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Abstract

Active Learning (AL) allows models to learn001
interactively from user feedback. This pa-002
per introduces a counterfactual data augmen-003
tation approach to AL, particularly address-004
ing the cold start problem, a pivotal concern005
in early stages of AL. Our data augmentation006
approach is inspired by Variation Theory, a007
theory of human concept learning that em-008
phasizes the essential features of a concept009
by focusing on what stays the same and what010
changes. Instead of just querying with exist-011
ing data points, our approach synthesizes ar-012
tificial data points that highlight potential key013
similarities and differences among labels us-014
ing a neuro-symbolic pipeline combining large015
language models (LLMs) and rule-based mod-016
els. Through an experiment in the example017
domain of text classification, we show that our018
approach achieves significantly higher perfor-019
mance when there are fewer annotated data. As020
the annotated training data gets larger the im-021
pact of the generated data starts to diminish022
showing its capability to address the cold start023
problem in AL. This research sheds light on024
integrating theories of human learning into the025
optimization of AL.026

1 Introduction027

Active learning (AL) allows users to provide fo-028

cused annotations to integrate human perception029

and domain knowledge into machine learning mod-030

els (Settles, 2009). It relies on a human’s itera-031

tive annotations to build and refine model perfor-032

mance (Budd et al., 2021), and as a result, the033

model’s gain in performance of with each round034

of annotations relies on the quality and quantity of035

annotated examples. However, the process of label-036

ing data presents a significant bottleneck due to the037

cost and time associated with annotation (Fredriks-038

son et al., 2020). Additionally, AL faces a cold039

*Co-senior authors contributed equally.

Figure 1: Inspired by Variation Theory of learning, our
approach combines neuro-symbolic patterns with in-
context learning to generate counterfactual examples for
active learning.

start problem, where initially, in the absence of suf- 040

ficient annotated data, the model is unstable and 041

struggles to make effective learning decisions, af- 042

fecting its early performance (Yuan et al., 2020). 043

Previous work showed that careful selection of ex- 044

amples to be annotated is instrumental to achieve 045

optimal performance gain (Beck et al., 2013). 046

The use of human cognitive learning theories as 047

inspiration for how and what models learn has been 048

shown promising in previous work (Zhang and Er, 049

2016). Following this direction, our work explores 050

the novel use of a theory of human learning—The 051

Variation Theory—to support human-AI collabora- 052

tion in interactive machine learning. The Variation 053

Theory of learning (Ling Lo, 2012; Marton, 2014; 054

Marton and Booth, 1997) states that human learn- 055

ers can more effectively grasp the critical aspects of 056

a concept by experiencing variation along critical 057

features. For example, to comprehend the concept 058

of a “ripe banana”, learners should first encounter 059

bananas alongside examples of other fruits, and 060

then encounter various colors of bananas labeled 061

as more or less ripe, so that they can recognize the 062

critical qualities of a banana, e.g. “yellowness” and 063
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“firmness”, as critical indicators of ripeness (Seel,064

