Summary of Changes and Authors’ Response
to Reviewers’ Comments

Article: TMLR Paper2081 - “Federated Variational Inference: Towards Im-
proved Personalization and Generalization”

We would like to thank the reviewers for taking the time in reading the manuscript
and providing valuable comments contributing to the improvement of the manuscript.
In what follows, we present a detailed point-by-point response for all the comments
made by the reviewers. At the end, we attach the submitted manuscript with the high-
lighted changes.

Reviewer BQTq

Comments: It feels as though the paper is split into two distinct parts. In the
first, the authors motivate the use of a hierarchical probabilistic model to handle data
heterogeneity across clients, and VI for handling the challenge of inference. The gener-
alisation bounds section is a nice addition; however, my main concern is in the correct
handling of the hyper parameters v and 7. For anything other than v, T = 1 (8) does
not lower-bound the evidence, so is not an ELBO as described. The authors should
make this clear. Further, I suspect that Corollary 1 is only valid for v = 1 also? 1
could be incorrect on this—clarification from the authors would be appreciated.

We appreciate the reviewer’s insightful question. While Equation (8) is indeed a
generalization of ELBO (specifically, ELBO when v = 7 = 1), Corollary 1 general-
izes this bound to settings where v, 7 # 1. Note that while Equation (8) may not be
specifically a lower bound on the evidence, it is an upper bound on the True risk which
is equally useful in practice.

In what follows we prove that the upper bound on the True risk holds for any v > 0
and 7 > 0. Given Equation (9)’s validity for any ;- > 0, setting - = min{y, 7}, allows
us to derive:
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In addressing the reviewer’s inquiry, we have included this explanation at the end of
Section 4 (highlighted in blue) for further clarity.

In the second section, the authors describe their FedVI algorithm. Although one
can piece together the parts of this algorithm to relate it back to the hierarchical model
and variational approximation described in Section 3, this connection is far from ex-
plicit.

We appreciate the reviewer’s feedback regarding the clarity of the connection be-
tween the FedVI algorithm (Section 5) and the hierarchical model/variational approxi-
mation (Section 3). We acknowledge that this link could be made more explicit.

To address this, we have added the following introductory paragraph at the begin-
ning of Section 5, directly relating the algorithm to the theoretical framework:

The main goal of this section is to go through the details of our primary theoreti-
cal assumptions and model architecture for implementing an instance of our proposed
hierarchical generative model and evaluating it. We note that the model architecture
proposed in this section is one of infinity many architectures that is compatible with
our theoretical model. This section will outline how the algorithm’s steps correspond
to the specific components of the hierarchical model and variational approximation
presented in Section 3.

We believe this addition, along with the revised introduction, significantly improves
the understanding of how the FedVI algorithm serves as a practical implementation of
our theoretical findings.

1. The likelihood is parameterised by combining the outputs of two different func-
tions, one using global and the other using local parameters. (a) make this clear
and (b) how does this combination happen?

We thank the reviewer for this suggestion. While there are multiple ways that
one could merge the predictions, we found that the simplest way was to add
them together. This treats the local predictions as modifications to the global
predictions in Logit space. To improve clarity for the reviewer, we have added
an explanation as a footnote on page 8.

2. The approximate posterior over local parameters, which itself should be clearly
defined, is amortised given a subset of the observed data (it would be nice for
connections to be drawn to other methods that use amortised inference, such as
VAEs). (a) If this is what makes it “stateless”, then this should be made clear:
(b) Also, if this is the key contribution, which I think it is, then highlight it.

The reviewer’s suggestion is greatly appreciated. We agree that the connection to
other amortized models such as VAEs should be made clear and have mentioned
this connection in the paper. This is indeed the element that makes the model
“stateless”, since performing this inference during training/evaluation removes
the need to maintain a set of local parameters for each client. We had attempted
to highlight this benefit of our inference procedure in several places throughout
the paper, but had fallen short of considering it a key contribution, since we had
deemed it more of a “relative benefit to our approach”. Following the reviewer’s
suggestion, we have further emphasized it by adding the following paragraph to
Section 2:



FedVI'’s statelessness stems from its use of an “amortized posterior inference
model.” This concept shares similarities with how Variational Autoencoders (VAEs)
[1] perform inference. In VAEs, an encoder network maps input data to a latent
space. FedVlI takes a set of examples and infers the posterior over the local pa-
rameters, effectively capturing the personalized features of each client’s data.
This dynamic encoding allows for continuous adaptation and personalization as
new clients join and contribute their data.

(c) I'm not convinced that this is actually doing VI (i.e. targeting the ELBO),
as the expectation in (8) is now over the approximate posterior given the sup-
port set and the likelihood is only evaluated at a non overlapping query set.
This feels closer to the neural process ML objective (e.g. Foong et al. (2020):
Meta-learning stationary stochastic process prediction with convolutional neu-
ral processes, section 3.2.).

The reviewer’s comment provided valuable insight regarding the potential de-
viation from standard VI and the similarity to the neural process ML objective.
We acknowledge that splitting data into non-overlapping support and query sets
could indeed compromise the validity of the ELBO bound.

While we initially followed the approach in FedRecon [2], we recognize the
importance of adhering to proper VI principles. Therefore, we conducted addi-
tional experiments where we combined the support and query sets, effectively
avoiding the data split. Encouragingly, these experiments yielded similar perfor-
mance results, suggesting that the original approach did not significantly impact
the overall findings.

(3) How the posterior constructor model operates as a set function on the set
of global features of the query set. Something that would help here is clearly
defining the space in which the intermediate variables (e.g. RZ’ o ) exist.

We thank the reviewer for their question regarding the posterior constructor
model’s operation and the space of intermediate variables. We apologize for
the confusion caused by our previous wording.

To clarify, the posterior constructor model does not operate as a set function on
the global features of the query set. Its input consists of the first d, elements
(global features) of the embedding of each data sample in the support set. This
distinction is important, as the model operates on a batch of individual data em-
beddings rather than sets of features.

As you suggested, we have now explicitly defined the space of intermediate vari-
ables in Section 5. Specifically:
. RZ’S € R“"Q,RLVS € R% represent the global and local features, respec-
tively, for the support set of client k.
* R}, € R% R} , € R" represent the global and local features, respec-
tively, for the query set of client k.

Here, d is the embedding size, d, is is the number of global features, and d; is
the number of local features, with d = d; + d,.



We believe these clarifications address the reviewer’s concerns and provide a
more accurate understanding of the model’s operation and the relevant variable
spaces.

. Tunderstand the notion of “stateless” to mean “no local parameters”. It would
be great as to why this is beneficial in this case. Citations to use cases in the
introduction would help, and clarity on why it’s an issue to store local parame-
ters vs. computing them using a global model (aren’t these then stored locally
anyway to obtain the local predictions?).

We agree with the reviewer’s definition of statelessness, where clients do not
retain local parameters. Our method aligns with this by using a latent set of lo-
cal parameters that are marginalized during prediction, but not directly stored
by clients. This stateless approach avoids the “cold start” problem for new or
infrequent clients, who might otherwise have poorly initialized local parameters.
In contrast, stateful methods can create a participation gap, favoring clients with
more training history. Our approach addresses this by treating local parameter
estimation as an inference subproblem, enabling personalization without requir-
ing clients to maintain a state.

While stateful methods can offer advantages in scenarios with consistent client
participation, our stateless approach aligns well with the practical realities of
many real-world federated learning (FL) deployments. As highlighted in Table 1
of [3], statelessness is a defining characteristic of cross-device FL, emphasizing
its importance in this context. Note that in practical cross device FL, clients par-
ticipate in only a few rounds or less, leading to potentially stale or untrained local
parameters that negate the benefits of statefulness. Our method is well-suited for
such dynamic FL environments, where maintaining client state is challenging.
Notably, most existing personalization attempts ( [4—7]) rely on stateful setups,
whereas ours does not.

I'm also somewhat confused by “local parameters remain on clients” in section
3.1—isn’t this exactly what you're trying to avoid by being stateless?

We agree with the reviewer that section 3.1 as written was confusing as to the
treatment of “local parameters”. We have revised this section to read “Global
parameters update at the server end after each training round, while local param-
eters are deleted after each round.” in order to note that we do not maintain their
state between rounds.

