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Abstract
The emergence of multimodal large models has
advanced artificial intelligence, introducing un-
precedented levels of performance and function-
ality. However, optimizing these models re-
mains challenging due to historically isolated
paths of model-centric and data-centric develop-
ments, leading to suboptimal outcomes and in-
efficient resource utilization. In response, we
present a new sandbox suite tailored for inte-
grated data-model co-development. This sand-
box provides a feedback-driven experimental plat-
form, enabling cost-effective iteration and guided
refinement of both data and models. Our pro-
posed “Probe-Analyze-Refine” workflow, vali-
dated through practical use cases on multimodal
tasks such as image-text pre-training with CLIP,
image-to-text generation with LLaVA-like mod-
els, and text-to-video generation with DiT-based
models, yields transferable and notable perfor-
mance boosts, such as topping the VBench leader-
board. A comprehensive set of over 100 experi-
ments demonstrated the suite’s usability and ex-
tensibility, while also uncovering insights into the
interplay between data quality, diversity, model
behavior, and computational costs. All codes,
datasets, and models are open-sourced to foster
future research and applications that would other-
wise be infeasible due to the lack of a dedicated
co-development infrastructure.

1. Introduction
The advent of multimodal large models has revolutionized
artificial intelligence, pushing the boundaries of functional-
ity and creativity across various domains (OpenAI, 2024a;
Wang et al., 2024a). Recognizing the key role of data in
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shaping model performance, there are fast-growing efforts
to curate datasets of larger scales and higher quality (Jakubik
et al., 2024; Gadre et al., 2023; Xu et al., 2024a).

However, the development trajectories of these models and
datasets have historically diverged, guided more by intuition
than by systematic co-development methodologies. Recent
advances in enhancing multimodal large models tend to be
either model-centric or data-centric, rarely bridging these
two aspects closely. For example, model-centric methods
focus on algorithmic enhancements and architectural inno-
vations under fixed data priors, while data-centric strategies
usually focus on processing datasets independently of spe-
cific model training contexts (Qin et al., 2025). Both ap-
proaches usually suffer from a lack of systematic principles
and cooperative synergy, relying heavily on heuristic explo-
ration and single-perspective expertise. This fragmented
landscape presents a notable barrier to achieving optimal
performance, as the interplay between data characteristics
and model capabilities remains largely under-exploited.

Moreover, putting multimodal large models into practice is
further complicated by infrastructure limitations, increas-
ing computational costs, and the faster pace of the project
development (Xu et al., 2024c). In the age of large models
with rapidly growing model parameters and dataset sizes,
the processes of data processing and model training be-
come increasingly resource-intensive, demanding substan-
tial time and computations. Due to the absence of cost-
effective platforms that simplify and speed up data-model
co-development, researchers and developers often face the
dilemma of prioritizing result-driven development at the ex-
pense of thorough, insight-led exploration. This deficiency
hinders the iterative refinement for both domains, leading to
sub-optimal outcomes as improvements in one domain are
hard to inform, apply and enhance each other directly.

To fill this gap, we introduce the Data-Juicer Sandbox, a
feedback-driven suite for facilitating the co-development of
multimodal data and models. Building upon an open-source
data processing system tailored for multimodal large models,
Data-Juicer (Chen et al., 2024a;b), our sandbox suite inte-
grates a wealth of off-the-shelf components optimized for
usability and compatibility with open-source model-centric
infrastructures. Collectively, it offers customizable orches-
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tration from different levels including end-to-end workflows,
specific development behaviors, and underlying data-model
development capabilities. Within the sandbox laboratory,
users are empowered to optimize data and models based
on their fruitful feedback in a cost-controlled environment.
This accelerates insight discovery and informed decision-
making, paving the way for transferable, resource-efficient
data-model optimization.

To exemplify the efficacy of the sandbox, we propose a
“Probe-Analyze-Refine” workflow, crafted to explore the in-
terplay between data processing operators (OPs), model per-
formance feedback, and the transferability of these enhance-
ments. We apply this workflow to five cutting-edge models:
Mini-Gemini (Li et al., 2024b) and InternVL-2.0 (Chen
et al., 2024f), two LLaVA-inspired models for image-to-text
generation, EasyAnimate (Xu et al., 2024b) and T2V-Turbo
(Li et al., 2024a), two Diffusion Transformer based mod-
els for text-to-video generation, and a CLIP model (Gadre
et al., 2023) for image-text pre-training. Through over 100
experimental runs and comparative analysis across different
tasks, scales and models, we show notable evidence of the
Sandbox’s usability, including topping the VBench (Huang
et al., 2024) leaderboard with superior performance over
competitors such as Gen-3 (RunwayML, 2024) and VEn-
hancer (He et al., 2024a). The improvement is underpinned
by a series of insights linking more than 40 data processing
OPs and 70 benchmark metrics, with fine-grained analysis
on the balance between data quality, diversity, compute cost,
and model performance, such as scaling behaviors derived
from 1B to 26B mode scales.

Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first open-source
1 sandbox suite tailored for co-development between mul-
timodal data and models, rendering experimental explo-
ration in this field more insightful and systematic.

• We present a new effect-proven workflow for data-model
co-development and substantiate its impact through em-
pirical evidence among image understanding, video gen-
eration, and image-text pretraining tasks.

• We conduct extensive experiments on benchmarking the
effects of dozens of data processing operators and model
metrics, providing practical guidance toward further ad-
vancements in multimodal large models.

2. Related Works
Model-Centric Progress in Multimodal Large Models.
Multimodal large models have gained prominence for their
remarkable capabilities (OpenAI, 2024a;b). Advances in

1modelscope.github.io/data-juicer/en/main/docs/Sandbox.html

training algorithms (Caffagni et al., 2024; Li et al., 2024a)
and model architectures (He et al., 2024a; Yin et al., 2024)
have fueled this interest. Transformer scaling remains a
prevalent approach (Xu et al., 2023), though high compu-
tational demands and optimization challenges often restrict
insights to specific datasets and create a gap in understand-
ing how implicit data biases affect model performance.

Trends in Data-Centric Development. Recently, a shift to-
wards data-centric development has emerged (Jakubik et al.,
2024), emphasizing data handling as key to the efficacy of
large models such as CLIP (Gadre et al., 2023). Despite the
increasing recognition of data processing, the heterogeneous
nature of multimodal data leads to predominantly heuristic
approaches (Long et al., 2024), underscoring the pressing
need for more systematic methodologies for data-model
co-development.

Open-Source Infrastructure. The ecosystem for multi-
modal model development has expanded with fruitful open-
sourced frameworks (Wolf et al., 2020; Liu et al., 2024b).
However, contributions to multimodal data infrastructure
often consist of raw datasets and preprocessing scripts, lack-
ing standardized practices. Most existing data processing
frameworks are tailored for single-modal data (Weber et al.,
2024), highlighting the early stage of multimodal data de-
velopment. To address these gaps, our work presents a
new intermediary layer that connects advanced model in-
frastructures with the Data-Juicer system, facilitating better
co-development between models and data.

We present more detailed comparisons of more related
works in Appendix A.

3. The Proposed Sandbox Laboratory
3.1. Motivation and Overview

Why do we need data-model co-development? In the era
of large models, the development of both data and models
necessitates collaboration involving numerous algorithm
researchers and system engineers. Training data for large
models is often highly heterogeneous in terms of quality,
context, type, and timeliness. The processing and mixing of
these datasets, known as data recipes, are complex and var-
ied (Ge et al., 2024). The scale of data amplifies the stakes
for refinement attempts on both data and models, imposing
substantial computational and time burdens. Traditional
data-centric or model-centric strategies fall short by opti-
mizing in isolation, leading to diminished overall efficiency
and resource misallocation (Qin et al., 2025). When either
component requires adjustment, the dual optimization chal-
lenge inflates costs, as one part may have already reached
near-optimal status.

Why do we need a sandbox laboratory? Given the high
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Figure 1: A probe-analyze-refine workflow within Data-Juicer sandbox for systematic data-model co-development.

cost associated with iterative development, existing methods
often resort to heuristic approaches for improving data or
models. For example, scaling up “cleaned” datasets can be
problematic because determining what constitutes a “clean”
dataset and measuring its quality qualitatively remains a
challenge. Further, the impact of iterations on data and
models is difficult to attribute due to numerous influencing
factors and considerable engineering effort required. A
unified sandbox environment enables experimentation with
guided optimization. It permits users to iterate both data and
models based on comparative feedback from small-scale
data processing and model training trials, thus helping to
mine insights that can be transferred to full-scale production
environments and increasing the return on investment in
computation and time costs.

Layered orchestration of Data-Juicer sandbox labora-
tory. Due to the current absence of ready-made open-
source middleware infrastructure, we first propose the nec-
essary codebase and suite, designed with decoupled com-
ponents. They serve for data analysis, processing, recipe
optimization, model training, and evaluation, all managed
through configuration files and divided into three levels:
(1) In the top level, the specific workflows are formed as
ordered job list for co-development, organized into four
phases—probing data/models, refining data recipes, execut-
ing data/model operations, and evaluation. One can flexibly
adjust task sequences in these phases, reuse built-in work-
flows, or create their own easily. (2) In the middle level, the
common behaviors are formed as hook functions; and (3)
in the bottom layer, the necessary capabilities are formed
as factory classes. The lower two layers work together
to facilitate actionable development capabilities and pro-

vide measurable feedback. Specifically, we simplify the
interfaces offered by Data-Juicer, which provides over 100
OPs and tools for multimodal data analysis, filtering, and
synthesis, with industry-level optimization for large-scale
processing (Chen et al., 2024b). Built upon it, we inte-
grate many SOTA open-source libraries for model training
and evaluation such as Mini-Gemini, EasyAnimate, Mod-
elScope, VBench, MMBench (Liu et al., 2024b), TextVQA
(Singh et al., 2019) and MME (Fu et al., 2023).

Note that the underlying libraries are still evolving, and the
sandbox is continuously maintained to incorporate more
community efforts in other libraries, optimized for usability
and reduced cognitive load. Dedicated scripts combine the
classes and hooks into specific workflows, with code and
parameters adjusted to ensure a cost-controlled environment.
This suite serves as a groundwork for the deriving following
experimental insights. More details from the infrastructure
perspective are in Appendix B.

3.2. A Probe-Analyze-Refine Workflow

To demonstrate the usage of the sandbox, we introduce a
structured workflow illustrated in Fig. 1. It is designed to
answer several key questions for informed decision-making
and cost-effective data-model co-development:

(1) Given the variability in data, models, and application
scenarios, we initially seek to find out which data process-
ing OPs contribute most effectively to enhancing model
performance (Sec. 3.2.1). This involves creating equal-
size data pools, each processed uniquely by a single OP
and subsequently sorted by interested data feedback signals.
Reference models are trained on these data pools at low
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and controlled costs. This step enables us to analyze and
understand OP impact and correlations with models.

(2) Guided by insights derived from the most impactful OPs
that ranked highest by model feedback signals, we proceed
to study whether these OPs can be effectively combined into
data recipes and scaled up (Sec. 3.2.2). We establish a
hierarchical data pyramid, wherein data pools are catego-
rized across different tiers based on OP ranks. This step
also examines the viability of OP combinations when scaled
with increased data volumes.

(3) Built upon found OP combinations, we delve into a dual
analysis focusing on data duplication and diversity (Sec.
3.2.3). We assess whether the model training would benefit
more compute from the repeated use of high-quality data
pools or from the inclusion of lower-quality data to expand
the overall data pool. As a result, we obtain data recipes
optimized from numerous small-scale comparative experi-
ments, which can then be applied to larger-scale scenarios
with reduced amortized cost (Sec. 3.2.4).

3.2.1. SINGLE-OPERATOR DATA POOLS

Starting with an initial dataset D, we define a single-OP data
pool Pi as the dataset processed exclusively by the i-th OP
(OPi) available in Data-Juicer as Pi = DJ [OPi(ρi)](D),
where DJ denotes the data-processing function imple-
mented by Data-Juicer, and ρi is the hyper-parameters gov-
erning the operation of OPi. For example, filter OPs of
Data-Juicer compute specific statistics and then apply thresh-
old criteria to select data samples. Within this workflow, D
is processed by N interested filter OPs, the resulted pools
{Pi} are sorted by different data statistics and segmented
into three equal-sized pools Pi,low, Pi,middle and Pi,high, rep-
resenting data with low, middle and high stats, respectively.
Besides, D is randomly sampled to serve as a control group
Drand such that all the 3N + 1 data pools have the same
data size. This design fosters discriminative insights across
varying degrees of data processing intensity.