2011). Variation Theory involves two key steps: (1)065

identifying critical features and conceptual bound-066

aries, and (2) devising new examples to delineate067

these conceptual boundaries. This work explores068

the relevance of the Variation Theory of human069

concept learning in contexts where an AI model is070

actively learning a concept from human-provided071

annotations; the variations that Variation Theory072

proscribes may assist both the machine and the073

human in this context.074

Previous research showed the benefits of counter-075

factual data augmentation to enhance model perfor-076

mance (Liu et al., 2021; Yang et al., 2022a; Wang077

and Culotta, 2020; Reddy et al., 2023). In the con-078

text of Variation Theory, synthesized counterfac-079

tual data can be more effective in capturing mean-080

ingful variations than real data selected from the081

dataset. However, the scalable generation and se-082

lection of augmented data has been a consistent083

challenge (Liu et al., 2022; Li et al., 2023a). To084

address this, DISCO (Chen et al., 2023) proposed085

a method for automatically generating counterfac-086

tual data using task-agnostic models. Despite its087

robust approach to augmented data, DISCO’s use088

of a fully black-box pipeline makes debugging and089

improving the model difficult and does not allow090

meaningful presentation of variations that facili-091

tates effective human annotation and sensemaking.092

To address this, we propose a counterfactual093

generation pipeline that uses neuro-symbolic pat-094

terns to identify important features and uses095

them to guide the LLM’s counterfactual gener-096

ation1. Specifically, we use a programming-by-097

example approach (Gulwani, 2011) to generate098

neuro-symbolic patterns (Gebreegziabher et al.,099

2023). These patterns capture the syntactic and100

semantic similarities among similarly labeled ex-101

amples. We then use the learned patterns to guide102

the LLM to generate counterfactual examples to103

be used in consecutive rounds of model re-training.104

The generated counterfactual examples change the105

assigned label into a different label while still keep-106

ing the original symbolic pattern in the data. In107

doing so, the generated examples introduce more108

meaningful variability in the data for subsequent109

model training. To further ensure the quality of110

the generated counterfactual examples, we design111

a three-step automatic filtering pipeline.112

This paper makes the following contributions:113

1ANONYMIZED

Evaluating the effectiveness of Variation Theory 114

in active learning: We assess how the Variation 115

Theory of human learning can enhance the robust- 116

ness and address the cold-start challenges (Yuan 117

et al., 2020) in active learning. The results show 118

that using counterfactual-based example selection 119

results in higher accuracy with fewer annotations 120

required compared to other example selection meth- 121

ods in cold start scenarios. 122

Quality of counterfactual examples generated 123

using neuro-symbolic approaches: Our ap- 124

proach employs Variation Theory to generate coun- 125

terfactual data that differ from the original data 126

semantically over neuro-symbolic dimensions but 127

maintain syntactic similarity with the original la- 128

beled data. We assess the quality of generated 129

counterfactual examples using a three-stage filter- 130

ing mechanism including the rate at which the sym- 131

bolic patterns are kept consistent in the generated 132

examples. The results show significant increase 133

in the Soft Label Flip rate (SLFR)—the rate of 134

removal of original labels from counterfactual ex- 135

amples, and a high level of consistency in Label 136

Flip Rate (LFR)—the rate of changing original la- 137

bels into target labels in generated counterfactual 138

examples. By evaluating how often new examples 139

meaningfully alter the original label and capture 140

valuable variations – by keeping the original neuro- 141

symbolic pattern – we can assess the efficacy of the 142

examples produced. 143

This paper assesses the impacts of annotation 144

selection, syntactic diversity, and semantic diver- 145

sity of generated counterfactuals in active learn- 146

ing. We use a classification task to compare the 147

performance of our method with four baseline con- 148

ditions, i.e., random selection and cluster-based 149

selection, uncertainty-based selection, and coun- 150

terfactuals without Variation Theory. Our method 151

uses generated counterfactual data as augmenta- 152

tion, while the baseline uses existing “real” data 153

along with example selection methods to train a 154

multiclass classification model. The results across 155

three datasets and two models show that the use 156

of counterfactual generated data results in at least 157

two times higher performance with fewer number 158

of annotations(<70) compared to the other condi- 159

tions. As the number of annotated data increases, 160

the impact of the augmented data starts to diminish 161

showing the efficacy of the approach in cold-start 162

scenarios. 163
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2 Related Work164

2.1 Active Learning165

Active Learning (AL) in machine learning is an ap-166

proach in which the learning algorithm selectively167

chooses informative data points for mode training.168

Although most sampling strategies rely on a pool169

of unlabeled data (Fu et al., 2013), there are strate-170

gies that synthesize data points in real time for171

annotation (Schumann and Rehbein, 2019). The172

second approach, also called Membership Query173

Synthesis (MQS) creates new examples that inform174

the mode with more representative scenarios by ei-175

ther modifying existing instances (Wu et al., 2023,176

2021) or generating new instances (Schumann and177

Rehbein, 2019).178

In domains with scarce annotated data, data aug-179

mentation methods aim to enhance the quantity and180

quality of training data (Yang et al., 2022b). Tradi-181

tional data augmentation techniques, such as geo-182

metric transformations and color space alterations,183

do not modify the fundamental causal generative184

process. As a result, they do not counteract biases185

like spurious correlations (Kaushik et al., 2021).186

Counterfactual data augmentation has been187

widely used to counteract spurious correlations188

in data (Denton et al., 2020; Liu et al., 2021;189

Yang et al., 2022a; Wang and Culotta, 2020).190

This approach employs counterfactual inference191

to control generative factors, facilitating the gen-192

eration of samples that can address confound-193

ing biases. Many existing strategies use dataset-194

specific counterfactual augmentation methods in195

specific domains, such as sentiment analysis (Yang196

et al., 2022a; Kaushik et al., 2020), named entity197

recognition (Ghaddar et al., 2021), text classifica-198

tion (Wang and Culotta, 2020), and neural machine199

translation (Liu et al., 2021). A popular approach200

to address spurious dependence in NLP datasets is201

to use human-guided counterfactual augmentation202

through crowdsourcing (Kaushik et al., 2021; Joshi203

and He, 2022). This approach presents individuals204

with data and preliminary labels, asking them to205

modify the data for an alternate label while avoid-206

ing unnecessary edits (Kaushik et al., 2020). This207

method depends on human efforts and expertise to208

overcome the challenge of automatically translat-209

ing raw text into important features.210

LLMs have have been shown to possess exten-211

sive generative capacity, making them useful tools212

for counterfactual data generation. Li et al. (2023a)213

introduced a method utilizing LLMs to generate214

domain-specific counterfactual samples through 215

prompt design, highlighting the alignment between 216

the efficacy of LLMs in domain-specific counterfac- 217

tual generation and their overall proficiency in that 218

domain. Although in-context learning has been a 219

promising direction to get LLMs to perform differ- 220

ent tasks Min et al. (2022) found that demonstrating 221

the label space, the distribution of the input text, 222

and the overall format of the sequence as important 223

factors for the performance of in-context learning. 224

A consistent challenge in counterfactual gen- 225

eration has been the scalable generation and se- 226

lection of augmented data (Liu et al., 2022; Li 227

et al., 2023a). To address this, DISCO (Chen 228

et al., 2023) introduced a method for automatically 229

generating high-quality counterfactual data using 230

task-agnostic “teacher and student” models to al- 231

low classifier models to learn casual representation. 232

DISCO uses a neural syntactic parser to select the 233

spans of the sentence to vary on to generate data 234

using Large Language Models (LLMs). Although 235

DISCO provides more robust models trained on 236

augmented data, the use of black-box approaches 237

to generate data could make model debugging and 238

improvement harder. To address this, we adopt 239

a neuro-symbolic approach to define the concept 240

boundaries in user annotations (Gebreegziabher 241

et al., 2023). 242

2.2 Example-based Learning via Variation 243

Theory 244

Based on previous studies on LLMs as counterfac- 245

tual generators, our work seeks to learn from hu- 246

man cognition and example-based learning to better 247

guide LLMs to generate higher quality data. Will 248

educational theories that work for human learn- 249

ers also work for AI? Decades of research have 250

demonstrated that using example-based learning 251

constitutes an effective instructional strategy for hu- 252

man acquiring new skills (Gog and Rummel, 2010). 253

Few-shot learning is an example-based learning 254

method commonly used by LLMs. 255

How can we use human learning theories to 256

support the annotation of data and training of 257

LLM classifiers? Variation Theory (Marton, 2014), 258

rooted in phenomenography, gives us insights from 259

human experience, e.g., (Cheng, 2016). The core 260

concept of this theory involves presenting sets of 261

examples that vary along specific dimensions, en- 262

abling learners to identify and conceptualize the 263

dimensions as a useful coordinate space for describ- 264
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ing instantiations of the underlying concept. This265