. There is no description of the baseline methods. Are the architectures used the
same as the global model? At the bare minimum these should be included in the
appendix.

We appreciate the reviewer’s feedback regarding the baseline method descrip-
tions. In the revised manuscript, we’ve added the following paragraph as a de-
tailed breakdown of the baseline architectures in Section 5:

KNN-Per [8] achieves personalized federated learning by combining a global
MobileNet-V2 model with local k-nearest neighbors models based on shared
data representations, demonstrating improved accuracy and fairness compared



to other methods. FedPA [9] reimagines federated learning as a posterior in-
ference problem, proposing a novel algorithm that utilizes MCMC for efficient
local inference and communication, employing CNN models for FEMNIST and
ResNet-18 for CIFAR-100. FedEP [10] similarly reformulates federated learn-
ing as a variational inference problem, using an expectation propagation al-
gorithm to refine approximations to the global posterior, and also employs CNN

models for FEMNIST and ResNet-18 for CIFAR-100. APFL [6] offers a communication-

efficient federated learning algorithm that adaptively combines local and global
models to learn personalized models, utilizing various models (logistic regres-
sion, CNN, MLP) on diverse datasets, including FEMNIST and CIFAR-100.
ClusteredFL [7] is designed for clustered users, iteratively estimating user clus-
ters and optimizing their model parameters, demonstrating strong performance
in various settings. Finally, FedRep [5] learns a shared representation and
unique local heads for each client, using 5-layer CNNs for CIFAR and a 2-
layer MLP for FEMNIST, while DITTO [11] introduces a simple personaliza-
tion mechanism within a multi-task learning framework, utilizing CNNs, logistic
regression, and linear SVMs for different datasets.

5. “No assumptions are made about clients’ data generating distributions”. I'm
not sure what you mean by this, as you're using a very specific CNN architecture
and categorical distribution which indicates that you are making assumptions.

We apologize for the confusion. Our intent was to remind the reader that (as men-
tioned in line 5 of equation 1), that we have not assumed that the data generating
distributions for each client are the same. We of course do make assumptions
about the support of the predictive and generative distributions, and the dimen-
sionality of the event space. We have clarified that statement to read “We assume
that clients’ data generating distributions have the same support, but that they can
be different from one another.” to be more specific about our assumptions.

We would like to thank the reviewer for the constructive comments, which
have really helped us to improve the paper.

Reviewer QSyx

Comments:

Strengths: I believe the motivation, both the personalization and the statelessness,
for the work is well justified and something that would definitely be of interest for the
TMLR audience. Also the connection between you generalization bound in eq. (9) and
the ELBO itself is an interesting realization. The empirical evaluation seems to suggest
that the proposed model outperforms the existing approach, even with some margin.

Weaknesses in Writing: The writing of the paper needs to improve quite signif-
icantly. I do not quite understand for example how the scores computed by the local
and global model are "merged” before updating the model. This would be a crucial bit
of information for understanding how the local predictions can help in personalization.

Weaknesses in Experiments: So do I understand correctly, that if you set T = 0 in
your experiments, then you don’t get any regularization from the local priors? If so, I



guess the proposed setting wouldn’t differ from having a single global model (assuming
7 = 0)? Now, looking at Fig. 5a, while there are some points where the generalization
gap is smaller than with 7 = 0, it seems to be quite hard to predict how different
T > 0 values work. Would it be possible to somehow repeat the inference multiple
times to get less noisy estimates on how the test errors behave as a function of T ? I'm
mainly worried that since the FEMNIST is most likely the data set that has some strong
heterogeneity among the clients, and if we cannot clearly witness the regularization
there, then it might be hard to say if the regularization actually has some statistically
significant effect.

1. Further experiments on whether T = 0 for the FEMNIST leads to significantly
larger generalization gap than T > 0.

We conducted additional experiments, running the FEMNIST scenario five times
with different seed values (0, 10, 20, 30, 40). We then calculated the average and
variance of both hold-out and participating test accuracy across these runs.

The results, presented in the revised Figure 1, provide a smoother visualization
of the trend. As the figure demonstrates, we still observe a noticeably larger gen-
eralization gap for 7 = 0 compare to 7 > 0 (As the horizontal axis in Figure 1 is
semi-logarithmic, test accuracy results of 7 = 0 are shown at point 7 = 10~12),
This supports our initial findings and further emphasizes the importance of the
KL divergence term in promoting generalization, even with increased experi-
mental rigor.

We appreciate the reviewer’s insightful suggestion, which has helped us strengthen
the robustness of our results and provide a clearer understanding of the impact
of 7 on model performance.
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Figure 1: Participating and non-participating test accuracy vs. KL hyperparameter 7
on FEMNIST dataset.



. Clarify how the merging of local and global predictions is done.

We thank the reviewer for this suggestion. While there are multiple ways that
one could merge the predictions, we found that the simplest way was to add
them together. This treats the local predictions as modifications to the global
predictions in Logit space. To improve clarity for the reviewer, we have added
an explanation as a footnote on page 8.

. What 7 value was used for the results in Table 1 and Fig. 4?

We used 7 = 109 for FEMNIST, and 7 = 102 for CIFAR-100 in both table 1
and Figure 4, since each performed best in our experiments. In order to make this
clearer, we have mentioned these values in the captions of Table 1 and Figure 4.

. Page 4: "the best approximation”, in general this is not true since the quality of
the approximation is completely dependent on the chosen surrogate distribution.

In order to address the reviewer’s concern, we have changed this statement to
read “This minimization process provides the best approximation for the in-
tractable posterior distribution, under the chosen family of surrogates”. This
highlights that, while this minimization may not yield the best approximation
to the true posterior over all distributions, it does produce the closest surrogate
to the true posterior (in terms of the KL divergence between them), out of the
chosen family of surrogates.

. Page 4: The formula in the end: I guess this is actually negative ELBO?

We thank the reviewer for their comment. We have revised the paper as sug-
gested.

. Corollary 1: Please clarify what is the "slight generalization” over the Germain
et al. 2016. To me, the bound in equation (9) looks very much the same as the
bound in the prior work.

We appreciate the reviewer’s question regarding Corollary 1. We acknowledge
that the bound in Equation (9) appears similar to the bound in [12]. However,
our work offers a slight generalization in the following way:

* Non-IID Data: While Theorem 3 in [12] explicitly assumes IID empirical
data samples, our corollary extends the applicability to non-IID cases. This
is particularly relevant in federated learning scenarios where data distribu-
tions can vary across clients.

* Proof Adaptation: In the proof of our corollary, we demonstrate that the
core argument in [12] does not strictly require the IID assumption for em-
pirical data. This allows us to derive a similar bound even when data sam-
ples originate from different distributions.

We believe this generalization, though seemingly subtle, is an important con-
tribution as it broadens the theoretical foundations of PAC-Bayes bounds in the
context of federated learning and other non-IID settings.



About the local parameters. On the 7th point of the listing in page 7, you say that

”Both local and global parameters get updated through back propagation ...”.
So I guess as local parameters you mean the iy, and oy, and not the 8 (which is
titled as local parameters on eq (18))?

We appreciate the reviewer’s attention to detail regarding the terminology of lo-
cal parameters. The reviewer is correct that in Equation (18), (. is referred to
as the local parameters. Our method constructs a distribution over these param-
eters, using (1, and o) and then samples (5 from that distribution. However,
all of these are inferred from the global reconstruction model. It is the global
parameters of that model which are updated through backpropagation. We have
changed the wording of the seventh point on page 8 in the revised manuscript to
make this explicit. Note that by updating the global parameters, we are implic-
itly updating the local parameters (since we use the reconstruction model to infer
them).

7. When you say that "The local and global predictions are merged to get the pre-
dictions”, how is the merging done?

We thank the reviewer for this suggestion. While there are multiple ways that
one could merge the predictions, we found that the simplest way was to add
them together. This treats the local predictions as modifications to the global
predictions in Logit space. To improve clarity for the reviewer, we have added
an explanation as a footnote on page 8.

The samples fed to both classifiers are the same (just different parts of the feature
vector) right?