Subsequently, models are trained independently on {Pi}
and Drand with consistent hyper-parameters, data sample
size and compute resources, and finally evaluated across
interested performance metrics. This linking of feedback
signals between data stats and model metrics enables insight
mining and top OP identification.

3.2.2. MULTI-OPERATORS DATA POOLS

We then apply multiple OPs sequentially (denoted as S)
to examine whether these OPs complement or counter-
act each other’s effects. To achieve this, we extend the
previous construction of {Pi} to multi-OPs case: PS =(
DJ [OPi(ρi)]◦DJ [OPj(ρj)]◦···◦DJ [OPk(ρk)]

)
(D),

where i, j, ..., k ∈ S, indicating ns candidate OPs used for

sequential combination.

The number of possible S grows exponentially with ns, ne-
cessitating non-trivial selections of combinations to explore.
Building on insights from single-OP experiments, where the
“Top” OPs are represented by their ranks, we propose two
practical strategies: (1) combining “Top” OPs based on their
progressively diminishing impacts on model performance,
and (2) clustering OPs based on their Pearson correlation
coefficients and then combining the “Top” OPs within each
category. Similar to the single-OP scenario, we then con-
sistently train reference models on {PS} and Drand to gain
comparative outcomes. More implementation details and
empirical results on these two strategies can be found in
Appendix D.1 and Sec. 4.3 respectively.

3.2.3. PYRAMID-SHAPED DATA POOLS

Adopting a larger ns may lead to enhanced data quality
while less available data volume. This phenomenon prompts
an investigation: should we prioritize reusing high-quality
data or incorporate lower-quality yet more abundant data to
escalate training compute scales?

To embed this inherent trade-off between data quality and di-
versity, we devise a hierarchical pyramid architecture, where
ns “top” OPs identified in single-OP experiments combine
into 2ns-1 data pools. For example, the three-OP combi-
nation OP1,2,3 resides at the highest level of the hierarchy
but has the smallest data volume after filtering. The two-OP
combinations, such as OP1,2, are placed at a lower level and
may have volumes several times larger than OP1,2,3. Pro-
gressing downward through the pyramid, data pools exhibit
a descending average OP ranking (which potentially acts as
feedback of reduced data quality) alongside an increase in
data volume.

To strike the balance between data quality, diversity and
compute scale, we consider two settings built upon this data
pyramid: (1) repetitive training with data repetition from
the top-layer data pools, and (2) non-repetitive training via
progressively adding lower-layer data pools and applying
deduplication. Specifically, we explore variable repetition
rates for the first setting and make the number of trained
data samples of the second setting consistently match the
former. It allows us to qualitatively assess the efficacy of
data reuse compared to the inclusion of suboptimal data,
within the same compute costs at varying scales.

3.2.4. DISCUSSION ON SCALING AND COST

All data pools are uniformly sampled and consistently de-
rived from D, enabling insights gained from small-pool
experiments to be extrapolated to larger-scale scenarios, and
making the method capable of overall cost reduction.

To clarify, denote the model training time using the full
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dataset D as Tfull. Let M represent the iterations required
to achieve desirable performance without our sandbox. Let
Tpool represent the training time with a small pool, which
is reduced by a ratio of r compared to Tfull. If the total
number of planned small-pool experiments is m, then the
total time without and with our workflow is M × Tfull and
(Tfull +m× Tpool) ≈ (1+mr)× Tfull, respectively. Our
core idea is to construct m lightweight experiments and
utilize fine-grained data-model feedback to extract insights
for scaling and reducing overall costs, making it preferable
to disjoint model- or data-centric development that involves
M costly (and usually heuristic) experiments.

Achieving (1 + mr) ≤ M is feasible. Typically, M > 2
accounts for multiple iterations over different model and
dataset versions. The m positively corresponds to the in-
terested OPs, often numbering in the dozens. The r can be
much smaller than 0.01, since there is no need for small-pool
experiments to “converge” as long as they reveal informative
changes—positive or negative—in model performance after
controlled data interventions with {Pi,PS} versus baselines
using Drand. Early stopping of unpromising experiment
trials can also help expedite this process.

Furthermore, m reflects the balance between the intensity
of data interventions and the informativeness of data-model
feedback, offering flexibility to adjust the experimental plan
based on available resources. As for the factor r, we have

P[∆pool − E[∆full] ≥ ϵ] ≤ e−2ϵ2/(b−a)2 ,

where ∆pool ∈ [a, b] and ∆full denote the model perfor-
mance change with our small and full data pools respectively.
This indicates that the error ϵ introduced by our workflow de-
creases exponentially as r increases. More detailed analysis
is provided in Appendix C.

4. Practical Applications and Main Results
4.1. Use-Cases and Experiment Overview

To demonstrate the proposed suite’s usability and effective-
ness, aiding understanding and boosting confidence in its
applicability, in this section, we conduct extensive experi-
ments in various practical use cases. They vary in models
and data OPs (Sec. 4.2 and Sec. 4.3), data samples and com-
pute cost (Sec. 4.4), leading to insights and recipes useful
for larger-scale scenarios (Sec. 4.5).

• For image-to-text (I2T) generation, we will show that the
optimal recipe derived from small pools achieves supe-
rior model performance and higher data efficiency on the
MGM model when applied to larger datasets.

• For general text-to-video (T2V) generation, we will show
that the insights derived from small pools and the EasyAn-

imate model can lead to VBench Top-1 performance with
another architecture-different model.

• For image-text pre-training (ITP), we will show that
the optimal recipe identified with a CLIP model hav-
ing fewer FLOPS maintains consistent performance ad-
vantages when model FLOPS and compute resources in-
crease, similar to scaling law behaviors.

• For image-captioning (IC) oriented fine-tuning, we will
show that the optimal recipe identified with InternVL-2.0
model (Chen et al., 2024f), leads to consistent and steady
performance advantages as the model scale increases from
1B to 26B.

• To demonstrate the flexibility, extensibility, and potential
of the proposed sandbox, we further conduct experiments
on “iterative workflow”, “OPs beyond filters”, and “model
development of automated prompt adjustments”. More
details will be introduced later in Sec. 4.6.

These examples instantiate different behavior hooks and ca-
pability classes introduced in Sec. 3.1, following the work-
flow proposed in Sec. 3.2. A more structural summarization
of these use cases is provided in Table 5 in Appendix E.1.

In the next subsections, we delve into the primary insights,
with complete experimental results provided in Appendix E.
The feedback utilized in these experiments comes from over
70 widely-used model benchmark measurements and over
40 Data-Juicer’s data filtering OPs for text, image, video,
and cross-modalities. For brevity and comprehensive in-
vestigation, on the main page, we report the performance
changes relative to baselines on Drand, averaging from all
evaluated benchmark scores. For a fair comparison, note
that all experiments are maintained to ensure that the refer-
ence models trained on Pi and PS have the same compute
costs to baselines trained on Drand. Detailed task-specific
settings can be found in Appendix D, including the bench-
mark measurements (in Appendix D.2), the functionalities
of studied OPs (in Appendix D.3), and the specific sources
and sizes of (D,Drand,Pi,PS ), in Appendix D.4 to D.6.

4.2. Ranking Single-Operator Data Pools

Table 1 summarizes the results of reference models trained
on top-performing data pools. The full tables of all studied
OPs can be found in Appendix E.2.

Observation 1 (Data vs. Model)
Multimodal models’ efficacy is closely tied to the fi-
delity of their output modalities, which can be explic-
itly reflected in the filtering of input training data.

For the text-to-video task, all top-3 OPs are video-only OPs.
For image-to-text and image-text pre-training tasks, two of
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Table 1: The average performance changes relative to base-
line models on Drand for top-3 performing OPs, with mod-
els trained on different single-OP data pools split by sorting
OP-generated statistics: Pi,low,Pi,mid,Pi,low. The training
data pool for baseline is randomly sampled, and all com-
pared pools are with equal data volume. Full ranking table
can be found in Appendix E.2.

Task OP Statistics
Avg. Perf. Changes (%)

Pi,low Pi,mid Pi,high

I2T

Image NSFW Filter 7.13 18.44 66.38
Text Action Number 59.90 0.29 -2.05

Language Score 49.90 0.85 -1.43

T2V

Video Aesthetics Score -0.98 0.13 0.96
Video NSFW Score 0.82 -0.05 -0.57

Frames-Text Similarity -1.45 0.23 0.79

ITP

CLIP Image-Text Similarity -32.57 -6.39 39.53
BLIP Image-Text Similarity -24.28 1.82 25.39
Image NSFW Score 12.18 1.28 -18.38

IC

Text Length 0.76 -3.13 -11.36

Image Watermark Score -0.64 -0.13 0.48
Character Repetition Ratio 0.45 -0.46 -0.63

their top-3 OPs are text-only, and image-text OPs respec-
tively. This trend of influential OPs holds beyond top-3
ranks (detailed in Appendix E.2), suggesting that more at-
tention and resources should be allocated to data processing
related to the output modalities of the studied models.

Observation 2 (Diversity vs. Quality)
In contrast, data diversity is more crucial for image-to-
text models, while data quality is key for text-to-video
and image-text pre-training models.

We find that some top OPs share similar functionalities,
while their best-performing pools exist in different statistical
ranges. For example, Pi,high in image-to-text, and Pi,low in
text-to-video and image-text pre-training. A deeper analysis
of OP ranks in terms of NSFW scores and language scores
reveals that the studied image-to-text model prefer more
diverse data compared to the text-to-video and image-text
pre-training models. Intuitively, high-scoring images or
videos in NSFW (Not Safe For Work) content are generally
rare and occupy the long tail of the data distribution. Con-
sequently, pools with high NSFW scores tend to be more
diverse. Similarly, texts with low language scores indicate
that the language of the text is more difficult to identify and
usually less common, corresponding to more diverse pools.
Appendix E.3 presents more quantitative evidence in terms
of word entropy on these data pools’ captions.

Observation 3 (Spatiotemporal Dynamics)
Dynamic information in data is harder to learn for
image-to-text and image-text pre-training models than
for text-to-video models.

Due to the static nature of images, image-to-text and image-
text pre-training models often struggle with dynamic con-
tent, requiring in-depth semantic understanding. This is
evident by their better performance on data pools with fewer
text action numbers. In contrast, text-to-video models per-
form differently, showing opposed trends preferring higher
text action numbers and video motion scores.

Observation 4 (Modality Alignment)
High data alignment between modalities is crucial for
the multimodal tasks image-to-text, text-to-video, and
image-text pre-training.

Image-to-text and text-to-video models prefer modality-
aligned data, as indicated by their good performance with
pools featuring high image-text similarity, phrase grounding
recall, and frames-text similarity. This preference is most
pronounced in image-text pre-training models, whose top-2
OPs are tied to image-text alignment.

4.3. Shaping Data Recipes of Top OP Combinations

Based on top-3 OPs in Table 1 and gained insights, we then
study the model performance changes trained on multi-OP
recipes PS over baselines on Drand.

Observation 5 (Effect of Sequential Combination)
The optimal data recipe isn’t always achieved by com-
bining the best individual OPs, nor does adding more
high-performing OPs guarantee better outcomes.

As shown in Fig. 2, combining higher-performing OPs does
not always yield better results. For instance, in the image-
to-text experiment depicted in Fig. 2(a), the data pool with a
high image NSFW score, despite performing best in single-
OP experiments, generally diminishes performance when
combined with others. Similarly, in Fig. 2(b), while pair-
wise combinations of OPs show positive gains, integrating
the top-1 OP into the combination of the other two OPs
reduces the relative improvement from 2.48% to 1.88%.
As for the image-text pre-training tasks (in Fig. 2(c)), us-
ing the image_text_similarity_filter OP alone
outperforms other combinations. This observation may be
attributed to the filtering process relying on a high-quality
CLIP model to train another CLIP model, implicitly and
effectively acting as a form of model distillation.

