
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROOF SEARCH AUGMENTED LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer language models (TLMs) exhibit an impressively general range of
capabilities. A growing body of work aims to harness these models for com-
plex reasoning problems expressed in natural language. However, recent theoreti-
cal and empirical results have revealed limits to the algorithmic generalization of
TLM reasoning. Transformers trained to solve deduction problems from one dis-
tribution fail to solve instances of the same problem type drawn from other distri-
butions. We propose to improve the systematic reasoning capabilities of TLMs via
a differentiable proof search module, yielding proof-search augmented language
models (PSALMs). In a PSALM, a Transformer is responsible for predicting rule
and fact representations for a neural theorem prover (NTP). The NTP performs a
backward-chaining search over proofs, scoring them based on a soft unification
operation. Our results show that PSALMs successfully generalize in deduction
tasks where vanilla transformers do not learn systematic behavior, can be adapted
to more natural text with only label supervision, and robustly handle large exam-
ples where proprietary LLMs make mistakes.

1 INTRODUCTION

The general utility of large language models for text- and code-based tasks is a major factor driving
their increasing adoption. Pursuant to this, there is a growing premium placed on their ability to
‘reason’ in order to widen the range of tasks they can handle. Reasoning in this context translates
to following rules, integrating information in a consistent way, and being able to solve complex
problems. One big challenge is search: strategies like chain-of-thought inference (Wei et al., 2022),
in which models generate intermediate steps to break problems down, are fundamentally greedy and
can leave models in dead-ends after they commit to an inconsistent rationale. Strategies like tree-of-
thought (Yao et al., 2023) that allow backtracking have to navigate the search space of token strings,
which is massive, and still fundamentally depend on the model to propose consistent steps.

This work aims to bridge the gap between classical proof search in systems like Prolog and the soft
reasoning capabilities of transformers. Such a unification has been explored before in the context
of the neural theorem prover (NTP) (Rocktäschel & Riedel, 2017); however, NTPs have difficulty
scaling to real problem sizes and do not inherently have the ability to operate over natural language.
We show how a transformer can effectively translate a natural language statement of a problem into
a set of soft rules to be queried through an NTP. We also describe straightforward changes to the
NTP that improve its learning dynamics and allow it to handle nontrivial rulesets efficiently.

Our system, shown in Figure 1, consists of several steps. First, a pre-trained transformer encodes
a set of text rules, and an attentive rule extractor projects the transformer’s encodings into soft rule
representations. These rules are fed into a backward-chaining search performing soft unification.
This algorithm extends standard NTP inference with dynamic pruning and parallel step processing.

We evaluate our architecture on the SimpleLogic dataset from Zhang et al. (2023). On this dataset,
vanilla transformers learn spurious correlations and achieve perfect “in-distribution” accuracy, but
fail to generalize at higher proof depths to problems with the same logic sampled from a different
process. Our results show that our approach is able to generalize across this distribution gap with no
major performance loss, supervised either end-to-end or at the rule level. We also demonstrate the
ability to use our architecture’s end-to-end differentiability to adapt a model trained on templated
rules to more natural text with only example-level labels.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

John is happy.
Transformer Language Model TLM

:-
fun happy kind

:- ∅
happy

Rule representations

:-
Is John fun?

goal

apply rule

ground
fact

:-
apply
rule

proof score = 0.9

Context

Query

…

Neural Theorem Prover
apply rule, soft unify

state with new goals

Yes, John is fun

If someone is happy and kind, then they are fun.

Best-scoring proof

Figure 1: Overview of the PSALM architecture. A Transformer produces an encoding of rules
expressed in natural language, which are fed to a neural theorem prover to search over proofs.

Our contributions (1) enable soft proof search with hundreds of rules at higher depths than previously
feasible, (2) demonstrate how to differentiably parameterize proof search with transformers, and (3)
show that improving architectural inductive bias allows structurally generalizable reasoning to be
learned end-to-end.

2 BACKGROUND

Zhang et al. (2023) observe that TLMs trained on deduction problems learn incidental statistical
features related to the number of rules and facts, and that the ability of these models to predict
provability of goals collapses when they are tested on instances of the same problem drawn from
a new distribution where these trends no longer hold. This means that the decision functions they
acquire conflate aspects of the problem that we hold independent.

We set out to solve this issue architecturally: we would like to modify the computational structure of
the TLM to make it easier (or even possible) for the system to learn a deductive decision function that
behaves correctly across distributions, while maintaining the softness and learnability of predictions.

The basic hierarchical structure of automated deduction algorithms is backward chaining (Russell &
Norvig, 2020, pg. 230), which attempts to find a proof for a goal expression as follows: consequents
of the available rules are matched against the current goal, and the antecedents of any matching rules
are then introduced as additional subgoals, until all open goals are discharged and search succeeds
or all options are exhausted and search fails. This procedure is carried out almost verbatim by the
Prolog automated deduction system and logical programming language (Van Emden & Kowalski,
1976; Kowalski, 2014), and forms the backbone of many more advanced deduction systems.

2.1 THE NEURAL THEOREM PROVER

Rocktäschel & Riedel (2017) introduce the neural theorem prover (NTP), a differentiable module
with an inference procedure analogous to the backward chaining proof search strategy used by Pro-
log. Prolog rules are Horn clauses h :– b1 ∧ b2 ∧ .. ∧ bn. The :– connective is equivalent to←, a
leftward implication: if all the body terms bi are true, then the head h is true. A rule can have zero
body terms, in which case it is simply a fact: an assertion that its head term is true.