aligns with the foundational principle of counter-266

factual data augmentation in machine learning.267

3 Approach268

Our approach applies the Variation Theory of hu-269

man learning to machine learning in the context270

of active learning (AL). In order to adopt Varia-271

tion Theory to AL we propose a new approach272

of counterfactual data generation by combining273

neuro-symbolic methods and LLMs. Specifically274

we use domain-specific neuro-symbolic patterns to275

learn syntactic representation of similarly labeled276

data that define a neuro-symbolic model’s learn-277

ing space and concept boundaries. We then use278

the learned patterns to guide the generation of aug-279

mented data that helps a classification model learn280

important nuances about each label (Fig. 1-A,B).281

Through this approach we generate counter-282

factual data that are syntactically similar to their283

original counterpart but semantically belong to284

a different label. To ensure the quality of the285

generated counterfactuals, we apply a three-level286

filtering mechanism (Fig. 1-C).287

3.1 Using Neuro-symbolic Patterns to Define288

Concept Space289

Variation Theory suggests that humans learn a con-290

cept most effectively when they are shown exam-291

ples that vary in only one specific dimension at a292

time, while all other aspects stay the same. There-293

fore, an important aspect of Variation Theory is de-294

termining which features should vary to emphasize295

their effects in the learning process. We achieve296

this by learning critical features from labeled data297

by generating neuro-symbolic patterns and make298

small modifications on the original sentence while299

maintaining consistency along the generated pat-300

tern.301

3.1.1 Learning Neuro-symbolic Patterns302

We use a programming-by-example (Lieberman,303

2001) approach to establish the boundaries of con-304

cepts defined by data points and their associated305

ground truth labels. While our simulation study306

currently relies on ground truth labels, these will307

be substituted with human annotations in forthcom-308

ing interactive systems. After we randomly select a309

few annotations, we use PaTAT’s (Gebreegziabher310

et al., 2023) interactive program synthesis approach311

to generate domain-specific pattern rules that match312

the annotated examples. These pattern rules repre- 313

sent the lexical, syntactic, and semantic similarities 314

of data under the same label. PaTAT’s pattern lan- 315

guage includes the following components: 316

• Part-of-speech (POS) tags: VERB, PROPN, NOUN, 317

ADJ, ADV, AUX, PRON, NUM 318

• Word stemming: [WORD] (e.g., [have] will 319

match all variants of have, such as had, has, and 320

having) 321

• Soft match: (word) (e.g., (pricey) will match 322

synonyms such as expensive and costly, etc.) 323

• Entity type: $ENT-TYPE (e.g., $LOCATION will 324

match phrases of location type, such as Houston, 325

TX and California; $DATE will match dates; $ORG 326

will match names of organizations) 327

• Wildcard: * (will match any sequence of words) 328

Although the fundamental patterns are suitable for 329

general domain text data, it is feasible to expand the 330

pattern language to include specialized or domain- 331

specific patterns. 332

This method generates a collection of regex-like 333

patterns (but with semantically-enhanced tags) that 334

match with the labeled positive examples while 335

excluding the labeled negative examples. For ex- 336

ample, if two data points in the domain of restau- 337

rant review “Good food with great variety." and 338

“The food was amazing." have the same label “prod- 339

ucts", PaTAT learns up to 5 patterns that collec- 340

tively match the set of examples annotated with 341

that label. In this case, two patterns match both 342

sentences, i.e., “[food]+*+ADJ”, “(amazing)+*”. 343

3.1.2 Using Neuro-symbolic Patterns for 344

Counterfactual Data Generation 345

Using the learned neuro-symbolic patterns, we gen- 346

erate counterfactual examples by modifying the 347

original text to be about a different label while still 348

keeping the original pattern. To ensure minimal 349

modifications and to make sure the reason for the 350

original label is kept, we begin by generating candi- 351

date phrases for segments of the original sentence 352

that matched the neuro-symbolic pattern (Fig. 1-A). 353

We use the generated candidate phrases as 354

a constraints to be included in the generated 355

sentence. For example in Fig. 1, the pattern 356

(cheap)+*+NOUN has candidate phrases [‘afford- 357

able lobster’, ‘reasonable price’, ‘budget-friendly 358
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menu’]. When generating the counterfactual exam-359