Yes, this is correct. The same samples are fed to both classifiers, but different
portions of the feature vector are used. As detailed in the “Data partitioning”
section (pages 7-8), we split the feature vector into global and local components.
In our experiments, we found that using a larger proportion of global features
(80%) compared to local features (20%) yielded the best performance. Specifi-
cally, when the embedding model’s last layer has a dimension of d = 128, the
first 102 features are considered global, and the remaining 26 are local.

8. I guess Figure 4 is not referred anywhere in the main text?

We thank the reviewer for bringing this to our attention. While we initially pro-
vided a brief explanation in the caption, we understand that this was insufficient.
To address this, we have added the following explanation to the “Evaluation Re-
sults and Discussion” section:

Figure 4 illustrates the non-participating test accuracy on FEMNIST (7 = 107°
) and CIFAR-100 (1 = 1073) over 1500 rounds of training, providing a visual
representation of the results reported in Table 1.

9. About Figure 5: If I have understood correctly, the T parameter controls the
level of local regularization through scaling the KL divergence between the vari-
ational posterior and the prior for B parameter. Could you clarify, would the
7 = 0 correspond to the actual ELBO objective? Or is there some scaling issue



between the data and the prior that might lead to T # 0 being the correct scale?
If not, then it would be interesting to have more discussion why the test perfor-
mance gap seems to somewhat high for the T = 0 in the FEMNIST case, as |
would imagine it should lead to better generalization that the T < 1.

We appreciate the reviewer’s insightful question regarding the role of the 7 pa-
rameter and its relationship to the ELBO objective. That is correct that 7 controls
the level of local regularization by scaling the KL divergence between the varia-
tional posterior and the prior for the 3 parameter.

Our objective function in Equation (8) is indeed a generalization of the ELBO,
where setting 7 = v = 1 recovers the standard ELBO. Setting 7 = 0 effectively
removes the KL divergence term, resulting in maximum likelihood estimation
(MLE).

This distinction explains the higher generalization gap observed for 7 = 0 in both
FEMNIST and CIFAR-100 experiments (Figure 5). While MLE can sometimes
lead to overfitting, the KL divergence term in the ELBO acts as a regularizer,
promoting better generalization. Therefore, values of 7 > 0, which maintain the
KL divergence term, generally exhibit superior performance and result is smaller
generalization gaps.

We hope this explanation clarifies the behavior of 7 and its impact on general-
ization.

10. Appendix C: in the first line of eq. (24), it seems like you are writing {(Y|X) =
Eqo,5e1x ) [L(Y|X,0,8°). I assume that the L(Y|X) and ((Y|X,0,°) are
the evidence and likelihood. Is this really true for variational q? Wouldn’t you
have that £{(Y|X) = Er@s[l(Y]X,0,5°)]? Orif q is not the variational
approximation, can you please clarify what it is?

We appreciate the reviewer’s insightful question regarding Equation (24) in Ap-
pendix C. Throughout this paper ¢(Y'| X) stands for marginalized likelihood over
the surrogate posterior so £(Y'|X) = Eqyp | x,v)[l(Y]X, 0, 3°)] is correct. To
clarify our notation, we use v(X) to denote the prior data generating distribution.
Therefore, we would show the evidence by v(Y|X) = Erg,5)[((Y]X, 0, 5)].

11. Appendix C: what is the || after the 2nd < (close to equation 24)? Is it supposed
to be KL?

We thank the reviewer for spotting the typo in Appendix C. The symbol “||” after
the second “<” should indeed be “Dk1,”. We have corrected this in the updated
manuscript.

12. Appendix C: I believe the last expectation in the Donsker Varadhan inequality
should have a log around it (talking about the expression after "After that we
use the Donsker-Varadhan inequality which says” ).

We appreciate the reviewer’s careful attention to detail. The typo has been cor-
rected in the revised version.



13. Some of the references look a bit odd. There are a lot of uncapitalized letters, as
well as missing venues.

We thank the reviewer for pointing out the reference formatting inconsistencies.
We apologize for this oversight and have carefully reviewed our bib file to iden-
tify and correct the issues. In the updated manuscript, all references now include
venues, ensuring clarity and adherence to formatting guidelines.

14. Possibly relevant cite: Han Guo, Philip Greengard, Hongyi Wang, Andrew Gel-
man, Yoon Kim, Eric P. Xing: Federated Learning as Variational Inference: A
Scalable Expectation Propagation Approach. ICLR 2023

We are grateful for the reviewer for suggesting a relevant reference. We have
incorporated this reference in Section 5 and added FedEP to the baseline com-
parisons in Table 1, strengthening the evaluation of our method.

The reviewer’s insightful comments have significantly strengthened our paper,
and we are grateful for their feedback.

Reviewer WAV?2

Comments:

Strengths: (i) The paper is well-written and well-motivated in general. Improving
the effectiveness of FL is a promising research direction. (ii) The presented idea behind
FedVl is easy to follow. Both theoretical and experimental results are presented to
Jjustify the method.

Weaknesses: (i) It is not clear about the extra computation and communication
incurred by FedVI. By looking at the major algorithm box, FedVI seems to be much
more complex compared to FedAvg. The extra computation and communication costs
have not been explicitly studied in the experiments. (ii) The experimental scales are
too small. It would be essential to demonstrate the effectiveness of FedVI on larger-
scale datasets, e.g., ImageNet. Some similar baseline methods are missing, e.g., [1]
https://arxiv.org/abs/2010.05273 [2] https://arxiv.org/abs/2302.04228.

1. Adding experiments on the extra computation and communication overheads of
FedVI. And study the end-to-end wall clock time comparisons between FedVI
and other baseline methods.

We found the reviewer’s suggestion to be particularly valuable to analyze the
computation and communication overheads of FedVI compared to other baseline
methods.

To assess the complexity of FedVI algorithm as compared to FedAvg, we con-
ducted experiments where we removed the posterior reconstruction and local
classifier components from FedVI, effectively turning it into FedAvg. We then
compared the runtime of both algorithms on the FEMNIST dataset for 200 rounds
using an NVIDIA A100 GPU (all the other hyperparameters are similar to what
is reported in the main manuscript).

The results presented in Figures 2 and 3 demonstrate comparable training and
evaluation runtimes for both FedAvg and FedVI. FedVI achieves an average
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training runtime of 71.35 seconds per round and evaluation runtime of 18.96
seconds per round. In comparison, FedAvg training requires 71.74 seconds per
round and evaluation takes 18.39 seconds per round on average. While FedVI in-
corporates additional components compared to FedAvg, our experiments demon-
strate that these complexities do not significantly impact runtime. This is because
the added components do not significantly contribute to the computational over-
head, as the primary bottleneck is the embedding model. Similarly, although
FedVI requires communicating slightly more global parameters (posterior con-
structor parameters), this does not notably affect runtime. These results under-
score that FedVI’s personalization benefits come at a minimal cost in terms of
computational and communication efficiency.

We acknowledge the reviewer’s request for comparisons with other baselines.
While a direct runtime comparison is challenging without re-implementing those
methods, we can offer some insights. Since the posterior constructor model and
local classifier do not represent computational bottlenecks for Fed V1, its runtime
is expected to be similar to or potentially even less than that of other baseline
methods. This is because those baselines typically involve personalization com-
ponents that may introduce additional computational or communication over-
head compared to FedAvg.

‘We hope this analysis provides valuable insights into FedVI’s computational and
communication efficiency.

. The experimental scales are too small. It would be essential to demonstrate the
effectiveness of FedVI on larger-scale datasets, e.g., ImageNet.

We thank the reviewer for suggesting the evaluation of FedVI on ImageNet and
other large-scale datasets. While we acknowledge the general value of such ex-
periments, we believe that applying FedVI to ImageNet might not provide the
desired insights for the following reasons:

* Federated Nature: ImageNet is not inherently structured for federated learn-
ing (FL). Adapting it to an FL setting would require simulating an artificial
client-based distribution, which might not accurately reflect real-world FL
scenarios. This could potentially distort the evaluation of our personalized
method, as its effectiveness relies on the natural heterogeneity and distribu-
tion shifts present in genuine FL data. Therefore, we believe that evaluating
on datasets specifically designed for FL or those with inherent client-based
structures (such as FEMNIST) would provide a more reliable demonstra-
tion of our method’s capabilities.

