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Abstract

In spite of the fundamental role of neural networks in contemporary machine
learning research, our understanding of the computational complexity of optimally
training neural networks remains incomplete even when dealing with the simplest
kinds of activation functions. Indeed, while there has been a number of very recent
results that establish ever-tighter lower bounds for the problem under linear and
ReLU activation functions, less progress has been made towards the identification
of novel polynomial-time tractable network architectures. In this article we obtain
novel algorithmic upper bounds for training linear- and ReLU-activated neural
networks to optimality which push the boundaries of tractability for these problems
beyond the previous state of the art. In particular, for ReLU networks we establish
the polynomial-time tractability of all architectures where hidden neurons have an
out-degree of 1, improving upon the previous algorithm of Arora, Basu, Mianjy
and Mukherjee. On the other hand, for networks with linear activation functions
we identify the first non-trivial polynomial-time solvable class of networks by
obtaining an algorithm that can optimally train network architectures satisfying a
novel data throughput condition.

1 Introduction
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Figure 1: A neural network with two lay-
ers of hidden, ReLU-activated neurons,
computing a function f : R4 → R3.

Neural networks are a prominent tool in contemporary
machine learning, one which has found ubiquitous appli-
cations throughout modern computer science (Goodfellow
et al., 2016). A neural network (cf. Figure 1) can be
thought of as a directed acyclic network consisting of n
sources (typically called input nodes), and w remaining
nodes, which we partition into output neurons (the sinks)
and hidden neurons (all other nodes in the network, typ-
ically organized into layers).

Given the prominence of neural networks, it is surprising
that—in spite of recent efforts—relatively little is known
about complexity-theoretic upper bounds for the funda-
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mental problem of Neural Network Training (NNT): given a network and a training data set containing
m samples, compute weights and biases that best fit the training data.1 This contrasts recent advances
leading to novel algorithmic upper bounds as well as extensive complexity-theoretic landscapes for
many other problems arising in machine learning and neural network research, including, e.g., princi-
pal component analysis (Simonov et al., 2019; Dahiya et al., 2021), clustering (Ganian et al., 2022),
Bayesian network learning (Ordyniak & Szeider, 2013; Ganian & Korchemna, 2021; Grüttemeier &
Komusiewicz, 2022) and matrix completion (Ganian et al., 2018).

Naturally, the complexity of solving NNT to optimality strongly depends on the activation function
used in the network as well as on what kind of restrictions are placed on the structure of the network,
but—as we will see—even in the best studied and simplest cases we lack an understanding of the
frontiers of polynomial-time tractability. The Rectified Linear Unit (ReLU) activation function is a
natural first choice to consider for a complexity-theoretic investigation; over the past years, it has
become the most popular and widely studied activation function used in neural networks (Gao et al.,
2020). Goel, Klivans, Manurangsi and Reichman (2021) recently established that the Neural Network
Training problem with ReLU activation functions (RELU-NNT) is NP-hard, even when restricted
to networks with no hidden neurons, meaning that RELU-NNT is computationally intractable
when no further restrictions are placed on the network. In fact, an even more recent reduction
shows that RELU-NNT is also complete for the complexity class ∃R when restricted to complete
networks (Bertschinger et al., 2022) with precisely two input nodes and two output neurons, as
opposed to networks with arbitrary structure. Moreover, the problem was shown to be hard for
the complexity class W[1] (Froese et al., 2022) when parameterized by n and also intractable for
instances of fixed dimension Froese & Hertrich (2023).

While these results seem discouraging at first, an immediate question that arises is whether we can
at least efficiently train “small” networks? In particular, what is the complexity of RELU-NNT
(as well as other variants of NNT) when restricted to networks where n, w, or both are (fixed but
arbitrary) constants? Here we find a stark contrast between the extensive body of research on the
complexity of other natural meta-problems2 and how little is known for (RELU-)NNT. Indeed,
while recent reductions immediately rule out polynomial-time tractability for networks with constant
w (Abrahamsen et al., 2021; Froese et al., 2022) or constant n (Bertschinger et al., 2022), the
complexity of RELU-NNT in the base case where both n and w are bounded by a constant (i.e.,
when training constant-size networks) is a prominent open question in the field. The best partial
answer we had so far for this high-profile question lies in the seminal work of Arora, Basu, Mianjy
and Mukherjee (2018) (see also the follow-up work of Boob, Dey and Lan (2022)), who developed a
polynomial-time algorithm that can solve RELU-NNT for constant-size networks with a single layer
of hidden neurons and one output neuron.

Naturally, the study of NNT is also relevant for other popular activation functions such as the Sigmoid
or Tanh—however, these seem even less amenable to contemporary algorithmic techniques than
ReLUs. On the other hand, there exists a class of fundamental activation functions for which the
training problem turns out to be easier than for ReLUs: linear functions. Linear-activated networks
have been considered in numerous settings as well as theoretical examples (Abrahamsen et al., 2021;
Cowley & Pillow, 2020; Panigrahi et al., 2020) and can in many ways be viewed as the “baseline”
choice for considering the complexity of neural network training. Indeed, unlike for RELU-NNT, it
is not difficult to show that LIN-NNT (i.e., NNT with linear activation functions) is polynomial-time
tractable for any network of bounded (i.e., constant) size, but is known to be ∃R-complete for general
networks (Abrahamsen et al., 2021) (see also Section 3). However, the complexity of LIN-NNT for
general networks with bounded w—i.e., with constantly many hidden and output neurons—remains
open.