ple we instruct the LLM to always include one of360

those phrases in the modified sentence. This con-361

straint ensures that counterfactual examples that362

vary in semantic content remain within the syntac-363

tic boundaries set by the pattern, which defines, at364

least in part, the particular label for which coun-365

terexamples are being generated (Fig. 1-B).366

3.2 Filtering Generated Counterfactual Data367

The ideal counterfactual examples is a complete368

and coherent sentence that should keep the patterns369

of the original text, and successfully flip the origi-370

nal label to the target label. To ensure the quality of371

the fine-tuning dataset we implement a three-stage372

filtering mechanism:373

3.2.1 Regex Heuristic Filtering374

We use a heuristic-based filter to identify and re-375

move counterfactual data with common generation376

flaws. This filter ensures that the generated sen-377

tences are coherent and complete. This method378

uses regular expressions to detect common gen-379

eration errors observed during our experimenta-380

tion (Fig. 1-C1). We define rules to identify error381

patterns such as repetition of prompt, inaccurate382

formatting, and incomplete generation, which were383

some common pitfalls we observed during genera-384

tion.385

3.2.2 Neuro-symbolic Filtering386

The neuro-symbolic filter ensures that the gener-387

ated counterfactual examples retain the original388

learned pattern. The original patterns represent fea-389

tures the model learns as useful conceptual bound-390

aries. Therefore, keeping them in the counterfac-391

tually generated examples challenges the model’s392

current boundary. To achieve this we implement the393

filter using executable neuro-symbolic patterns de-394

fined in § 3.1. Specifically, we check whether each395

generated counterfactual example matches its orig-396

inal counterpart’s neuro-symbolic pattern (Fig. 1-397

C2). This filter excludes generated counterfactual398

examples that do not match with the provided pat-399

tern from being used in the consecutive training400

pipeline. To quantify this over the generated coun-401

terfactual examples we calculate the pattern keep-402

ing rate (PKR) as defined below.403

PKR =
1

N

N∑
n=1

1(p̂n = pn)404

where pn is original pattern, p̂n is the pattern given 405

to the counterfactual data, and N is the size of the 406

counterfactual data. 407

3.2.3 LLM-based Discriminator Filtering 408

Finally, we apply a filter using a GPT-4o discrimi- 409

nator. This filter removes counterfactuals that still 410

keep their original label and all counterfactuals that 411

do not change the label to the target label (Fig. 1- 412

C3). This filter makes sure that the generated coun- 413

terfactual examples have enough semantic changes 414

that changes the original label to the target label. 415

We adopt two matrices (Chen et al., 2023) to quan- 416

tify this: the Label Flip Rate (LFR), and the Soft 417

Label Flip Rate (SLFR) as defined below: 418

LFR =
1

N

N∑
n=1

1

(
l̂n = Ln

)
419

SLFR =
1

N

N∑
n=1

1(l̂n ̸= ln) 420

421

where l̂n is the label given by GPT-4o discriminator, 422

Ln is the target label, ln is the original label. 423

SLFR measures the rate at which the generated 424

counterfactual remove their original label, and LFR 425

evaluates how often the counterfactual examples 426

successfully adopt the target label. 427

4 Experiments 428

We evaluate the generated counterfactuals using 429

two experiments. First, we evaluate the quality of 430

generated counterfactual examples using the PKP, 431

LFR, and SLFR metrics in § 3.2. 432

In the second experiment, we compare our pro- 433

posed approach to other example selection tech- 434

niques in a standard classification task, using two 435

pre-trained models. We use five different data se- 436

lection techniques in interactive AL: random selec- 437

tion, cluster-based selection, uncertainty-based se- 438

lection, counterfactual examples generated without 439

Variation Theory, and our proposed counterfactual 440

based example selection. We use each dataset’s 441

original label as ground truth and use GPT-4o and 442

a BERT model as the target classification models. 443

To further understand the impact of each compo- 444

nent of our filtering pipeline, we conduct an abla- 445

tion study. In this study to understand the impact of 446

each individual filter on the pipeline’s performance 447
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of downstream model training. Additional details448

can be found in Appendix B.449

4.1 Datasets450

• YELP: The YELP dataset (Asghar, 2016) con-451

sists of user reviews of different businesses and452

services. The dataset itself provides 4 ground-453

truth categories (i.e. service, price, environment454

and products), we randomly sampled 495 exam-455

ples for this experiment.456

• MASSIVE: The MASSIVE (FitzGerald et al.,457

2022) virtual assistant utterances with 18 labeled458

intents as ground-truth (e.g. audio, cooking,459

weather, recommendation etc). For this experi-460

ment we randomly selected 30 examples from461

each category, making up a total of 540 exam-462

ples.463

• Emotions: Includes a collection of English Twit-464

ter messages annotates with 6 emotions: anger,465

fear, joy, love, sadness, and surprise (Elgiriye-466

withana, 2024). For this experiment we ran-467

domly selected 500 examples while balancing468

the number of labels.469

4.2 Experiment 1: Generated Counterfactual470

Quality471

We evaluate the generated counterfactuals using472

two experiments. First, we evaluate the quality of473

generated counterfactual examples using the PKP,474

LFR, and SLFR metrics in § 3.2.475

4.2.1 Results476

YELP MASSIVE Emotions

Pattern Keeping Rate 0.94 0.88 0.81
Soft Label Flip Rate 0.45 0.71 0.58
Label Flip Rate 0.98 0.86 0.86

Table 1: Generated counterfactual data quality evalua-
tion.

Our findings indicate that our proposed pipeline477

maintains the quality of generated counterexam-478

ples, as measured by Pattern Keeping Rate (PKR)479

and Label Flip Rate (LFR). Across datasets, the480

PKR remains high, demonstrating the generated481

counterfactual examples effectively keep the orig-482

inal pattern rules. The LLM-based Discrimina-483

tor Filtering achieves robust performance in LFR484

across datasets, confirming that most counterfac-485

tual examples successfully adopt the target label.486

However, the Soft Label Flip Rate (SLFR) varies,487

particularly with the MASSIVE dataset showing 488

the highest rate and the others on the lower side. 489

This suggests that the degree of semantic change 490

required to remove the original label can be dataset- 491

dependent. 492

4.3 Experiment 2: Generated Counterfactuals 493

in Downstream Model Training 494

In the second experiment we compare our coun- 495

terfactual generation approach with five other sam- 496

pling strategies in AL. 497

• Random Examples are randomly selected for 498

each annotation iteration to train the classifica- 499

tion model. 500

• Cluster Examples selected from a k-means clus- 501

tered, pretrained Sentence Transformer model 502

by iterating through the clusters in rotation. 503

• Uncertainty We use model confidence on the 504

training set to choose data with the lowest con- 505

fidence to be labeled. We use verbal uncer- 506

tainty (Lin et al., 2022) to get model confidence 507

in GPT-4o and model logits for the BERT model. 508

• ALPS (Yuan et al., 2020) We use ALPS a sam- 509

pling strategy that addresses the cold start prob- 510

lem in AL. 511

• Counterexamples without Variation The- 512

ory (nonVT) We generate counterexamples 513

without using the neuro-symbolic pipeline de- 514

fined in Fig 1. 515

4.3.1 Protocol 516

To evaluate the generated counterfactual examples, 517

we employ a simulated active learning task to train 518

and evaluate a BERT model (Devlin et al., 2018) 519

and few-shot prompting GPT-4o model for a multi- 520

class classification task. We use the example selec- 521

tion conditions defined in § 4.3 to define a subset of 522

10, 15, 30, and progressively increasing upto 170 523

data points (referred to as ‘shots’), alongside their 524

corresponding ground truths to be used as training 525

sets. We then evaluate the classifier model using a 526

hold-off set of the dataset. 527

To augment the model’s training with generated 528

counterfactual examples, we pair each original data 529

with its generated counterfactual examples and 530

their assigned target label. This pairing is used 531

to enrich the distribution and quality of the training 532

data, hypothesizing that the inclusion of counter- 533

factuals would enhance the model’s learning and 534
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Experiments on GPT-4o

YELP MASSIVE Emotion

Experiments on BERT

YELP MASSIVE Emotion

Figure 2: Experiment results across different datasets and conditions. Shown statistically significant difference
between the counterfactual condition and the cluster condition. + indicates p-value<0.1, * indicates p-value<0.05,
** indicates p-value<0.01, and *** indicates p-value<0.0001.