Besides, we explore categorizing OPs based on analysis
of their stats correlations (Appendix E.4) and select the
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(a) Image-to-text (b) Text-to-video (c) CLIP (d) Image Captioning

Figure 2: The model performance changes (%) from recipes combined with the top-3 OPs listed in Table 1.

optimal OP from each category to form recipes. However,
detailed results of Observation 8 in Appendix E.5 show that
it also yields non-positive outcomes. These two observations
challenge the common assumption in many existing SOTA
works that stacking multiple intuitively useful data-cleaning
actions can enhance overall performance.

Observation 6 (Effect of Seed OPs)
Single OP performance positively correlates with the
performance of multi-OP recipes containing it. Start-
ing with high-performing OPs is a good initial step to
optimize higher-order data recipes.

Although the Top-3 OP recipes exhibit suboptimal perfor-
mance, we observe positive gains when combining some
pairs of OPs in them can outperform both single top-1
and top-3 combinations, such as in the case of the image-
to-text task when combining TextActionFilter and
LanguageIDScoreFilter.

4.4. Scaling Data Samples, Computes & Model Size

Recall that in Sec. 3.2.3, we proposed constructing pyramid-
shaped data pools by combining different “top” OPs and
explored how to scale up the data samples and computes
by either reusing high-quality top pools or by progressively
adding lower-level pools to enhance diversity with dedupli-
cation. Here we select top-1 and top-2 recipes identified in
Fig. 2 as candidate data pools within the pyramid structure.
The results are summarized in Fig. 3, where the expansion
rate indicates the compute scale in terms of the number of
training data samples.

Observation 7 (Effect of Compute Scaling)
Scaling up compute resources with high-quality
data benefits both the image-to-text, text-to-video,
image-text pre-training, and image-captioning tasks.
Among these, the image-text pre-training and image-
captioning tasks demonstrate clear scaling law behav-
iors in exponential form across different dataset and
model sizes.

Generally, the models trained with data derived from top
recipes (red lines) achieve superior performance over base-

lines, including those incorporating data from suboptimal
recipes. Specifically, for the image-to-text (see Fig. 3(a))
model, duplicating top-quality data by a factor of 6 results in
higher performance than both using 8x compute with subop-
timal data (blue line) and using 8x compute with the original
full-size data (green line). For the text-to-video model (see
Fig. 3(b)), the benefits of using top-quality data outweigh
detrimental effects until 10x data repetitions, showing near-
linear and significantly higher performance improvements
compared to the baseline (blue line).

For the image-text pre-training task, Fig. 3(c) illustrates
improvements as both model size and compute scale in-
crease. Notably, the linear growth in relative improvement
with the exponential increase in computation aligns with
known scaling laws (Cherti et al., 2023), suggesting that
expanding model size and compute resources, alongside pro-
cessing data via our high-quality recipes, yields consistent
scaling of performance gains.

Moreover, we conduct experiments using InternVL2.0
across various scales (1B, 2B, 4B, 26B parameters), with the
results summarized in Fig. 3(d) (x-axis displayed on a log
scale). We initially experimented with the smallest model
(1B parameters) on 23 single-OP and 6 multi-OP data pools
to identify the optimal data recipe. The top-3 combination
recipes derived from this initial phase were subsequently
applied to all selected model scales. Our findings indicate
that all three recipes consistently maintain significant perfor-
mance advantages as the model scale increases from 1B to
26B parameters, demonstrating clear scaling law behaviors.

Table 2: Average performance of MGM-2B with different
pretraining datasets on 4 benchmarks. The “*” indicates
our reproduced version that is comparable with the official
version. Detailed results are in Appendix E.6, Table 10.

MGM-2B Num. of Training
Instances

Avg. Perf.
Changes (%)

Baseline* 1226k -
Ours 159k (x4) +2.12
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(a) Image-to-text (b) Text-to-video
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(d) Image Captioning Finetuning

Figure 3: Relative improvement over baselines when varying computation scales with and without data duplicates. In the
latter sub-figures, “Top1” and “Top2” refer to applying the Top-1 and Top2 recipes identified in Sec 4.3 respectively.

4.5. Transferring Recipes to Larger-Scale
Heterogeneous Scenarios

The previous image-text pre-training and image-caption
fine-training experiments, conducted on CLIP and In-
ternVL models of varying sizes (Fig. 3(c) and Fig. 3(d)), al-
ready shown that top-performing recipes identified at small
scales can be effectively utilized when compute resources
are scaled up. In this section, we further apply the gained
insights and top data recipes to larger-scale heterogeneous
models (i.e., across different model architectures) and het-
erogeneous datasets (i.e., from diverse data sources) for the
other two tasks (image-to-text and text-to-video).

The case for image-to-text task. We follow Observations
6 and 7, and utilize the top data pool from Fig. 2(a) with
a 4x repetition, resulting in a pre-training dataset of 637k
samples, which constitutes only half of its original pre-
training dataset size. Then we train the MGM-2B model
using this new pre-training dataset and its original full fine-
tuning dataset for comparison.

Table 2 summarizes the results. Since the official MGM-2B
model has not been evaluated on MMBench-CN, we trained
a reproduced version using the official training scripts, and
its performance is closely aligned with the benchmarks re-
ported for the official model. We can see that compared to
the baseline trained on the full dataset, our model achieves
superior performance while trained on only 1/10 of the dis-
tinct instances and 1/2 of its original total instances (i.e.,
using half of the baseline’s compute FLOPs). Notably, they
differ only in the processing of the pre-training data, with
the model and training configurations being consistent, un-
derscoring the effectiveness of our insights.

The case for text-to-video task. In line with the best recipe
from Fig. 2 and Observation 6, we scale up the data pool on
the full-size candidate video datasets introduced in Sec. D.5,
with low video NSFW score and high frame-text similari-
ties.Additionally, following Observation 7, we conduct six
model training passes through this dataset. From a data
development view, this transition allows us to probe the scal-
ability of our methodologies, advancing from the small pool

with 40k data samples used in Sec. 3.2.2 to a 5.7× larger
pool with 228k data samples. From a model development
view, we undertake a challenge to assess the transferability
of our findings across different model architectures, by re-
placing the training model from the previous EasyAnimate
with another SOTA model, T2V-Turbo, which is improved
from VideoCrafter-2.0 (VC2).

Table 3 showcases our notable performance on the VBench
leaderboard, reporting average scores of 16 metrics from
both quality and semantic dimensions. We first enhance
T2V-Turbo (the last row) with data-enhanced distillation
training on 147k instances (the second row), and then self-
distill it with other 228k instances (the first row). Com-
pared to the base model in the last row, our method yields
notable uplifts of 1.53% and 2.59% on the Board and Uni-
form Average scores respectively. This verifies the effec-
tiveness of our sandbox and insights again, which lever-
ages VideoFramesTextSimilarityFilter OP
to enhance the video-prompt alignment, and the
VideoNSFWFilter OP to ensure the high quality of the
generated video.

Note that these results highlight the data-efficiency of our
method to reduce overall cost with dedicated data-model
co-development. Taking the third-place model, VEhancer,
as an example, it mainly focuses on architectural refine-
ments building upon the foundation of VC2. While our
model also originated from VC2, it gains a higher per-
formance boost but with at least 22x less compute costs
than VEhancer. Detailed calculation of FLOPs is presented
in Appendix E.9. Besides, in Appendix E.7, we further
conduct an ablation study to verify the effectiveness of
our data-model co-improvement over the base model T2V-
Turbo, including aspects from data (high-quality dataset
with our derived recipes), model (LoRA initialization and
self-distillation), and data-model co-design (real-data loss
and self-evolution). These results demonstrate the potential
cost-effectiveness of the proposed sandbox when utilizing
fine-grained feedback from both the data and the model
simultaneously.
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Table 3: Models on the VBench leaderboard as of Sep 23, 2024. “Board Avg.” denotes the weighted average scores across
16 metrics defined by VBench and “Uniform Avg.” denotes the arithmetic average. “−†” and “−‡” indicates proprietary
model, and acting as our base teacher model respectively. α indicates a constant for specific gradient update implementation.
Detailed ablation study, full ranking results, and FLOPs estimation are in Appendix E.7, E.8 and E.9 respectively.

Models (Ranked by leaderboard) Board Avg.
(%)

Uniform Avg.
(%)

Dataset Size Training
Samples

Training Cost
(EFLOPs)

1. Data-Juicer (DJ, 228k) 82.53 81.26 228k 640k 7.68α
Data-Juicer (T2V, 147k) 82.10 80.54 147k 640k 7.68α

2. Gen-3 (RunwayML, 2024) 82.32 79.64 −† −† −†

3. VEnhancer (VC2) (He et al., 2024a) 81.97 80.00 350k ≥ 350k ≥ 167.3α
4. Kling (2024-07) (Kuaishou, 2024) 81.85 79.54 −† −† −†

6. CogVideoX-5B (Yang et al., 2024) 81.61 79.90 35M 35M ≥11841α
8. T2V-Turbo (VC2) (Li et al., 2024a) 81.01 78.67 −‡ −‡ −‡

4.6. Additional Experiment Results and Details

Further Analysis and Ablation Studies. Appendix E.3
and E.4 detail the data diversity and correlation analyses on
our multiple-OP experiments, respectively. They showcase
the analysis ability provided by the suite with word entropy,
word cloud visualization, and visualizations of Pearson cor-
relation coefficients among OP statistics and benchmark
performance. Appendix E.5 evaluates the performance of
models trained using recipes derived from the correlation
analysis. Appendix E.7 provides a detailed ablation study
of the Data-Juicer T2V models, focusing on data-model
co-improvements beyond the base teacher T2V model. This
includes analyses from the perspective of data (high-quality
datasets with derived recipes), model (LoRA initialization
and self-distillation), and data-model co-design (real-data
loss and self-evolution).

Extensibility of the Proposed Sandbox. Appendix E.10
verifies the capability of iterative workflows, illus-
trated by the progression: ckpt0

refine−−−→ recipe1
train−−→

ckpt1
refine−−−→ recipe2

train−−→ ckpt2. Notably, ckpt2
demonstrated improved performance despite the evolv-
ing recipes. Appendix E.11 demonstrates the potential
of operators beyond Filters, showcasing two represen-
tative Mappers, the image_diffusion_mapper and
image_captioning_mapper, and their integration
with the MGM model. Finally, Appendix E.12 demonstrates
how the sandbox’s pre-built infrastructure can be leveraged
to explore and auto-optimize prompts within the context of
data-model co-development.

Complete Results. As for the complete results of other
previously mentioned experiments. Appendix E.2 presents
the complete operator ranking from single-operator experi-
ments. Appendix E.6 provides comprehensive results for the
Image-to-Text task. The full V-Bench leaderboard results
are listed in Appendix E.8. Finally, Appendix E.9 details
the calculation of reported FLOPs.

Implementation Details. We provide a summary of the
varying scope of our sandbox experiments in Appendix E.1,
detailing aspects such as main effectiveness evidence, model
types, dataset size, and compute scale. Besides, we present a
discussion in Appendix D.1 on the two strategies employed
to combine multiple operators into recipes based on their
correlations. Appendix D.2 outlines the model evaluation
metrics adopted. The functionalities and corresponding
statistics of the studied Data-Juicer operators are detailed
in Appendix D.3. Furthermore, Appendix D.4 elaborates
on the detailed settings for the image-to-text use case, Ap-
pendix D.5 for the text-to-video use case, and Appendix D.6
for the image-text pre-training use case.

5. Conclusion and Future Works
In this paper, we introduced the Data-Juicer Sandbox, a new
open-source suite designed to facilitate the co-development
of multimodal data and models. By integrating flexible
and customizable components at different levels, the sand-
box enables systematic, cost-effective exploration and op-
timization, bridging often-disjointed domains of data and
model development. Through applying the proposed “Probe-
Analyze-Refine” workflow in extensive scenarios includ-
ing image-to-text generation, text-to-video generation and
image-text pretrianing, we showcased how our sandbox can
yield not only improvements in both dataset and models, but
also valuable insights into the complex interplay between
data processing and model performance.

