards, and observations.

World Model Objective To perform inference of the latent states for this non-linear model,
we cannot directly compute the posterior [Hafner et al.l [2019]. Instead, we learn an encoder
H . .
q(si:m | or:m,a1:m,¢) = [[;2190(S¢ | St—1,a4—1,0¢,¢). This encoder incorporates context to
estimate latent states from observations and actions. Using the encoder, we follow Hafner et al.
[2019] in constructing a variational bound on the data log-likelihood. Here, we write the objective for
predicting only the observations; a similar derivation applies for the rewards and the prediction of
the continuation ﬂa of the episode n; € 0, 1. The evidence lower bound (ELBO) obtained using
Jensen’s inequality is then

Inp(or.r | a1.7,c) ln/Hp(st | st—1,at—1,¢)p(ot | s, ¢) dsi.r
t

T
>3 (Bastocraconp(or | si,0)] =B [KLla(si | o<t a<1,) || plsi | st-1,a0-1,)]] ).
t=1

q(st—1lo<i—1,0<t—1,0)

reconstruction

complexity

We mainly extend the steps in [Hafner et al.|2019| for constructing the lower bound with context
(derivation in Appendix [A). The expectations in this objective can be optimized with gradient ascent
on samples drawn from the encoder using the reparameterization trick (Kingma and Welling| [2014]).

Models We follow the Dreamer (v3) algorithm’s (Hatner et al.|[2023])) choice to split each latent
state s; into a deterministic state h; and a stochastic state z;. This defines the cRSSM model (see
Figure [Tb), which can be split into the following models:

Deterministic state model: fo(hi—1,ze—1,a4-1,¢)
Stochastic state model: 2~ pg(z | ht)

Encoder ze ~ qo(2t | he, 01)
Observation model: 0t ~ P (0t | b, 2e,¢)
Reward model: 7~ po(Ft | ht, 21, )
Continue model: o~ po(fe | hey 2, €).

Refer to Appendix [F for an intutive explanation of how the RSSM and cRSSM work.

?Continuation flag indicates whether the state is terminal.



Parameterizing the Models We do not change Dreamer’s neural network architecture choices to
parameterize these models. To train the objective, the Dreamer algorithm uses the past experiences of
the agent (an actor-critic policy), which is trained concurrently with the cRSSM.

4.1.2 Dreaming of Many Worlds

Starting from a state s, inferred at some timestep 7 from an observation sequence o01., and actions
a1.r—1 and the true or factual context cr for that sequence, we can use the cRSSM to sample trajecto-
ries in the latent state space. The cRSSM also allows for imagining trajectories for counterfactual
contexts, or “dreaming of many worlds”. We can do so by switching the context ¢y, which governs
the episode where the observations (01.;) used to infer the start state of the imagination s, were
generated and dreaming further from that point in a different counterfactual context cc .

4.1.3 Actor-Critic Policy

We largely follow Dreamer(v3) regarding training an actor-critic policy on imagined trajectories.
However, we introduce context into policy learning by conditioning the actor and critic networks
with the context. The actor is optimized to maximize the expected return on the imagined trajectories.

Actor: ar ~ my(ar | sy, c);Critic: vy (8¢, ¢) = Er(s, 0) [Zf;ot Y regr].

4.2 Naive Use of Context in Dreamer

As discussed previously, Dreamers ZSG capabilities have not been explored in an observable context
setting, nor, to the best of our knowledge, has this setting been explored in MBRL in general. Thus,
we propose and discuss naive learning variants from and within the contextual setting and contrast
them with our proposed cRSSM. The naive variants are then used as baselines in our experiments.

4.2.1 Context as an Observation

A commonly adopted approach to incorporate the inferred or true context into an algorithm is to
concatenate it with the state or observation [Perez et al.,[2020} Biedenkapp et al., 2022, [Sodhani et al.|
2022, Benjamins et al., |2023]]. We study applying this approach to vanilla Dreamer. Vanilla Dreamer
optimizes all the objectives defined in Section[4.1] but it does so without incorporating context in
those objectives. To incorporate context naively, we provide it concatenated with the observation
to the stochastic state encoder. gg(z: | he, ) where x:=[c;, 0;]. Note that only the encoder gets
the observation (or here the observation with context) as an input. The decoder then has to learn
to reconstruct the context as it is part of the observation. The latent dynamics predictor used for
imagination does not condition on observations. For a consistent imagination, the RSSM is burdened
with retaining the context value (provided as an observation) which got encoded into the latent state,
from which imagination begins. Since we only provide the latent state inferred by the encoder to
the actor-critic model in this setting, if the context is not retained, then the actor-critic network will
also not have access to the context information to learn accurate policies. This could make it hard to
generalize OOD. Still, the simplicity of directly using context as part of the observation is appealing,
which has led to it being the predominant approach in model-free cRL.