predictive accuracy in early stages of annotation ad-535

dressing the cold start problem (Yuan et al., 2020).536

Similarly, the performance of the model, in this537

case trained with both original and counterfactual538

dataset, was again evaluated against the same hold-539

off set. This comparative analysis aimed to quan-540

tify the impact of counterfactual examples on the541

model’s ability to generalize and make accurate542

predictions on unseen data in early active learning543

scenarios.544

4.3.2 Results545

We present our findings on the efficacy of gener-546

ated counterfactuals in active learning as defined547

in § 4.3.1. We report the macro F1-scores for548

the three datasets across different shots and condi-549

tions (Appendix: YELP dataset (Table 2), MAS-550

SIVE dataset (Table 3), and emotions dataset (Ta-551

ble 4)) using two models - few shot earning with552

GPT-4o and fine-tuning a BERT model. We use 553

training shots ranging from 10 to 120 shots for 554

GPT-4o to stay with-in OpenAI’s token limit and 555

10 to 170 for the BERT model. 556

We conducted a pair-wise t-test between the 557

counterfactual condition and the other baseline con- 558

ditions to understand the impact of the proposed 559

approach. The results across the three datasets 560

highlight the strong initial impact that the counter- 561

factual condition has in addressing the cold start 562

problem in active learning (see Fig. 2). We con- 563

sistently observe a statistically significant advan- 564

tage of the counterfactual condition in lower shot 565

numbers (see Table 2-4). As the number of an- 566

notate examples increases (50 shots and above in 567

most cases), the difference in average F1-score de- 568

creases, suggesting the advantage of the counterfac- 569

tual condition diminishes when more data become 570

available. Similarly, we observe significant impacts 571
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of the counterfactual condition when using a few-572

shot approach with the GPT-4o. However, we did573

not find results that consistently indicated a sub-574

stantial difference between the random, cluster, and575

counterfactual without variation theory conditions576

after 50 shots of examples have been labeled. The577

results demonstrated the performance advantage578

of our proposed neuro-symbolic variation theory-579

based counterfactual data augmentation approach580

in cold-start scenarios for active learning tasks.581

Our approach introduces useful data to address582

the lack of label distribution and representation583

in cold start scenarios. Compared to the non-VT584

counter condition, the counterexamples generated585

through Variation Theory have significantly higher586

F1-score, showing the impact of the pipeline in587

generating useful data in early AL. Moreover, the588

ablation study in Appendix B evaluating the impact589

of the filtering components in the pipeline shows590

there is statistically significant difference in down-591

stream performance of a model trained on filtered592

data compared to data that does not have the com-593

plete filtering pipeline.594

As we get more annotated data, we observe595

either minimal improvement or a decline in the596

model’s performance. We believe that this occurs597

because after a certain point, the generated coun-598

terfactuals begin to replicate previously observed599

patterns, and there is a limit to the amount of in-600

formation that can be extracted from these patterns.601

We also see similar patterns of model decline in602

the non-VT counter condition. This ultimately can603

have the model overly rely on the model, resulting604

in the performance not scaling. To address this, it is605

important to heuristically understand the amount of606

data distribution that can be captured by generated607

data and switch gears back to using real data when608

needed.609

5 Conclusion610

Li et al. (2023b) find that the performance of syn-611

thetic data is highly dependent of the distribution612

of the generated data, suggesting that enhancing613

data diversity could significantly improve the util-614

ity of synthetic data. Our approach achieves this by615

generating counterfactual examples along dynamic616

neuro-symbolic boundaries to allow the synthetic617

data to represent underlying concepts for better618

generalizability. This approach leverages the rich-619

ness of the data’s semantic structure, allowing for a620

more robust learning process during counterfactual621

generation by the LLM. 622

In our evaluation, we find that models trained on 623

counterfactual examples have a statistically signifi- 624

cant advantage in the early stage of active learning, 625

where there is a limited number of annotated data. 626

When there is only a small amount of annotated 627

data available, the representation of a label’s distri- 628

bution does not sufficiently cover the latent space. 629

The improvement in performance when using coun- 630

terfactual data points highlights that the introduc- 631

tion of systematically generated counterfactual data 632

adds the necessary variability for model training. In 633

our experiment, both the GPT-4o and BERT classi- 634

fication models showed higher performance under 635

the counterfactual condition across most datasets; 636

however, the YELP dataset on GPT-4o emerged as 637

an exception to this trend (Table 2). 638

Notably, the performance benefit of the counter- 639

factual condition begins to decline when more than 640

70 labeled data points are used in model training. 641

This reduction in advantage could potentially be 642

attributed to model collapse. This happens when 643

the model fails to capture the full diversity of the 644

data on which it is trained (Wang et al., 2023; Su 645

et al., 2023). With the introduced distribution shift, 646

after the 70 shots threshold, the model might over- 647

fit to the specific characteristics of the synthetic 648

examples it has seen, rather than generalizing to 649

the broader real data distribution. This could lead 650

to a decreased ability to handle new or slightly dif- 651

ferent data types introduced in later stages of train- 652

ing. As a result, the performance gains from using 653

counterfactual examples no longer are significant 654

because the model’s adaptability is compromised. 655

Identifying the optimal threshold for introducing 656

counterfactual examples could be crucial, allow- 657

ing us to strategically adapt our training approach 658

based on the number of annotated real data avail- 659

able. This approach can particularly be applicable 660

to handle cold start problems in active learning with 661

data that require domain-specific, user-specific, or 662

ambiguous annotation. 663

6 Limitations 664

Our neuro-symbolic pipeline enables the automatic, 665

real-time creation of counterfactual data using a 666

pattern-based program synthesis approach. This 667

method defines the concept space varied during 668

counterfactual generation. Although the current 669

pattern building blocks are designed for general 670

domains, they rely on predefined rules, which may 671

8



need augmentation with domain-specific lexical672

rules for specialized applications. Additionally, our673

use of a GPT-based discriminator to assign target674

labels for each counterfactual introduces potential675

biases or limitations inherent to the discriminator676

model itself. Future work could focus on under-677

standing how human annotators undestand and la-678

bel the generated counterfactual examples.679
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Ta
sk Separate the given multi-labeled sentences into different parts, 

each part corresponds to a label and a pattern.

New content should be in the format: 'text' + 'pattern' + 'label'; 
'text' + 'pattern' + 'label’.
All the text, patterns and labels are already given as input, if 
there is no corresponding pattern, just use '' to indicate empty.
Make sure each separated sentence only has a single label but 
may relate to several patterns.

Conversation: "Friendly w / great customer service, reasonable 
prices, and a chill atmosphere."
Pattern: (customer)+*+[service], (pay)|(sale)
Label: price, service, environment

'Friendly w / great customer service, ' + '(customer)+*+[service]' 
+ 'service'; ‘reasonable prices, ' + '(pay)|(sale)' + 'price'; 'and a 
chill atmosphere.' + '' + 'environment'
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Step 1: separate multi-labeled text
Ta

sk Make small changes to the conversation to change the topic label, 
but not to change the given pattern.