To facilitate reuse and expedite innovation, we will continu-
ously extend the sandbox’s compatibility to encompass more
model-centric infrastructures and develop more off-the-shelf
and effect-proven workflows, such as for reinforced fine-
tuning (Pan et al., 2025). Besides, we will theoretically
investigating the trade-off between sandbox cost and feed-
back transferability, such as taking the sampling ratio of
data pools as a tunable knob.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Reproducibility Statement
Reproducibility is essential for validating research outcomes.
To facilitate this, we have organized detailed descriptions
within the appendix of our paper. Key components of our
experimental setup, including implementation details such
as datasets and training configurations for the image-to-text,
text-to-video and image-text pre-training use cases can be
found in Appendix D.4, Appendix D.5 and Appendix D.6
respectively. We also provide details into the methodologies
for combining multiple operators based on their correlations
in Appendix D.1, as well as descriptions of performance
metrics (Appendix D.2). Furthermore, Appendix D.3 out-
lines the functionalities and statistics of the Data-Juicer OPs
utilized in our experiments.

All codes, datasets, and models of our work
are openly accessible and actively main-
tained at https://github.com/modelscope/data-
juicer/blob/main/docs/Sandbox.md.
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A. Discussion on More Related Works
Model-Centric Progress in Multimodal Large Models.
Multimodal large models have captivated researchers with
their formidable capabilities (OpenAI, 2024a;b), leading
to a surge in model-centric development efforts. These fo-
cuses mainly lie in refining training algorithms (Caffagni
et al., 2024; Li et al., 2024a; Zhang et al., 2024), advancing
model architectures and components (He et al., 2024a; Yin
et al., 2024; Jiao et al., 2024), and harnessing the models’
potential for various applications (Wang et al., 2024a; Liu
et al., 2024a; Zhou et al., 2024a). There is a growing con-
sensus that transformer-based scaling is predominant (Xu
et al., 2023). However, the high computational requirements
imposed by scaling laws (Xu et al., 2024c) and the optimiza-
tion challenges inherent to large models (Manduchi et al.,
2024) often confine insights to specific datasets or vague
data characteristics. This situation leaves a significant gap
in comprehending the extent to which models’ performance
and behavior hinge upon implicit assumptions and inductive
biases embedded within the underlying data distributions.
In contrast, our work demonstrates a feasible and promising
path to fill in this gap by explicitly linking data processing
effects with the downstream performance of trained models
through numerous contrastive sandbox experiments.

Trends in Data-Centric Development for Multimodal
Large Models. An emerging trend shifts the focal point
from models to data (Jakubik et al., 2024; Bai et al., 2024;
Chen et al., 2024c; Jiao et al., 2025), underscored by the
notion that large models function akin to data compressors
(Delétang et al., 2024). Echoing the principle of “garbage in,
garbage out”, meticulous data processing is recognized as
pivotal. Efforts now isolate data manipulation as a primary
experimental variable in multimodal generative modeling
(He et al., 2024b). Nonetheless, multimodal data processing
involves highly heterogeneous processing workflows, vast
quantities, diverse types, and the high cost of training down-
stream models. This complexity results in predominantly
heuristic approaches, such as data filtering and synthesis
guided by human intuition (Long et al., 2024; Zhou et al.,
2024b).

For example, one well-studied model type is CLIP. Data-
Comp (Gadre et al., 2023) introduces a benchmark to filter
out high-quality data from 12.8 billion image-text pairs in
Common Crawl to train better CLIP models, considering
Filter Operators such as CLIP score, image size, and cap-
tion length. MetaClip (Xu et al., 2024a) aims to reproduce
CLIP’s data by introducing a raw data pool and finding a
balanced subset based on CLIP’s concepts. Unlike these
data-centric approaches that isolate the model and training
settings, focusing solely on the quality and scale of training
datasets, our work emphasizes systematic methodologies
for data-model co-development, considering both data and
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Figure 4: Overview of the Data-Juicer Sandbox Laboratory. The workflow involves four stages, each allowing flexible
customization at different levels within the data-model co-development lifecycle. More details can be found in Sec. B

models equally important. Specifically, we incorporate per-
formance signals from sandbox reference models on many
downstream tasks, conducting importance and correlation
analysis to link data pools and these model metrics. Addi-
tionally, we explored more model types beyond CLIP, such
as LLaVA-like and DiT-based models for image-to-text and
text-to-video tasks, and identified better training datasets for
these models using our workflow.

Open-Source Infrastructure for Multimodal Large
Model Development. The landscape for multimodal
model development has advanced significantly, boasting a
variety of strong infrastructures and frameworks for training
and evaluation. Prominent examples include Transformers
(Wolf et al., 2020), Diffusers (von Platen et al., 2022), NeMo
(Harper et al.), MMagic (MMagic Contributors, 2023), ES-
PNet (Peng et al., 2023), and MMBench (Liu et al., 2024b).

However, when it comes to multimodal data infrastructure,
the primary contributions have been datasets and dataset-
specific preprocessing tools, such as DatasetsHub from Hug-
gingFace (Lhoest et al., 2021). The standardization and effi-
cient utilization of practical expertise and foundational data
processing capabilities remain unaddressed. Existing frame-
works for data processing predominantly focus on single-
modal data (Weber et al., 2024; Bradski, 2000; Hwang et al.,
2023), underlining the early stages of development in sys-
tematic platforms for multimodal data (Chen et al., 2024a;
Du et al., 2023; Chen et al., 2024b).

Recognizing the critical interplay between datasets and mod-
els—where comprehensive, high-quality datasets enhance
model performance, and advanced models contribute to the
generation of even more refined datasets—our work stands

out by introducing an innovative intermediary layer. We
seamlessly integrate cutting-edge model-centric multimodal
infrastructure with the Data-Juicer system. This integration
fosters a streamlined and insightful co-development envi-
ronment for both models and data, bridging the current gap
and setting a standard for future efforts in the multimodal
domain.

B. Sandbox Suite from Infrastructure
Perspective

B.1. Overview Architecture

To support co-development based on feedback from data
and model, we design the layered sandbox laboratory as
illustrated in Fig. 4. The laboratory incorporates a spec-
trum of components for activities such as data analysis,
filtering, recipe optimization, model training, inference, and
evaluation, all orchestratable via configuration files. The
architecture is stratified into three tiers: bespoke end-to-
end workflows, generic development behaviors, and founda-
tional data-model development capabilities.

• The top tier delineates co-development workflows
executed sequentially across four phases: probing
data/models, refining data recipes, executing data/model
operations, and evaluation. The sequence of tasks within
each phase is adjustable through an input configuration
file, permitting users to leverage pre-established and
effect-proven workflows or customize their own with ease.

• Moreover, users can flexibly introduce or innovate classes
at the capabilities level (such as novel models, metrics, or
data processing algorithms) and behavior hooks (like mul-
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tidimensional data quality assessments and adaptive ad-
justments based on multiple probe outcomes) interchange-
ably.

This design allows for streamlined configuration and reuse
of established infrastructure. Importantly, it expedites the
prototyping of data and model development solutions, in-
tegrating actionable and measurable capabilities for swift
feedback derivation and informed decision-making. Con-
crete explorations of the lower tiers are provided in Sec. B.2,
while Sec. 3.2 showcases the sandbox’s utility in estab-
lishing a probe-analyze-refine workflow for data-model co-
development.

B.2. Flexible Capability Factory and Behavior Hooks

Actionable Perspective. Within the sandbox, we have
created various factory classes and behavior hooks for data
processing. These simplify and unify the interfaces offered
by the open-source system, Data-Juicer. Users can utilize
over 100 OPs and tools for data analysis, filtering, and
synthesis. The toolkit automatically speeds up and scales
up the processing through system optimization and parallel
support. Classes for refining data recipes leverage tools like
adjusting percentile distributions to distinguish data subsets
or applying k-sigma rules to remove outliers.

Besides, model development classes integrate SOTA open-
source libraries, streamlining interfaces and enhancing us-
ability for rapid and user-friendly development experiences.
For example, models can be easily trained with diverse func-
tionalities, such as Mini-Gemini for image-to-text, EasyAni-
mate and T2V-Turbo for text-to-video, and ModelScope for
general generative models.

Measurable Perspective. The sandbox also provides
many classes to encapsulate observational capabilities, en-
abling subsequent optimization. For example, Data-Juicer-
based classes can efficiently compute metrics such as text
perplexity, video aesthetic value, and image quality scores
with GPT API calls, along with statistical values like mean,
variance, and percentiles. For models, various evaluation
benchmarks are supported, like VBench and FVD (Un-
terthiner et al., 2019) for synthesized video assessment, and
TextVQA (Singh et al., 2019), MMBench (Liu et al., 2024b),
and MME (Fu et al., 2023) for image-to-text evaluation.

More detailed developmental information can be found with
the source code and accompanying documentation in our
open-sourced link, which are also continuously maintained
online and evolved. For example, users can conveniently run
the following one-line entry script to easily run the sandbox
and flexibly adjust configurations to switch between many
built-in hooks and capabilities.

python tools/sandbox_starter.py \
--config configs/demo/sandbox.yaml

B.3. Extensibility of the Sandbox Suite

As a middleware, the sandbox itself does not impose any
additional specific hardware dependencies. Instead, it in-
herits the dependencies of the integrated underlying li-
braries/frameworks and is continuously maintained to in-
corporate more community efforts in model training and
evaluation. To simplify dependencies and avoid redundancy
in an “all-in-one” environment, we have introduced and
employed a lazy-loader mechanism at the Python package
level. The code and parameters are provided and adjusted to
ensure a stable and cost-controlled experiment environment,
where, for example, a single GPU card can complete an end-
to-end workflow within one day, enabling rapid feedback.

Besides, the capabilities of its underlying libraries are still
evolving. For example, the utilized Data-Juicer’s opera-
tors are not limited to data filters investigated on the main
page; they now encompass a wide range of functionalities,
including 100+ Mappers, Filters, Deduplicators, and Selec-
tors. This diversity allows for research on various types of
data processing utilities within the Sandbox. Since Mappers
can be employed to examine the effects of data augmenta-
tion and editing on downstream model task performance,
which we reserved further exploration beyond filters as fu-
ture work.

C. Analysis on the Costs of the Proposed
Workflow

In this section, we give a more detailed discussion on the
factors presented in the main page Sec. 3.2.4.

C.1. Impact of Sampling Ratio r for Data Pools

In this section, we give some theoretical discussion to
demonstrate the rationality of why scaling data pools can
work in a cost-effective way.

Following the notations defined in Sec. 3.2.4, the probability
that the error introduced by our experiments on the small-
scale data pools is greater than ϵ can be denoted as:

P[∆pool − E[∆full] ≥ ϵ].

It is worth noting that our sandbox aims to obtain effective
feedback with minimal expenditure. This feedback is often
less apparent than what is obtained from the full dataset and
larger model, meaning that E[|∆full|] ≥ E[|∆pool|]. For
operators that have a positive effect, we have E[∆full] ≥
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E[∆pool]. In this case, we can conclude that:

P[∆pool − E[∆full] ≥ ϵ] ≤ P[∆pool − E[∆pool] ≥ ϵ]

≤ e−2ϵ2/(b−a)2 .

Here we use Hoeffding’s inequality with the assumption that
∆pool ∈ [a, b]. As the sample rate r increases, the variance
of the improvement across different training trials decreases,
which is positively related to (b − a)2, and thus the right
term decreases. In conclusion, the probability of the error
exceeding ϵ decreases exponentially as r increases.

C.2. Impact of the Number m of Planned Small-Pool
Experiments

In the proposed sandbox workflow as illustrated in Sec. 3.2,
we choose to split each data pool after applying our studied
Data-Juicer OPs into three buckets according to the ranks of
their generated statistics. The number The number of buck-
ets acts as a multiplying factor to determine the total number
of the planned small-pool experiments m, and finally the
total cost of our experiments. It reflects the trade-off be-
tween total cost, data intervention intensity (via operator
stats), and the informativeness of model feedback (the met-
ric changes ∆ on interested tasks compared to the models
trained on random sampled data pools). More buckets lead
to greater statistical differences between buckets with differ-
ent ranks (especially the first and last ones), strengthening
attribution to data processing effectiveness. However, more
buckets also reduce per-bucket data, increasing the risk of
inadequate data for models to exhibit reasonable ∆.