4.2.2 Hidden Context

The cMDP is a sub-class of POMDP (Kirk et al.|[2023]]). As the vanilla Dreamer algorithm applies to
POMDPs, we can use it without modification in the cRL setting without providing the context but
training on episodes drawn from a training distribution over contexts. This is similar to the domain
randomization [Tobin et al., 2017} [Peng et al.l 2018} |[Andrychowicz et al.,|2020] where the aim is to
train the policy on a context distribution, usually inside the simulator, to aid generalization to some
target context, usually on the real world. While applying domain randomization, most approaches
aim to cover the target context distribution upon which they aim their policies to generalize. While
studying ZSG, we also care about OOD contexts.

Unlike context-unaware model-free domain randomization approaches that learn representations
purely from the reward signal, Dreamer’s world modeling objective provides a useful inductive
bias that could allow the model’s observation encoder to learn how to infer the context implicitly
more efficiently. With the clear disadvantage of not using context information when it is available,



this approach might not be able to learn to distinguish which exact context setting it properly is
dealing with. Consequently, the resulting policies might act for a spurious context and thus behave
sub-optimally or even fail catastrophically. However, providing a training distribution of contexts
might already be enough for the world model to infer the context, especially if the context is implicitly
encoded in the observations (e.g., the pole length in CartPole with pixel observations). Thus, this style
of context handling can be viewed as a simple context-inference approach. In this setting, similar to
treating context as an observation, we only use the latent state inferred by the encoder as the input to
the policy network.

S Experiments and Discussion

In this section, we assess the performance of Dreamer in achieving generalization under observed
contexts. We compare various context conditioning approaches, following the evaluation protocols
outlined in [Kirk et al.,[2023]]. In particular, our findings highlight the effectiveness of our cRSSM
method, showcasing quantitative and qualitative results in terms of zero-shot generalization (ZSG),
particularly in scenarios involving changes to context parameters affecting the dynamics.

Environments: Our experiments leverage CARL, tailored for our investigation into ZSG. In CARL
we pick the following environments and contexts.

* CartPole [Barto et al.l [1983]: pole length and gravity.
* DMC Walker Walk [Tassa et al.,[2018]: actuator strength and gravity.

As these environments are good examples of the desired continuous contextual settings, they provide
a suitable benchmark for our study. CartPole serves as a simple problem, while DMC Walker presents
a more complex challenge. This approach aligns with prior works, such as|Sodhani et al.| [2022]
and Zhang et al.| [2021a], which evaluate generalization on DMControl tasks to changes in context.
For each environment, we use two modalities of observation, namely (1) Featurized: This uses
featurized observations, which are generally easier to learn policies as they exhibit the least or no
partial observability depending on the environment; (2) Pixel: Image observations which are more
difficult as the model has to infer the latent states from it.

Training Pipeline We use Dreamer (v3) default hyperparameters for all experiments, with 50k
steps for CartPole and 500k for DMC Walker (10 seeds). We also show DMC Walker results with 10
seeds and 100k steps in Appendix [H|to analyze performance with fewer samples. Refer Appendix [G]
for exact hyperparameter values.

The CARL benchmark provides default context values (i.e., those commonly used in the literature
for single-environment training) for the two context dimensions we consider for each environment.
For each context type, we define training and evaluation ranges. The default value, training ranges,
and evaluation context values are provided in Appendix [C} We train our three methods, namely the
cRSSM, concat-context and , in the following fraining settings:

1. Single context variation: We randomly sample 100 context values uniformly for one
context dimension in its training range, keeping the other fixed to its default value and vice
versa.

2. Dual context variation: We sample 100 context values uniformly in the training range of
both context dimensions.

Evaluation Protocol Following Kirk et al.|[2023]] we evaluate our agents on the following evalua-
tion settings (visualized in appendix B):

1. Interpolation (I): Evaluation contexts are selected fully within the training range.

2. Inter+Extrapolation (I+E): Evaluation contexts are selected to be within the training
distribution for one context dimension and out-of-distribution (OOD) for another. This
evaluation setting only applies to agents trained in the dual context variation setting.