The patterns can be composed with AND (+) or OR (|) operators
The pattern language consists of the following syntax:
Part-of-speech (POS) tags: VERB, PROPN, NOUN, ADJ, ADV, AUX, 
PRON, NUM
Word stemming: [WORD] (e.g., [have] will match all variants of 
have, such as had, has, and having)
Soft match: (word) (e.g., (pricey) will match synonyms such as 
expensive and costly, etc.)
Entity type: $ENT-TYPE (e.g., $LOCATION will match phrases of 
location type; $ORG will match names of organizations)
Wildcard: * (will match any sequence of words)

Conversation: "Our bill was around $ 400 - it was upsetting that 
they decided to be stingy about a $ 8 piece of cake."
Pattern: $MONEY|(price); Original label: price; Target: service

Our bill was around $ 400 - the service was upsetting as they 
decided to be stingy about a $ 8 piece of cake.
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Step 2: generate pattern-kept counterfactual text

Figure 3: Illustration of LLM prompts used for preparing training datapoints and generating counterfactual datapoints

A Appendix847

A.1 Generation Pipeline848

In this section, we provide the details of all the849

prompts and models we use to construct the whole850

counterfactual generation pipeline.851

A.1.1 GPT-4o Multi-label Separator852

As shown in Fig. 3 Step-1, we utilize zero-shot853

GPT-4 to preprocess the raw data, in order to sep-854

arate the given multi-labeled sentences into sev-855

eral single-labeled parts. We call GPT-4 through856

the API provided by OpenAI, set the temperature857

parameter to 0 and restrict the maximum token858

number to 512, which ensures the reliability of859

the generated results. The prompt used is shown860

below:861

• {“role”: “system”, “content”: “The assistant will separate862
the given multi-labeled sentences into different parts, each863
corresponds to a label and a pattern (if the pattern is vi-864
able)”}865

• {“role": “user", “content": “The assistant will make con-866
versations based on the following example. New content867
should be in the format: ‘text’ + ‘pattern’ + ‘label’; ‘text’868
+ ‘pattern’ + ‘label’. All the text, patterns and labels are869
already given as input, if there is no corresponding pattern,870
just use ” to indicate empty.”}871

• {“role”: “user”, “content”: “Each separated text must only872
have a single label, but may contain several patterns. Each873
label or pattern must appear at least once in the completion.874
The patterns can be composed with AND (+) or OR (|)875
operators.”}876

• {“role”: “user”, “content”: “Conversation: Great customer 877
service, reasonable prices, and a chill atmosphere. Pattern: 878
[‘(customer)+*+[service]’, ‘(pay)|(sale)’, ‘(environment)’] 879
Label: price, service, environment”} 880

• {“role": “assistant", “content": “ ‘Great customer service, ’ 881
+ ‘(customer)+*+[service]’ + ‘service’; ‘reasonable prices, 882
’ + ‘(pay)|(sale)’ + ‘price’; ‘and a chill atmosphere.’ + 883
‘(environment)’ + ‘environment’ ”} 884

• {“role”: “user”, “content”: “Conversation: {text} Pattern: 885
{pattern} Label: {label}”} 886

A.1.2 GPT-4o Candidate Phrases Generator 887
As we are generating counterfactuals that keeps neuro- 888
symbolic patterns, the first step of this task is to generate 889
candidate phrases that keep the pattern but variate semanti- 890
cally, which make up crucial branches of generated counter- 891
factual variations. For this part, we call GPT-4o through the 892
API provided by OpenAI, set the temperature parameter to 0 893
and restrict the maximum token number to 256. The prompt 894
used is shown below: 895

• {“role”: “system”, “content”:“The assistant will create a list 896
of phrases that match the given domain specific language 897
based on the given definition.”} 898

• {“role”: “user”, “content”: “For the following text and 899
pattern, generate as many diverse example phrases that 900
match the given pattern and can be part of the given target 901
label. Try to not use the word {label} or {target_label} 902
in the phrases you generate. Separated your answer by a 903
comma”} 904

• {“role”: “user”, “content”: “text: {matched_phrase}, 905
pattern: {pattern}, current label: {label} target label: 906
{target_label}”} 907

• {“role”: “user”, “content”: “The word ‘{match}‘ is a 908
soft match, you can only use {soft-match_words} as its 909
synonyms to replace it. You can not use other words for 910
{match}”} 911
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A.1.3 GPT-4o Counterfactual Generator912
The GPT-4o generator will finish the second step of counter-913
factual generation, making use of candidate phrases generated914
in the first step and combining these semantic pieces into rea-915
sonable sentences. We set the temperature parameter to 0 and916
restrict the maximum token number to 256. The prompt used917
is shown below:918

• {“role”: “system”, “content”: “The assistant will generate919
a counterfactual example close to the original sentence that920
contains one of the given phrases.”}921

• {“role”: “user”, “content”: “Your task is to change the922
given sentence from the current label to the target.923

For example: ‘Find me a train ticket next monday to new924
york city’ with original label “transport” would be turned925
to ‘Play me a song called New York City by Taylor Swift’926
with a label “audio”.927

You can use the following phrases to help you gener-928
ate the counterfactuals. Please make the sentence about929
{target_label}. Make sure that the new sentence is930
not about {label}. You must use one of the follow-931
ing phrases without rewording it in the new sentence:932
{generated_phrases}”}933

• {“role”: “user”, “content”: “You must follow three criteria:934

criteria 1: the phrase should change the label from {label}935
to {target_label} to the highest degree.936

criteria 2: the modified sentence can not also be about937
{label} and make sure the word {target_label} is not part938
of the modified sentence.939

criteria 3: the modified sentence should be grammatically940
correct.”}941

• {“role”: “user”, “content”: “If you find that you cannot942
generate new sentence that fulfill all the requirements above,943
just response ‘cannot generate counterfactual’ and don’t feel944
bad about this”}945

• {“role”: “user”, “content”: “original text:{text}, origi-946
nal label:{label}, modified label:{target_label}, generated947
phrases:{generated_phrases}, modified text: ”}948

A.2 Experiment Results949
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[YELP] Macro F1-scores (GPT-4o)

No. shots 10 15 30 50 70 90 120

0.38∗∗∗ 0.44∗∗∗ 0.51∗∗∗ 0.61 0.65 0.69+ 0.74Random
SD 0.05 0.06 0.07 0.05 0.06 0.04 0.04

0.41∗∗∗ 0.48∗∗∗ 0.57 0.63 0.68∗ 0.69+ 0.70Cluster
SD 0.07 0.04 0.07 0.06 0.03 0.03 0.02