Contributions. While several papers have recently provided lower bounds for NNT (Abrahamsen
et al., 2021; Froese et al., 2022; Bertschinger et al., 2022), much less progress has been made towards
pushing the frontiers of tractability of the problem. In this paper, we remedy this by providing new
algorithmic upper bounds that supersede the previous state of the art for RELU-NNT and LIN-NNT.

1Formal definitions are provided in the Preliminaries.
2Consider, e.g., Lenstra’s celebrated theorem for solving Integer Linear Programs with constantly-many

variables (Lenstra & Jr., 1983) and the multitude of improvements of that initial result (Kannan, 1987; Frank
& Tardos, 1987; Ganian & Ordyniak, 2019; Brand et al., 2021), or Schaefer’s famous dichotomy theorem for
Boolean CSPs (Schaefer, 1978) and its more recent generalization to bounded-domain CSPs (Bulatov, 2017).
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As our first major contribution, we establish the polynomial-time tractability of RELU-NNT for
all constant-size networks satisfying the property that all hidden neurons have out-degree at most
1. We remark that while this condition is trivially satisfied by every neural network that can be
handled by the aforementioned algorithms (Arora et al., 2018; Boob et al., 2022), our result may
also be applied to much more general networks and in particular can support more than one output
neuron and multiple hidden layers. The algorithm underlying our result can also deal with networks
combining ReLU and linear activation functions. Moreover, its running time matches the recent
algorithmic lower bound of Froese et al. (2022) for single-neuron architectures, meaning that it is
essentially optimal in that setting.

One remarkable consequence of our exact algorithm for RELU-NNT is that it allows us to formulate
a procedure which can effectively deal with every constant-size network architecture (even those
not satisfying the restriction on the out-degree of hidden neurons). In particular, we show that
every constant-size ReLU-activated network architecture can be transformed into a new network
architecture which is (1) at least as expressive as the original architecture, and (2) can be trained in
polynomial time. Crucially, the depth of the new architecture remains the same and its size depends
solely on the size of the original architecture.

Next, we turn to the simpler setting of training neural networks with linear activation functions,
i.e., LIN-NNT. Recall that here, we are dealing with networks containing a bounded number of
hidden/output neurons, but a potentially large number of input nodes. Once we depart from the case of
architectures with complete connections between consecutive layers (which can be solved by a direct
application of linear regression), training neural networks to optimality on a given data set is known
to be hopelessly hard (Abrahamsen et al., 2021) unless the admissible architectures/data are restricted
to highly specialized scenarios, such as those with a single output neuron (see Section 3). As our
second contribution, we identify a general data throughput condition that allows us to circumvent
the aforementioned intractability and guarantee the polynomial-time tractability of LIN-NNT. In
particular, we say that a network admits an untangling if a subset of its nodes can be partitioned into
connected blocks—one for each output and input node—such that:

1a. each input node is the sole source of an input-block;
1b. each output node is the sole sink of an output-block; and
2. the adjacencies between blocks reflects reachability between inputs and outputs.

Intuitively, an untangling can be seen as a backbone in a network where each block either aggregates
information from a source or into a sink. While it may not be obvious from the definition at first
glance, not only do single-output (as well as single-input) neural networks admit a trivial untangling,
but so do many other network architectures one may consider. To exploit our notion of untanglings,
we obtain an algorithm that solves LIN-NNT in polynomial time whenever the network comes with an
untangling. We combine this result with a procedure that computes an untangling (or determines that
none exists) in linear time on all architectures with a constant number of hidden neurons, and provide
a different linear-time procedure to find untanglings on architectures of constant treewidth (Robertson
& Seymour, 1983; Bodlaender, 2016).

2 Preliminaries

Graphs. We assume basic knowledge of graph terminology (Diestel, 2012). The graphs considered
in this paper are assumed to be directed, that is, a graph is a pair G = (V,E), where V is a set of
vertices and E a set of directed edges. For a vertex v, the vertices u such that there is an edge (u, v)
in E are called the in-neighbors of v; correspondingly, the set of in-neighbors is the in-neighborhood
of v. The notions of of out-neighbors and out-neighborhood are defined symmetrically. The in-degree
and out-degree of a vertex is the size of its in- and out-neighborhood, respectively. For a vertex subset
X ⊆ V , we denote by G[X] the graph induced on X .

Neural Networks. The protagonists of this article are neural networks, which are acyclic graphs
endowed with additional information. In particular, the architecture of a neural network N is a
directed acyclic graph G = (V,E) where the nodes are called neurons. We refer to nodes with no
incoming edges as input nodes, while those with no outgoing edges are called output neurons. All
other nodes are called hidden neurons. We refer to edges as deep when they are not incident to an
input node. Typically, one assumes that the hidden neurons are partitioned into layers defined by their

3



shortest distance to an input node, where a hidden neuron in layer i only has in-neighbors in layer
i− 1 and out-neighbors in layer i+ 1.