* Baseline Comparisons: Our primary focus here lies in personalized feder-
ated learning, where existing baselines are rarely evaluated on datasets of
that scale. This makes direct comparisons with other FL. methods on Ima-
geNet challenging. We believe the chosen datasets, specifically FEMNIST,
effectively demonstrate FedVI’s effectiveness in a personalized FL set-
ting and exhibit inherent heterogeneity and client-based distribution shifts,
which represent the core challenges that FedVI addresses.
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Figure 2: Training runtime of FedVI and FedAvg experiments on FEMNIST dataset.
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Figure 3: Evaluation runtime of FedVI and FedAvg experiments on FEMNIST dataset.

13



3. Add comparisons between FedVI and baseline methods like:

[1] https://arxiv.org/abs/2010.05273 and [2] https://arxiv.org/abs/2302.04228.

Following the reviewer’s helpful suggestion, we have integrated the recommended
references on FedEP and FedPA into Section 5. Additionally, we have included
these methods as baselines in Table 1 to provide a more comprehensive evalua-
tion.

We would like to thank the reviewer for the helpful comments, which have
greatly improved the paper.
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Abstract

Conventional federated learning algorithms train a single global model by leveraging all
participating clients’ data. However, due to heterogeneity in client generative distributions
and predictive models, these approaches may not appropriately approximate the predictive
process, converge to an optimal state, or generalize to new clients. We study personalization
and generalization in stateless cross-device federated learning setups assuming heterogeneity
in client data distributions and predictive models. We first propose a hierarchical generative
model and formalize it using Bayesian Inference. We then approximate this process using
Variational Inference to train our model efficiently. We call this algorithm Federated Varia-
tional Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for
FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show
that FedVI beats the state-of-the-art on both tasks.

1 Introduction

Federated Learning (FL) (McMahan et al., |2016) allows training machine learning models on decentralized
datasets, avoiding the need to aggregate data on a central server due to privacy concerns. In FL, the central
server oversees a global model distributed to clients who conduct local training, and the model updates are
aggregated to iteratively improve the global model.

In simple and idealized settings, FL can approximate centralized training with similar theoretical guarantees,
as seen in FedSGD (McMahan et all 2016]). However, real-world cross-device FL scenarios, such as those in
(Reddi et al.} [2020; Wang et al.| 2021)), often diverge from these ideal conditions. Practical FL implementations
involve multiple local training steps to minimize communication overhead. Client participation is typically
uneven, with some contributing more data and others not participating at all. Additionally, the non-
Independently and Identically Distributed (non-IID) nature of client datasets, stemming from distinct data
generation processes, challenges theoretical guarantees, leads to performance disparities between participating
and non-participating clients (Yuan et al.,|2022), and complicates training high-performing models in practical
FL setups.

Modern approaches address this challenge by either modifying the local loss to converge to a global solution (Li
et al., |2020)) or using personalized models to handle local distribution shifts (Zhang et al.l |2022). Approaches
for personalization have often focused on stateful FL setups, where clients are revisited throughout training
and thus can update a locally stored model (Karimireddy et al., [2019; Wang et al.| [2021). However, many
production scenarios are effectively stateless, since individual clients only rarely contribute to training, and
local models may be either stale or non-existent. Few studies have concentrated on personalization in this
context. Those that have (Singhal et al. |2021)), require clients to possess labeled examples for personalization.

This paper explores personalization in stateless cross-device FL setups and introduces Federated Variational
Inference (FedVI), an algorithm which utilizes Variational Inference (VI) to enable models to generalize and
personalize across diverse client data, even for untrained clients. The key contributions encompass (i) proposing
a hierarchical generative model rooted in mixed effects models for cross-device federated setups, (ii) offering
generalization bounds through Probably Approximately Correct (PAC)-Bayes analysis, (iii) introducing Fed VI
algorithm, inspired by the theoretical approach, which provides a simplified experimental approximation and
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can be implemented by the existing FL frameworks, and (iv) demonstrating the superior performance of
FedVI on two federated datasets, FEMNIST and CIFAR-100, compared to previous state-of-the-art methods.

2 Related Work

Bayesian FL: To tackle statistical heterogeneity in FL, various studies have employed Bayesian methods
to incorporate domain knowledge and aid convergence. Early attempts (Thorgeirsson & Gauterinl, 2020}
|Chen & Chaol 2020) focused on model aggregation, either to retain uncertainty in model parameters, or
to weight parameter updates proportional to performance. |Zhang et al.| (2022)) instead attempts to use a
Bayesian Neural Network (BNN) approximated with VI to train a global model using a Kullback—Leibler
(KL) regularizer which induces convergence similar to the proximal term in FedProx . While
their local models can, in principle, personalize by deviating from the global model, they realistically require
stateful settings with significant labeled data on clients in order to do so. [Kotelevskii et al.| (2022) casts
personalized FL as mixed effects regression, and attempts to model the inherent heterogeneity in this setting
explicitly using Stochastic Gradient Langevin Dynamics (Welling & Tehl [2011). Our proposed method
assumes a similar generative process to [Kotelevskii et al.| (2022) but instead uses VI to efficiently infer the
posterior, as well as place a bound on the predictive risk to induce generalization to new clients

el 2016).

Stateful FL: There is a rich body of literature on personalization in cross device FL (Corinzia et all [2019
Ghosh et all [2020; [Chen & Chao|, 2021} [Collins et al. 2021} [Deng et all, 2020} |[Li et al. 2021} [Hassan et al.
[2023). Many previous methods focus on stateful settings, where local parameters are stored on clients and
maintained across training rounds. However, as emphasized in Table 1 of (Kairouz et all [2021)), statelessness is
a key characteristic of cross-device FL, highlighting its practical significance. Therefore, we focus on stateless
settings, where maintaining up-to-date local states on each client is not feasible. This is similar to the setting
considered by (Marfoq et all |2022)), who uses K-nearest neighbors to account for client distributional shift.
While this is a robust means of dealing with both input and output distributional shift, it requires clients
to possess labeled examples for every class (which is unrealistic in real-world setups), and cannot be used
outside of classification problems. FedVI’s statelessness stems from its use of an amortized posterior inference
model. This concept shares similarities with how Variational Autoencoders (VAEs) (Kingma & Welling
perform inference. In VAEs, an encoder network maps input data to a latent space. FedVI takes a set
of examples and infers the posterior over the local parameters, effectively capturing the personalized features
of each client’s data. This dynamic encoding allows for continuous adaptation and personalization as new
clients join and contribute their data.

Meta Learning: There is a significant amount of prior work that studies connections between personalized
FL and Model-Agnostic Meta-Learning (MAML) approaches (Finn et al., 2017; Singhal et all [2021} [Fallah|
let al.l 2020} [Collins et all [2021} [Lin et al., |2020; |Chen et al. [2018]). The main idea behind these works
is to find an initial global shared model that the existing or new clients can adapt to their own dataset
by performing a few steps of gradient descent with respect to their local data. FedRecon
is also motivated by MAML and considers a partially local federated learning setting, where only a
subset of model parameters (known as global parameters) will be aggregated and trained globally for fast
reconstruction of the local parameters. Our work can be considered as an extension of FedRecon. Unlike this
work, we also provide a means of reconstructing local parameters El without access to labeled data.

3 Methods

3.1 Hierarchical Generative Model

Let us consider a stateless cross-device federated setup with multiple clients and a central server, where
randomly selected client subsets participate in each training round. In this setup, we categorize each client’s
model parameters as global (#) and local (B for k € [cf) parameters, with ¢ representing the total number
of clients. Global parameters update at the server end after each training round, while local parameters are

IThe detailed procedure for reconstructing the local parameters can be found in Section
2In this paper we represent the set of {1,...,c} by [d].
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Figure 1: Illustration of diverse data generation and predictive models in cross-device FL.

deleted after each round. Global parameters are drawn from the prior distribution ¢(©), while each client’s
local parameters are independent samples from the local prior 7(By). Additionally, data may not exhibit IID
characteristics among clients, i.e., x;; ~ v, (X}) for i € [ng] and k € [¢], where ny, is the total number of data
samples at client k. Moreover, each client may have a distinct predictive distribution. Although all clients
share the same likelihood distribution family ¢(Y%|f (8, Bk, zix)), the distribution varies based on S, making
it different for each client.