0.23∗∗∗ 0.21∗∗∗ 0.27∗∗∗ 0.28∗∗∗ 0.29∗∗∗ 0.28∗∗∗ 0.29Uncertainity
SD 0.04 0.05 0.06 0.05 0.04 0.06 0.05

0.37∗∗ 0.49∗ 0.66 0.68 0.69 0.70 0.72ALPS
SD 0.04 0.06 0.05 0.03 0.03 0.04 0.03

0.35∗∗∗ 0.46∗ 0.54∗ 0.53∗ 0.39∗∗∗ 0.25∗∗∗ 0.31Counterfactuals without VT
SD 0.10 0.13 0.05 0.06 0.08 0.05 0.05

0.55 0.59 0.63 0.69 0.59 0.65 0.78Counterfactuals
SD 0.08 0.07 0.07 0.07 0.10 0.05 0.04

[YELP] Macro F1-scores (BERT)

No. shots 10 15 30 50 70 90 120 150 170

0.16∗ 0.18∗∗∗ 0.26∗∗∗ 0.33∗∗∗ 0.35∗∗∗ 0.45 0.45 0.48 0.51Random
SD 0.06 0.05 0.03 0.04 0.06 0.01 0.03 0.04 0.02

0.18∗∗∗ 0.19∗∗∗ 0.26∗∗∗ 0.32∗∗∗ 0.34+ 0.46 0.31 0.42 0.45Cluster
SD 0.08 0.06 0.07 0.06 0.05 0.03 0.08 0.1 0.1

0.13 0.14 0.19 0.33 0.41 0.46 0.47 0.53 0.54Uncertainty
SD 0.06 0.04 0.07 0.04 0.06 0.03 0.04 0.04 0.05

0.14 0.16 0.15 0.25 0.27 0.27 0.36 0.37 0.37ALPS
SD 0.05 0.06 0.06 0.08 0.08 0.08 0.11 0.11 0.10

0.20 0.16 0.25 0.29 0.38 0.45 0.49 0.54 0.55Counterfactuals without VT
SD 0.06 0.07 0.04 0.04 0.08 0.05 0.04 0.05 0.04

0.38 0.39 0.49 0.47 0.51 0.53 0.50 0.52 0.53Counterfactuals
SD 0.04 0.07 0.05 0.04 0.04 0.04 0.03 0.02 0.03

Table 2: Average F1-score with increasing numbers of annotations(shots) and the standard deviations(SD) across
8 independent experiments using a fewshot prompting with OpenAI’s GPT-4o and fine-tuned BERT model for
classification on YELP dataset. + indicates p-value<0.1, * indicates p-value<0.05, ** indicates p-value<0.01, and
*** shows p-value<0.0001 between the condition and the counterfactual condition.
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[MASSIVE] Macro F1-scores (GPT-4o)

No. shots 10 15 30 50 70 90 120

0.36∗∗∗ 0.40∗ 0.49 0.51 0.54∗ 0.57∗∗∗ 0.61Random
SD 0.06 0.05 0.12 0.11 0.10 0.09 0.10

0.35∗∗∗ 0.40∗ 0.47 0.49 0.56∗ 0.54∗ 0.55Cluster
SD 0.06 0.07 0.08 0.08 0.12 0.12 0.09

0.22∗∗∗ 0.19∗∗∗ 0.18∗∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.19∗∗∗ 0.20Uncertainty
SD 0.08 0.1 0.07 0.06 0.07 0.09 0.1

0.12∗ 0.24 0.39 0.61 0.65 0.67 0.72ALPS
SD 0.03 0.08 0.02 0.03 0.08 0.07 0.04

0.26∗∗∗ 0.37∗ 0.43∗ 0.40 0.34 0.27∗ 0.37Counterfactuals without VT
SD 0.10 0.07 0.05 0.07 0.10 0.09 0.08

0.48 0.52 0.59 0.63 0.64 0.66 0.79Counterfactuals
SD 0.01 0.03 0.03 0.03 0.06 0.05 0.03

[MASSIVE] Macro F1-scores (BERT)

No. shots 10 15 30 50 70 90 120 150 170

0.048∗∗∗ 0.052∗∗∗ 0.12∗∗∗ 0.11∗∗∗ 0.19∗∗∗ 0.22∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.25*Random
SD 0.03 0.03 0.04 0.05 0.03 0.02 0.02 0.02 0.02

0.046∗∗∗ 0.058∗∗∗ 0.091∗∗∗ 0.13∗∗∗ 0.18∗∗∗ 0.20∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.25Cluster
SD 0.01 0.04 0.03 0.04 0.04 0.03 0.02 0.02 0.02

0.029∗∗∗ 0.035∗∗∗ 0.11∗∗∗ 0.14∗∗∗ 0.22∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.25∗∗∗ 0.25∗∗∗Uncertainty
SD 0.02 0.02 0.04 0.03 0.02 0.03 0.03 0.03 0.02

0.017∗∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.19∗∗∗ 0.31 0.23 0.45 0.45 0.64ALPS
SD 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.05

0.09∗∗∗ 0.15∗∗∗ 0.33∗∗∗ 0.50∗ 0.61+ 0.64 0.68∗ 0.68 0.69+Counterfactuals without VT
SD 0.08 0.07 0.08 0.07 0.05 0.04 0.04 0.04 0.03

0.33 0.40 0.51 0.58 0.56 0.60 0.61 0.66 0.62Counterfactuals
SD 0.09 0.07 0.08 0.06 0.05 0.09 0.06 0.05 0.1

Table 3: Average F1-score with increasing numbers of annotations(shots) and the standard deviations(SD) across 8
independent experiments using a fewshot prompting with OpenAI’s GPT-4o and a BERT model for classification on
the MASSIVE dataset. + indicates p-value<0.1, * indicates p-value<0.05, ** indicates p-value<0.01, and *** shows
p-value<0.0001 between the condition and the counterfactual condition.
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[Emotions] Macro F1-scores (GPT-4o)

No. shots 10 15 30 50 70 90 120

0.29 0.32 0.36∗∗∗ 0.39∗∗∗ 0.45∗ 0.45 0.47Random
SD 0.1 0.1 0.07 0.04 0.04 0.06 0.04