As a result, we do not aim for models to be “training done”
or “converged” in the sandbox workflow experiments. In-
stead, we want to observe enlightening changes—positive
or negative—in models after targeted data intervention ver-
sus random data sampling. In our early experiments, we
tested bucket counts of [2,3,4,5] to evaluate whether a model
trained on randomly sampled data could reasonably de-
crease loss after one epoch and show statistically significant
changes on downstream tasks. Our findings indicate that
three buckets are empirically good for the studied scenarios.
Once determined, all controlled experiments are aligned to
one complete epoch and matched to the random pool data
size.

D. Implementation Details of Sandbox
Experiments

D.1. Strategies to Combine OPs According to
Correlations

In addition to assembling the OPs with the overall best per-
formance, we also incorporate an analysis of inter-OP rela-
tionships into our recipe formulation process. Our workflow

accommodates two strategies, with specific applications
detailed in Sec. E.4:

• The first method involves computing Pearson correlation
coefficients between the statistics generated by these OPs.
Using a hierarchical clustering algorithm (Ward Jr, 1963),
we group the OPs into k clusters. From each cluster, we
select the OP whose data pool yields the strongest model
performance to form potential combinations.

• Alternatively, leveraging the outcomes of single-OP tests,
we calculate Pearson correlation coefficients for each pair
of dimensions within the evaluation metrics. Hierarchical
clustering is again employed to categorize the metrics into
k classes. The top-performing OP from each class is cho-
sen to create the combinations. This approach allows us to
investigate whether these combinations lead to concurrent
improvements or mutual inhibition across the evaluative
metrics.

D.2. Evaluation Metrics

In the paper, we mainly report overall performance as the
relative changes over the baseline in terms of the average
across all model metrics with normalization as follows:∑N

i si/N −
∑N

i s′i/N∑N
i s′i/N

=

∑N
i (si − s′i)∑N

i s′i
, (1)

where N is the number of involved metrics, si is the score
of i-th model measurement metric, s′i is the corresponding
score gained by the baseline model trained on randomly
sampled data. Below are the specific evaluation metrics
involved in this study.

TextVQA, MMBench, MME. These benchmarks serve as
critical evaluators of MLLM’s proficiency in understanding
images. TextVQA (Singh et al., 2019) specifically targets
the assessment of MLLMs’ abilities to read and reason about
textual content embedded within images. MMBench (Liu
et al., 2024b), a vast multimodal benchmark, encompasses
perception and reasoning skills through a plethora of multi-
choice questions, numbering in the thousands. Addition-
ally, a Chinese translation, MMBench-CN, is integrated
for broader accessibility. MME (Fu et al., 2023) focuses
on the perceptual and cognitive competencies of MLLMs,
incorporating 14 finely categorized subtasks, each address-
ing Yes/No inquiries underpinned by meticulously crafted
guidelines.

VBench. We engage with VBench (Huang et al., 2024), a
holistic benchmark suite tailored for the rigorous evalua-
tion of video generative models. It facilitates granular and
objective assessment across a spectrum of dimensions, de-
constructing the concept of “video generation quality” into
16 discrete metrics. Each metric is assessed using a carefully
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curated suite of prompts, comprising 946 unique prompts,
with the requirement to produce 5 videos per prompt.

Owing to the disparity in evaluation criteria and the inherent
variability across different modalities, we discern that the
magnitude of performance fluctuation in the image-to-text
generation substantially exceeds that observed in the text-to-
video generation. This discrepancy underscores again the
need for nuanced data-model co-development in addressing
the complexities inherent in each modality.

Across all experiments, results are reported as averages with
standard deviations from 2 to 5 repetitions for the image-
to-text and text-to-video tasks, respectively, due to their
differing levels of variance.

Metrics for Image-Text Pre-training task. For the CLIP
experiments, we adopt 40 distinct benchmark scores used
in DataComp (Gadre et al., 2023), e.g., the image classifica-
tion on 30 data subsets for diverse scenarios like ImageNet
derivatives, the image-text retrieval on 3 data subsets like
Flicker and MSCOCO, the fairness related classification
task like Dollar Street and GeoDE. For more details about
these tasks, please refer to the DataComp and their original
papers.

D.3. Descriptions of Studied Operators

The study involves 31 OPs from Data-Juicer (Chen et al.,
2024a). Their corresponding statistics and detailed descrip-
tions are provided in Table 4.

D.4. Image-to-Text Generation

Our first task focuses on foundational image understand-
ing ability, by experimenting on Mini-Gemini (MGM-2B),
a state-of-the-art (SOTA) 2 billion parameter multimodal
LLM (Li et al., 2024b). The training protocol for MGM-2B
involves two stages: pretraining and fine-tuning. Our ex-
perimental focus lies in the pretraining phase, which seeks
to harmonize visual and textual representations. We uti-
lize the original pretraining dataset as our original dataset
D, consisting of approximately 1.2M instances. We set
the size of Dsample as 200k. The single-OP data pools Di

and multi-OP data pools DS are capped at a maximum of
200k instances, ensuring consistency of data pool size. To
match the down-sampling rate used during pretraining, the
fine-tuning dataset is sampled into a 240k instance subset.

We first conduct single-OP experiments (Sec. 4.2) that en-
compasses 22 text-image relevant OPs from Data-Juicer,
split evenly between text-only and image-related multi-
modal OPs. After the two-stage training, model evaluation is
conducted on established benchmarks including TextVQA
(Singh et al., 2019), MMBench (Liu et al., 2024b), and
MME (Fu et al., 2023).

For multi-OP data pools (Sec. 4.3), we identify the top-3
highest-performing OPs from single-OP experiments and
study their possible combinations. Additionally, we analyze
the correlations among the 23 data statistics produced by
22 OPs capable of generating instance-level stats 2. Em-
ploying a hierarchical clustering algorithm (Ward Jr, 1963),
these OPs are grouped into three clusters based on correla-
tion coefficients, with the highest-performing OP from each
cluster selected for combination testing. To ensure a robust
and fair comparison, we must acknowledge the constraints
imposed by the limited data volume within the highest-tier
data pool. As the number of combinations increases, the
available dataset size diminishes. In particular, the size
of PS was reduced from 200k samples to 159k samples
during the Top-3 combination experiments. Similarly, in
the cluster-wise combination experiments, the dataset size
decreased from 200k samples to 126k samples.

Next, in Sec. 4.4, we explore the optimal OP combination
based on previous experiments and adopt the methodology
from Sec. 3.2.3 for comparative experiments on training
with repeated data versus non-repeated data. Note that due
to filtering, the final instance count decreases from 200k to
approximately 159k after the OP combination. These data
are then repeated in increments from double to eightfold,
mirroring the size of the original pretraining set.

Collectively, all these experiments yield profound insights
into image-to-text model training, data processing, and iter-
ation strategies from a data-model co-development perspec-
tive, further verified in the larger-scale scenario in Sec. 4.5.

In terms of the model training details, we train the MGM-
2B model from scratch with less training data (about 1/6
of the original training datasets) in baseline experiments to
make sure each experiment can be finished within one day.
We keep every training setting (e.g. learning rate scheduler,
global batch size) the same as the original model except for
training datasets and training devices. For single-OP and OP
combination experiments are trained on only 1 A100 GPU
for each experiment so we increase the number of gradient
accumulation steps from 4 to 32 to keep the same global
batch size. For experiments of duplicating high-quality
datasets, 8 A100 GPUs are involved to train the model, and
the number of gradient accumulation steps is restored to 4.
Each experiment is repeated 3 times with different random
seeds to make the final results more comprehensive.

D.5. Text-to-Video Generation

For the second task, text-to-video generation, we adopt
the advanced DiT-based models, EasyAnimate (Xu et al.,
2024b), which originally integrates diverse datasets totaling
1.2M instances from InternVid (Wang et al., 2023) (606k),

2The image height and width are produced by one OP.
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Table 4: Overview of involved OPs in the study, including the modality they pertain to, along with their statistical data and
detailed descriptions of these statistics.

OP Name Modality Statistics Description

alphanumeric_filter text Alphanumeric Ratio Alphanumeric ratio in the text.
character
_repetition_filter

text Character Repeti-
tion Ratio

Char-level n-gram repetition ratio in
text.

flagged_words_filter text Flagged Word Ratio Flagged-word ratio in the text
image_aesthetics
_filter

image Image Aesthetics
Score

Aesthetics score of the image

image_aspect_ratio
_filter

image Image Aspect Ratio Aspect ratio of the image

image_nsfw_filter image Image NSFW Score NSFW score of the image
image_shape_filter image Image Width/Height Width and height of the image
image_size_filter image Image Size Size in bytes of the image
image_text_matching
_filter

text,
image

BLIP Image-Text
Similarity

Image-text classification matching
score based on a BLIP model

image_text
_similarity_filter

text,
image

CLIP Image-Text
Similarity

Image-text feature cosine similarity
based on a CLIP model

image_watermark
_filter

image Image Watermark
Score

Predicted watermark score of the image
based on an image classification model

language_id_score
_filter

text Language Score Predicted confidence score of the speci-
fied language

perplexity_filter text Text Perplexity Perplexity score of the text
phrase_grounding
_recall_filter

text,
image

Phrase Grounding
Recall

Locating recall of phrases extracted
from text in the image

special_characters
_filter

text Special Character
Ratio

Special character ratio in the text

stopwords_filter text Stopword Ratio Stopword ratio in the text
text_action_filter text Text Action Number Number of actions in the text
text_entity
_dependency_filter

text Entity Dependency
Number

Number of dependency edges for an
entity in the dependency tree of the text

text_length_filter text Text Length Length of the text
token_num_filter text Token Number Token number of the text
video_aesthetics
_filter

video Video Aesthetics
Score

Aesthetics score of sampled frames in
the video

video_aspect_ratio
_filter

video Video Aspect Ratio Aspect ratio of the video

video_duration
_filter

video Video Duration Duration of the video

video_frames_text
_similarity_filter

text,
video

Frames-Text Similar-
ity

Similarities between sampled frames
and text based on a CLIP/BLIP model

video_motion_score
_filter

video Video Motion Score Motion score of the video

video_nsfw_filter video Video NSFW Score NSFW score of the video
video_ocr_area_ratio
_filter

video Video OCR-Area Ra-
tio

Detected text area ratio for sampled
frames in the video

video_resolution
_filter

video Video Width/Height Width and height of the video

video_watermark
_filter

video Video Watermark
Score

Predicted watermark score of the sam-
pled frames in the video based on an
image classification model

words_num_filter text Word Number Number of words in the text
word_repetition
_filter

text Word Repetition Ra-
tio

Word-level n-gram repetition ratio in
the text
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Panda-70M (Chen et al., 2024e) (605k), and MSR-VTT (Xu
et al., 2016) (6k). The studied baseline model is trained on a
subset of 40k instances, employing LoRA (Hu et al., 2022)
for efficiency. As a result, the size of D is 1.2M, and the
size of Dsample, the single-OP data pools Di and multi-OP
data pools DS are all 40k. Model outputs are assessed using
VBench (Huang et al., 2024) across 16 metrics on video
quality and video-text matchness.

Our investigation covered 21 OPs, including 13 text-only
OPs and 10 video-related multimodal OPs. Analogous to
the image-to-text generation, we conduct single-OP and
multi-OP combination experiments, in Sec. 4.2 and Sec. 4.3
respectively. However, given the reduced relevance of
data statistics in video-related OPs, our analysis centers
on the correlations among the 16 VBench evaluation met-
rics. These metrics are clustered into three groups, with the
best-performing OP selected from each group.

Through OP combination experiments, we pinpoint the most
effective set of OPs. In Sec. 4.4, we then sample 40k in-
stances from the filtered data pool and repeat the training
process for up to 10 epochs. For comparative analysis, we
adhere to the method outlined in Sec. 3.2.3, selecting larger
data volumes (80k, 120k, ..., up to 400k instances) for single-
epoch training. To examine the effectiveness of the de-
rived insights for text-to-video data-model co-development,
we finally incorporate them into larger-scale scenarios in
Sec. 4.5.

