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Abstract

Measuring task relatedness and mitigating negative transfer remain a critical open challenge
in Multitask Learning (MTL). This work extends data attribution—which quantifies the in-
fluence of individual training data points on model predictions—to MTL setting for measur-
ing task relatedness. We propose the MultiTask Influence Function (MTIF), a method that
adapts influence functions to MTL models with hard or soft parameter sharing. Compared
to conventional task relatedness measurements, MTIF provides a fine-grained, instance-level
relatedness measure beyond the entire-task level. This fine-grained relatedness measure en-
ables a data selection strategy to effectively mitigate negative transfer in MTL. Through
extensive experiments, we demonstrate that the proposed MTIF efficiently and accurately
approximates the performance of models trained on data subsets. Moreover, the data se-
lection strategy enabled by MTIF consistently improves model performance in MTL. Our
work establishes a novel connection between data attribution and MTL, offering an efficient
and fine-grained solution for measuring task relatedness and enhancing MTL models.

1 Introduction

Multitask learning (MTL) leverages shared structures by jointly training tasks to enhance generalization
and improve prediction accuracy (Caruana, |1997). This paradigm has demonstrated its effectiveness across
a range of domains, including computer vision (Zamir et al., 2018, natural language processing (Hashimoto
et al., [2017)), speech processing (Huang et al.l [2015), and recommender systems (Ma et al.| [2018). However,
when tasks are only weakly related or have conflicting objectives, MTL can degrade performance—a phe-
nomenon known as negative transfer (Zamir et all [2018; [Standley et al.| |2020]). To address this challenge, a
central focus in the MTL literature has been modeling and measuring the relatedness among tasks (Zhang
& Yeung), 2010; |Standley et al.| |2020; [Worsham & Kalita, [2020; |Zhang et al., [2023b).

A straightforward—and arguably gold-standard—approach for measuring task relatedness is to train models
under every subset of task combinations, and evaluate the model performance for each combination. However,
this approach quickly becomes computationally infeasible as the number of tasks grows (Fifty et al., |2021)).
Inspired by recent advances in data attribution methods (Koh & Liang,|2017; |Park et al.,|2023)), which aim to
efficiently predict the performance of models retrained on data subsets but without actual retraining (Park
et al., [2023), we propose to adapt data attribution methods for MTL models as an efficient way to estimate
the relatedness among tasks.

To this end, we introduce the MultiTask Influence Function (MTIF), a data-attribution method tailored
for multitask learning. MTIF adapts the influence functions (Koh & Liang, [2017) to MTL models with
either hard or soft parameter sharing, providing a first-order approximation of the model performance when
removing certain data points from a specific task without retraining the model. The proposed method allows
us to efficiently quantify how each sample in a source task influences the performance of a target task.

In comparison to most conventional approaches that measure task relatedness at the entire-task level (Fifty
et all 2021} Wang et al., [2024), the proposed MTIF naturally enjoys a more fine-grained, instance-level
measurement of task relatedness. As evidenced by recent transfer learning and domain adaptation studies (Lv!
et al., 2024} [Yi et al) |2020; |Zhang et al., 2023a)), the contribution of different individual examples from a
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source task to a target task can vary widely: some examples improve target task performance, others have
little effect, and some may lead to negative transfer. With the instance-level relatedness measurement, MTIF
enables a novel approach to mitigate the negative transfer in MTL through data selection.

We validate the effectiveness of MTIF through two sets of complementary experiments. First, on smaller
synthetic and HAR (Anguita et al., |2013) datasets where we can afford measuring the gold-standard re-
training performance, we show that MTTF’s instance-level influence scores correlate almost perfectly with
brute-force leave-one-out retraining, and that the task-level relatedness measurements induced by MTIF
similarly align with brute-force leave-one-task-out retraining. Second, on large-scale image benchmarks in-
cluding CelebA 2015), Office-31 (Saenko et all, 2010)), and Office-Home (Venkateswara et al),
2017), we apply MTIF to improve MTL performance through data selection. The proposed method achieves
consistent accuracy improvements over state-of-the-art MTL methods at comparable computational cost.

Finally, we summarize our contributions as follows.

e We propose MTIF, which introduces the idea of data attribution into MTL, leading to a fine-grained
instance-level relatedness measurement.

o We apply the proposed MTIF to mitigate negative transfer in MTL through data selection.

e We conduct extensive experiments to validate the proposed method in terms of both the approximation
accuracy of the influence scores and the effectiveness in improving MTL performance.

2 Related Work

2.1 Task Relatedness in Multitask Learning

As a central problem in MTL, there has been a rich literature measuring and modeling task relatedness.
Existing literature can be roughly divided into three categories, as detailed below. At a high level, most
existing works treat task relatedness at the entire-task level, while our proposed MTIF, which is a data-
attribution-based approach, naturally measures instance-level relatedness. Moreover, the data selection
strategy enabled by the proposed MTIF is orthogonal to many existing MTL methods and could be used in
combination with other methods.

Direct Measurement of Task Relatedness. Standley et al|(2020) introduced a task grouping framework
by exhaustively retraining task combinations to measure inter-task relatedness. To scale this approach, most
methods now fall into two categories. The first infers relatedness on-the-fly during training, either by
tracking per-task losses or by comparing gradient directions across tasks (Fifty et al| [2021; [Wang et all
. While these measures are computationally efficient, they depend heavily on the specific training
trajectory, which can limit interpretability. The second category leverages auxiliary techniques—such as

task embeddings (Achille et al., 2019), surrogate models (Li et al. 2023), meta-learning frameworks (Song
2022), or information-theoretic metrics like pointwise V-usable information (Li et al. [2024)—but

typically incurs additional fine-tuning or retraining overhead. Although task similarity metrics from transfer
learning have been explored (Zamir et al., 2018; |Achille et al., 2021; Dwivedi & Roig} [2019; [Zhuang et al.,
2021} [Achille et all, [2019), [Standley et al.| (2020) demonstrated that these do not readily generalize to the
MTL setting.

Optimization Techniques Exploring Task Relatedness. A complementary line of work focuses on
designing MTL optimization algorithms that explicitly account for inter-task relationships. One approach
modifies per-task gradients to mitigate negative transfer (Yu et all [2020; Wang et all 2021} [Liu et al.
2021aib} [Chen et al., [2020; [Peng et al [2024). Another adapts task loss weightings to balance contributions
or emphasize critical tasks (Chen et al., 2018b; |Liu et all [2019; |Guo et all 2018; Kendall et al., 2018;
let al, [2022} [He et al, [2024). Additional methods, such as adaptive robust MTL (Duan & Wang, [2023),
dual-balancing MTL (Lin et al., 2023), smooth Tchebycheff scalarization (Lin et al., 2024), and multi-task
distillation (Meng et all [2021)), do not fit cleanly into these categories but share the goal of harmonizing
task interactions. These optimization strategies are orthogonal to our data-selection approach and could be
combined with MTIF for further gains.
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Architectural Approaches to Task Relatedness. Several works mitigate negative transfer via special-
ized MTL architectures. Examples include Multi-gate Mixture-of-Experts (Ma et al., |2018), Generalized
Block-Diagonal Structural Pursuit (Yang et al., [2019)), and Feature Decomposition Network (Zhou et al.,
2023a)). These architectural innovations are complementary to our method and illustrate alternative means
of capturing task relatedness.