0.32 0.38 0.36∗∗∗ 0.39∗∗∗ 0.42∗ 0.42 0.41Cluster
SD 0.04 0.04 0.08 0.12 0.09 0.08 0.05

0.21∗∗∗ 0.19∗∗∗ 0.25∗∗∗ 0.29∗∗∗ 0.28∗∗∗ 0.29 0.33Uncertainty
SD 0.07 0.05 0.05 0.04 0.07 0.06 0.05

0.23 0.26 0.34 0.36 0.39 0.40 0.44ALPS
SD 0.07 0.03 0.05 0.05 0.06 0.05 0.10

0.28 0.35 0.46 0.48 0.49 0.36 0.39Counterfactuals without VT
SD 0.06 0.10 0.12 0.13 0.12 0.08 0.07

0.34 0.43 0.54 0.51 0.58 0.47 0.52Counterfactuals
SD 0.08 0.1 0.1 0.05 0.1 0.03 0.05

[Emotions] Macro F1-scores (BERT)

No. shots 10 15 30 50 70 90 120 150 170

0.19∗ 0.20∗∗∗ 0.24∗ 0.31 0.46 0.47 0.53 0.63 0.30Random
SD 0.04 0.03 0.08 0.12 0.09 0.09 0.14 0.07 0.06

0.18∗ 0.21∗ 0.23∗∗∗ 0.28∗ 0.41 0.43 0.48 0.59 0.52Cluster
SD 0.02 0.03 0.02 0.03 0.05 0.08 0.06 0.05 0.12

0.23∗∗∗ 0.23 0.26∗ 0.35 0.38+ 0.57∗∗∗ 0.66∗∗∗ 0.69 0.70∗Uncertainty
SD 0.04 0.05 0.08 0.05 0.04 0.07 0.08 0.07 0.06

0.09 0.15 0.28 0.24 0.42 0.44 0.52 0.74 0.75ALPS
SD 0.04 0.04 0.04 0.05 0.04 0.03 0.03 0.03 0.03

0.18∗ 0.21∗ 0.32 0.36 0.40 0.57∗∗∗ 0.62 0.62 0.72∗Counterfactuals without VT
SD 0.05 0.05 0.09 0.12 0.13 0.08 0.1 0.2 0.05

0.27 0.26 0.36 0.38 0.49 0.45 0.50 0.63 0.56Counterfactuals
SD 0.07 0.09 0.05 0.12 0.05 0.15 0.06 0.06 0.07

Table 4: Average F1-score with increasing numbers of annotations(shots) and the standard deviations(SD) across 8
independent experiments using a fewshot prompting with OpenAI’s GPT-4o and a BERT model for classification on
the emotions dataset. + indicates p-value<0.1, * indicates p-value<0.05, ** indicates p-value<0.01, and *** shows
p-value<0.0001 between the condition and the counterfactual condition.

15



No of Shots 10 15 30 50 70 90 120

No Filters
SD

0.10 0.12 0.15 0.23 0.23 0.21 0.21

0.03 0.04 0.05 0.04 0.04 0.03 0.03

Herustic Filter
SD

0.15 0.17 0.19 0.28 0.27 0.28 0.28

0.08 0.1 0.1 0.07 0.09 0.1 0.1

Herustic + Symbolic Filters
SD

0.12 0.13 0.13 0.17 0.16 0.18 0.20

0.04 0.03 0.01 0.02 0.03 0.02 0.01

Herustic + LLM Discriminator
SD

0.17 0.21 0.23 0.34 0.42 0.45 0.49

0.08 0.04 0.09 0.07 0.02 0.02 0.05

Herustic + Symbolic + LLM Discriminator
SD

0.38 0.39 0.49 0.47 0.51 0.53 0.50

0.04 0.08 0.06 0.04 0.05 0.05 0.04

Table 5: Average F1-score and SD from an ablation study with the YELP dataset on BERT model
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B Ablation Study on Counterfactual950

Filtering Methods951

We performed an ablation study to investigate the impact of952
the different components in our filtering pipeline. We follow953
the same approach as § 4.3.1 where each condition is run954
with different seeds 8 times. For each condition we report an955
average F1 score and the standard deviation (SD) in Table 5.956
Our approach involves generating counterexamples with a957
fine-tuned GPT-4o model and applying all three filters defined958
in § 3.2 before using the data for active learning.959

In this study, we investigate the impact of different config-960
urations by varying the filtering mechanisms used with the961
generator model.962

The ablation study is conducted using the YELP dataset963
with a BERT model for the downstream active learning tasks.964
The configurations tested include:965

• No Filters: Counterexamples generated without any filters966
applied967

• Heuristic Filter: Applying only the heuristic filter968

• Heuristic + Symbolic Filters: Applying both heuristic and969
symbolic filters970

• All Filters: Applying all three filters defined in § 3.2971

The results indicate that the use of all filters significantly972
improves the performance of the trained model (See Table 5).973
The average F1-score with all filters applied reaches 0.51 for974
70 shots and peaks at 0.53 for 90 shots, demonstrating a 2X975
improvement over the baseline with no filters (F1-score of976
0.23 for 70 shots). Using a pairwise t-test we find that this is977
statistically significant (p<0.0001), underscoring the value of978
carefully filtering LLM-generated counterfactuals to produce979
usable data for model training.980

Surprisingly, we found that incorporating the symbolic fil-981
ter without the LLM discriminator decreases the performance982
of downstream training. Further analysis of the included ex-983
amples revealed that some generated sentences included the984
original sentence with additional parts that corresponded to985
the target label. While the LLM discriminator would filter986
these out, without its use in the pipeline, these generated coun-987
terfactuals are mistakenly treated as negative examples, when988
technically they are just multi-labeled positive examples. How-989
ever, we observe a substantial improvement in performance990
when the symbolic filter is used in conjunction with the LLM991
discriminator, as opposed to using the LLM discriminator992
alone. This demonstrates the effectiveness of combining both993
methods to enhance the quality and accuracy of the generated994
counterfactuals.995

The ablation study highlights the crucial role of the filter-996
ing pipeline. By systematically evaluating the impact of each997
component, we demonstrate that the integration of heuristic,998
symbolic filters, and the LLM discriminator leads to signifi-999
cant improvements in downstream active learning task. This1000
validates our hypothesis that filtering LLM-generated data is1001
essential in determining usable and useful data for achieving1002
higher performance and reliability in model training1003
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