In addition to its neural structure, N is defined by assigning a bias bv ∈ R for each non-input neuron
v and a weight ae ∈ R for each edge e. Furthermore, we fix an activation function σ : R→ R for the
entire neural network. To formally map the data dimensions onto the input and output nodes in an
architecture, we will assume that these nodes come with an implicit predetermined ordering.

A neural network defined as above computes a function fN : Rn → Rd, where n is the number of
input nodes, and d the number of output neurons of N . To define fN , we say for each neuron v that
it computes a function fv : Rn → R, which is inductively defined as follows: The function computed
at the i-th input node is the coordinate projection πi : Rn → R, (x1, . . . , xn) 7→ xi. For a non-input
neuron, let v1, . . . , vt be the in-neighborhood of v, again in some arbitrary, but fixed order, and let av
be the vector of weights (aviv)i=1,...,t in the same order. Furthermore, let yv = (y1, . . . , yt) be the
values of the functions computed at the neuron vi, respectively—that is, yi = fvi(x1, . . . , xn). Then,
v computes σ(aTv · yv + bv). The function computed by the neural network N itself is then given by
(fo1(x1, . . . , xn), . . . , fod(x1, . . . , xn)), where o1, . . . , od are the output neurons of N .
Clearly, the function computed by N depends, among other things, on the employed activation
function. Here we will consider two specific and well-studied choices for σ, namely ReLU and linear
activations. It is well known that, without loss of generality, these can be assumed to be σ(x) = x
(i.e., the identity) for linear activations and σ(x) = max{0, x} for ReLU activations (Goodfellow
et al., 2016). We will also employ the notation x+ = max{0, x}.

Training Neural Networks. The task of training a neural network is to, given an architecture
and activation, compute a set of weights as well as biases, such that the function computed by the
resulting neural network approximates in the best possible manner a given set of training data, that is,
a given set of samples (x, y) where x and y are vectors of the appropriate dimension for the network
architecture.

More formally, the input to the σ-NNT problem is an architecture G = (V,E) and data points
D ⊆ Rn×Rd, where n is the number of input and d the number of output neurons of the architecture.
For every setting a of all edge weights as well as b of all biases, this fully determines a neural
network Na,b that in turn computes a function fa,b = fNa,b . The task is then to output a weight ae
for every edge e in G as well as a bias bv for every neuron such that the function computed by the
resulting neural network Na,b minimizes, among all such choices of a and b, the `22-loss function
LD(a, b) =

∑
(x∗,y∗)∈D ||y∗ − fa,b(x∗)||22, where || · ||2 is the standard Euclidean norm.

Note that the problem formalization in particular entails that we do not regard the type of activation
function as part of the input, whereas the network architecture is part of the input by default. This
either matches or generalizes previous formalizations of the problem (Arora et al., 2018; Abrahamsen
et al., 2021; Goel et al., 2021; Froese et al., 2022; Bertschinger et al., 2022). We will denote the
problems of training neural networks for linear and ReLU activations as LIN-NNT and RELU-NNT,
respectively, and the analogous problem where the network contains both linear and ReLU activation
functions as MIXED-NNT. Furthermore, while the definition of σ-NNT implies that a solution is
one which minimizes the `22-loss function, we will also sometimes call these “optimal solutions” for
emphasis. Last but not least, throughout the article we assume that |D| ≥ 2 since the case where
|D| ≤ 1 is trivial.

3 Synopsis of Known Results

Neural network training is a vast area of research that has received an immense amount of attention
both on the theoretical as well as the empirical side. In order to put our results into context, we survey
the complexity-theoretic understanding of linear and ReLU neural network training.

Linear Activation. In the simplest case of LIN-NNT where we assume the size of the whole
architecture to be upper-bounded by a constant, it is known that the problem can be expressed as a
constant-size system of polynomial inequalities which can be solved in polynomial time, e.g., via the
seminal work of Tarski (1951).
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On the other hand, LIN-NNT is known to be intractable even if the number of output neurons is
upper-bounded by a fixed constant; in fact, the problem was shown to be ∃R-hard even when the
number of output neurons is fixed to 3 (Abrahamsen et al., 2021).

One intermediate case between the general and fixed-size fixed-dimension networks is when the
network architecture is unrestricted in size but has a special structure, namely, where all edges
between layers of nodes exist. In this case, LIN-NNT can be solved in polynomial time by a direct
application of multidimensional linear regression (Velu & Reinsel, 2013).

The preceding discussion leaves open a variety of possible directions, such as the complexity of
training networks that are not necessarily fully connected, but constrained to have two or even a single
output neuron. On the other hand, one may ask what happens if we consider only the number of
hidden neurons to be bounded by a constant, without restricting the number of input nodes and output
neurons. Our results deal with an intermediate case that captures, among other things, the easy case
of single-output networks, as well as some more general networks with a constant number of hidden
neurons. In particular, we will formulate a technical condition—whether or not the architecture can
be untangled—that will allow us to train such networks with linear activations in polynomial time.

Rectified Linear Activation. Recent results from computational complexity theory provide strong
lower bounds on the inherent difficulty of the problem of neural network training with ReLU activation
functions, already on highly restrictive architectures. Indeed,Goel et al. (2021) and independently
Dey et al. (2020) have proven that, under standard complexity assumptions, even training a single
ReLU-activated neuron with n input nodes cannot be accomplished in time polynomial in n and the
size of the training set D; see also the related lower bounds of Bertschinger et al. (2022).