The above setup is a prototypical example of a mixed effects model (Demidenko, [2013)), commonly employed
for predicting a continuous random variable using multiple independent factors, including both random and
fixed, and incorporating repeated measurements from the same observational unit. Mixed effects models
(Demidenkol [2013) have a well-established foundation. By framing our setup within this context, we can
leverage existing theoretical insights in this field. To summarize, we propose the following hierarchical data
generating process:

6~ t(O) (1)
fork € [c] :
Br ~ r(Br)
fori € [ng] :
Tig ~ Vp(Xp)
Yir ~ LYkl f (0, Br, zir))

where f: ® x B x Xy — Zj is a deterministic function (e.g., DNN) mapping what we know to the latent
space Zj, which is the parameter space of our distribution over outcomes, ¢(.).

For a more intuitive grasp of varying data generation processes and predictive distributions, consider the
Federated EMNIST dataset (FEMNIST; Figure , where each client’s dataset consists of numbers and
letters handwritten by that client. Each client’s input data reflects their unique writing style; for instance, a
German client may include a horizontal middle bar when writing sevens, whereas an American client may
not. Likewise, the German client may add a hood to the number 1, while the American client may not.
This describes the difference in data generating distributions. This also illustrates that each client may have
different predictive distributions: the American client may see the German’s 1 as a 7, while the German client
may see the American’s 1 as a lowercase "l". Thus their predictive distributions are in direct conflict with each
other. A purely global model cannot accommodate this diversity and must incorporate some level of local
adjustments to accurately represent the data generation process. Our proposed algorithm explicitly assumes
this data generating process. Note that this assumption reduces in special cases to existing FL setups, such
as IID predictive distributions (r(By) = 6(By — /3)), or IID data generating processes (v (X)) = v(X)). In
the following section, we detail how we use VI to efficiently infer the model parameters.
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3.2 Training Objective

In this section, our goal is to present a step-by-step definition of the objective function that is meant to be
minimized throughout the training process. We begin by calculating the estimated probability density function

of labels given input data, denoted as p({y™*}©) o p({y™* }¢|{x™* }¢), following a similar marginalization
approach as (Watanabe) 2018)):

N NnE ¢ dﬁf c Nk x"’“ c NnE ¢ CL‘nk c

Py 1) /G/ﬁ IR R SV T D) @
where 8¢ % {81 ¥ {8, ike [}, 2™ < {ay i€ ) y™ Y (i€ i)}, {am e Y {ag i€
[nel, k € [c]}, and {y™*}° = {yap i € [l k € [c]}.

Therefore, for calculating p({y™* }¢) it is required to calculate the posterior probability of model parameters
given the training data which is equal to:

p(97567 {ynk}c|{xnk }C)
p({ym}e{anrye)

Assuming that the prior distribution of the global parameters, ¢(), the prior distribution of the local
parameters, r(f8x), and the likelihood distribution of each client, £(y™*|f(0, Bk, 2™*)), are independent we
calculate the numerator of Equation 3| as:

p(0, B, {y™ }H{x"* }°) = p(0, {Br, {¥ir }icinn] reld KTk Freld icing])
=t(0) [T r8) T] TI Cwinlf (6, Bx,xin))

p(0, 5Hy"™, 2" }¢) = 3)

ke(c] kelc] i€[nk]
= t(0) H (r(ﬁk) H f(yikf(e,ﬂk,ﬂﬁik)))
k€[] i€[ng]
=(0)r(B°)e({y" }[£ (0, B°, {2+ })). (4)

Moreover, the denominator of Equation [3] can be written as:
syt = [ f [ oy, (5)

Unfortunately this integral is not only infeasible to compute, but also mathematically intractable. Conse-
quently, this makes the whole posterior intractable.

To address the problem of the intractable posterior distribution, a tractable surrogate distribution, denoted
as q(0, B¢[{y™, ™ }¢), is approximated using VI. By formulating a specific lower bound on the marginal
distribution known as the evidence lower bound (ELBO), which is equivalent to the KL divergence between
the posterior and surrogate distributions (Equation @, the best surrogate distribution can be obtained
by minimizing the ELBO. This minimization process provides the best approximation for the intractable
posterior distribution, p(6, 5¢[{y™*, 2™ }°), under the chosen family of surrogates. The notation Dxr,(ql/p)
represents the KL divergence between two distributions p and ¢, and detailed derivations of Equation [f] are
available in Appendix [A]

—logp({y™ }{a™ }) < min Dicr (q(0, 5{y™", =™ 1) Ip(0, B {y™ } 2" ). (6)

By asserting factorization, we define the surrogate as a parametric distribution as:

def def

a(0, 5{y"™ e }) = aa(01{y™, @ }°) [T an(Bel6, 5™, 2™) = an(01{y™, 2™ })ar(5°1, {y"*, " }),

ke(c]
(7)
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where X is the parameter set that uniquely defines the surrogate distribution. Therefore, the objective function
for training the proposed hierarchical model is a generalization of the negative ELBO (specifically, negative
ELBO when v = 7 = 1), which can be written as follows using the definition of KL divergence, logarithm
properties, and the multiplication rule in probability.

T (X7, 7) = Dxu(aa(0, B°Ky™ 2™ ) [[p(0, B, {y™* }[{="*}))

Per Datum Expected Loss

= Z Z Eqs 01{y™r 25 1¢)ar (Bi |0,y o) [— 108 L(yix| £ (0, Br, zix))]
k€(c] i€[nk]

+yDrr(ax(O{y™, 2™ })[E0)) + Y 7 Egyoyme wme ey [Dxr(ar(Bel6, y™, ™) [[r(B)], (8)
kelc]

Global Regularizer Local Regularizer

where v, 7, t(6),7(8%), and the functional form of g, (0, 5¢|{y™*, ™ }¢) are left as hyper parameters. The
details of this derivation are provided in Appendix [B] In the following section we explain how minimizing
this objective function is equivalent to minimizing an upper bound on the generalization error.

4 Generalization Bounds

As mentioned earlier, we utilize a generalization of the negative ELBO as our objective function to train
the hierarchical model. Minimizing this function ideally reduces the training dataset error (empirical risk).
However, our primary aim is to minimize the error on unseen datasets (generalization error or true risk) for
better generalization. To achieve this, we conduct a PAC-Bayes analysis, leveraging the results presented
in Theorem 3 of (Germain et al., |2016]). We introduce a slightly generalized version of this theorem in the
form of the following corollary, enabling us to compute a generalization bound for the true risk of our model,
under the assumption of non-IID empirical data samples.

Corollary 1 Given a distribution D over X XY, a hypothesis set F = {0, ¢}, a loss function £ : Fx X x) —
R, a prior distribution n(©, B¢) = t(©)r(B¢) over F, a § € (0,1] and a real number n > 0, with probability

at least 1 — & over the choice of ({z™}¢, {y™*}°) o (X,Y) ~ D, for any q(.) on F we have:

True risk

Ep[—log (Eq(,501x ) [((Y]X, 0, 5))]] <

Empirical risk KL divergence

BxcaEqto |- ToB(ECV X0, 5] +1 [DKLm(e,mX, V)0, 5)

+ log (%Ex’y I:Eﬂ-(975z:) [exp (n]ED[ log(U(Y'|X,0,5°)] —nEx y[—log({(Y|X, 6, BC))])H) } . (9)

Slack term

C ng

Where Ex y [log(£(Y]X, 0, 3°))] = Zczl kZ 1[10g(£(yik|$ik797ﬂk))] and Ep[.] = E(x y)~pl[.]-
ny k=1i=

Sketch of Proof: This corollary’s proof closely follows Theorem 3 in |Germain et al. (2016]). We establish it
using Jensen’s inequality, Donsker-Varadhan change of measure inequality, and Markov’s inequality. Additional
details can be found in Appendix [C]

Having obtained the generalization bound in Equation [0} we observe that it equals the negative ELBO
(Equation [8)) (for n = 1) plus a constant slack term, unrelated to the surrogate posterior distributions. Note
that given Equation |§| validity for any n > 0, setting % = min{y, 7} allows us to consider Equation plus
a slack term as an upper bound on the True risk. Consequently, as long as this slack term remains Tinite,
minimizing Equation [§| with respect to the surrogate distribution is equivalent to minimizing the generalization
error with respect to the surrogate distribution. Thus we conclude that, assuming a finite slack term and
with probability greater than 1 — ¢, minimizing Equation [§ should improve the generalization of our model.
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Figure 2: Our proposed model architecture implementing FedVI.