2.2 Data Attribution

Data attribution methods quantify the influence of individual training data points on model performance.
These methods can be broadly categorized into retraining-based and gradient-based approaches (Hammoudeh
& Lowd, 2024). Retraining-based methods (Ghorbani & Zou, |2019; Jia et al.| 2019} Kwon & Zoul,12022; |Wang
& Jial 2023; Ilyas et al.l 2022) require retraining the model multiple times on different subsets of the training
data. Retraining-based methods are usually computationally expensive due to the repeated retraining.
Gradient-based methods (Koh & Liang, 2017; |Guo et al. |2021; Barshan et al., [2020; (Schioppa et al., 2022;
Kwon et al., |2024; Yeh et al., [2018} [Pruthi et al., 2020; |[Park et al. 2023) instead rely on the (higher-order)
gradient information of the original model to estimate the data influence, which are more efficient. Many
gradient-based methods can be viewed as variants of influence function-based data attribution methods (Koh!
& Liang) 2017)). In this paper, we establish a novel connection between data attribution and MTL, leveraging
data attribution to measure fine-grained relatedness among tasks and to mitigate negative transfer in MTL.
Methodologically, the proposed MTIF is an extension of influence functions to the MTL settings.

3 Influence Function for Multitask Data Attribution

We tackle the problem of task relatedness from a data-centric perspective: by quantifying how individual
training data from one task contribute to the performance of another, the instance-level granularity of
which offers finer-grained insights into inter-task interactions. In this section, we develop an IF-based data
attribution framework for MTL that builds on the leave-one-out principle. We begin by introducing the
general MTL setup and common parameter-sharing schemes.

3.1 Problem Setup for Multitask Learning

MTL aims to solve multiple tasks simultaneously by leveraging shared structures. This is especially beneficial
when tasks are related or when data for individual tasks is limited. The common approach in MTL to
facilitate information sharing across tasks is through either soft or hard parameter sharing (Ruder, 2017).
In soft parameter sharing, regularization is applied to the task-specific parameters to encourage them to be
similar across tasks (Xue et all 2007; [Duong et al. [2015). In contrast, hard parameter sharing learns a
common feature representation through shared parameters, while task-specific parameters are used to make
predictions tailored to each task (Caruanal [1997)). Recently, |[Duan & Wang| (2023) proposed an augmented
optimization framework for MTL that accommodates both hard parameter sharing and various types of soft
parameter sharing.

We consider a general MTL objective that incorporates both parameter-sharing schemes. Specifically, con-
sider K tasks and for each task k = 1,..., K, we observe n; independent samples, denoted by {z; f:kl Let
li(+;-) be the loss function for task k. The MTL objective is given by

K ng
1
Lw) =" n—kzekwk,w;zki)mk(em : (1)
k=1 i=1

where 6 = {0}, € R%}K  are task-specific parameters, v € RP are shared parameters, w = {6,v} denotes
all parameters, and Q(0y,~y) represents the task-level regularization. The parameters are estimated by
minimizing Eq. , i.e., w = arg min,, L(w).

Below, we present two special cases of supervised learning within this general framework: one illustrating soft
parameter sharing and the other demonstrating hard parameter sharing. Let zg; = (2gs, yri) for 1 <k < K
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and 1 < ¢ < ng, where x; represents the features and yy; represents the outcomes for the i-th data point in
task k.

Example 1 (Multitask Linear Regression with Ridge Penalty). Regularization has been integrated in
MTL to encourange similarity among task-specific parameters; see (Evgeniou & Pontil, 2004, |Duan € Wang,
2023) for e:camples Consider the regression setting where y; = 05 + €xi, with ex; being independent noise
and x; € R? for 1 <i <ny and 1 < k < K. Additionally, we have the prior knowledge that {0;}E | are
close to each other. Instead of fitting a separate ordinary least squares estimator for each 0y, a ridge penalty
is introduced to shrink the task-specific parameters 0y, ...,0x € R? toward a common vector v € R%, while
v is simultaneously learned by leveraging data from all tasks.

The objective function for multitask linear regression with a ridge penalty is given by

K nk
1
Lw) =" - — > (ki — 2506) + MellOx — Y13
k=1 =1

where A\, controls the strength of regularization. This can be viewed as a special case of Eq. by setting
Ui as the squared error (depending only on the task-specific parameters) and defining the regularization term
Q. (0k,7) = ArllOk — I3

Example 2 (Shared-Bottom Neural Network Model). The shared-bottom neural network architecture,
first proposed by|Caruandg (1997), has been widely applied to MTL across various domains (Zhou et al.,|2023b;
Liu et all, 12021¢; |Ma et al., |2018). The shared-bottom model can be represented as fi(x) = g(0; f(v; x)),
where f(;-) represents the shared layers that process the input data and produce an intermediate represen-
tation, and v denotes the parameters shared across tasks. The function g(0;-) corresponds to task-specific
layers, which take the intermediate representation and produce task-specific predictions, with 0y representing
task-specific parameters.

The loss function for this model can be written as:

Z Zék (nir 9003 F (v 280))) + (06, 7) |

k=
where L (-,-) represents the task-specific loss function, and Qi (0k,7y) denotes the regularization term. A

simple choice is Qx(Ok,v) = M ([|0k]13 + cl|7||3), where A\x and ¢ are positive constants.

3.2 Instance-Level Relatedness Measure

To quantify the instance-level contribution from one task to another, we adopt the Leave-One-Out (LOO)
principle—measuring the change in a chosen evaluation metric on the target task when a single example is
omitted during training.

Formally, let & = (01, --,0k,%) denote the minimizer of Eq. (1) on the full dataset and @~ =
(ég_”), e ,éﬁ(_lz),’y(’”)) denote the corresponding minimizer when the i-th data point from task [, i.e.,
213, is omitted. The performance of any model with parameters w = (61, - ,0k,) on task k can be mea-

sured by the average loss over a validation dataset D}, i.e, Vi (0r,v; D)) = ZzeD;g Uk (Or,v;2) / |D}]. The

LOO effect of the i-th data point from task [ on task k is defined as the difference in the validation loss when
using the parameters learned from all data versus those learned by excluding the data point z;, i.e.,

Aj = Vi(B3; DY) = V(07,471 D). (2

This instance-level relatedness measure allows for a fine-grained understanding of the impact each data point
from one task has on another task.

3.3 Multitask Influence Function as Efficient Approximation

Despite the fine-grained understanding of the proposed instance-level relatedness measure in Eq. , the
computational burden of evaluating LOO effect becomes even more pronounced in MTL, particularly when
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the number of tasks is large. To address this computational challenge, we extend the IF-based approximation
in [Koh & Liang| (2017)) to our multitask setting. This approach builds on the idea of using infinitesimal
perturbations on the weights of data points to approximate the removal of individual data points. Specifically,
we introduce a weight vector @ = (011, ,01n,,021," * 02y, * ,OKn,) € RMTTK into the MTL

objective function:
ng

K
1
L(w,o) = [7 ki Ui (O, v) + Qi (g, ], 3
(w, o) kZ::l - ; (Ok,7) (0k,7) (3)
where fy;(-) is short for ¢ (-;zx;). For each weight vector o, we denote the minimizer of Eq. by
w(o) = (01(o),--- 0k (0),5(c)). Then the instance-level relatedness measure in Eq. can be rewrit-
ten as Vi, (ék(l),’y(l); D}) = Vi, (ék(l(’“)),ﬁ(l(’“)); Dy), where 1 is an all-ones vector and 1(-%) is a vector
of all ones except for the (I,i)-th entry being 0. We approximate this difference by first-order Taylor ex-
pansion in o, and define the MultiTask Influence Function (MTIF) for the i-th data of task I on task k
as:

. 00
MTIF (i, 1; k) ==V, Vi (0. 5: DY) - @’j,(f) +
F o 4)
P v 0~
Vo Vi Ok, 7: DY) - ggl. .
T lo=1

Next, we derive the influence scores of the data point z; on the task-specific parameters 0 and shared
parameters 4, i.e., the partial derivatives 90y /do}; and 04/d0y; in Eq. .