A seminal algorithmic result is that of Arora et al. (2018) for training shallow networks consisting
of one layer of hidden ReLU neurons and a single output neuron equipped with a linear activation
function. Their algorithm runs in time |D|O(w·n), where D is the training set, n the number of input
nodes and w the number of other nodes in the architecture. Boob et al. (2022) showed that the same
approach can be used to handle cases where the output neuron is equipped with a ReLU activation
function as well. Froese et al. (2022) have shown that this running time dependency on n in the
exponent of D is asymptotically optimal even for a single hidden neuron, ruling out algorithms
running in time, e.g., 2n ·Do(n) for this basic case.

It is a major open problem to extend the techniques of Arora et al. (2018) to general deep networks—in
particular, the complexity of RELU-NNT when restricted to networks whose size is upper-bounded
by an arbitrary but fixed constant is wide open. Our work shows that it is nevertheless possible
to identify a much more general set of architectures than those covered by the aforementioned
results (Arora et al., 2018; Boob et al., 2022) for which RELU-NNT is polynomial-time solvable.

4 Training ReLU Networks

In this section, we establish our tractability results for ReLU-activated neural network training when
each hidden neuron has out-degree at most 1. As our first step, we prove that in such instances the
weights in the hidden layers can be discretized to only two values.

Lemma 1. For any ReLU network N and for any hidden neuron u with precisely one out-neighbor
w, there is a ReLU network N ∗ with the same architecture such that fN = fN∗ and a∗uw ∈ {−1, 1}.
Moreover, the only parameters in which N and N ∗ differ are the weights of the edges incident to u
and the bias of u.

Proof Sketch. Let (vi)i be the (non-empty) family of predecessors of u, and w its only successor. To
obtain N ∗, we construct a new set of weights and biases at u, where sgn(x) is the sign function:

∀i, a∗viu = aviu · |auw|
b∗u = bu · |auw|

a∗uw = sgn(auw) (1 if auw = 0)

All other weights in N ∗ remain the same as in N . To complete the proof, it suffices to show that
fN = fN∗ holds by using the fact that the ReLU function commutes with multiplication with
non-negative factors.
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By iteratively applying Lemma 1, we obtain:
Lemma 2. Let N be a ReLU structure such that every hidden neuron has out-degree 1. Then there
exists an optimal solution to RELU-NNT such that all deep edges have weights in {1,−1}.

Lemma 2 will later allow us to reduce our search space for RELU-NNT by only needing to consider
two options for the weights of each deep edge. We note that Maass (1997) employed a related idea.

Partitioning by Hyperplanes. The other key argument used to reduce the search space further
concerns the way ReLU neurons partition the training set into a “dead area” (i.e., the elements where
the linear unit is rectified) and an “active area” (where the unit behaves as a linear function). More
precisely, given a data set D and a ReLU-activated neuron u, we say that u partitions D into an
active area D|u, which contains all data points for which fu outputs a value greater than zero, and a
dead area D|u = D \D|u, which contains all data points for which fu outputs zero.

As a base case, let us consider a neuron u in the first hidden layer of a neural network and let aTu be
the vector of weights for the edges from the input nodes to u, where a non-edge would be represented
as a weight of 0. As a trivial upper bound, there are in general at most 2|D| ways u can partition
D into an active and dead area, which provides a trivial upper bound for an algorithm enumerating
all such partitions. However, we have that fu(Di) = (aTu ·Di + bu)+ for each data point Di ∈ D
and moreover aTu · x + bu defines a hyperplane in an n-dimensional space. This allows us to obtain
an algorithm with a better running time bound for enumerating the partitions of the point set that is
inspired by a result of Megiddo (1988).
Lemma 3. LetD ⊆ Rn be a finite set of points. Then, the set of partitions Π = {(A,B) | A∪B = D
and A,B are separated by a hyperplane} can be enumerated in time |D|O(n).

Remark. A similar result was claimed and used by Arora et al. (2018, Page 14) in their algorithm for
dealing with RELU-NNT restricted to a special case of the setting treated in this section. However,
the argument presented there seems to be incomplete. In particular, it makes the claim that “the total
number of possible hyperplane partitions of a set of sizeD in Rn is at most 2

(
D
n

)
”, which is imprecise

(consider, e.g., |D| = n). Moreover, the book listed as reference for bounding the total number of
possible hyperplane partitions does not provide an algorithm for enumerating these efficiently, and
enumeration is required for both our result and the result claimed in Arora et al. (2018). A bound on
the number of such partitions can be attributed to Harding (1967), but that does not yield efficient
enumeration either. If the points are known to lie in general position, efficient enumeration could
be carried out via a translation to hyperplane arrangements followed by an application of the results
of Edelsbrunner et al. (1986); however, in our setting we cannot guarantee that these lie in general
position, necessitating our stand-alone proof of Lemma 3 above (which we believe to be also of
general interest).