3. Extrapolation (E): Evaluation contexts are fully OOD, as they are selected outside the
training context set limits.



To gain insights into Dreamers’ basic generalization capabilities, we also train context-unaware
agents on the single default context (default-context) per environment. We evaluate these hidden
context default agents in the same context values used for the three evaluation settings to compare
each of our methods trained in the two training settings. In the evaluation protocol, each context could
constitute a task of different difficulty. For example, learning to control an agent in a context where
it carries lighter loads might be easier than the one with heavier loads. Following
[2023]], to obtain an upper bound of the policy returns, we train experr agents for selected contexts
that broadly cover our ranges of training and evaluation contexts. Expert agent performances are
the best mean return over 50 episodes among five seeds. This gives an upper bound on the returns
achievable if Dreamer is trained in a particular context. We used the best policy mean return
on 50 episodes over five seeds to define a lower bound. Refer to Appendix [D.T]for the performance
of expert and random policies in each environment and context value.

Evaluation Metric We use the performance of the expert and policies to normalize our
evaluation performance. A normalized score of 1.0 would indicate the expert performance of an agent
in that setting, and 0.0 performance equal to a random policy. Since we evaluate our approaches on
more contexts than the number of experts, we pick the nearest context (normalized to account for
different scales of contexts) for which an expert is available and use it as reference.Following the
recommendation of [Agarwal et al.| [2021]], we report the interquartile mean (IQM) of the normalized
aggregated scores across contexts in different regions for each experiment.

Cartpole - Pixel Observation

N

3
=

w default
300 o hidden-context
i concat-context
= cRSSM
Expert policy
Random policy
200 train range

Return

UL LT LTI LI LTI
[/ 77777777777 777777 L L LI I LI L P 7 7 g
UL LT LD LT

VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIS-

5N SAAANAANN AN N ANNNAANN NAANANANANANANANNANNANANNNNNANNN
o PO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:

NN

O SANANAAANNNNNN S et
RSNSOI =

NN
227222227777

Fé
" phanks =
0w wsipnE gNIEANIE

0.10 0.15 0.20 0.25 0.30

Y A R RN N ——

© [ R ——

i

o
=
S
o
o
3
o
<
5
o
©
3
o
o
&
o
©
3
o
©
Iy
°

Length

Figure 2: Generalization capabilities of Dreamer with pixel-observations when varying the pole
length in CartPole. The y-axis indicates the gained reward, and the x-axis the pole length. The
blue bars shows vanilla Dreamers performance when only training on the default length (0.50) and
extrapolating to other settings. The shaded are gives the training range for the methods using context.
Expert and policies give upper and lower bound for performances in each context.

5.1 Results

In this section, we analyze our results to answer three key research questions that motivate our study
of ZSG and our method of context conditioning. To help answer the first two questions, we first
provide the results on the representative Cartpole with pixel observations setting, comparing the
mean evaluation returns across our methods in Figure 2] To compare the overall performance of
our different modalities for our four methods, in Figure 3] we provide the aggregated IQM over
normalized return along with stratified bootstrap 95% confidence intervals [Agarwal et al| [2021]]
across different contexts, single/dual-variation training paradigms, and environments. We also present
the aggregated probability of improvement for cRSSM compared to other methods in Appendix [D.4]
Individual results comparing the raw returns of all agents in different contexts, modalities, and context
variation settings are available in Appendix [D] We also report the aggregated IQM scores for different
context regions for each individual setting in Table[T] Refer Appendix [D-3]plots for these individual
IQMs and 95% confidence intervals.




Interpolate Extrapolate Inter+Extrapolate
chss m m -
Concat-Context | | |

Hidden-Context | | |

Default-Context _ -. l-
0.976 0.984 0.992 1.000 0.80 0.84 0.88 0.92 0.84 0.88 0.92 0.96
(a) Feature based IQM
Interpolate Extrapolate Inter+Extrapolate
CRSSM [ ] [ ] ]
Concat-Context | | I
Hidden-Context | |
Default-Context I- I I
0.94 0.96 0.98 0.3 0.4 0.5 0.6 0.45 0.60 0.75
(b) Pixel based IQM

Figure 3: Aggregated comparison (across contexts & tasks) across cRSSM, concat-context,

, and default-context for the evaluation settings: Interpolation, Extrapolation, and In-
ter+Extrapolation using IQM over expert normalized scores for both input modalities. Intervals
shown are stratified bootstrap 95% confidence intervals over seeds & aggregated contexts.