The following proposition provides explicit analytical form for the influence of a data point on task-specific
parameters for the same task (within-task influence), task-specific parameters for another task (between-
task influence), and shared parameters (shared influence). We first define some notation. Let Hy; denote
the (k,1)-th block components of the Hessian matrix of the MTL objective function L(w, o), as defined in
Eq. , with respect to w. This Hessian matrix has the following block structure in MTL:

Hi, - 0 Hi k11
H(w,o) = : : (5)
0 -+ Hg g Hyg k1
Hgi11 -+ Hriix Higp1 k41

The details of each block are described in Lemma [T} We leverage the unique block structure of this Hessian
in MTL to derive its analytical inverse, offering insights into how data from other tasks influence the target
task through shared parameters.

Proposition 1 (Instance-Level Within-task Influence, Between-task Influence, and Shared Influence). As-
suming the objective function L(w, o) in Eq. is twice-differentiable and strictly convex in w. For any
two tasks k #1 and 1 < k,l < K, the following hold:

(Shared influence) For 1 < i < ny, the influence of the i-th data point from task k on the shared parameters,
4, is given by
6’? —1 —1 8£ki -1 6£ki
=N"-H H, ———-N
a(fki K+1,k41 g 89k a’y )

where the matric N := Hyg 1 g4+1 — Zszl HK+1,ka_k1Hk,K+1 € RP*P 4s invertible;

(6)

(Within-task influence) For 1 < i < ny, the influence of the i-th data point from task k on the task-specific
parameters for the same task k, 0, is given by
Ok _ 10l
8(71% kk 89k

0y
ao']m;’

1
—Hp, Hi iyt -

(7)

(Between-task influence) For 1 < i < ny, the influence of the i-th data point from task | on the task-specific
parameters for another task k, 0k, is given by

90 _
dou —Hy Hy g1 -

97
oy’

(8)
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The proof of Proposition [I] is provided in Appendix [A]

Interpretation of Instance-Level Influences. In MTL, data points have more composite influences on
task-specific parameters compared to Single-Task Learning (STL) due to interactions with other tasks and
shared parameters. In STL, each data point only affects its own task’s parameters through the gradient and
Hessian of the task-specific objective, which is solely the first term in Eq. . However, in MTL, shared
parameters introduce a feedback mechanism that allows data from one task to influence the parameters of
other tasks. As shown in Eq. @, the influence of i-th data point from task k£ on the shared parameters stem
from two sources: the first term reflects the change on the task-specific parameter ék, which then indirectly
affects the shared parameters 4, while the second term accounts for the direct impact on 4. Consequently,
within-task influence in Eq. includes an additional influence propagated through the shared parameters,
and between-task influence in Eq. arises as data from one task indirectly impacts the parameters of
another task via the shared parameters. In particular, in STL, between-task influence does not occur
because tasks are independent and do not interact.

Improving Computational Efficiency. While the analytical expressions in Proposition [I] provide insight
into the structure of MTIF, computing them directly requires matrix inversions involving large blocks of the
full Hessian, which can be computationally expensive as the number of parameters per task or the number
of tasks increases. To address this issue, numerous scalable approximations have been proposed for Hessian
inverse to improve computational efficiency, including LiSSA (Agarwal et al.l 2017), EKFAC (Grosse et al.,
2023), TracIn (Pruthi et al.| 2020), and TRAK (Park et al., 2023). These methods approximate influence
scores without explicitly computing or inverting the full Hessian. Empirically, we find that integrating the
computational tricks employed by TRAK into MTIF significantly reduces the computational costs while
preserving the fine-grained insight of instance-level analysis.

Specifically, TRAK (Park et al., |2023) can be viewed as a variant of influence function that incorporates
several computational tricks to improve the scalability and stability of influence scores estimation, especially
in the context of large neural network models. The most salient tricks used in TRAK include:

e Dimension reduction: the model parameters are projected into a lower-dimensional space using
random projections to reduce computational costs.

o Ensemble: TRAK ensembles the influence scores using multiple independently trained models, which
enhances the stability of the estimation against the randomness from the training process.

e Sparsification: TRAK post-processes the influence scores through soft-thresholding, which sparsifies
the scores by setting the scores with small magnitudes as zero.

These tricks improves the computational efficiency and the robustness in the influence score estimation. We
integrate these tricks into MTIF when applied to neural network models.

Extension to Task-Level Relatedness. The proposed MTIF not only provides fine-grained insight into
instance-level relatedness, but also naturally extends to measure task-level relatedness. Following the same
principle as LOO, we define the task-level influence of task [ on task k using the Leave-One-Task-Out (LOTO)
effect:
N A v A=) ~(— v
A} = Vi (0.4 D) = Vi (077,405 D), (9)

where (ég_l), e ,ég(_l), 4(=D) is the minimizer of Eq. after excluding all the data from task [. Analogous
to instance-level MTIF, we approximate Afc by

8 A ~ AL~ v
MTIF o (1 k) := == Vi(0k(&),4(&); DY)

=1
where & € RE and

K n;
w(o) = argrrqllijnz 0j [nlj Zéji(9j77) + Qj(ajv’Y)} .
j=1 i=1
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Here, MTIF sk (I; k) captures the instantaneous change in task k’s validation loss when the overall weight on
task [ is infinitesimally perturbed in the joint objective. The analytical form for MTIFy,q (I; k) is provided in
Appendix[B] It turns out that the task-level influence can be interpreted as a sum of instance-level influence
scores over all data points in task [, with additional terms arising from o-weighted regularization.

4 Experiments

In this section, we validate the proposed MTIF through two sets of experiments. In Section [4.1] we evaluate
the quality of MTIF in terms of approximating model retraining. In Section [1:2] we further assess the
practical utility of MTIF for improving MTL performance via data selection.

4.1 Retraining Approximation Quality

We first evaluate how well MTIF approximates the gold-standard LOO effects obtained through brute-force
retraining. Given the high computational cost of repeated model retrainings needed for evaluation, we
conduct this evaluation on two relatively small-scale datasets.

Synthetic Dataset. This dataset consists of 10 tasks, each with 200 samples (xy;,yr;) split equally into
training and test sets. Inputs xy; are drawn independently from N(0,I;) with d = 50, and responses are
generated using yr; = x;% + €gi, where ex; ~ N(0,1). Each task-specific coefficient 0} is obtained by
perturbing a shared vector S* = 2e;, where ey is the first standard basis vector. The perturbation ¢y is
sampled uniformly from the sphere with radius ||§]]. We fit the soft-parameter-sharing linear MTL model
described in Example [I] to estimate each 6j,. Additional details are provided in Appendix

HAR Dataset. The Human Activity Recognition (HAR) dataset (Anguita et al., |2013), also referenced
in Duan & Wang| (2023), contains inertial sensor recordings from 30 volunteers performing daily activities
while carrying a smartphone on their waist. We treat each volunteer’s data as a separate binary-classification
task with the objective of distinguishing the activity, “sitting”, from all other activities. Preprocessing and
partitioning details are provided in Appendix We apply the soft-parameter-sharing logistic MTL
model to learn task-specific classifiers.

Instance-Level MTIF Approximation Quality. We compare the instance-level MTIF in Eq. with
the exact LOO effect in Eq. (2)). The results, shown in Figure [} reveal a strong linear correlation between
the MTIF influence scores and the exact LOO scores across all scenarios. This demonstrates that MTIF
effectively approximates the LOO effect for both within-task and between-task influences on the synthetic
and HAR datasets.