The considerations preceding Lemma 3 do not immediately translate to neurons that are deeper than in
the first layer, since the inputs to these activation functions are obtained by non-linear transformations
of D. Nevertheless, we prove that it is also possible to derive an upper bound for neurons beyond the
first hidden layer if we are provided information about the partitions of neurons in previous layers.
Lemma 4. Let D be a set of data points, u be a ReLU neuron, F be the set of all neurons on paths
from input nodes to u, and x = |F |. Given D|v for each v ∈ F , we can upper-bound the number of
distinct active areas D|u ⊆ D over all networks consistent with the given selection of {D|v | v ∈ F}
by |D|O(n·2x), and it is possible to enumerate a superset of these in time |D|O(n·2x).

We now show how to solve RELU-NNT in polynomial time for each fixed value of n and w:
Theorem 5. There is an algorithm that, given an instance (G,D) of RELU-NNT such that every
hidden neuron of the structure has out-degree exactly 1, and the data points are encoded using L bits
overall, computes the global optimal solution in time |D|O(n·w·2w) · poly(L).

Proof Sketch. The algorithm begins by exhaustively branching to determine the weight of each deep
edge, which requires us to consider at most 2w options in view of Lemma 2. Once the weights of
the deep edges are fixed, we branch to determine how each hidden and output neuron partitions
the training set. For this to work, we need to process layers consecutively—we only branch on the
possible partitions for one neuron after we have chosen the partitions for all of its hidden in-neighbors.
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For each such neuron, we enumerate all feasible partitions of D using Lemma 4, and branch over
the possibilities. For a given partition, we create a set of inequalities that are satisfied only if each
element of D indeed is affected by u according to the partition. Once a partition has been chosen
for all neurons, the function computed by the resulting neural network N for each neuron is fixed
save for the weights of edges adjacent to input nodes, and the biases. We will optimize over all these
free variables by constructing an instance of the QUADRATIC OPTIMIZATION problem, whereas
we optimize LD(a, b) subject to the set of constraints obtained when partitioning the neurons. The
obtained instances of QUADRATIC OPTIMIZATION can be solved in time polynomial in the number
of variables and constraints, as well as the bitlengths of the datapoints, e.g., by using the ellipsoid
method (Pang, 1983; Kozlov et al., 1979).

Note that the proof of Theorem 5 can be directly extended to also include architectures where some
of the hidden or output neurons use a linear activation function instead of ReLU. Indeed, we need
not guess a partition for the neuron and hence not construct a constraint in the quadratic program,
and furthermore we may treat a linear neuron the same way as an activated ReLU in the following
layer. This yields the following theorem, which generalizes the tractability results of both Arora et al.
(2018) and Boob et al. (2022).
Corollary 6. There is an algorithm that, given an instance (G,D) of MIXED-NNT such that every
hidden neuron of the structure has out-degree 1, and the data points are encoded using L bits overall,
computes the global optimal solution in time |D|O(n·w·2w) · poly(L).

5 Blowing Up a Neural Network

The tractability results of Arora et al. (2018) on constant-width shallow ReLU-networks raise the
natural question of whether it is possible to (efficiently) perform depth reduction on deeper networks,
so as to reduce a given (deep) instance for RELU-NNT to a tractable (e.g., shallow) special case.
It is widely conjectured that this is not possible in general without sacrificing some quality of the
solution (see, e.g., Hertrich (2022), Conjecture 3.1. and Haase et al. (2023); Hertrich et al. (2021)).
Among others, it is widely believed that there are functions that are efficiently computable by depth-3
but not by depth-2 ReLU-activated neural networks (Eldan & Shamir, 2016), and similar results were
also shown for deeper networks (Cohen et al., 2016; Telgarsky, 2016).

While these results essentially rule out performing depth reduction without a negative impact on the
accuracy, our tractability results in Section 4 allow us to approach the question from a different angle.
In particular, we show that it is possible to transform an arbitrary constant-size ReLU-activated deep
neural network architecture into one of the same depth which is (1) at least as powerful as the original
architecture, (2) guaranteed to admit polynomial-time training, and (3) upper-bounded in size by a
function of the size of the original architecture3.

To explain the construction, we start again with the base case of a single neuron. More precisely, let v
be a single ReLU-activated (hidden) neuron with n inputs and d outputs, and say the weights on the
input edges are a1, . . . , an, the weights on the output edges are a′1, . . . , a

′
d, and the bias at the hidden

neuron is b. Now consider a new network with a single layer of ReLU-neurons which consists of d
ReLU-activated neurons v1, . . . , vd, where every vi is connected to all inputs with the same weights
a1, . . . , an as before. Furthermore, each vi has a single output edge with weight a′i. We call this
network the blow-up of N . Let us first establish that this blow-up has the desired property:
Lemma 7. Let N be a neural network with a single ReLU-activated hidden neuron as before, and
let N ′ be its blow-up. Let fN , fN ′ : Rn → Rd be the functions computed by N and N ′, respectively.
Then, fN = fN ′ holds.

This procedure can be generalized to blow up an arbitrary ReLU-activated neural network, regardless
of the number of its layers.