5.1.1 How Effective is Domain Randomization for Dreamer’s ZSG?

To answer this, we compare the two approaches default-context, with the agent trained on the default
context ¢4, and the , which involves training with domain randomization of contexts.
As a motivating example to compare these methods, we first present a representative result in Figure[2]
for the different methods trained on the Cartpole environment with pixel observations and varying
the pole length. We observe that the hidden-context agent significantly outperforms the default-
context agent, especially in the extrapolation setting. The performance of default-context agent drops
noticeably when it moves away from its familiar default context. The aggregated results across the
interpolation and extrapolation regime for this setting are available in the pixel column under the
rows (1 d/h/c/cR) for the Cartpole group in Table[T} The aggregated metrics in Figure [3]show that
hidden-context outperforms default-context in all settings. The improvement is more pronounced
in the pixel-based modality (Figure 3b). This highlights the impact of domain randomization for
generalization to unseen contexts in the more complex pixel modality.

In summary, domain randomization benefits the ZSG of the Dreamer algorithm, and the improvement
is striking for the pronounced pixel modality on the evaluated tasks.

5.1.2 Does Explicit Context Conditioning Aid ZSG?

Having established the benefits of domain randomization through for Dreamer’s
ZSG on the given tasks, our focus shifts to evaluating the impact of explicit context conditioning
methods, namely cRSSM, our principled way to incorporate context into Dreamer’s world model; and
concat-context where we augment the observations with the context.

In the Cartpole environment, for the pixel modality observations (Figure2), both explicit conditioning
methods, cRSSM and concat-context, demonstrate superior performance over hidden-context, particu-
larly in scenarios with longer pole lengths. Here, cRSSM emerges as the frontrunner. To extend this
analysis to all of our settings, we again turn to the aggregated IQM scores. For the featurized modality
(Figure[3a), the cRSSM significantly outperforms both hidden-context and concat-context. In contrast,
concat-context trails behind hidden-context in inter+extrapolation and extrapolation settings. In the
more challenging pixel modality (refer to Figure 3B}, explicit context conditioning techniques demon-
strate significant improvements over the hidden-context across all evaluation scenarios, highlighting
the importance of context conditioning for generalization.Between the explicit context conditioning
methods, cRSSM performs best in all evaluation regions on aggregate. The improvements are particu-
larly pronounced in the more challenging extrapolation and inter+extrapolation scenarios. Following
Agarwal et al|[2021]], we provide the probability of improvement of cRSSM over other methods in
Appendix [D.4] solidifying our claims.

For a detailed breakdown of each task, context variation, and evaluation protocol, we consult Table m
In the Cartpole environment, in the featurized case, all methods perform similarly in all settings and



Table 1: Results for different evaluation settings, in featurized and pixel modality. Each de-
scribed by three variables: context, method, and mode. Context takes values from {c1,ca}
where ¢y is gravity for both CartPole and Walker environments, co is pole length for Cart-
Pole and Actuator Strength for Walker. c¢;o indicating multiple contexts; and method from

{d : default-context, , ¢ : concat-context, cR : cRSSM}
Seingg. I E LE| I E KE| I E KE| I B KE
CartPole Walker
Featurized Pixel
(c1 d) 1.000 1.000 - |1.000 0.938 - ]0.903 0.561 - [0.940 0.546 -
(c1 h) 1.000 1.000 - 1.000 0995 - 10967 0.764 - [0.945 0.708 -
(c1 ©) 1.000 1.000 - |1.000 0.997 - (0.966 0.769 - |0.966 0.733 -
(c1 cR) 1.000 1.000 - 1.000 1.000 - [0.985 0.806 - [0.959 0.710 -
(ca d) 1.000 0995 - ]0.677 0.059 - ]0.885 0479 - ]0.959 0.461 -
(ca h) 1.000 0.996 - [1.000 0.169 - [0.959 0.571 - |0.947 0.571 -
(cz ) 1.000 0987 - 1.000 0.210 - ]0.926 0.597 - |0.983 0.635 -
(cacR)  1.000 1.000 - [1.000 0.374 - [0.998 0.674 - |0.994 0.623 -
(c102d)  1.000 0.945 0.998|0.901 0.038 0.210]0.842 0.520 0.595|0.915 0.503 0.570
(142 h) 1.000 0.989 1.000|1.000 0.149 0.701|0.966 0.764 0.843|0.952 0.666 0.772
(c142¢) 1.000 0.970 1.000|1.000 0.257 0.779]0.972 0.727 0.830(0.965 0.724 0.823
(c112 cR) 1.000 0.997 1.000 |1.000 0.334 0.826|0.982 0.677 0.820|0.988 0.691 0.843