’f;.--'

Predicted loss difference
'ci~
Predicted loss difference
)
o‘.“
Predicted loss difference
‘(\’
Predicted loss difference
.
3

0.0015-0.0010-0.0005 00000 00005 0.0010 00015 00020
Actual loss difference 2

Actual loss difference le=s
Figure 1: Instance-level MTIF approximation quality on the synthetic and HAR datasets. The x-axis is the
actual loss difference obtained by LOO retraining, and the y-axis is the predicted loss difference calculated
by MTIF. The first two plots from the left show within-task and between-task results (in order) results on
the synthetic dataset, while the other two plots present within-task and between-task results (in order) on
the HAR dataset. The plots shown here reflect influences on a randomly picked test data point, while the
trend holds more broadly on other test data points. The scatter points correspond to training data points
in the first task of each dataset.

02 -002 -001 o000 o001 002 003 4005 -0.0004 ~0.0002 0.0000 00002 0.0004 00006
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Task-Level MTIF Approximation Quality. We compare our task-level influence scores MTIFy,q, in
Eq. with the exact LOTO scores in Eq. @ In each experiment, we designate one task as the target
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task and treat the remaining as source tasks. For each target task, we reserve 20% of its data as a validation
set, compute MTIF scores for all source tasks, and obtain LOTO scores by retraining the model without
each source task. We then measure the Spearman correlation between the two sets of scores, repeating the
experiment for each task as the target task.

On both synthetic and HAR datasets, MTTFy,sx achieves high Spearman correlation with the ground-truth
LOTO scores, indicating reliable task-level relatedness estimation. Moreover, MTIF;,¢c outperforms two
popular baselines—Cosine Similarity (Azorin et al.,|2023) and TAG (Fifty et al.,|[2021)—in terms of correla-
tion with LOTO. Due to page limits, we only show the results on the synthetic dataset in Table [1| and refer
the readers for the results on the HAR dataset to Appendix [C-1.2}

Table 1: Average Spearman correlation coefficients between MTIFy,5c and LOTO scores across 5 random
seeds on the synthetic dataset. Error bars represent the standard error of the mean.

Task 1 Task 2 Task 3 Task 4 Task 5
0.84 = 0.05 0.72 £0.05 0.74 £0.11 0.81 £0.05 0.71 & 0.09
Task 6 Task 7 Task 8 Task 9 Task 10

0.74 £0.04 0.74+£0.07 0.84 £0.03 0.74 £0.03 0.65+£ 0.07

4.2 Improving MTL via Data Selection

We further evaluate the utility of the proposed MTIF for improving MTL performance through data selection.
While most existing MTL research focuses on task-level relatedness, the instance-level relatedness estimated
by MTIF offers a unique opportunity to improve MTL performance by identifying and removing training
samples that negatively impact the model.

MTIF-Guided Data Selection. Based on the MTL model trained on the full dataset, we first calculate
the MTIF score MTIF(i,[; k) for each training sample i in each task [ with respect to each target task k.
We then rank the training samples by their overall influence ), MTIF(z,[; k), and remove a fraction of the
worst training samples. The removal ratio is a hyperparameter tuned on a held-out subset. Specifically, we
choose the ratio that yields the highest accuracy on the validation set. Finally, we retrain the model on the
selected data subset.

Datasets. We evaluate MTIF-guided data selection on standard MTL benchmark datasets.

CelebA dataset. CelebA (Liu et all |2015) comprises over 200,000 face images annotated with 40 binary
attributes and is a standard benchmark in MTL research (Fifty et al., |2021). Following |Fifty et al.| (2021)),
we select 10 attributes as separate binary classification tasks for MTL.

Office-81 and Office-Home datasets. Office-31 (Saenko et al. |2010) comprises three domains—Amazon,
DSLR, and Webcam—each defining a 31-category classification task, with a total of 4,110 labeled images.
Office-Home (Venkateswara et al., [2017) contains four domains—Artistic (Art), Clip Art, Product, and
Real-World—each with 65 object categories, totaling 15,500 labeled images. Following |[Lin & Zhangj (2023)),
we treat each domain as a task for MTL.

Baseline Methods. We compare MTIF-guided data selection against state-of-the-art MTL methods as
baselines, including CAGrad (Liu et al., [2021al), Uncertainty Weighting (UW) (Kendall et al 2018), Ran-
dom Loss Weighting (RLW) (Lin et al) [2022), STCH (Lin et al) [2024), GradNorm (Chen et al.l 2018b]),
DB-MTL (Lin et al, 2023), ExcessMTL (He et al.l [2024), and PCGrad (Yu et al.l |2020). The vanilla MTL
model is denoted as EW (Equal Weight) following the convention in [Lin & Zhang| (2023). In contrast to
our data-selection approach, these approaches typically mitigate negative transfer in MTL by adaptively
changing gradients, task weightings, or loss scales during training. In principle, our approach can also be
used in combination with these methods.

Experimental Setups. We evaluate our method and the baselines in two experimental setups. The first
one follows the standard MTL experimental setup using the benchmark datasets. In the second setup, we
aim to highlight the heterogeneity of instance-level relatedness—specifically, that different data points from a
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Table 2: Test accuracy of different MTL methods averaged over tasks on the CelebA, Office-Home, and
Office-31 datasets. The experiments are repeated for 5 random seeds. Error bars represent the standard
error of the mean across the random seeds. The left three columns correspond to the original datasets while
the right two columns correspond to the Office-31 dataset with respectively 10% and 20% corruption. The
best result in each column is highlighted in bold, while the second-best result is highlighted with underline.

Method ‘ CelebA Office-Home Office-31 ‘ 10% Corrupt 20% Corrupt
EW 79.16 £ 0.05 78.38 £ 0.11 91.66 £+ 0.26 88.01 £+ 0.16 82.28 + 0.85
CAGrad 79.46 £+ 0.08 78.63 £ 0.13 91.74 £ 0.05 88.02 £ 0.22 82.09 £ 0.91
Uw 79.01 £ 0.08 78.34 £ 0.10 91.87 £ 0.16 87.52 £ 0.14 82.01 £ 0.35
RLW 79.17 £ 0.04 78.46 £ 0.05 92.00 £ 0.13 89.37 £ 0.38 80.85 £+ 0.74
STCH 79.26 £ 0.06 78.18 £ 0.15 93.19 £ 0.08 88.80 £ 0.34 81.88 + 0.42
GradNorm 79.24 £+ 0.06 78.55 £ 0.12 91.95 £ 0.12 87.67 £ 0.23 82.82 £ 0.71
DB-MTL 79.68 + 0.07 78.70 + 0.10 93.41 £ 0.10 89.07 £ 0.26 82.29 £+ 0.16
ExcessMTL 79.14 £+ 0.07 78.47 £ 0.17 91.34 £ 0.32 88.46 £+ 0.08 82.01 £ 0.81
PCGrad 79.02 £ 0.09 78.33 £ 0.08 91.88 £ 0.02 88.32 £ 0.32 82.12 £+ 0.87
MTIF (Ours) ‘ 79.94 + 0.04 79.39 + 0.04 93.60 + 0.01 ‘ 89.73 + 0.48 83.85 + 0.29

task, rather than the entire task, may differentially affect the performance on another task. To simulate this
effect, we introduce noise by randomly corrupting 10% and 20% of the labels among the training samples in
the Office-31 dataset. These corrupted training samples, regardless which task they come from, are expected
to be harmful to all tasks, thereby inducing heterogeneity in the instance-level influences.

Model training and tuning. For all the aforementioned datasets, we employ a pretrained ResNet-18
backbone (He et al., 2016 and attach a separate linear head for each domain’s classification task. Models
are trained with Adam optimizer (Kingma & Bay, [2017)) with learning rate 3e-4 and weight decay le-5.