With a slight abuse of notation, we will also refer to the blow-up of a given network architecture G
(that is, one without weights and biases) as the architecture of the blow-up of an arbitrary neural
network with architecture G, and the process for obtaining the blow-up of an architecture is the very

3We remark that such a transformation can be trivially provided for linearly-activated network architectures,
since LIN-NNT is polynomial-time solvable on complete networks. We also explicitly note that changing the
architecture is not always desirable or even possible.
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same as for a weighted network (ignoring any weights). We now turn to establishing the properties of
blow-ups with respect to RELU-NNT.
Proposition 8. Let G be an arbitrary architecture and let G′ be its blow-up. Furthermore, let LD
and L′D be the loss functions associated with G and G′, respectively. Then, for any weights a, b on G
and the minimizer a∗, b∗ of L′D on G′, we have L′D(a∗, b∗) ≤ LD(a, b).

The size of the blow-up of a network with a constant number of hidden neurons behaves as follows.
Proposition 9. Let N be a neural network with ` layers of λ ≥ 2 hidden neurons each, and o output
neurons. Then the blow-up of N has at most b ≤ o · λ`+1 hidden neurons, and at most o · λ` neurons
in its first hidden layer. If λ = 1, we have b ≤ o · `.

Recalling Theorem 5 from Section 4, we now directly obtain:
Theorem 10. There is an algorithm that

• takes as input an instance (G,D) of RELU-NNT where G has depth `, n input nodes, o output
neurons and at most λ hidden neurons per layer,

• computes the blow-up G′ of G and an optimal solution to RELU-NNT on (G′, D), and
• runs in time |D|O(n·τ ·2τ ), where τ = (`+ λ`+1) · o.

Observe that the running time in Theorem 10 is polynomial for every architecture of constant size and
essentially tight with respect to the lower bound of Froese et al. (2022) for architectures with a single
hidden neuron. In combination with Proposition 8, this implies a polynomial-time algorithm which
transforms an arbitrary constant-size architecture into a new one which has already been solved to
optimality, with no sacrifice in either accuracy or depth.

We remark that the procedure described in this section can be seen as a rough analogue to improper
learning in learning theory in that it involves a change of the hypothesis class. In particular, while
we prove that our blow-up procedure does not increase the training error, it might increase the
generalization error of empirical risk minimization in learning settings. We also point out that a
similar procedure was described in an earlier work of Maass, albeit in it was applied in a different
context Maass (1997).

6 Training Linear Networks

Untanglings of Linear Networks. As discussed in Section 3, the complexity of LIN-NNT is open
when restricted to architectures with arbitrarily many input nodes while considering the number of
other nodes in the network to be fixed by a constant, and very few classes of architectures are known
to admit polynomial-time training for linear activations. Here, we identify a general substructure of
the architecture which, when present, guarantees the polynomial-time solvability of LIN-NNT.

Specifically, an untangling of an architecture G = (V,E) with input nodes x1, ..., xα and output
nodes y1, ..., yβ is a partitioning Π = (B,C1, ...Cα, D1, ..., Dβ) such that:

• Each G[Ci], 1 ≤ i ≤ α contains xi as its only source;
• Each G[Dj ], 1 ≤ j ≤ β contains yj as its only sink; and
• For each xi and yj , if yj is reachable from xi in G, there exist s ∈ Ci and t ∈ Dj such that st ∈ E.

As the first result in this section, we will show that if one is given a network architecture along with an
untangling, it is possible to solve LIN-NNT in polynomial time. Towards this, we observe that since
all transformations in such networks are affine, it is possible to assume without loss of generality that
non-zero biases are only present on output neurons. Indeed, one can slide the biases along the edges
in the network towards the output neurons, and if we multiply them by the weights of edges met
along the way, the computed function does not change. As an example, given an edge with weight a1
from a neuron associated with bias b2 6= 0 to a neuron associated with bias b1, we can alter the biases
by setting b2 := 0 and b1 := b1 + a1 · b2 since a1 · (x+ b2) + b1 = a1 · x+ (b1 + a1 · b2). Applying
this iteratively along all the edges of a network yields:
Observation 11. For each neural networkNa,b with linear activation functions, there exists a neural
network Na,b′ such that b′ is non-zero only on the output neurons and fNa,b = fNa,b′ .

Observation 11 allows us to proceed towards establishing the claimed tractability result.
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Theorem 12. LIN-NNT can be solved in time poly(|D|+ |V |) if an untangling of the architecture
G = (V,E) is provided as part of the input.

Computing Untanglings. Given Theorem 12, the natural next question concerns the complexity
of actually computing an untangling in a neural network. The aim of this section is to provide a
comprehensive answer to that question. As our first result, we prove that deciding whether a given
architecture has an untangling is, in general, intractable.

Theorem 13. Deciding whether a given architecture G has an untangling is NP-hard.

Proof Sketch. We provide a polynomial reduction from the NP-hard DOMINATING SET 3-
PARTITIONING problem (Heggernes & Telle, 1998): Given an undirected graph H = (V,E),
decide whether its vertex set can be partitioned as V = A1 ∪A2 ∪A3 such that A1, A2 and A3 are
all dominating sets of H . Here, a dominating set of a graph is a subset X of its vertices such that
every vertex v is either in X itself, or adjacent to some w ∈ X; we say that such w dominates v.