evaluation regions. In dual context variation, default-context lags behind other approaches which
shows benefit of varying context during training even in this simple setting. In the pixel modality the
differences among methods are most discernible, context conditioning methods outperform domain
the hidden-context. And among context-conditioning the cRSSM outperforms concat-context context,
particularly excelling in variations of pole length and combinations of length and gravity. In the DMC
Walker environment, context conditioning methods perform better than hidden-context. Within the
featurized category, cRSSM takes the top spot. However, in the pixel modality, concat-context leads,
with cRSSM slightly behind, except for the inter+extrapolation setting where cRSSM demonstrates a
better understanding of the meaning of each context separately.

In summary, explicit context conditioning aids ZSG. cRSSM showcases improved generalization
across all modalities in the Cartpole environment and delivers substantial generalization improvements
in the featurized modality of DMC Walker, albeit lagging slightly behind in the pixel modality.

Finally, to conclude the section, we provide insights and visualizations supporting how our approach
to context-conditioning shapes and improves Dreamer’s imagination capabilities in Appendix [E]

6 Conclusion and Future Work

We studied zero-shot generalization in Dreamer-style model-based reinforcement learning through
the lens of contextual reinforcement learning. We discussed naive ways to incorporate contextual
information into the MBRL learning pipeline and formulated the novel cRSSM for Dreamer. Our
cRSSM provides a systematic approach to using context in the world modelling objectives under par-
tial observability. Our experiments, using a rigorous evaluation protocol for zero-shot generalization,
showed that naive approaches, such as domain randomization improve generalization performance.
However, more principled methods such as our cRSSM are required to perform significantly better
in-distribution and out-of-distribution. Our study opens the door to future work on zero-shot general-
ization for MBRL approaches such as Dreamer. Creating contextual benchmarks for environments
such as Atari [Bellemare et al., 2013]], DMLab [Beattie et al.,[2016]], ProcGen [Anand et al., 2021]],
and Minecraft [|Guss et al., 2019]] would be an interesting avenue for future research into ZSG, as
contextual changes in these benchmarks would necessitate more pronounced changes in policies. We
discuss this in more detail in Appendix [I}

Our current cRSSM formulation assumes that context is observable, meaning it is directly available
as input. We plan to extend the cRSSM formulation to cases where context is not directly observable



and must be inferred along with the latent states. While we show qualitative results for counterfactual
dreams, the next step would be to use this to generate dreams for counterfactual contexts during
training and study the effect on ZSG and sample efficiency.
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A ¢RSSM Bound Derivation

The variational bound for contextual latent dynamics models p(o1.17, S1:1 | a1:1,¢) = [[, p(s¢ |
St—1,a¢—1,¢)p(os | s¢,¢) and a variational posterior ¢(s1.4 | 01: 1, @1:1,¢) = [ [, q(s¢ | 0<t, a4, €)
follows from importance weighting and Jensen’s inequality as shown,

H
hlp(OlZH ‘ al:H7c) £ hlEp(sl;H\al;H,c) l:Hp(Ot | Stac):|
t=1

H
=In EQ(SLH\OLH,GLH,C) |:Hp(0t | Sty C)p(St I St—1,Qt—1, C)/q(st | 0<t, A<t C):|
t=1

H
2 Eq(81:H|01:H,a1:H,C) [Zlnp(ot | Stvc) + lnp(st | St—1, At—1, C) - IHQ(St | 0<t, A<ty C):|
t=1

= Z (E[lnp(ot | s1,¢0)] —E [KL[Q(St | o<t a<e, ) || p(st | Stflvatfhc)u )
t=1 q(stlo<t,a<t,c) Q(St—l\aStil,a<t71,c
reconstruction complexity

B Context Protocol

Interpolation
Inter+Extrapolation
[[] Extrapolation
O Training context sample °
@ Default context

& (@] 0O 0 » A
Y e » »

Single Dual
Figure 4: Training contexts and evaluation regions for single and dual context variation.