In terms of the model training details, we adopt the advanced
DiT-based EasyAnimate (Xu et al., 2024b) model, which
integrates diverse datasets totaling 1.2M instances from In-
ternVid (Wang et al., 2023) (606k), Panda-70M (Chen et al.,
2024e) (605k), and MSR-VTT (Xu et al., 2016) (6k). Base-
line experiments are executed on a subset of 40k instances,
employing LoRA (Hu et al., 2022) for efficiency. During
training, we maintain a video resolution of 256x256, sample
every other frame, and randomly select sequences of 16
consecutive frames. The training process involves perform-
ing a backward pass for the loss of every 8 samples, with
single-OP and OP combination experiments trained on a
single GPU with a batch size of 8 for 5k steps, amounting to
approximately 16 GPU hours per training run. Experiments
for duplicating high-quality data, as well as larger-scale
training, are conducted with a batch size of 1 across 8 GPUs.
The models employ the Adam optimizer for training, with
a learning rate set to 2× 10−5, weight decay parameter at
3 × 10−2, and epsilon configured to 10−10. Each exper-
iment is repeated twice with random seeds of 42 and 45,
respectively.

D.6. Image-Text Pre-training

For the third task, image-text pre-training, we adopt the
well-studied CLIP model (Radford et al., 2021). Specifi-

cally, we utilize data from the small track of the DataComp
competition (Gadre et al., 2023) and adhere to its evaluation
metrics, which include 40 distinct evaluation subsets. Due
to some broken links, we successfully downloaded 85.2%
of the dataset, resulting in a total of 10.9 million samples
as our D. All baseline models were trained on an equiva-
lent volume of data as used in the contrastive experiments,
sampled randomly from this dataset.

In the multi-OP experiments (see Fig. 2(c)), due to data
limitations in the top-level data pool, the training dataset
size is reduced to 880k for the top recipes. Correspondingly,
the default computation scale of DataComp is adjusted to
0.25 expansion rate for the subsequent compute scaling
experiments (see Fig. 3(c)).

E. Additional Experimental Results
E.1. Summarization of Sandbox Experiments varying

Multiple Scales

The Table 5 provides an overview of our sandbox experi-
ments on image-to-text generation, text-to-video generation,
and image-text pre-training tasks.

E.2. Complete Single-Operator Ranking

In Table 6, Table 7, and Table 8, we present complete
numeric results conducted on individual OP experiments
(Sec. 4.2), from which we can discern some more detailed
observations.

In image-to-text generation, it is preferable for the input
of training images to align as closely as possible with the
original configuration of the vision tower, such as training
dimensions (height, width, and sizes). Additionally, CLIP
similarity scores tend to be more influential than BLIP sim-
ilarity scores. The BLIP similarity does not show much
distinction and paradoxically, a lower similarity often re-
sults in better performance, which defies common sense.
Images with excessively high aesthetic quality may offer
limited assistance in feature alignment, while watermarks
might have certain impacts on the OCR performance of the
model.

In text-to-video generation, having a consistent aspect ratio
for the training data is better than having ratios that are
inconsistent but close to the 1:1 ratio used during training.
For instance, a data pool with a ’middle’ video aspect ratio
consistently at 16:9 performs optimally. Videos with high
video aesthetics scores and low video NSFW scores, as
well as those with low video OCR-area ratios and high
video motion scores, tend to be of higher quality. While
single-text-related operators might not be as critical in text-
to-video generation, they can still effectively filter out some
dirty data.
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Table 5: Overview of sandbox scenarios and their effective evidence across different scales.

Sandbox
Scenario

Image-to-Text Genera-
tion

Text-to-Video Genera-
tion

Image-Text Pretraining Image Captioning Fine-
tuning

Main Effec-
tiveness Ev-
idence

Optimal recipe derived
from small data pools
achieves superior
model performance in
larger data pools, using
only half of baseline’s
compute cost.

Insights from small data
pools results in VBench-
Top1 model, transferring
across data size, model
scales, and model archi-
tectures.

Best recipe identified in
the model with fewer
FLOPS maintains
optimal performance
with increased model
FLOPS and compute
resources, showing
clear scaling behaviors
in power-law form.

Optimal recipe identi-
fied with InternVL-2.0
model, leads to con-
sistent and steady per-
formance advantages as
the model scale in-
creases from 1B to 26B.

Model
Scale
Range

MGM-2B in all experi-
ments

EasyAnimate to T2V-
Turbo
(Heterogeneous architec-
tures)

CLIP: ViT-B-32 to ViT-
B-16
(Different FLOPS)

InternVL-2 with 1B,
2B, 4B, 26B parameters

Data Scale
Range
(w.r.t
Distinct
Dataset
Size)

126k to 200k 40k to 147k and 228k 880k to 2,683k 24k to 189k

Compute
Scale
Range
(w.r.t Num-
ber of
Trained
Sample)

1 to 8 Epochs 1 to 10 Epochs 4 to 14 Epochs 1 epoch in all experi-
ments
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Table 6: The complete OP ranking, including their statistical dimensions and the improvements relative to the baseline.
We consider three splits with low, middle, and high statistical values for each OP. The baseline used is based on random
sampling with equal data volume.

Task OP-Generated Statistics Average Performance Changes (%)

Data Pool (Low) Data Pool (Mid) Data Pool (High)

Image-to-Text

Image NSFW Score 7.13 ± 4.29 18.44 ± 18.45 66.38 ± 32.65
Text Action Number 59.90 ± 46.49 0.29 ± 2.16 -2.05 ± 2.48

Language Score 49.90 ± 53.82 0.85 ± 2.87 -1.43 ± 2.40

CLIP Image-Text Similarity 1.20 ± 4.86 -1.81 ± 2.88 49.81 ± 44.72
Phrase Grounding Recall -0.49 ± 3.87 -0.58 ± 6.12 49.39 ± 29.83
Image Width 42.04 ± 57.27 10.31 ± 12.59 1.35 ± 4.36

Special Character Ratio -3.08 ± 0.63 -0.75 ± 1.61 39.67 ± 58.82
Flagged Word Ratio 38.48 ± 27.76 -0.39 ± 0.43 22.49 ± 29.81

Image Height 35.66 ± 48.62 12.91 ± 10.42 18.73 ± 27.32

Word Repetition Ratio 33.14 ± 23.39 2.59 ± 5.31 -0.55 ± 2.90

Text Length 30.67 ± 28.54 -0.44 ± 0.73 -3.71 ± 0.39

Stopword Ratio 3.34 ± 5.05 24.62 ± 36.73 -1.56 ± 1.59

Image Size 0.76 ± 0.55 19.16 ± 27.29 1.58 ± 2.20

Text Perplexity -1.69 ± 1.30 16.70 ± 24.49 18.26 ± 23.02
Image Aesthetics Score 11.94 ± 12.21 16.58 ± 25.70 0.16 ± 3.67

Word Number 15.96 ± 29.01 -2.48 ± 0.26 -1.97 ± 2.05

BLIP Image-Text Similarity 11.76 ± 22.83 1.74 ± 2.49 1.34 ± 2.21

Image Watermark Score -1.50 ± 2.41 7.51 ± 12.82 11.54 ± 13.14
Alphanumeric Ratio 2.35 ± 7.63 -0.66 ± 0.69 8.71 ± 12.87
Character Repetition Ratio 0.00 ± 1.13 -1.42 ± 0.60 7.94 ± 14.63
Entity Dependency Number 1.35 ± 1.81 -0.87 ± 1.15 6.67 ± 8.44
Token Number 6.31 ± 7.86 0.80 ± 0.92 0.33 ± 6.45

Image Aspect Ratio 0.00 ± 1.34 1.89 ± 2.71 -0.02 ± 1.12

Text-to-Video

Video Aesthetics Score -0.98 ± 0.08 0.13 ± 0.09 0.96 ± 0.13
Video NSFW Score 0.82 ± 0.36 -0.05 ± 0.07 -0.57 ± 0.07

Frames-Text Similarity -1.45 ± 0.69 0.23 ± 0.21 0.79 ± 0.15
Special-Characters Ratio 0.54 ± 0.36 -0.13 ± 0.70 -0.14 ± 0.10

Token Number 0.53 ± 0.04 0.18 ± 0.32 0.41 ± 0.25

Character Repetition Ratio -0.29 ± 0.27 0.47 ± 0.80 0.18 ± -0.52

Video Height -0.10 ± 0.21 0.12 ± 0.13 0.46 ± 0.44
Video OCR-Area Ratio 0.44 ± 0.04 0.02 ± 0.63 -0.66 ± 0.23

Word Number -0.49 ± 0.07 -0.41 ± 0.72 0.44 ± 0.45
Entity Dependency Number 0.40 ± 0.01 0.28 ± 0.48 -0.18 ± 0.44

Text Action Number 0.18 ± 0.56 -0.71 ± 0.28 0.37 ± 0.28
Alphanumeric Ratio -0.10 ± 0.19 0.20 ± 0.19 0.33 ± 0.17
Video Motion Score -0.55 ± 0.40 0.33 ± 0.21 0.32 ± 0.15

Video Watermark Score -0.27 ± 0.27 -0.25 ± 0.25 0.29 ± 0.16
Text Perplexity 0.15 ± 0.69 -0.13 ± 0.27 0.09 ± 0.56

Stopword Ratio -0.01 ± 0.05 -0.48 ± 0.22 0.12 ± 0.07
Video Aspect Ratio -0.32 ± 0.14 0.11 ± 0.18 -0.02 ± 0.40

Language Score -0.21 ± 0.01 -0.03 ± 0.38 0.09 ± 0.03
Word Repetition Ratio 0.00 ± 0.17 0.06 ± 0.24 -0.43 ± 0.24

Video Duration -0.58 ± 0.05 -0.16 ± 0.09 0.04 ± 0.84
Text Length -0.09 ± 0.63 -0.66 ± 0.08 0.03 ± 0.22
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Table 7: The complete OP ranking, including their statistical dimensions and the improvements relative to the baseline for
image-text similarity/classification task. We consider three splits with low, middle, and high statistical values for each OP.
The baseline used is based on random sampling with equal data volume.

OP-Generated Statistics Average Performance Changes (%)

Data Pool (Low) Data Pool (Mid) Data Pool (High)

CLIP Image-Text Similarity -32.57 -6.39 39.53
BLIP Image-Text Similarity -24.28 1.82 25.39
Image NSFW Score 12.18 1.28 -18.38
Word Number -18.65 0.74 9.78
Stopword Ratio -4.28 -3.33 8.97
Special Character Ratio 8.86 4.15 -16.03
Phrase Grounding Recall 7.79 1.85 -10.60
Text Length -8.31 1.81 7.29
Character Repetition Ratio 1.99 0.04 6.63
Image Aspect Ratio 4.93 -4.55 5.87
Text Perplexity 5.27 2.46 -9.56
Image Width -6.66 4.97 5.23
Image Height -4.03 5.02 0.89
Image Size -12.11 5.00 2.87
Image Aesthetics Score -9.61 -8.13 4.64
Image Watermark Score 3.84 -3.74 -4.72
Flagged Word Ratio 3.66 3.47 1.59
Entity Dependency Number -5.53 -0.39 2.50
Word Repetition Ratio -3.16 -0.91 1.84
Alphanumeric Ratio -2.55 1.65 0.63
Token Number -6.35 1.44 0.27

In image-text pre-training, we can see that the top three
performing operations are the ones generating stats of CLIP
Image-Text Similarity, BLIP Image-Text Similarity, and Im-
age NSFW Score. The first two OPs generate statistics based
on auxiliary CLIP and BLIP models, enlightening that the
modality alignment degree is critical to the studied pair-wise
learning task.

In image captioning fine-tuning, models trained on shorter
captions (low range of Text Length) achieve the best perfor-
mance. Captions with less repetition on both character and
word levels help to train models with better performance.
It suggests that in the image captioning task, the quality of
captions is the key to better performance.

E.3. Diversity Analysis

In this subsection, we delve into the diversity of the data in
interested data pools. From the perspective of quantitative
indicators, we confine our focus to statistical analysis of
words within text data and compute their entropy. We oper-
ate under the assumption that the texts provide an accurate
description of the images and videos. Consequently, the
diversity inferred from the texts also serves as a proxy for
the diversity of the associated images and videos.

The Table 9 shows the entropy of text words for different

data pools, which can be normalized as follows:∑
w

−P(w) logP(w), (2)

where w is a word and P is the distribution of words in a
data pool. As we can see, data pools with higher NSFW
scores and lower Language Score have higher word entropy,
suggesting greater diversity within these data pools.