In all experiments we use the same validation dataset for the hyperparameter tuning and early stopping for
all baselines & MTIF. The same validation dataset is also used to calculate influence scores in MTIF (so
MTTIF does not use extra data compared to baselines).

Experimental Results: Accuracy. We report the average test accuracy of different methods in Table
Our method (MTIF), which refers to the MTL model trained on the selected dataset guided by MTIF,
achieves the highest average accuracy in all settings, consistently outperforming baseline methods. More
concretely, the left three columns correspond to the three benchmark datasets without corruptions, while
the right two columns correspond to the Office-31 dataset with 10% and 20% corruptions. In comparison
to the original version of Office-31 dataset, the performance gap between our method and the second-best
method becomes larger as the percentage of corruption becomes larger, indicating our method may better
handle the more fine-grained heterogeneity in the task relatedness by explicitly accounting for instance-level
relatedness.
Table 3: End-to-end runtime (in seconds) of different MTL methods on the Office-31 dataset.

Method ‘ Runtime (s)
EW 527.55 £+ 2.37
CAGrad 1,121.79 £ 2.69
Uuw 592.97 + 2.86
RLW 466.30 £ 2.84
STCH 748.15 + 0.01
GradNorm 937.78 £ 1.94
DB-MTL 936.48 + 0.02
ExcessMTL 1,386.13 £ 1.62
PCGrad 974.22 + 2.33

MTIF (Ours) | 1,281.69 & 0.34
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Experimental Results: End-to-End Runtime. We further compare our method with baseline MTL
methods in terms of the end-to-end runtime. Our MTIF-guided data selection requires two model training
passes (the initial training on the full dataset and the retraining on the selected dataset) and one evaluation
pass to compute the MTIF scores. In contrast, most baseline methods perform a single model training run
but incur per-step overhead to adjust gradients, task weightings, or loss scales during teh training. In Table[3]
we present the end-to-end total runtime of different methods for a fair comparison. Overall, all methods
exhibit comparable end-to-end runtimes, remaining within the same order of magnitude. This suggests that
although MTTF-guided data selection adopts a fundamentally different approach from most existing MTL
methods, its performance gains come with negligible additional computational cost.

5 Conclusion and Discussion

This work establishes a novel connection between data attribution and multitask learning (MTL), and
introduces the MultiTask Influence Function (MTIF), a novel approach that adapts influence function-
based data attribution to the MTL setting. MTIF enables fine-grained, instance-level quantification of how
individual training samples from one task affect performance on another, offering a new perspective on
measuring task relatedness.

Empirically, our method achieves two key outcomes. First, we show that MTIF scores closely approximate
the gold-standard leave-one-out retraining effects at both the instance and task levels. Second, we demon-
strate that MTIF-guided data selection consistently improves model performance across standard MTL
benchmarks, particularly in settings with heterogeneous data quality within each task, while incurring only
modest additional computational overhead.

Limitations and Future Directions. As an initial step toward adapting data attribution methods to
multitask learning, our empirical study focuses on standard computer vision MTL benchmarks. Future
work could explore extending MTIF to more complex tasks and architectures, such as those involving LLMs.
Additionally, influence function methods are based on first-order approximations of how infinitesimal changes
in training data weights affect model performance. As a result, a potential limitation is that its task-
level relatedness measure, MTIF,sc—which approximates the effect of removing all data from a task—
may become less accurate in approximating the LOTO effects when the number of data points per task
is very large. In such cases, however, the heterogeneity within each task may be more evident, and the
more fine-grained, instance-level effects may offer more meaningful insights than the LOTO effects. Better
understanding the relationship and trade-offs between LOO and LOTO effects could be an interesting future
direction.
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A Lemmas and Proofs

The first lemma describe the structure of the Hessian matrices for instance-level inference.
Lemma 1 (Hessian Matrix Structure for Data-Level Inference). Let H(w,o) be the Hessian matric of

data-level o-weighted objective @) with respect to w, i.e., H(w,o) = M then we have

Owow
Hipoo - 0 Hi k1
H(w,o) = . . ,
0 -+ Hgg Hyg ki1
Hiy11 -+ Hxyixk Hiroixi

where

0O, y) 0P Q(Or,
Hk:k—ZUm ki\Uk )+ k(k'Y)

96,00, 060,00
Hyp =0,
0% (B, 92, (0, y
Hicirpe = Hi g = Z"’” ag as g ael,i(aiT )
- i”z 1 (0r,7) Z 82 (0r, )
K+1,K+1 — )
— OOy T Oy T OOy T

for1 <k I< K and k #1.

Lemma 2 (Influence Scores for Instance-Level Analysis). Assume that the objective L(w, o) is twice differ-

entiable and strictly convex in w. Then, Ww(o) = argmin,, L(w, o) satisfies 7‘3“%55)’”) = 0. Moreover, we
have: .
20) _ H(i(o).0) .
80,”-
where
.
Ol Oly;
v = 07"'507 707"'707
0] oy’
k-th block (K+1)-th block

K K
and H(w,o) € RO ey BP0 D) o the Hessian matriz of L(w, o) with respect to w.

Proof. The result is obtained by applying the classical influence function framework as outlined in [Koh &
Liang| (2017). O

The following two lemmas provide tools for verifying the invertibility of the Hessian matrix and calculating
its inverse.

Lemma 3 (Invertibility of Hessian). If Hyy is invertible for 1 < k < K, define

K
N :=Hg k01 — > Hipa o Hy He g1 € RV (11)
k=1
If N is also invertible, then H is invertible.
Lemma 4 (Hessian Inverse). Let [Hfl]kl denote the (k,1) block of the inverse Hessian H(w,o)~ . Then
for1<EkI<K,

[H™ Y], =Uk=1) Hy! + Hg Hyga N~ Hien  Hy
[Hil]k,KH =—H'Hy N7

-1 _ a1
[H ]K+1,K+1 =N""
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Proof of Lemma[3 and Lemmal[jl Denote

A B
n=(& b))
where
Hqq 0
A= - e RO mX (0, )
0 Hix
Hy g1 .
B=C" = : c R(Zkzl nk)Xp,
Hy k1

D= HK+1,K+1 € RP*P,

Under the conditions, the matrices Hyy for 1 < k < K are invertible. Note that A is a diagonal block matrix.
It is also invertible and its inverse is given by

-1
Hy)
Al =
—1
Hy
In addition, under the conditions, D — CA™'B = Hii1,041 — Zszl HK+1,kH]€_lek7K+1 = N is invertible.
Using the inverse formula for block matrix, we derive that H ! is

< (A- BD-1C)"!  ATB(D- (21;1—13)‘1 > | 12
—D'C(A-BD'C)"" (D-CA'B)

where the upper left block is equivalent to
(A-BD'C) ' = A '+ A'B(D-CAT'B) T CcATY,

by using the Woodbury matrix identity. Further, by expanding the RHS of Equation in terms of the
blocks in H, we can get the block-wise expression of H~!. In particular, for 1 < k,l < K,

17, = [(a-BD70)"] |

=1(k=10)-H' + |[A7B(D-cA™'B) A7
=1(k=1)-Hy, + H ' Hy 41 - N" Hgpr Hy '
Further, for 1 < k < K,

[H_l}k,K+1 = [H_l];H,k = ch_lek,K—HN_l,
and
[H_l]K+1,K+1 =N"L

B MTIF for Task-Level Inference

We define task-level o-weighted objective to be:
K 1 nj
Lw, o) =" ai[ > 03:(6;,7) + 2(0;,7)], (13)
j=1 J =1

where o € R is the vector of task-level weights. The first lemma describe the structure of the Hessian
matrices for this task-level o-weighted objective.
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Lemma 1 (Hessian Matrix Structure for Task-Level Inference). Let H(w,o) be the Hessian matric of
task-level o-weighted objective with respect to w, then

Hy, 0 Hi g1
H(w,o) = . . ,
0 - Hgg Hyg ki1
Hgi11 - Hrii,xk Higi1,k41

where

00,00 00,06,
Hy =0,

Oy (O, y) 0% e(O,7)
HK+1k = Hy 41 = 0k lz D00 T + D0ro T

0?01 0k, ) 82(2 0,
He — o [Z ki (01 mwl’

a gkz 91@7 82916(9/677)
Hgii k1 = E Ok [E ,
P OyoyT OyoyT

for 1<k I, <K andk #1.