5 Implementation and Experimental Evaluation

The main goal of this section is to go through the details of our primary theoretical assumptions and model
architecture for implementing an instance of our proposed hierarchical generative model and evaluating it.
We note that the model architecture proposed in this section is one of infinity many architectures that is
compatible with our theoretical model. This section will outline how the algorithm’s steps correspond to the
specific components of the hierarchical model and variational approximation presented in Section

Distributions: For the prior distribution of the local parameters, we assume a normal distribution with
zero mean and variance equal to that given by the initialization scheme (e.g. |Glorot & Bengio| |2010} |Glorot|
let al |2011; He et al., 2015). We assume that clients’ data generating distributions have the same support,
but that they can be different from one another. We use a categorical distribution as our likelihood, where
the logits generated by a deep neural network parameterized by 6 and S (described below). To simplify
implementation, we use a point estimate for the global posterior. This is equivalent to assuming the hyper
parameter of the global KL divergence is equal to zero, i.e., in Equation [§| we have v = 0. Moreover, to make
sure that the KL divergence between the global posterior and the global prior, Dxy,(gx(6|{y™*, z™ })||t(8)),
is finite we assume that the global posterior is a very narrow normal distribution, but still finite, while the
global prior can be any finite function.

Tasks: We evaluate FedVI algorithm on two different datasets, FEMNIST[] (Caldas et all[2019) (62-class digit
and character classification) and CIFAR-10(fT] (Krizhevsky et all [2009) (100-class classification). FEMNIST
is particularly relevant since it has a naturally different data generative distribution for each client. Although
CIFAR-100 data is synthetically partitioned using a hierarchical Latent Dirichlet Allocation (LDA) process
(Li & McCalluml [2006) and distributed among clients, we evaluate FedVI on this dataset as well to show the
superiority of our method on a more complicated classification task.

Model Architecture: There are infinitely many model architectures which could implement our method.
The architecture that we chose in our experiments is illustrated in Figure 2] and summarised in Algorithm [I]
The mathematical notations that are used in both Figure [2]and Algorithm [1| are as follows:

3https://wuw.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/emnist/load_data
4nttps://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/cifar100/load_data
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D, ¥ {z™, Y™ x™ € Xy, Yy € Vi, k €[]} (input dataset of client k) (10)

X, X Rixixi (input space; whitened images) (11)

Ve & [€] (label space) (12)
Eo(.): & — R? (embedding model; relu-convnet with dropout) (13)
Py () : R% — RE D1Vl (posterior constructor model; relu-mlp) (14)
Gor () : R — RIV*! (global classifier; one dense layer) (15)
Lg, () : R4 — RIVH (local classifier; one dense layer) (16)
6=0"u0"Ue" (global parameters) (17)

Bk (local parameters of client k), (18)

where for FEMNIST we have ¢ = 28, j = 1, and |Vx| = ¢ = 62, and for CIFAR-100 ¢ = 32, j = 3, and
|Vi| = ¢ =100, for k € [c]. For both datasets the embedding size d = 128 and the number of local and global
features are equal to d; = 26 and d, = 102, respectively.

Our proposed model architecture consists of four separate modules: an embedding model, Egy/(.), which
encodes the input as a vector, a posterior reconstruction model, Py (.), which predicts the posterior over
local parameters, a classifier parameterized by global parameters, Gy (.), and a classifier implemented by
local parameters, Lg, (.), generated by sampling from the reconstructed posterior. The global parameters
serve the purpose of classifying input data samples by considering their global features shared among all
clients. On the other hand, the local parameters play a distinct role in refining the classification outcome by
accounting for the unique local features specific to each individual client. Our model follows the stateless
definition outlined in Table 1 of (Kairouz et al,|2021)), eliminating the necessity to retain prior client states for
parameter updates. Clients are not required to store updated global parameters; instead, the server aggregates
and transmits averaged updates for upcoming rounds. Furthermore, clients can avoid the need to store
updated local parameters by employing the posterior constructor model in each round to reconstruct the local
parameter distribution, allowing them to derive local parameters through sampling from this reconstructed
posterior distribution.

Implementation: We implement our FedVT algorithm in TensorFlow Federated (TFF) and scale up the
implementation to NVIDIA Tesla V100 GPUs for hyperparameter tuning. For FEMNIST dataset with 3400
clients we consider the first 20 clients as non-participating users which are held-out in training to better
measure generalization as in (Yuan et all 2022)). At each round of training we select 100 clients uniformly at
random without replacement, but with replacement across rounds. For CIFAR-100 with 500 training clients,
we set the data of the first 10 clients as held-out data and select 50 clients uniformly at randomly at each
round. We train FedVTI algorithm on both FEMNIST and CIFAR-100 for 1500 rounds and at each round of
training we divide both datasets into mini-batches of 256 data samples and used mini-batch gradient descent
algorithm to optimize the objective function. The training procedure for each client k& at round ¢, outlined in
Algorithm [1} is as follows. Further details regarding each step are explained subsequently:

1. Each client k£ partitions its input data, Dy, over the batch dimension into support and query sets,
Dy s and Dy, ¢, using the data split function, S(.). Similar to FedRecon (Singhal et al., 2021), the
support set is used to reconstruct the local parameters and the query set is used to make predictions.
Note that the support set we use can be unlabeled, and that the two sets need not be disjoint.
However, we use disjoint sets in our experiments since (Singhal et al.l |2021)) found that it improved
their model performance.

2. Both support and query sets are fed into the embedding model, Eg (.), to extract vector representations
of the data, i.e., Ry s € R and Ry, € R

3. The representation for both support and query sets are further split over their features axis into
global and local features, i.c., (R} , € Rdﬂ,RL’S € R%) and (Ry, € RdG,RLq € R%), for d = d, + dj,
using the feature split function F'(.), as illustrated in Figure
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Algorithm 1 FedVI Training

Input: set of global parameters 6, data split function S(.), feature split function F(.), embedding model
Eg (.), posterior constructor model Py~ (.), global classifier Gy (.), local classifier Lg, (.), merge function
f(), client update algorithm U(.).

ClientUpdate:

(Dr,s; Dq) < S(Dy)

Ry.s Eg/(l‘"k’s,el(t))
)

Server Executes: Riq < Eg/(z0a,0/®)
90 + (initialize ) (RY RL )+ F(Ry.,)
for each round t d C R .
or each round t do (R«]ingw) — F(Ry4)

S « (randomly sample ¢ clients)

#(RY 0"
for each client k € S® in parallel do (ke; ok) < Py (Rk,s’e )

(AY ) ¢ ClientUpdate(k, 61) (7 sample(N (u, 1))
end for Of + GG”'(RZ,qv 6" ®)
n= ZkES(” Tk Oi; « Lg, (Rgc,q7ﬂlgjt))
U+ 9t 4 o Y res® %Aff) 0}(:) - U(f(O;‘i,OfCLy”M)

end for Aff) “ 91(:) _p®
N < ‘Dk7q|

return (A,(:), nk) to the server

4. The global features of the support set, R} , € R% | are used to reconstruct the mean and variance
of the local posterior, i.e., (ux € R Vel o) € Rdl'wk‘), through the posterior constructor model,
Pyi(.). The local parameters, ﬂ,(:), are generated by sampling from this posterior.