We also introduce a more direct way to show the data di-
versity to users. We use a tagging model to extract core
objects, concepts, and domains from the contents of the
datasets, including both texts and multimodal content. Then
we analyze the domain-specific distribution via word clouds
of these tags. We show an example of analyzed word clouds
from videos on different data pools of Video NSFW Score
in Fig. 5. As we can see, although the data pool with high
video NSFW scores is the most diverse one, our model
achieves the best performance on the data pool with low
video NSFW scores, which is consistent with the argument
presented in Sec. 4.2.

E.4. Correlation Analysis

To investigate the intrinsic relationships between OPs and to
support our recipe formulation, we explore relevance from
the following two perspectives.
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Table 8: The complete OP ranking, including their statistical dimensions and the improvements relative to the baseline for
the image captioning task. We consider three splits with low, middle, and high statistical values for each OP. The baseline
used is based on random sampling with equal data volume.

OP-Generated Statistics Average Performance Changes (%)

Data Pool (Low) Data Pool (Mid) Data Pool (High)

Text Length 0.760 -3.125 -11.364
Image Watermark Score -0.637 -0.132 0.477
Character Repetition Ratio 0.449 -0.461 -0.634
Text Perplexity -1.505 0.331 -3.220
Word Repetition Ratio 0.300 -3.125 -11.349
Image Width 0.265 -0.230 -0.112
CLIP Image-Text Similarity -0.920 0.225 -2.101
Phrase Grounding Recall -1.318 0.166 0.188
Image Aesthetics Score -0.300 0.186 -0.243
Image Aspect Ratio 0.171 -0.490 -0.118
Image NSFW Score -0.030 0.062 0.113
Image Height -0.080 -0.030 0.088
Stopword Ratio -3.795 0.084 -4.930
Image Size -0.112 -0.071 0.028
Flagged Word Ratio -0.012 -0.663 -0.429
Language Score -0.154 -1.534 -7.823
Token Number -0.610 -0.987 -9.017
Alphanumeric Ratio -0.795 -4.300 -11.592
Text Action Number -2.633 -0.931 -8.565
Word Number -1.125 -2.078 -9.333
Special Character Ratio -11.194 -4.782 -1.145
Entity Dependency Number -1.443 -1.660 -7.072
BLIP Image-Text Similarity -2.254 -1.446 -6.221

Table 9: The entropy of text words for data pools with different levels of Image NSFW score and Language score.

Task OP-Generated Statistics Word Entropy

Data Pool (Low) Data Pool (Mid) Data Pool (High)

Image-to-Text Image NSFW Score 6.97 7.35 7.29
Language Score 7.47 7.32 6.98

Text-to-Video Video NSFW Score 5.84 6.03 6.01
Language Score 6.30 5.85 5.73

(a) Video NSFW Score (low) (b) Video NSFW Score (mid) (c) Video NSFW Score (high)

Figure 5: Domain-specific word clouds tagged from videos for data pools with different levels of and Video NSFW score.
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Figure 6: Pearson correlation coefficients for OP statistics
in image-to-text generation.

First, we adopt the most direct approach by examining the
Pearson correlation coefficients between the statistics of
OPs, as illustrated in Figures 6, 7, 8, and 9. Intuitively, the
associations between the statistics of OPs utilized in image-
to-text generation appear to be significantly stronger than
those in text-to-video generation. For instance, in image-
to-text generation, phrase grounding recall shows a strong
positive correlation with text perplexity and special char-
acter ratio, while exhibiting a strong negative correlation
with the alphanumeric ratio, language score, number of
text actions, stopword ratio, and text length. In contrast, in
text-to-video generation, we observe relationships primarily
among the purely textual OPs, while video-related operators
are largely orthogonal to others. Therefore, for image-to-
text generation, we categorize OPs into three groups based
on the correlation of their statistics and select the optimal
OP from each category to create combinations. However,
this method does not appear appropriate for text-to-video
generation due to the sparser correlations observed.

In the second approach, we categorize the evaluation met-
rics based on their correlations, as illustrated in Fig. 10
for image-to-text generation and Fig. 11 for text-to-video
generation. In image-to-text generation, several evaluation
metrics are highly specific and possess unique characteris-
tics, such as those for OCR and coding tasks, resulting in a
greater number of categories upon classification. In contrast,
VBench’s evaluation metrics can be broadly divided into
several classes, including static video metrics (e.g., subject
and background consistency), dynamic metrics (e.g., dy-
namic degree), and video quality indicators (e.g., aesthetic
quality and imaging quality).

Notably, the dynamic degree negatively correlates with
many other metrics, particularly those favoring static videos,
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Figure 7: Pearson correlation coefficients for OP statistics
in text-to-video generation.

thus preventing videos without movement from being rated
as optimal. Based on these observations, for text-to-
video generation, we apply a hierarchical clustering algo-
rithm (Ward Jr, 1963) to classify the VBench metrics into
three categories based on their correlations: static video met-
rics, dynamic video metrics, and video quality along with
video-text matching. We then select the best-performing OP
for each of these three metric categories, where each excels
in different aspects. These selected OPs are subsequently
combined and experimentally evaluated together.

E.5. Recipes Based on Correlation Analysis

In addition to selecting the overall best-performing OPs,
we aim to identify operators with distinct advantages to ex-
plore whether combining these operators can synergistically
leverage their strengths for improved outcomes. We se-
lected operators with unique strengths based on correlation
information obtained from single-operator experiments.
Detailed correlation analyses can be found in Appendix E.4.

Specifically, for the image-to-text generation, we categorize
the OPs by calculating correlations between their statistics.
We then select representative operators within each category:
TextActionFilter for text, ImageNSFWFilter
for images, and PhraseGroundingRecallFilter
for combined text-image relevance. For the text-to-video
generation, based on single-operator experiments, we
categorize the metrics of VBench (Huang et al., 2024) into
three classes according to their relevance and select the
best-performing operator from each category. The chosen
operators are VideoMotionScoreFilter, which
excels in video static features; VideoDurationFilter,
which is superior in dynamic features; and
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Figure 8: Pearson correlation coefficients for OP statistics
in image-text pre-training.

VideoAestheticsFilter, which exhibits the
best composite performance in video quality and video-text
matching. We summarize the experiment results in
Figures 12(a) and 12(b).

Observation 8 (Effect of Orthogonal Combination)
Combining OPs that excel in orthogonal dimensions
on model or data does not guarantee complementary
effects; rather, it is more likely that they will impede
each other’s performance.

As depicted in Figures 12(a) and 12(b), regardless of how
these top-performing OPs are combined, they ultimately re-
duce the model’s performance in both image-to-text and text-
to-video generation. This observation challenges the naive
assumption widely used in existing SOTA works, that vari-
ous intuitively useful data cleansing actions, when stacked
serially, can synergistically enhance performance.

E.6. Detailed Evaluation Results on MGM

The detailed experimental results in terms of different eval-
uation benchmarks are shown in Table 10.

E.7. Ablation Study Based on T2V-Turbo

The results are shown in Table 3 representing the enhance-
ments we achieved based on T2V-Turbo (Li et al., 2024a).
T2V-Turbo applies LoRA (Hu et al., 2022) to VideoCrafter-
2.0 (Chen et al., 2024d) and is trained on the WebVid (Bain
et al., 2021) dataset, using VideoCrafter-2.0 as a teacher for
distillation and incorporating reinforcement learning with
rewards for the generated videos. The loss L of T2V-Turbo
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Figure 9: Pearson correlation coefficients for OP statistics
in image-captioning oriented fine-tuning.

is defined as:

L = LCD − 1×Rimg − 2×Rvid, (3)

where LCD is the loss of consistency distillation (Song et al.,
2023), Rimg is the reward of image quality of generated
video frames from HPSv2.1 (Wu et al., 2023) and Rvid

is the reward of video quality from InternVideo2 (Intern-
Vid2 S2) (Wang et al., 2024b). In the paper, we make the
following cumulative modifications to T2V-Turbo:

1. Proposed Data Pool (Enhancement from Data View).
Utilizing the optimal data pool identified in Sec. 4.4,
which consists of 147k instances with low video NSFW
scores and high frame-text similarities, we replace the
WebVid data and train for 6 epochs based on the insight
from Sec. 4.4.

2. Initialization for LoRA (Enhancement from Model
View). We use the T2V-Turbo model to initialize the
parameters for training with LoRA.

3. Self-Distillation. (Enhancement from Model View).
When we initialize with the T2V-Turbo model, the stu-
dent model is already outperforming the teacher model,
VideoCrafter-2.0, potentially leading to unstable training.
To mitigate this, we use the T2V-Turbo model itself as
the teacher to ensure that the reinforcement learning does
not diverge excessively.

4. Real-Data Loss (Data-Model Co-Enhancement). To
enhance the role of the proposed data pool during train-
ing, we add a real-data loss between the generated videos
and the input videos to the distillation loss and reward
loss. Furthermore, we set the weights of both the real-
data loss and the distillation loss to 0.5. The modified
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Table 10: Performance of MGM-2B with different pretraining datasets. MGM-2B pretrained with only 1/10 distinct
instances and 1/2 of the total instances performs better. than the baseline trained on the full dataset. The “*” indicates our
reproduced version that is comparable with the official version.

MGM-2B Num. of
Instances

Avg. Perf.
Changes (%)

MMBench MMBench-CN MME-
Perception

MME-
Cognition

Baseline* 1226k - 59.2 51.6 1334 302
Data-Juicer 159k (x4) +2.12 62.08 52.32 1323.37 311.07
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Figure 10: Pearson correlation coefficients for each dimen-
sion in TextVQA, MMBench, and MME.

loss from Equation 3 can be specified as:

L = 0.5×LCD+0.5×Lreal−1×Rimg−2×Rvid, (4)

where ×Lreal is the real-data loss. Training on 147k
instances with 6 epochs, we obtain the model, Data-
Juicer (T2V, 147k).

5. Self-Evolution (Data-Model Co-Enhancement).
To validate the scalability of our methodologies,
we expanded the original data pool and, by ap-
plying the video_aesthetics_filter and
video_motion_score_filter to the existing
recipes, we select an additional 228k instances to
evolutionary self-distill Data-Juicer (T2V, 147k).
Meanwhile, in order to further amplify the impact of
data, we have reduced the emphasis on reinforcement
learning, thereby:

L = 0.5×LCD+0.5×Lreal−0.2×Rimg−0.4×Rvid.
(5)

We finally get Data-Juicer (DJ, 228k) in 4 epochs train-
ing.

Table 11 presents the ablation experiments of our modi-
fications in the VBench evaluation. It is clear that when
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Figure 11: Pearson correlation coefficients for evaluation
metrics in VBench.

we replace the WebVid data with our proposed data pool,
the model experiences a notable improvement, with the
total score increasing from 81.01% to 81.84%. Subse-
quently, initializing the LoRA training parameters with the
T2V-Turbo model does not lead to further enhancements in
model performance. We suspect this might be because the
teacher model is less effective than the T2V-Turbo model.
Therefore, we use the T2V-Turbo model for self-distillation.
While this method effectively raises the semantic score, it
results in unstable video generation characterized by signif-
icant temporal flickering, which severely lowers the video
quality. To counteract this, we add a real-data loss with
the input data to secure the quality of the generated videos.
Moreover, we evolve the model by using our trained model
as the teacher model for continuous training on additional
data, rather than T2V-Turbo. Ultimately, as we continue to
enhance both the quality and semantic scores, we establish
a new state-of-the-art.

E.8. Full Results on VBench leaderboard

Backed by our proposed methodology and experiments, our
Data-Juicer (DJ, with 228k) model refreshes the state-of-
the-art on VBench (Huang et al., 2024), surpassing models
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Figure 12: The improvements (%) of recipes with different OP combinations. The cluster recipes stem from the combinations
of the best OPs in 3 categories. In the image-to-text generation, due to the limited data volume in the top-level data pool, the
size of PS decreased from 200k to 126k in the cluster recipes.

Table 11: Our model undergoes ablation experiments on the VBench leaderboard evaluation. Each ‘+’ sign in the row
indicates that the modification is added on top of the previous row’s configuration.