C Train and Evaluation Context Ranges

Context Gravity Length

Default 9.8 .5

Training Range 4.9, 14.7] [.35,.75]

Single Evaluation Values 98, 17.15, 245, 3.92, 49, .1,.15,.2,.25,.3,.4,.5,.6,.7,

7.35, 9.8, 12.25, 14.7, 15.68, .8,.85,.9,.95,1.0
16.66, 17.64, 18.62, 19.6

Dual Evaluation Values .98, 2.45,3.92, 15.68, 17.64, .1,.2,.3,.5,.7,.8,9,1.0
19.6

Table 2: CartPole Context Values
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Context Gravity Actuator Strength
Default 9.8 5
Training Range [4.9, 14.7] [.5, 1.5]

Single Evaluation Values

Dual Evaluation Values

98, 17.15, 2.45, 3.92, 4.9,
7.35, 9.8, 12.25, 14.7, 15.68,
16.66, 17.64, 18.62, 19.6

.98, 2.45, 3.92, 15.68, 17.64,
19.6

1,.2,.3,.4,.5,.75, 1.0, 1.25,
1.5,1.6,1.7,1.8,1.9,2.0

1,.3,.5,1.0,1.5,1.6,1.8,2.0

Table 3: DMC Walker Context Values

D Agent Performances
D.1 Expert and Random agent
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Figure 5: The best performing random policy and expert trained on each context over 5 seeds. We

performance
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- 500
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use featurized modality with less partial observability compared to pixels, to get an optimistic upper

bound of expert returns.
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D.2 Varying single context
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returns are computed across 10 seeds, for 50 evaluation episodes each
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Cartpole - Pixel Observation
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Figure 7: CartPole Pixel Observations - The mean and standard error of the average evaluation returns

are computed across 10 seeds, for 50 evaluation episodes each
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D.3 Varying two contexts
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Figure 10: CartPole - Featurized - The mean and standard error of the average evaluation returns are
computed across 10 seeds, for 50 evaluation episodes each
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Cartpole - Pixel observation - default - Return Cartpole - Pixel observation - hidden-context - Return
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Figure 11: CartPole - Pixel - The mean and standard error of the average evaluation returns are
computed across 10 seeds, for 50 evaluation episodes each
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dmc Walker - Featurized observation - default - Return dmc Walker - Featurized observation - hidden-context - Return
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Figure 12: DMC Walker - Featurized - The mean and standard error of the average evaluation returns
are computed across 10 seeds, for 50 evaluation episodes each
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Figure 13: DMC Walker - Pixel - The mean and standard error of the average evaluation returns are
computed across 10 seeds, for 50 evaluation episodes each
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D.4 Probability of Improvement for cRSSM

In assessing the robustness of an algorithm’s improvement over another, considering the average
probability of improvement emerges as a valuable metric. Specifically, it calculates the probability
of Algorithm X surpassing Algorithm Y on a randomly chosen task, disregarding the magnitude of
improvement. Identifying the optimal aggregate metric remains an ongoing inquiry, and presenting
multiple metrics, which circumvent the pitfalls of prevalent metrics, ensures reliability and efficiency
in decision-making processes.

Interpolate Extrapolate Inter+Extrapolate
P(cRSSM >Y)
| | | |
0.56 0.64 0.72 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

Figure 14: Aggregate probability of improvement for pixel modality.
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Figure 15: Aggregate probability of improvement for the featurized modality.

D.5 Expert Normalized IQM Plots for Individual Settings

The IQM plots corresponding to the settings in[I} For some settings in the Cartpole environment,
since we reach optimal expert performance across all seeds, the plots look empty.
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Figure 16: Cartpole - Featurized - Gravity: Expert normalized IQM with 95% confidence interval
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Interpolate Extrapolate
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Figure 17: Cartpole - Featurized - Length: Expert normalized IQM with 95% confidence interval
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Figure 18: Cartpole - Featurized - Gravity + Length: Expert normalized IQM with 95% confidence
interval
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Figure 19: Cartpole - Pixel - Gravity: Expert normalized IQM with 95% confidence interval
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Figure 20: Cartpole - Pixel - Length: Expert normalized IQM with 95% confidence interval
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Figure 21: Cartpole - Pixel - Gravity + Length: Expert normalized IQM with 95% confidence interval
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Figure 22: DMC Walker - Featurized - Gravity: Expert normalized IQM with 95% confidence interval
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Figure 23: DMC Walker - Featurized - Actuator Strength: Expert normalized IQM with 95%
confidence interval
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Figure 24: DMC Walker - Featurized - Gravity + Actuator Strength: Expert normalized IQM with
95% confidence interval
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Figure 25: DMC Walker - Pixel - Gravity: Expert normalized IQM with 95% confidence interval

Interpolate Extrapolate

Concat-Context - -
Hidden-Context _ -
Default-Context _ -

0.90 0.93 0.96 0.99 0.48 0.54 0.60 0.66

Figure 26: DMC Walker - Pixel - Actuator Strength: Expert normalized IQM with 95% confidence
interval
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Figure 27: DMC Walker - Pixel - Gravity + Actuator Strength: Expert normalized IQM with 95%
confidence interval

E Beyond Task Performance, Does Context-Conditioning Impact the Latent
States?