5. The global features of the query set, Ri,q € R, are passed to the global classifier, Gg.(.) , to get
the global predictions, Of € Rkl and the local features of the query set, Rﬁcy q € R% and local

parameters, ﬁ,(:), are passed to the local classifier, Lg, (.), to get the local modifications to the global
predictions, O} € RIVx!,

6. The local and global predictions are mergedﬂ to get the predictions. The log-likelihood is then
computed between these predictions and labels and added to the KL divergence between local
posterior and prior.

7. Global parameters get updated through back propagation over the loss function that is calculated
in the previous step. This indirectly updates the local parameters, as they are inferred from the
posterior constructor model, which is parameterized by the global parameters. Then the local update
of the global parameters, A,(f), along with the number of query data samples at client k, ng, are
returned to the server.

8. The server aggregates all client updates and calculates the global update of the global parameters,
6+1)  and shares them with all clients k € S+ for the next round of training.

Data Partitioning: First we note that for both FEMNIST and CIFAR-100 datasets, at each epoch we
consider the first 50% of each mini-batch as the support set and the other 50% as the query set (i.e, for a
mini-batch with 256 data samples the first 128 samples belong to the support set and the rest belong to
query set). For the global-local features split, we found that using a larger number of global features (80%)
than local features (20%) performed best. More specifically, in these experiments that the dimension of the
last layer of the embedding model is equal to d = 128, the first 102 features are considered as the global
features and the rest of 26 features are local features.

5While there are multiple ways that one could merge the predictions, we found that the simplest way was to add them
together. This treats the local predictions as modifications to the global predictions in Logit space.
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Figure 3: An illustration of the division of the data into support and query sets, as well as the division into
global and local features.

Embedding Model: In our experiments the embedding model, Eg (.), is a relu convnet. For FEMNIST
experiment we consider the convolutional model with 2 convolution layers that is described in Table 4 of
(Reddi et al.| (2020)) paper (without the top layer) and is parameteraized by the global parameters. the
detailed structure of this embedding model is as the following.

For FEMNIST: Egy/(.) = conv(32) — relu — conv(64) — relu — mazpool(2,2) — dropout(0.25) — flatten —
dense(128) — dropout(0.5)

We choose a convolutional embedding model for CIFAR-100 as well, which is similar to FEMNIST embedding
model, but having 5 convolution layers instead. The detailed structure is as follows.

For CIFAR-100: Eg/(.) = conv(32) — relu — conv(64) — relu — conv(128) — relu — conv(256) — relu —
conv(512) — relu — mazpool(2,2) — dropout(0.25) — flatten — dense(128) — dropout(0.5)

Posterior Constructor Model: The posterior constructor model, Py (.), is an MLP with three (dense)
layers that takes the global features of the output of E¢/(.) as input and generates mean, variance, and bias
of the posterior.

For both FEMNIST and CIFAR-100: Py (.) = dense(256) — relu — dense(256) — relu —
dense((2 x 26 + 1) x |Vx|)

Global and Local Classifiers: For both FEMNIST and CIFAR-100 experiments global classifier is one
dense layer with || units and no activation function, parameterized by the global parameters, and the local
classifier is one dense layer similar to the global classifier, but parameterized by the local parameters.

Optimizers: We use Stochastic Gradient Descent (SGD) for our client optimizer and SGD with momentum
for the server optimizer for all experiments (Reddi et al., 2020). We set the client learning rate equal to 0.03
for CIFAR-100 and 0.02 for FEMNIST dataset, and server learning rate equal to 3.0 with momentum 0.9 for
both FEMNIST and CIFAR-100 datasets.

Evaluation Results and Discussion: We evaluate our proposed FedVI algorithm against state-of-the-art
personalized FL method, KNN-Per (Marfoq et al. |2022), as well as FedPA (Al-Shedivat et al., 2020), FedEP
(Guo et all, [2023)) (using highest reported values), FedAvg+ (Chen & Chaoj [2021)), ClusteredFL (Ghosh
let al., 2020), DITTO (Li et al., 2021)), FedRep (Collins et al., [2021), APFL (Deng et al., [2020), and FedAvg
McMahan et al., [2016]). Results for the baseline methods (except for FedPA and FedEP) are taken from
Marfoq et al., 2022).

KNN-Per (Marfoq et all [2022)) achieves personalized federated learning by combining a global MobileNet-V2
model with local k-nearest neighbors models based on shared data representations, demonstrating improved
accuracy and fairness compared to other methods. FedPA (Al-Shedivat et al.| [2020]) reimagines federated
learning as a posterior inference problem, proposing a novel algorithm that utilizes MCMC for efficient local
inference and communication, employing CNN models for FEMNIST and ResNet-18 for CIFAR-100. FedEP
(Guo et all [2023) similarly reformulates federated learning as a variational inference problem, using an
expectation propagation algorithm to refine approximations to the global posterior, and also employs CNN
models for FEMNIST and ResNet-18 for CIFAR-100. APFL (Deng et al., [2020) offers a communication-
efficient federated learning algorithm that adaptively combines local and global models to learn personalized
models, utilizing various models (logistic regression, CNN, MLP) on diverse datasets, including FEMNIST
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Table 1: Test accuracy of the participating/non-participating clients. Fed VT results are reported for 7 = 1079
for FEMNIST, and 7 = 1073 for CIFAR-100.

Dataset FedAvg FedAvg+ ClusteredFL.  DITTO FedRep APFL FedPA FedEP KNN-Per FedVI

FEMNIST  83.4/83.1 84.3/84.2 83.7/83.2 84.3/83.9 85.3/85.4 84.1/84.2 87.3/NA 86.6/NA 88.2/83.1 90.3/90.6
CIFAR-100 47.4/47.1 51.4/50.8 47.2/47.1 52.0/52.1 53.2/53.5 51.7/49.1 46.3/NA 50.7/NA 55.0/56.1 59.1/58.7

and CIFAR-100. ClusteredFL (Ghosh et all [2020) is designed for clustered users, iteratively estimating
user clusters and optimizing their model parameters, demonstrating strong performance in various settings.
Finally, FedRep (Collins et al [2021)) learns a shared representation and unique local heads for each client,
using 5-layer CNNs for CIFAR and a 2-layer MLP for FEMNIST, while DITTO introduces a
simple personalization mechanism within a multi-task learning framework, utilizing CNNs, logistic regression,
and linear SVMs for different datasets.

0.8

06 Y AT e LAl

0.4

0.2 FEMNIST (7=10°)

=1CIFAR-100 (7 =103)

Test Accuracy of Holdout Clients

0 500 1000 1500
Number of Rounds

Figure 4: Non-participating test accuracy of FEMNIST (7 = 10~?) and CIFAR-100 (7 = 10~3) over 1500
rounds of training.

The performance of FedVI algorithm and other methods on the local test dataset of each client (unseen
data at training) are provided in Table (1| for participating and non-participating (completely unseen during
training) clients. All of the reported values are average weighted accuracy with weights proportional to local
dataset sizes. To ensure the robustness of our reported results for FedVI, we average test accuracy across the
last 100 rounds of training. Figure [4] illustrates the non-participating test accuracy on FEMNIST (7 = 10~
) and CIFAR-100 (7 = 1073) over 1500 rounds of training, providing a visual representation of the results
reported in Table

Figure [5a] shows the average test accuracy over the last 100 FEMNIST training rounds for a range of KL
hyperparameter 7, from 1072 to 10 (As the horizontal axis of both figures in Figure are semi-logarithmic,
test accuracy results of 7 = 0 are shown at point 7 = 107!?). Notably, 7 = 10~ outperforms others, achieving
higher accuracy with a smaller generalization gap compared to 7 = 0.