Model Total Score (%) Quality Score (%) Semantic Score (%)

T2V-Turbo (VC2) 81.01 82.57 74.76
+ Enhanced Data Pool 81.84 83.40 75.60
+ Initialization for LoRA 81.82 83.47 75.19
+ Self-Distillation 79.16 79.48 77.92
+ Real-Data Loss 82.10 83.14 77.93
+ Self-Evolution 82.53 83.38 79.13

like Gen-3 (RunwayML, 2024) and Kling (Kuaishou, 2024),
as illustrated in Fig. 13 and detailed in Table 3.

E.9. Cost Comparison of all Sandbox Experiments

Besides, we present the compute details for our experiments
and compare them to other baselines. Our experiment on
a single data pool is designed to be completed within one
day using a GPU. Consequently, with 8 A100 GPUs, we
can run all our experiments within approximately 3 days, 7
days, and 10 days for the CLIP, image-to-text, and text-to-
video experiments, respectively. The training sample size
is in the order of O(1) million video-text pairs and O(1)
million image-text pairs in our experiments. As a reference,
the pre-training cost for a cutting-edge text-to-video model
like Meta’s MovieGen involves 6,144 H100 GPUs, O(100)
million video-text pairs, and O(1) billion image-text pairs.

More specifically, for the image-to-text experiments, in Ta-
ble 2, our MGM model shows a +2.12% average perfor-
mance improvement over baseline, using approximately

51.8% of the FLOPS.

For the CLIP experiments, refer to Figure 12; the FLOPs
with full expansion rate are 189 α PFLOPS (14.78G in-
ference FLOPS per sample) and 526 α PFLOPS (41.09G
inference FLOPS per sample) for B-32 and B-16, respec-
tively.

For the text-to-video experiments, Noting that estimating
the FLOPS for some models in Table 3 and Table 12 poses
several challenges due to the lack of publicly available infor-
mation. For example, some of their training codes, and train-
ing datasets have not been open-sourced, and specific details
such as the resolution and frame rate of training videos are
unavailable. Thus, we report the estimated FLOPS for the
models with sufficient details about the training samples
and open-sourced models below. We utilized the inference
code of their released open-source models and measured
the FLOPS during inference using the calflops 3 tool. We

3https://github.com/MrYxJ/calculate-flops.pytorch
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Table 12: Leading models on the VBench leaderboard as of Sep 23, 2024. “Board Avg.” denotes the weighted average of
normalized scores across 16 metrics defined by VBench. “Quality Avg.” represents the aggregated scores from 7 video
quality metrics, whereas “Semantic Avg” aggregates scores from 9 metrics evaluating the consistency between prompts
and generated videos. “Uniform Avg.” indicates the simple average of scores related to quality and semantic metrics.
Data-Juicer (T2V, 147k) is based on T2V-Turbo distillation training on 147k instances. In order to demonstrate the scalability
of our methodologies, we then further self-distilled our model to obtain Data-Juicer (DJ, 228k) on other 228k instances.

Models (Ranked by leaderboard) Board Avg. (%) Uniform Avg. (%) Quality Avg. (%) Semantic Avg. (%)

1. Data-Juicer (DJ, 228k) 82.53 81.26 83.38 79.13
Data-Juicer (T2V, 147k) 82.10 80.54 83.14 77.93

2. Gen-3 (RunwayML, 2024) 82.32 79.64 84.11 75.17
3. VEnhancer (VC2) (He et al., 2024a) 81.97 80.00 83.27 76.73
4. Kling (2024-07) (Kuaishou, 2024) 81.85 79.54 83.39 75.68
5. LaVie-2 (Wang et al., 2025) 81.75 79.50 83.24 75.76
6. CogVideoX-5B (Yang et al., 2024) 81.61 79.90 82.75 77.04
7. Vchitect 2.0-2B (Fan et al., 2025) 81.57 80.15 82.51 77.79
8. T2V-Turbo (VC2) (Li et al., 2024a) 81.01 78.67 82.57 74.76

Table 13: Detailed FLOPs comparison for representative T2V models. The factor α indicates a constant taking into account
the disclosed quantity of training data.

Models Performance Full size of used Dataset Inference
FLOPS per
Sample

(Estimated)
Number of
Training Sam-
ples

(Estimated)
Training Cost in
EFLOPS

Ours
(stems from VC2) 82.53 228k 12T/sample,

320p * 8fps
640k 7.68α

Ours
(stems from VC2) 82.10 147k 12T/sample,

320p * 8fps
640k 7.68α

VEnhancer
(stems from VC2) 81.97 350k 478T/sample,

720p * 24fps
≥ 350k ≥ 167.3α

CogVideoX-5B 81.61 1,051M 338T/sample,
720p * 8/16fps

35M ≥ 11841α

Vchitect 2.0-2B 81.57 - 252T/sample,
768p * 8fps

- -
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Figure 13: The VBench Leaderboard as of September 23, 2024, illustrating the rank 1 achievement empowered by our
data-model co-development workflow.

then estimated the training FLOPS by applying a factor of
α and taking into account the disclosed quantity of train-
ing data. From this, we can see that our method achieves
strong performance while utilizing fewer FLOPS, especially
in comparison to the third-place model, VEnhancer, which
also originates from VC2, the same upstream model as ours.
The second-place Gen-3 and the fourth-place Kling are
omitted as they are proprietary models within commercial
products.

E.10. Iterative Workflows in Sandbox

Data-Juicer Sandbox allows iterative workflows, where data-
model co-development is activated iteratively to enable data
and model improvements for each other. We conduct a fur-
ther iterative experiment based on the basic single-operator
experiments for the image captioning fine-tuning task in
Sec. 4.2, where the full experimental results are shown in
Table 8.

Experiment Settings. We regard the single-operator recipes
in the basic experiments as the recipe1, and their trained
models as checkpoint1. Based on these first-iteration re-
sults, we select the best checkpoint from the best single
operator Text Length to conduct a second iteration of
single-operator continuous training for all single-operator
recipes recipe2 and obtain the second-iteration trained mod-
els checkpoint2. Finally, we evaluate the checkpoint2 to
find out the impacts of the second-iteration data-model co-

develpment on the checkpoint1.

Results. As the Table 14 shows, the second iteration contin-
ues to improve the model performance. Notably, while the
ranking of OP effects changes slightly between iterations,
most effective OPs remain consistent: 8 out of the top-10
OPs in the second iteration overlap with those from the
first iteration; 7 of top-10 OPs in the first iteration increase
their rankings by an average of 6.14 positions and 3 of them
decrease by an average of 3.33 positions. Using the same
OPs, data pool performance changes, providing actionable
insights for dynamic environments.

This also highlights promising future directions and un-
derscores the distinction between our work and DataComp.
While DataComp primarily focuses on CLIP pretraining and
scaling compute with duplicated data, our data recipes are
validated across a broader range of tasks, including text-to-
video generation (EasyAnimate, T2V-Turbo), image-to-text
pretraining (MGM), post-training (InternVL-2.0) and the
iterative co-development.

E.11. Operators beyond Filters

There are diverse types of OPs in Data-Juicer in addition to
Filters. In this section, we conduct several experiments on
two representative Mappers using MGM-2B on the image-
to-text task to verify the effectiveness of operators beyond
Filters of the sandbox.
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Experiment Settings. We use the same experiment set-
ting of single-operator experiments for the image-to-text
task in Sec. 4.2, except that we replace the single-operator
recipes of Filters with two new recipes of two Map-
pers: image_diffusion_mapper: it regenerates a
new image for each sample based on the given caption;
image_captioning_mapper: it recaptions the exist-
ing image in each sample.

Results. As the Table 15 shows, images generated by
image_diffusion_mapper significantly improve the
model performance compared to the original images. In
Fig. 14, it highlights a visual example before and after pro-
cessing with these two Mappers, with the core objects in
the captions marked in red. We can observe that diffu-
sion models used in the image_diffusion_mapper
effectively locate and better present the key objects (e.g.,
“setting sun”) in the newly generated image, and it also
removes redundant information (e.g., watermarks, link
texts). We think this kind of “denoising” capability
of image_diffusion_mapper contributes to perfor-
mance gains. Experiments on other kinds of OPs are left to
future work.

E.12. Potential Model Development: Automated Prompt
Adjustments

Most parts of this paper focus on the data improvements
in data-model co-development. In this section, we present
several experiments for automated prompt adjustment to
show the potential model development part of the Data-
Juicer Sandbox.

Experiment Settings. We select the image captioning fine-
tuning task, extend a new model inference hook with about
40 lines of code changes, and update its prompt config-
uration file. Based on the iterative experiment results in
Sec. E.10, we use the top-1 recipes found in two iterations.
Then we select 10 different prompts generated by Qwen2.5-
max and study the effects of them on trained models in
different iterations.

Results. As the Table 16 summarizes, the ranking and
performance of these prompts vary significantly across it-
erations, ranging from -1.673 to +0.944. Some of them
beat the baseline prompt, and some of them can enhance
or degrade performance in both iterations. It seems that
the most suitable prompt is changing during the iterative
data-model co-development, which indicates the potential
for auto-optimizing model configurations in the context of
the co-development of the Data-Juicer Sandbox.
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the setting sun in africa on a cloudy day
stock photo © monkeypix

lone tree in the middle of nowhere, 
serengeti nat'lpark rwanda ndakarara, 
asia kenya afric

Original image-caption pair Regenerated contents

Image
diffusion
mapper

Image
captioning
mapper

Figure 14: An example of image and caption pair before and after being transformed by image_diffusion_mapper
and image_captioning_mapper.

Table 14: Top-10 OP performance ranking with 2 iterations, including their statistical dimensions and the improvements
relative to the baselines for the image captioning task. The 2nd iteration is continuously trained on the top-1 OP (Text
Length) checkpoint in the 1st iteration and the improvements are relative to it as well. The OPs in bold in the 2nd iteration
also appear in top-10 OPs of the 1st iteration.

1st iter. 2nd iter.

OP-Generated Statistics Average Performance
Changes (%)

OP-Generated Statistics Average Performance
Changes (%)

Text Length 0.760 Flagged Word Ratio 0.607

Image Watermark Score 0.477 CLIP Image-Text Similarity 0.599

Character Repetition Ratio 0.449 Text Perplexity 0.521

Text Perplexity 0.331 Character Repetition Ratio 0.434

Word Repetition Ratio 0.300 Image Aesthetics Score 0.420

Image Width 0.265 Image Size 0.376

CLIP Image-Text Similarity 0.225 Phrase Grounding Recall 0.358

Phrase Grounding Recall 0.188 Image Width 0.320

Image Aesthetics Score 0.186 Image Height 0.285

Image Aspect Ratio 0.171 Image Watermark Score 0.264
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Table 15: The performance improvements of two mapper OP, image_diffusion_mapper and image_captioning_mapper,
relative to the baseline, which regenerates a new image/caption for each sample using diffusion/BLIP models respectively.
The baseline is based on the original raw images.

Mapper OP Average Performance Changes (%)
image_diffusion_mapper 13.45 ± 11.33

image_captioning_mapper -1.07 ± 0.65

Table 16: The experimental results of automated prompt adjustment on the top-1 recipes found in 2 iterations with 10
different prompts for the image captioning task. The baseline prompt is the default prompt of InternVL2.5. The values that
are in bold or underlined are the best or the 2nd best ones in each column.

Prompt
Average Performance Changes (%)

1st vs. 2nd
1st iter. 2nd iter.

(Baseline) Provide a one-sentence caption for the provided image. 0.760 0.607 >

Provide a brief yet comprehensive caption that highlights the
primary elements and overall mood of the image.

0.944 -0.705 >

Describe the image in one sentence, focusing on the main subject
and its surrounding environment.

0.832 -0.241 >

Summarize the scene depicted in the image with a concise and
descriptive sentence.

0.734 0.148 >

Summarize the content of the image in one clear and accurate
sentence without omitting important details.

0.542 0.186 >

Describe the most important details of the image in one sentence. 0.400 0.130 >

Craft a concise image caption highlighting the main activity
alongside coexisting static elements in the image.

0.083 -1.622 >

What is the main subject of the image, and how would you describe
it in one sentence?

-0.026 -0.463 >

If there is movement or activity in the image, summarize it in a
single descriptive sentence.

-0.594 0.433 <

Please provide a one-sentence caption that describes the primary
subject’s action and its relationship with the surrounding environment.

-1.578 -1.510 <

What stands out most in the image? Capture it in a concise and
striking one-sentence caption.

-1.673 -1.300 <
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