We qualitatively assess the ability of different methods to understand context and its impact on latent
representations to help explain differences in performance and shortcomings of different approaches.

To evaluate how the methods use context, we visually investigate Dreamer’s reconstruction of
visually observable OOD contexts, which are either encoded into the latent state in concat-context or
conditioned separately cRSSM. We choose the visually observable context to be the pole length
in Cartpole, evaluating lengths shorter and longer than what it has seen in the training distribution
(labeled short and long in Figure 28). A model capable of generating images conditioned on novel
context demonstrates a semantic understanding of the context that is well grounded in the image space.
In cases involving context-conditioned models, we also provide counterfactual visual explanations,
exploring how the reconstructed pixel observation 6, inferred from the original observation that
encodes the factual context (cy) differs if conditioned on a counterfactual context (cc g ).

Concat cRSSM Concat cRSSM Concat cRSSM Concat cRSSM
Obs: short Obs: long Obs: short Obs: long
Context: short Context: long Context: long Context: short
(a) Extrapolated Contexts (b) Counterfactual Contexts

Figure 28: Qualitative results for the model generative ability of novel context. In each image, we
have the true observation, followed by the one reconstructed by the decoder with context conditioning
from the latent encoded from the true image, and lastly the difference between the two images. The
short refers to a length of 0.1 units, and long is the OOD length of 1.0 units. In the extrapolation
case, ideally, the difference should be minimal and, in the counterfactual case maximal.

Extrapolation In the extrapolation case depicted in Figure[28a] we encode observations from the
OOD pole length context (short: 0.1 or long: 1.0) and also condition on the true OOD context value.
It can be seen that the cRSSM predicted observation is more faithful to the OOD contexts compared
to other methods. In the case of short length, cRSSM generates a slightly blurred and shorter pole,
while concat-context is confined to the shortest in-distribution pole. For the longer pole, cRSSM
exhibits more realistic behavior by attempting to add additional pixels on top of the longest pole it has
seen, demonstrating a better semantic understanding of the context by the world model. In contrast,
concat-context falls short and instead decodes the longest in-distribution pole length. We attribute
the bottleneck that confines concat-context to the bounds of the context seen during training to the
discretization of the latent states (containing the context). Notably, the decoder’s ability to decode
shorter-length poles for shorter inputs and vice versa suggests that the encoder of both methods has
learned the scale of pole lengths meaningfully.
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Why Can Assessing Disentanglement Help? Although we see a meaningful extrapolation, the
length and pole position could also have been encoded into the latent state. This would defeat
the purpose of conditioning on the context. Ideally, we want the system to interpret our context
as the source of truth and not redundantly encode it from observations. The “sparse mechanism
shift” hypothesis [[Scholkopf et al.l 2021]] states that such disentanglement of causal mechanisms in
representations enables OOD generalization.

Counterfactual Assessment of Disentanglement To test for disentanglement and faithfulness to
the conditioning context, we use the ability of our cRSSM world model to dream of many worlds
by taking observations generated from the factual context cr and encoding them to the latent state
while conditioning the model in the counterfactual context cc . Then, we decode the image to see
how counterfactual conditioning influences image generation. From Figure 28b] we can see that
cRSSM uses the context value more faithfully than concat-context. This demonstrates the capability
of cRSSM to extrapolate and combine the conditioning context with the latent state to generate
semantically meaningful counterfactual images. In contrast to the context-disentangled latent space
of cRSSM, the concat-context approach encodes both context information and observations jointly
into the latent state, hindering its ability to generalize effectively.

Our investigation reveals clear evidence of extrapolation capabilities in our proposed principled
cRSSM approach compared to the vanilla concat-context strategy. Furthermore, through our visual
counterfactual explanations, we observe indications that the latent state in cRSSM appears disentan-
gled from the context, which explains the observed gains in generalization using this approach.