Let H = (V,E) be an undirected graph. We first describe how to transform H into an architecture
G such that G has an untangling if and only if H can be partitioned into three dominating sets.
G is constructed as a three-layered architecture, that is, with vertex set L1 ∪ L2 ∪ L3, where
L1 = {d1, d2, d3}, L2 = V , and L3 consists of |V | + 1 disjoint copies of V , that is, L3 =⋃
v∈V {v(1), . . . , v(|V |+1)}. Additionally, G has all possible edges from L1 to L2, and v ∈ L2 has an

edge towards u(i) ∈ L3 in G if and only if u = v or v was adjacent to u in H . To complete the proof,
it suffices to establish that every untangling in G implies a partitioning of H into three dominating
sets, and vice-versa that every such partitioning of H guarantees that there is an untangling in G.

While negative, the intractability of computing an untangling in a general architecture is far from
unexpected. For our next result, we take aim at the restriction of LIN-NNT where the architectures
have an arbitrary but fixed bound on the number of hidden neurons—a case which is notable not only
due to the fact that the target architectures will typically be much smaller than the training set, but
also because its complexity remains open (cf. Section 3). We show that under this restriction, the
problem of determining whether the architecture has an untangling is solvable in linear time.

Theorem 14. There is an algorithm which either computes an untangling in a given architecture
G = (V,E) with k hidden neurons in time kO(k) · |V |, or correctly determines that none exists.

Proof Sketch. Let W ⊆ V be the set of hidden neurons in G. We begin by exhaustively branching
over all of the at most kO(k) partitionings of W into sets Π′ = (B,C ′1, ...C

′
α, D

′
1, ..., D

′
β) (for all

choices of α and β, both of which are trivially upper-bounded by k). For each such choice of Π′,
the algorithm then proceeds by determining whether it can be extended to an untangling of G by
adding an input node to each C ′i, 1 ≤ i ≤ α, an output neuron to each D′j , 1 ≤ j ≤ β, and keeping
all remaining input nodes and output neurons as singletons in the untangling, in a way which satisfies
the reachability constraint of an untangling. To this end, we will employ a further set of exhaustive
branching rules which will iteratively assign singleton output neurons and input nodes to the sets in
Π′. Intuitively, whenever we identify that an input node is missing a connection to an output node
(due to at least one of these not being assigned to a part in Π′), we exhaustively branch over all ways
one of these two neurons can be assigned to a part in Π′.

As our final result, in the next Theorem 15 we show that it is also possible to compute untanglings
in linear time even on architectures with many hidden neurons, provided that such architectures are
“well-structured” in a graph-theoretic sense. In particular, we show that this holds for architectures
which are tree-like in the sense of having bounded treewidth: a highly established structural graph
parameter which measures how tree-like a graph is (Robertson & Seymour, 1983). Specifically, here
we consider the treewidth of the underlying undirected graph, i.e., the simple graph obtained by
replacing each directed edge in the architecture by an undirected one.

To put Theorem 15 into context, we remark that the proof is based on an application of Courcelle’s
well-known Theorem (Courcelle, 1990) and hence a definition of treewidth will not be required for
an exhibition of the result or its proof; instead, we refer to the multitude of existing surveys and
materials on the topic (Courcelle & Engelfriet, 2012; Bodlaender, 2016). We remark that the result
is incomparable to Theorem 14: while it can easily be shown that every architecture with k hidden
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neurons also has treewidth at most k and hence Theorem 15 can be applied to a strict superclass of
architectures, the running time guaranteed here has a nonelementary dependency on the treewidth of
the graph (as opposed to the kO(k) dependency in Theorem 14).
Theorem 15. Let t be an arbitrary but fixed integer. Given an architecture G = (V,E) of treewidth
at most t, it is possible to compute an untangling (or correctly determine that none exists) in time
f(t) · |V | for some computable function f .

7 Concluding Remarks

We have examined the theoretical boundaries of computational tractability for training neural networks
both for the fundamental cases of ReLU and linear activations, complementing a flurry of recent
results establishing increasingly stronger lower bounds for network training. Our results generalize
recent algorithms for optimal ReLU-activated network training (Arora et al., 2018; Boob et al., 2022)
and are among the first to identify a non-trivial class of linear-activated architectures admitting
polynomial-time training.

A natural direction for future work is to examine the extent to which the identified islands of
tractability can be generalized before stepping into intractable territory. A long-term goal is to obtain
a clear cutoff between intractable and tractable cases of network training. We conclude with three
specific questions directly arising from our results:

1. Is LIN-NNT polynomial-time tractable when restricted to constant-treewidth architectures?
2. Is it possible to solve RELU-NNT for constant-size architectures containing hidden neurons

with out-degree greater than 1?
3. Can the obtained results be generalized to other loss functions?
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Grüttemeier, N. and Komusiewicz, C. Learning bayesian networks under sparsity constraints: A
parameterized complexity analysis. J. Artif. Intell. Res., 74:1225–1267, 2022. doi: 10.1613/jair.1.
13138. URL https://doi.org/10.1613/jair.1.13138.

Haase, C., Hertrich, C., and Loho, G. Lower bounds on the depth of integral relu neural networks via
lattice polytopes. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=2mvALOAWaxY.

Harding, E. F. The number of partitions of a set of n points in k dimensions induced by hyperplanes.
Proceedings of the Edinburgh mathematical society, 15(4):285–289, 1967.