Figure displays the average test accuracy over the last 100 rounds in CIFAR-100, with varying KL
hyperparameter 7. Notably, 7 = 10~2 achieves the highest accuracy for both participating and non-
participating clients. Comparing 7 = 0 to other values (7 # 0) reveals that minimizing KL divergence reduces
the gap in participation test accuracy, as anticipated. Note that our objective function in Equation [§] is
indeed a generalization of the ELBO, where setting 7 = v = 1 recovers the standard ELBO. Setting 7 =0
effectively removes the KL divergence term, resulting in maximum likelihood estimation (MLE). While MLE
can sometimes lead to overfitting, the KL divergence term in the ELBO acts as a regularizer, promoting
better generalization. Therefore, values of 7 > 0, which maintain the KL divergence term, generally exhibit
superior performance and result is smaller generalization gaps. Furthermore, comparing this figure to Figure
it’s evident that the difference in test accuracy between 7 = 0 and 7 = 10~? in the FEMNIST experiment
is significantly larger than the difference between 7 = 0 and 7 = 1073 in the CIFAR-100 experiment.
This suggests that minimizing KL divergence is more critical for FEMNIST than for CIFAR-100. One

10
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possible explanation is that in FEMNIST, each client’s data generation distribution naturally differs, while in
CIFAR-100, data is synthetically partitioned and distributed among clients.
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Figure 5: Participating and non-participating test accuracy vs. KL hyperparameter 7.

6 Conclusion and Future Work

This work addresses personalization in stateless cross-device federated setups through the introduction of
FedVI, a novel algorithm grounded in mixed effects models and trained using VI. We establish generalization
bounds for FedVI through PAC-Bayes analysis, present a novel architecture, and implement it. Evaluation
on FEMNIST and CIFAR-100 datasets demonstrates that FedVI outperforms state-of-the-art methods in
both cases. It is worth noting that in this paper, we employed a narrow normal distribution as the posterior
for global parameters. However, in future research, we intend to explore more generalized distributions to
enhance the modeling capabilities. Additionally, the model architecture presented in Figure [2]is just one of
several possible architectures that align with our theoretical hierarchical model. In upcoming work we will
focus on refining these architectures to optimize performance and explore their potential for achieving even
better results.
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Appendices

A Derivations of Equation [6]

Here we provide the detailed derivations of Equation |§| which are derived based on Section 2.2 of (Kingma &
Welling) 2013a). The main goal of these derivations is to devise an upper bound on the negative logarithm
of the intractable denominator of the posterior probability of model parameters, i.e., p(6, B¢|{y™*, 2™+ }¢) =
p(0, B¢, {y™ el{x™ }°) /p({y™ }¢[{x™* }¢), to be able to approximate p(8, B¢|{y™*, ™ }¢), in a tractable way.
For this purpose, we consider an arbitrary distribution ¢(6, 5¢|{y"™*,2™* }¢) as a surrogate for the posterior.
Since the KL divergence of two distributions is always non-negative, we can use the KL divergence between the
true posterior and our surrogate to devise an obvious and trivial upper bound on — log p({y™* }¢|{z"* }¢) as
the initial step in Equation As the minimum of a non-negative number is always non-negative, we replace
the KL divergence with its minimum value with respect to the surrogate distribution ¢(8, 5¢|{y"™*, x™* }),
to make this upper bound as tight as possible (Equation . Moreover, since — log p({y™* }¢|{z™*}¢) is
independent of the surrogate distribution, we move this term inside the minimum as shown in Equation [21]

The rest of the proof comes from the definition of KL divergence, the multiplication rule of probability, and

properties of logarithms. For the sake of simplicity in notation we have {y"*, z™ }¢ f x ,Y in the following

equations.

Always > 0.
Always > 0.
~logp(Y|X) < —log p(Y]X) + min Dicw. (¢(6, 51X, Y)|1p(8, 61X, Y)) (20)
—logp(Y]X) < min —log p(Y]X) + Dxw(q(6, 51X, Y) [p(6, 5| X, Y)) (21)
. q(6, 81X, Y)
= E e —1 Y|X)+1
mqm a(0,8¢1x,v) [~ log p(Y[X) + log (0, 7 X, Y)]
. q(0, B°1X,Y)
= minE ¢ lo
P Ea0 0 108 LG e X Vp(YIX)
q(f, 51X, Y)
—In;n]Eq(Qﬁ |X,Y) [log (9 ﬁc Y|X)}
= rnqlnDKL<Q(9aBC|X7 Y)HP( 7BC7Y‘X)) (22)

B Derivations of Equation

We provide details for Equation [§] which is derived based on the definition of KL divorgcncc propcrtics of

logarithms, and the multiplication rule of probability. In the following equations {y"*, x”k} X Y for the
simplicity in notations.

) POSYIX) | plO.8°YIX) | (0, 51X.Y)
P60, F1X,Y)  p(0. 51X, Y) " 40, 5K Y)
_ P05, YIX)  g(6.51X,Y)
g0, 5TX,Y) " p(6, 5IX.Y)

_ UO)r(B)UY 60,5 X)) a(6,5°X.Y)
QA(9|X7Y)QA(BC|97X7Y) p(0, )6, X,Y)
= —log(p(Y]X)) = —log(€£(Y|f(0, 8, X)))
o (01X,Y) o (6616, X, Y) o
e ) +1 g(ir(m ) — log(

q(0,5°X,Y)

1 P S R A
o log (0, 616, X, )

)
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= Ey0,501x,v) [~ log(p(Y|X))] = —log(p(Y|X))

= B0 [ ToB(ACY 6, 5% X))+ By e o2 G
D (PP, X, ¥) (0, 51X, )

+ Eq(0,81x.,Y) [10g(7r(ﬁc) )] - ]Eq(e,/aqu)[log(pi(e 51X Y))]
—log(p(Y'|X)) + Dxwr(q(8, 81X, Y)Ip(6, B°| X, Y))
= Eq(e,BC\X,Y) [_ 10g(€(Y|f(0, ﬁcv X)))]
By 0, DL (@ O1X. Y [H6))]+ By 0., [ Drc (0 (5716, X, Y) ()]
Expected Loss
=Ey(0,501x,v)[— log(L(Y| f(0, 5%, X)))]
+ Dkr(gx (01X, Y)|[1(0)) + Eqy, (01x,v) [Pk (g (810, X, Y) [|7(5°))]
Global Regularizer Local Regularizer

=Eq0,601x,v) [= 1og(L(Y[£(6, 5 X)))] + Dkr(q(0, 51X, Y)[[t(0)r(5%))) (23)

C Proof of Corollary [1]

The proof of this corollary is derived from the proof of Theorem 3 in (Germain et al.| (2016))). More specifically,
Equation [24] comes from Jensen inequality, Equation [25]is a result of Donsker-Varadhan change of measure
inequality, and Equation [26] comes from Morkov’s inequality.

nEp[—log (L(Y]X))] = nEp[—log (Eqw,pe1x.) (Y |X, 0, 5))]]

< MEp[Eq(o,pex,v) [~ log (((Y|X, 0, 5))]] (24)
< nEx,y [Eqe,5:1x,v) [~ log (L(Y|X, 6, 5%)]]

+ Dk (q(8, 81X, Y)||7(6, 5%))

T log (Ew(e,ﬁc) jexp (nED[ log(€(Y]X. 6, 5))] — nEx.y [ log(£(Y]X, 0, m)])]) (25)

<
wp>1-30 nExy[Eq@,sex,v) [~ log (((Y]X. 0, 59)]] + Dxr(q(8, X, Y )| (6, 5°))

+log ($Ex,yEr(g,5¢) [ exp (nED[— log(L(Y'|X, 0, 8%))] — nEx vy [~ log(£(Y]X, 0, 50))])]) (26)

We note that as opposed to Theorem 3 in (Germain et al., 2016), we did not assume the empirical data
samples (X,Y) are derived IID from a data distribution and interestingly this proof, which is a slightly
revised version of the proof of Theorem 3 in (Germain et al., [2016)), is correct for non-IID empirical data
samples as well. The rationale behind this is that none of the steps in the aforementioned proof relies on
the IID property of the empirical data samples. More specifically, this proof starts with calculating the true
risk, Ep, and moving the logarithm inside the expected value using Jensen inequality. After that we use the
Donsker-Varadhan inequality which says E,[¢(f)] < Dkw(q||7) + log(E,[e?)]) (Germain et al., [2016). To
use this inequality we define ¢(f) = Ep — Ex y. The crucial aspect of this proof is the Donsker-Varadhan
inequality, which holds true for any function ¢(f) = Ep —Ex y and whether the data we used to compute
the empirical risk, Ex,y, is IID or not, doesn’t affect its validity. Finally, the last inequality is the Morkov’s
inequality that does not need IID assumption as well.
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