Lemma 2 (Influence Scores for Task-Level Analysis). Assume that the objective L(w,o) is twice dif-

ferentiable and strictly convex in w. Then, the optimal solution W(o) = argming, L(w,o) satisfies
W = 0. Furthermore, we have:
P
o) - o) o),
80'k
where
-
o Ol an Ok an
—1o0,---.0, 0,
’ = 0% Z1
k-th block (K+1) th block

K K
H(w,o) € RO iy )X (30, ditp) is the Hessian matriz of L(w, o) with respect to w.

Proof. The result is obtained by applying the classical influence function framework as outlined in [Koh &
Liang| (2017). O

In Proposition [2], we provide the analytical form for the influence of data from one task on the parameters of
another task and the shared parameters. The Hessian matrix of £(w, o) with respect to w shares the same
block structure as shown in . Let Hy,; denote the (k,1)-th block of the Hessian matrix, with the details
provided in Lemma [I] Let N be defined as in Proposition [I]
Proposition 2 (Task-Level Between-task Influence). Under the assumptions of Proposition l, for any two
tasks k # 1 where 1 < k,l < K, the influence of data from task l on the task-specific parameters of task k,
O, is given by A
0
27; = Hkk Hy k41 88;;, (14)

where g—jl is the influence of data from task l on the shared parameters, 7, and is given by

(2
8@

Yy an
=N"'H H;
K+ u lz 20, 96,

lz oy, 8911 |
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C Experiments

C.1 Experiment Details for Retraining Approximation Quality
C.1.1 Synthetic and HAR Datasets and Model Configurations

Synthetic Dataset The synthetic dataset for multi-task linear regression is generated with m = 10 tasks,
where each dataset contains n = 200 samples (z;, y;;), split into training and test sets. The input vectors z;;
are independently sampled from a normal distribution N(0, I;) with dimensionality d = 50. The response
y;: is generated using a linear model y;; = x;';@]* + €;;, where €;; ~ N(0,1) is independent noise.

The coefficient vectors 07 for task j are generated by starting with a common vector 5* = 2e; (where e is a
unit vector) and adding random perturbations d;, sampled from a sphere with norm ¢. For a fraction am of
the tasks, 07 is replaced with independent random vectors. This parameterization introduces variability in
task similarity, with § controlling the perturbation magnitude and « determining the fraction of unrelated
tasks. For more details, we refer readers to Duan & Wang (2023]).

To explore different task similarity scenarios, we generate datasets under varying 6 and « values. The
datasets are randomly divided into training, validation, and test sets with an 1:1:1 ratio.

Human Activity Recognition (HAR) Dataset The Human Activity Recognition (HAR) dataset (An-
guita et al.l [2013) was constructed from recordings of 30 volunteers performing various daily activities while
carrying smartphones equipped with inertial sensors on their waist. Each participant contributed an average
of 343.3 samples, ranging from 281 to 409. Each sample corresponds to one of six activities: walking, walking
upstairs, walking downstairs, sitting, standing, or lying.

The feature vector for each sample is 561-dimensional, capturing information from both the time and fre-
quency domains, and are reduced to 100 dimensions using Principal Component Analysis (PCA). To frame
the dataset as a multitask learning problem, following [Duan & Wang| (2023), we treat each volunteer as a
separate task. The problem is formulated as a multi-task logistic regression problem to classify whether a
participant is sitting or engaged in any other activity. For each task, 10% of the data is randomly selected
for testing, another 10% for validation, and the remaining data is used for training.

C.1.2 Additional Instance-Level Approximation Results

Here we present additional results for the instance-level MTIF approximation quality in Section[d:1] Figures[2]
and [3] show the results on the synthetic dataset for each task selected as the target task with different §
and a. Figures [d] and [f] show results when the data to be deleted are from different tasks than the tasks in
the main text. The linear relation in both cases is still preserved, meaning our MTIF align well with LOO
scores.

C.1.3 Additional Task-Level Approximation Results

Here we present additional results for the task-level MTIF approximation quality in Section

Sensitivity to synthetic data setting. Tables [] to [J] present results under various combinations of § and
«. We observe that the correlation scores remain high across different settings.

Comparison to baseline methods on more datasets and models. We incorporate two gradient-
based baselines into our task-relatedness experiments for both linear regression and neural network settings:
Cosine Similarity (Azorin et all 2023)) and TAG (Fifty et al., 2021). Following the same procedure outlined
in Task-Level MTIF Approximation Quality in Section we evaluate task relatedness by designating
one task as the target task, ranking the most influential tasks relative to it as respectively calculated by
MTIF, Cosine Similarity, or TAG, and computing the ranking correlation coefficient with the ground-truth
Leave-One-Task-Out (LOTO) scores. A higher correlation coefficient indicates better alignment with the
LOTO scores, with values ranging from -1 (completely reversed alignment) to 1 (perfect alignment), and
0 representing random ranking. We experiment with linear regression on the synthetic dataset, logistic
regression on the HAR dataset, and neural networks on the CelebA dataset.
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Figure 2: LOO experiments on linear regression. The x-axis is the actual loss difference obtained by LOO
retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two figures from the
left show within-task and between-task LOO (in order) results with § = 0.4 and « = 0, while the other two
figures present within-task and between-task results (in order) with § = 0.4 and o = 0.2.
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Figure 3: LOO experiments on linear regression. The x-axis is the actual loss difference obtained by LOO
retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two figures from the
left show within-task and between-task LOO (in order) results with § = 0.8 and « = 0, while the other two
figures present within-task and between-task results (in order) with 6 = 0.8 and a = 0.2.
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Figure 4: LOO experiments on linear regression. The x-axis is the actual loss difference obtained by LOO
retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two figures from the
left show within-task and between-task LOO (in order) results with deleted data from task 1, while the other
two figures present within-task and between-task results (in order) with deleted data from task 2.
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Figure 5: LOO experiments on linear regression. The x-axis is the actual loss difference obtained by LOO
retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two figures from the
left show within-task and between-task LOO (in order) results with deleted data from task 3, while the other
two figures present within-task and between-task results (in order) with deleted data from task 5.
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Table 4: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset. § = 1.0
and a = 0.2

Task 1 Task 2 Task 3 Task 4 Task 5
0.84 £ 0.05 0.72 £ 0.05 0.74 £ 0.11 0.81 £ 0.05 0.71 4+ 0.09
Task 6 Task 7 Task 8 Task 9 Task 10

0.74 £0.04 0.74 £0.07 0.84 £0.03 0.74 £ 0.03  0.65 £+ 0.07

Table 5: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset. 6 = 1.0
and a = 0.

Task 1 Task 2 Task 3 Task 4 Task 5
0.75 £ 0.07  0.67 + 0.06 0.81 + 0.03 0.70 + 0.05 0.60 4+ 0.10
Task 6 Task 7 Task 8 Task 9 Task 10

0.39 £ 0.13 0.66 £ 0.06 0.75 £ 0.03 0.71 &£ 0.05 0.61 4+ 0.03

Table 6: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset. § = 0.6
and o = 0.2.