F Intuitive Interpretation of the RSSM & cRSSM

We can use a video game analogy to gain an intuitive understanding of the RSSM and cRSSM. The
context is the game settings, such as difficulty, which do not change while playing the game. The
deterministic state is the memory of the game engine. The stochastic state models the aleatoric
uncertainty used by the game engine, i.e. whenever the game samples from a random number
generator and certain variables of the current game state, it is the same as sampling from the
stochastic state model. After this sampling is done and the user inputs the action, the deterministic
state model is akin to the game’s logic, which uses the context of the current game memory state and
the sampled stochastic state to compute the next game memory state. The observation model is the
game engine’s visual renderer that maps the game memory to the pixels you see on your monitor. It
can also use context to render things differently. Finally, the reward model is the score, a distribution
conditioned on the state and context, as the context (say, difficulty setting) can influence how many
points you get for a given state.
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G Hyperparameters

We choose the small variant of DreamerV3 with all hyperparameters taken from Hafner et al.[[2023]].

Name Value
General

Replay capacity (FIFO) 108
Batch size 16
Batch length 64
Activation LayerNorm + SiLU
World Model

Deterministic State model (GRU) units 512
MLP layers 2
MLP units 512
Number of latents 32
Classes per latent 32
Reconstruction loss scale 1.0
Dynamics loss scale 0.5
Representation loss scale 0.1
Learning rate 10~4
Adam epsilon 1078
Gradient clipping 1000
Actor Critic

MLP layers 2
MLP units 512
Imagination horizon 15
Discount horizon 333
Return lambda 0.95
Critic EMA decay 0.98
Critic EMA regularizer 1
Return normalization scale Per(R,95) — Per(R,5)
Return normalization limit 1
Return normalization decay 0.99
Actor entropy scale 3-107%
Learning rate 3-107°
Adam epsilon 1075
Gradient clipping 100

Table 4: DreamerV3 hyper parameters. The same values are used across all experiments.
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H Results for DMC Walker - 100k Steps

For comprehensive evaluations, we conducted intermediate assessments on the DMC walker environ-
ment, using 10 seeds for 100k environment steps in each generalization setting. Normalized IQM
scores, detailed in Table[5] demonstrate superior performance in the most challenging featurized cases
with both contexts. However, within some settings, particularly for the pixel modality, we observed
a notable lag in performance. This discrepancy, especially in the interpolation region, where the
evaluation distribution aligns closely with the training distribution, indicates the need for additional
samples to facilitate effective learning. We present the complete training (500k steps) in Table [T}

Walker - 100k steps

Featurized Pixel
(gd) 0.737 0.551 - 0.549 0.376 -
(gh) 0.682 0.547 - 0.697 0.489 -
(go) 0.864 0.684 - 0.656 0.520 -
(gcR) 0.779 0.661 - 0.565 0.450 -
(ad) 0.824 0.406 - 0.634 0.305 -
(ah) 0.833 0.437 - 0.674 0.376 -
(ac) 0.741 0.402 - 0.732  0.409 -
(acR) 0.947 0.456 - 0.819 0.391 -
(g+ad) 0.749 0411 0.537 | 0.574 0.326 0.372
(g+ah) 0.722 0401 0.521 | 0.649 0.396 0.469
(g+ac) 0.652 0.357 0470 | 0.658 0.406 0.494
(g+acR) 0.884 0.447 0.632 | 0.606 0.333 0.423

Table 5: Expert normalized IQM over 10 seeds for different evaluation settings, in featurized and
pixel modality. Each described by three variables: context, method, and mode. Context takes values
from {g : gravity, a : actuator strength, [ : pole length} with + indicating multiple contexts; and
method from {d : default-context, , ¢ : concat-context, cR : cRSSM}

dmc Walker - Expert Agent - Return

1000

55

30 168 963 963 968 966

Gravity
098 245 392 49 9381 14.7 1568 17.64 19.6

0.1 0.3 0.5 1.0 15 1.6 1.8 2.0
Actuator Strength

Figure 29: The best expert trained on each context over 5 seeds for 100k steps on DMC walker. We
use featurized modality with less partial observability compared to pixels, to get an optimistic upper
bound of expert returns.

I Discussion on More Comprehensive Benchmarks

Creating contextual benchmarks for environments such as Atari, DMLab, ProcGen, and Minecraft
presents an important opportunity for further research into ZSG. Unlike our current tasks focusing
on motor control in environments like Walker and CartPole, some of these benchmarks emphasize
different aspects such as navigation and exploration while others such as procedurally generated or
open-ended worlds offer dynamic objectives and high variability, requiring strategic planning and
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adaptability to diverse challenges. These complexities necessitate pronounced policy adjustments
with changing contexts. However, creating variants in such benchmarks is challenging due to their
inherent intricacies and lack of easily accessible interfaces. By addressing these complexities, future
work could unlock critical insights into the adaptability of reinforcement learning agents in diverse
and changing conditions.
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