Heggernes, P. and Telle, J. A. Partitioning graphs into generalized dominating sets. Nordic J. of
Computing, 5(2):128–142, jun 1998. ISSN 1236-6064.

Hertrich, C. Facets of neural network complexity. PhD thesis, Technical Univer-
sity of Berlin, Germany, 2022. URL https://nbn-resolving.org/urn:nbn:de:101:
1-2022033001583912451077.

12

https://doi.org/10.1613/jair.1.13547
https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html
https://doi.org/10.3390/a12120248
https://doi.org/10.3390/a12120248
http://proceedings.mlr.press/v80/ganian18a.html
https://proceedings.mlr.press/v162/ganian22a.html
https://ojs.aaai.org/index.php/AAAI/article/view/5805
https://doi.org/10.4230/LIPIcs.ITCS.2021.22
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.1613/jair.1.13138
https://openreview.net/pdf?id=2mvALOAWaxY
https://openreview.net/pdf?id=2mvALOAWaxY
https://nbn-resolving.org/urn:nbn:de:101:1-2022033001583912451077
https://nbn-resolving.org/urn:nbn:de:101:1-2022033001583912451077


Hertrich, C., Basu, A., Summa, M. D., and Skutella, M. Towards lower bounds on the depth
of relu neural networks. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 3336–3348, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
1b9812b99fe2672af746cefda86be5f9-Abstract.html.

Kannan, R. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):
415–440, 1987.

Kozlov, M. K., Tarasov, S. P., and Khachiyan, L. G. Polynomial solvability of convex quadratic
programming. In Doklady Akademii Nauk, volume 248, pp. 1049–1051. Russian Academy of
Sciences, 1979.

Lenstra, H. W. and Jr. Integer programming with a fixed number of variables. Math. Oper. Res., 8(4):
538–548, 1983.

Maass, W. Bounds for the computational power and learning complexity of analog neural nets.
SIAM J. Comput., 26(3):708–732, 1997. doi: 10.1137/S0097539793256041. URL https:
//doi.org/10.1137/S0097539793256041.

Megiddo, N. On the complexity of polyhedral separability. Discret. Comput. Geom., 3:325–337,
1988. doi: 10.1007/BF02187916. URL https://doi.org/10.1007/BF02187916.

Ordyniak, S. and Szeider, S. Parameterized complexity results for exact bayesian network structure
learning. J. Artif. Intell. Res., 46:263–302, 2013. doi: 10.1613/jair.3744. URL https://doi.
org/10.1613/jair.3744.

Pang, J.-S. Methods for quadratic programming: A survey. Computers & Chemical Engineering, 7
(5):583–594, 1983.

Panigrahi, A., Shetty, A., and Goyal, N. Effect of activation functions on the training of
overparametrized neural nets. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=rkgfdeBYvH.

Robertson, N. and Seymour, P. D. Graph minors. i. excluding a forest. J. Comb. Theory, Ser. B, 35(1):
39–61, 1983.

Schaefer, T. J. The complexity of satisfiability problems. In Lipton, R. J., Burkhard, W. A., Savitch,
W. J., Friedman, E. P., and Aho, A. V. (eds.), Proceedings of the 10th Annual ACM Symposium on
Theory of Computing, May 1-3, 1978, San Diego, California, USA, pp. 216–226. ACM, 1978. doi:
10.1145/800133.804350. URL https://doi.org/10.1145/800133.804350.

Simonov, K., Fomin, F. V., Golovach, P. A., and Panolan, F. Refined complexity of PCA with
outliers. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 5818–5826. PMLR, 2019. URL
http://proceedings.mlr.press/v97/simonov19a.html.

Tarski, A. A Decision Method for Elementary Algebra and Geometry: Prepared for Publication with
the Assistance of J.C.C. McKinsey. RAND Corporation, Santa Monica, CA, 1951.

Telgarsky, M. benefits of depth in neural networks. In Feldman, V., Rakhlin, A., and Shamir, O.
(eds.), Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA,
June 23-26, 2016, volume 49 of JMLR Workshop and Conference Proceedings, pp. 1517–1539.
JMLR.org, 2016. URL http://proceedings.mlr.press/v49/telgarsky16.html.

Velu, R. and Reinsel, G. C. Multivariate reduced-rank regression: theory and applications, volume
136. Springer Science & Business Media, 2013.

13

https://proceedings.neurips.cc/paper/2021/hash/1b9812b99fe2672af746cefda86be5f9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1b9812b99fe2672af746cefda86be5f9-Abstract.html
https://doi.org/10.1137/S0097539793256041
https://doi.org/10.1137/S0097539793256041
https://doi.org/10.1007/BF02187916
https://doi.org/10.1613/jair.3744
https://doi.org/10.1613/jair.3744
https://openreview.net/forum?id=rkgfdeBYvH
https://openreview.net/forum?id=rkgfdeBYvH
https://doi.org/10.1145/800133.804350
http://proceedings.mlr.press/v97/simonov19a.html
http://proceedings.mlr.press/v49/telgarsky16.html

	Introduction
	Preliminaries
	Synopsis of Known Results
	Training ReLU Networks
	Blowing Up a Neural Network
	Training Linear Networks
	Concluding Remarks