Task 1 Task 2 Task 3 Task 4 Task 5
0.84 + 0.04 0.67 £ 0.07 0.69 £+ 0.12 0.77 £ 0.05 0.71 £+ 0.05
Task 6 Task 7 Task 8 Task 9 Task 10

0.73 &£ 0.07 0.65 £ 0.06 0.77 £ 0.05 0.69 &+ 0.05 0.56 £ 0.11

Table 7: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset. 6 = 0.6
and o = 0.

Task 1 Task 2 Task 3 Task 4 Task 5
0.77 £ 0.05 0.56 £ 0.09 0.69 &+ 0.07 0.63 &+ 0.06 0.57 + 0.13
Task 6 Task 7 Task 8 Task 9 Task 10

0.38 £ 0.16 0.62 £ 0.04 0.72 £ 0.03 0.65 & 0.04 0.46 £ 0.09

Table 8: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset. § = 0.4
and a = 0.2.

Task 1 Task 2 Task 3 Task 4 Task 5
0.79 £ 0.05 0.62 &£ 0.06 0.56 &+ 0.13 0.73 & 0.05 0.64 + 0.07
Task 6 Task 7 Task 8 Task 9 Task 10

0.67 £ 0.08 0.52 £ 0.05 0.70 £ 0.04 0.65 & 0.04  0.56 £+ 0.09

Table 9: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset. § = 0.4
and a = 0.

Task 1 Task 2 Task 3 Task 4 Task 5
0.67 £ 0.08 0.52 £ 0.10 0.56 &£ 0.09 0.64 + 0.06 0.54 £+ 0.15
Task 6 Task 7 Task 8 Task 9 Task 10

0.42 £ 0.16 0.52 £ 0.08 0.65 £ 0.05 0.56 & 0.04 0.38 £ 0.12

Table 10: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset for
MTIF, TAG, and Cosine across 10 tasks.

Task Task 1 Task 2 Task 3 Task 4 Task 5

MTIF 0.84 £0.05 0.72 £0.05 0.74 £0.11  0.81 £0.05 0.71 £ 0.09
TAG 0.57 £0.03 0.63 £ 0.07 0.49 £0.11 0.56 = 0.05  0.69 £ 0.04
Cosine  0.52 + 0.04 0.48 &+ 0.07 0.39 & 0.12 0.47 = 0.09  0.58 + 0.06

Task Task 6 Task 7 Task 8 Task 9 Task 10

MTIF 0.74 £ 0.04 0.74 £0.07 0.84 £ 0.03 0.74 £ 0.03  0.65 £+ 0.07
TAG 0.55 &+ 0.12  0.42 &£ 0.06 0.44 + 0.24 0.66 + 0.08 0.61 £ 0.07
Cosine  0.47 £ 0.12 0.34 £ 0.05 0.40 £ 0.22 0.62 &+ 0.09 0.51 £ 0.08

22



Under review as submission to TMLR

Table 11: The average Spearman correlation coefficients over 5 random seeds on HAR dataset for MTIF,
TAG, and Cosine across 30 tasks.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

MTIF 0.87+0.02 0.90+0.02 0.88+0.01 0.914+0.03 0.914+0.01 0.90 =+ 0.02
TAG 0.26 £0.13 0.424+0.11 0.554+0.09 0.224+0.07 0.60+0.07 0.55+0.08
Cosine  0.31+0.11 0.40+0.11 0.57+0.08 0.20+0.09 0.61+0.06 0.57 +0.08

Task 7 Task 8 Task 9 Task 10 Task 11 Task 12

MTIF 0.90£0.01 0.88+£0.02 0.92+£0.01 091+£0.02 0.89+£0.02 0.86=+0.01
TAG 049+£0.12 0.31+£0.12 0.24£0.01 0.33£0.02 0.43+£0.03 0.21+£0.02
Cosine  0.46 +0.11 0.31+0.14 0.26+0.03 0.34+0.01 0.46+0.04 0.18+0.11

Task 13 Task 14 Task 15 Task 16 Task 17 Task 18

MTIF 0.90+0.02 0.93+0.05 0.84+0.01 0.87+0.05 0.89+0.02 0.82+0.02
TAG 0.54 £0.03 0.57+0.03 0.434+0.02 0.484+0.03 0.64+0.05 0.44 +0.02
Cosine  0.53+0.10 0.58+0.10 0.48+0.04 0.49+0.11 0.66+0.05 0.46 +£0.07

Task 19 Task 20 Task 21 Task 22 Task 23 Task 24

MTIF 0.85£0.02 0.91+£0.02 0.93+£0.02 0.80+£0.01 0.80+£0.02 0.82+0.05
TAG 0.44+£0.03 046+£0.02 0.84+£0.02 0.52+£0.07 0.13£0.03 0.38+£0.07
Cosine  0.48 +£0.05 0.47+0.07 0.84+0.10 0.53+0.08 0.16+0.12 0.454+0.10

Task 25 Task 26 Task 27 Task 28 Task 29 Task 30

MTIF 0.89+0.02 0.81+0.03 0.824+0.03 0.894+0.01 0.924+0.03 0.86+0.03
TAG 0.56 £0.04 0.14+0.11 0.414+0.100 0.144+0.11 0.724+0.04 0.41+0.11
Cosine  0.60+0.04 0.18+0.12 0.46+0.10 0.154+0.10 0.744+0.11 0.46 £0.10

Table 12: The average Spearman correlation coefficients over 5 random seeds on CelebA dataset for MTIF,
TAG, and Cosine across 9 tasks.

Task 1 Task 2 Task 3 Task 4 Task 5
MTIF 0.23 + 0.08 0.44 £0.19 0.25 £0.11 0.36 £0.12 0.17 £ 0.13
TAG —0.10 £ 0.13 —0.10 £0.14 0.09 £ 0.06 0.40 £ 0.08 0.00 £0.12
Cosine 0.12+0.18 0.08 £0.15 0.08 £ 0.07 0.37 £ 0.08 —0.10 £0.13
Task 6 Task 7 Task 8 Task 9
MTIF 0.35 £ 0.08 0.25 £ 0.07 0.11 £ 0.09 0.18 £0.12
TAG —0.42 £ 0.08 —0.26 £ 0.17 0.06 £ 0.13 0.16 £ 0.16

Cosine  —0.25 £0.12 —0.25+0.14 —-0.01£0.16 0.05+0.12
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The results in Tables[10] to [12] show that our proposed MTIF method consistently outperforms the baselines
across all scenarios. For the synthetic and HAR datasets, all methods achieve positive correlation scores
across tasks, but MTIF consistently achieves the highest scores, often exceeding 0.7 for most tasks. In the
CelebA dataset, estimating task relatedness in neural network models proves to be more challenging. While
MTIF maintains positive scores, the baselines perform close to random, frequently yielding negative scores
for many tasks. Although the baselines occasionally achieve slightly higher scores than MTIF on specific
tasks, their performance is inconsistent. These findings underscore MTIF’s reliability and superior ability
to approximate task relatedness compared to the baselines.

C.2 Additional Instance-Level Data Selection Results

To evaluate MTIF in a multi-task scene understanding setting, we additionally conduct experiments on the
indoor scene understanding dataset NYUv2 (Silberman et al., 2012)). In this setup, three dense prediction
tasks, semantic segmentation, depth estimation, and surface normal prediction, are trained jointly. Specif-
ically, we follow the DeepLabV3+ architecture (Chen et al., [2018al) with a dilated ResNet-50 (Yu et al.|
2017) shared encoder across tasks and use an Atrous Spatial Pyramid Pooling (ASPP) module as task-
specific head. Note that this backbone is larger than the ResNet-18 used in our main experiments. We
similarly corrupt 20% of the training data, and apply the TRAK-based variant of MTIF for instance-level
data selection on top of equal weighting (EW) and three best-performing baselines (STCH, DB_ MTL, and
CAGrad). The results are shown in Table MTIF-based data selection (denoted “+ MTIF” in the table)
improves the performance of existing multi-task learning baselines. For semantic segmentation and depth
estimation, EW + MTIF achieves the strongest performance (bold) in PAcc and ranks second (bold + italic)
on the remaining metrics. For surface normal prediction, MTIF provides the largest gain when combined
with CAGrad. These improvements demonstrate the effectiveness of MTIF in scene understanding.

Table 13: Performance comparison of different multi-task learning methods on Segmentation, Depth Estima-
tion, and Surface Normal Prediction. The best result in each column is shown in bold, and the second-best
result is underlined.

‘ Segmentation ‘ Depth Estimation ‘ Surface Normal Prediction
Method | mloUt  PAcct | AErr| RErr] | Mean| MED] | 11.25¢ 2257 301
EW 0.406 0.662 0.438 0.183 27.51 21.51 0.283 0.518 0.635
CAGrad 0.388 0.651 0.431 0.178 24.73 18.17 0.330 0.584  0.689
uw 0.428 0.678 | 0.445 0.184 27.46 21.55 0.282  0.517  0.637
RLW 0.371 0.629 | 0.481 0.192 28.76 23.72 0.245 0478  0.603
STCH 0.422 0.673 | 0.421 0.178 25.57 19.22 0.314  0.563  0.678
GradNorm 0.432 0.677 | 0.433 0.180 27.23 21.29 0.287  0.522  0.640
DB-MTL 0.418 0.678 | 0.427 0.185 24.77 18.40 0.326  0.579  0.692
ExcessMTL 0.408 0.661 0.441 0.181 27.39 21.66 0.278  0.515  0.635
PCGrad 0.438 0.686 | 0.432 0.188 26.93 21.01 0.287  0.527  0.646
EW+MTIF 0.444  0.690 | 0.422 0.176 26.81 20.60 0.296  0.534  0.651
DB-MTL+MTIF | 0.427 0.677 | 0.428 0.177 24.98 18.54 0.323  0.576  0.690
STCH+MTIF 0.446 0.690 | 0.432 0.177 25.40 18.82 0.323  0.569  0.682
CAGrad+MTIF 0.384 0.650 | 0.423 0.174 24.54 17.66 | 0.339 0.594 0.703

C.3 Experiment Details for MTIF-Guided Data Selection

Datasets. CelebA (Liu et al., 2015) is a large-scale face image dataset annotated with 40 attributes and
widely used in the multitask learning (MTL) literature (Fifty et all 2021)).

We randomly select 10 attributes as tasks for our experiments, modeling each task as a binary classification
problem. The dataset is pre-partitioned into training, validation, and test sets. We sample a subset of
250 examples per task from each partition to construct our training, validation, and test sets. We do the
sub-sampling as this is the regime where multitask learning outperforms single-task learning, which better
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mimics the common real-world multitask learning scenarios where the training data (at least for some tasks)
are scarce.

Office-31 (Saenko et al., [2010) comprises three domains—Amazon, DSLR, and Webcam—each defining a
31-category classification task, with a total of 4,110 labeled images. we partition each dataset into 60%
training, 20% validation, and 20% test splits.

Office-Home (Venkateswara et al., [2017) contains four domains—Artistic (Art), Clip Art, Product, and
Real-World—each with 65 object categories, totaling 15,500 labeled images. Following [Lin & Zhang (2023)),
we treat each domain as a task for MTL. we partition each dataset into 60% training, 20% validation, and
20% test splits.

Removal Ratio The removal ratio is treated as a hyperparameter and selected based on validation per-
formance (we briefly mentioned this in Section 4.2). For all reported data-selection results without data
poisoning, we tune the removal ratio from {0%, 0.1%, 0.25%, 0.5%, 0.75%, 1%, 2.5%} on a held-out valida-
tion set (the same validation set used to tune hyperparameters of baseline methods) and then retrain on the
remaining data. We will revise the manuscript to make this procedure clearer.

Experimental Details All experiments are conducted on 4 NVIDIA A40 GPUs with Linux-based system..
The following intervals of hyperparameters are explored for each method :

o EW: remove_ratio € [0.0, 0.005, 0.01, 0.025, 0.05, 0.1 ].

o CAGrad (Liu et al., 2021a)): rescale € {0, 1, 2}, calpha € {1, 2, 3}.

o GradNorm (Chen et al., [2018b): alpha € {0.5, 1.0, 2.0}.

o« STCH (Lin et al., [2024): mu € {1.0, 2.0, 3.0, 4.0, 5.0}, warmup_epoch € {1, 2, 3, 4}.

« DB_MTL (Lin et al., |2023): DB_beta € {0.5, 1.0, 2.0}, DB_beta_sigma € {0.1, 0.5, 1.0}.

o ExcessMTL (He et al., |2024): robust_step_size € {0.001, 0.01, 0.1}.

C.4 TRAK

When the model is small, one can compute the inverse within blocks of parameters directly. However,
for large neural networks, explicitly forming and inverting the full (block) Hessian is still computationally
infeasible. In those cases, we adopt the approximation tricks appeared in TRAK (Park et all 2023) for
efficient and approximate inverse Hessian. Specifically, we follow the TRAK recipe:

1. linearize the model in gradient space via the task-specific margin f;

2. project per-example gradients with block-wise random projection matrices for the shared and task-
specific parameters

3. estimate influence through a small linear system in the projected space, whose solution approximates
the action of the inverse Hessian.

The projection dimension can also be chosen separately for each block to reflect their relative sizes. We
summarize the pseudo-algorithm of this TRAK variant tailored to our MTL setting in Algorithm [}
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Algorithm 1 TRAK Variant of Multi-Task Influence Functions (MTIF)

Require: Multitask learning algorithm A with parameters (v, 0y,...,0x) € Rdotdit+dx,
1: Dataset S = {2z, :i=1,...,n%, k=1,..., K} with total size n = Zszl ng;
2: Sampling fraction a € (0, 1]; number of subsets M;
3: Class-specific likelihoods {p(z; 0k, 7)<, and margins fi(2;0k,7) := log(%);
4: Projection dimension dpyo;;
5: Validation example zy,; from task kyai;
6: Soft-threshold parameter Ag.

Ensure: Attribution vector T' € R™ for (zyal, kval)-
7. for m =1 to M do
8: Sample subset S(™) C S of size |an|

9: Train multitask model:
w™ = (0™, 08" ™) A(S™)
10: Sample random projection matrices:
P~ N(0, 1) %% res | =0,1,... K
11: Compute projected validation gradient:

d)(al A ( (M))TVGfkval(Zvalv 0(:7377(”1)) + (P(gm))—rv"{fkval (Zvalv 9( 177(m))

12: for each z,, € S do
13: Compute projected training gradient:

e (P TV Sz 07 7)) 4 (BS™) TV fi(zeis 60,4 ™)

14: Compute weight:
gy 1= pr(zrs 07 A
15: end for
16: Stack projected gradients ®(™) € R™*%roi and weights ¢("™) € R”
17: Compute per-model influence scores:
1) ) (1) Ta) ()
18: end for

19: Compute averaged attribution:

1 < 1 <
T+ |—=Y q“’”) ® < > t“"))
<M m=1 M m=1

20: return T < SoftThreshold(T, \s)
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