The core inference rule in Prolog is unification: an open goal can be discharged by applying a
rule if the goal syntactically matches the head of the rule, after which that rule’s body terms are
introduced as subgoals. Unification in symbolic systems is a discrete operation: either it succeeds,
returning a variable assignment under which the two terms are equal, or it fails. The NTP relaxes
this discreteness by representing terms as vectors in Rd, making a rule a collection of vectors:

h :– b1 .. bn (1)

The NTP replaces symbolic unification’s exact syntactic comparisons with inner products. If the
rule above were applied to a goal term vector g, the unification would result in a score of h · g. We
would then have b1, . . . ,bn as new subgoals to prove by applying additional rules.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In Prolog, a proof is successful if all the unifications involved are successful. In the NTP, a proof can
be considered “successful” as long as it is well-formed in that there are no open subgoals. Instead of
complete proofs having a binary notion of success or failure, a proof comes with real-valued score,
defined to be the minimum over its unification scores, intuitively its weakest link. Let hi be the head
term vector of the i-th rule. Let bi,k be the k-th body term vector of the i-th rule. A proof P consists
of an applied rule r(P) and subproofs Sk(P), one for each body term of the applied rule. The proof
score of the NTP proof P with goal g is then:

scorepr(P,g) = min(hr(P) · g,min
k

scorepr(Sk(P),br(P),k) (2)

The overall score returned by the NTP process is the maximum score over all considered proofs.
As there can be an unlimited number of proofs given one or more non-fact rules, search must be
truncated; we impose an upper limit on proof depth and the number of visited search states.

Weber et al. (2019) and Minervini et al. (2020a), among others, have sought to adapt the NTP
to natural language inputs. However, the systems proposed in prior work require pipelined rule
prediction and continue to suffer from exploding computational cost with increased proof depth.
Our experiments also corroborate the findings of De Jong & Sha (2019): the hard minimum and
maximum in the NTP scoring function prevent effective exploration of the space of rule representa-
tions during training. We describe our approaches to mitigate these issues in the following sections.

3 METHODS

The PSALM architecture has two main components: a transformer language model, which encodes
input text into continuous rule representations, and a search module, which performs inference based
on the encoded rules in order to make predictions.

3.1 RULE ENCODING

The rule encoder is responsible for predicting rule representations (1) whose term unification scores
reflect the semantic compatibility of rule consequents and antecedents: unifying similar terms should
result in a high score, and unifying incompatible terms should result in a low score.

Rules may have variable arity on the right hand side. For example, a statement “Alice is tall” has
no preconditions, but a statement “If Alice is open-minded and polite, then she is agreeable” needs
two body terms. Rather than modeling this as a hard decision, we do it softly, predicting rules of
all arities simultaneously, only some of which will be used. Specifically, the rule extractor takes the
hidden state vectors of the transformer as input, and yields a set of candidate rules by predicting
term vectors to fill the slots of M different rule templates. We use four rule templates of the form
shown in (1), one for each n ∈ [0..3]. The rule extractor predicts one instance of each rule template
per input sentence. The rule encoder can accommodate the unused rules (e.g., an arity 2 rule for the
sentence “Alice is tall”) by learning to assign term vectors with universally low unification scores to
the head slots of these inactive rules, preventing them from appearing in high-scoring proofs.

Predicting rules from TLMs Let x = x1, . . . , xn be a sequence of tokens. By providing x to a
TLM and extracting the resulting hidden vectors before its output layer, we can obtain a sequence
of embeddings E = e1, . . . , en. We pass the embedding sequence through a learnable projection to
produce a query, key, and value vector ∈ Rd at every token for each term slot in the rule templates.
Let M be the number of templates, and let |Tm| be the number of term vectors in the m-th template:

∀i ∈ [1..n], j ∈ [1..

M∑
m

|Tm|]. qi,j : ki,j : vi,j = W⊤
j ei (3)

Let Kj and Vj be the matrices formed by stacking each ki,j and vi,j across the sequence. We then
apply standard scaled dot product attention to yield a single term vector for each term slot:

ti,j = attn(qi,j ,Kj , Vj) (4)

This can be construed as a multi-headed attention where each term slot is a head. Once we have term
vectors ti,j for each term slot j, we can extract rule representations at token i by iterating over rule

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

:-
open
goal

:-
open
goal

score = 2.8

score = -3.3

Pop top state, unify rule heads with open goal
:- ∅
:-

:-
:-

Compute resulting states:
:-

:-
score = min(2.8,)

Add to fringe

Search fringe (by score)

:-

Complete proof

<latexit sha1_base64="sDZ11F6PlPZhTV2BSTo4RyZOGtw=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCtYWmlMn0ph06mYSZiVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4NvfbT6g0j+WDmSTYi+hQ8pAzaqzk+xE1oyDMgmnf61drbt2dgSwTryA1KNDsV7/8QczSCKVhgmrd9dzE9DKqDGcCpxU/1ZhQNqZD7FoqaYS6l80yT8mJVQYkjJV90pCZ+nsjo5HWkyiwk3lGvejl4n9eNzXhdS/jMkkNSjY/FKaCmJjkBZABV8iMmFhCmeI2K2EjqigztqaKLcFb/PIyeTyre5f1i/vzWuOmqKMMR3AMp+DBFTTgDprQAgYJPMMrvDmp8+K8Ox/z0ZJT7BzCHzifPwwGkbQ=</latexit>

b1
<latexit sha1_base64="FHbzdBqSeQfN3YYMf3KKKMUiI5Y=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqswUX8uiG5cV7AM6Q0nSTBuayQxJRihDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JNDEsG1cd1vp7S2vrG5Vd6u7Ozu7R9UD486Ok4VZW0ai1j1CNZMcMnahhvBeoliOCKCdcnkLve7T0xpHstHM01YEOGR5CGn2FjJ9yNsxiTMyGzQGFRrbt2dA60SryA1KNAaVL/8YUzTiElDBda677mJCTKsDKeCzSp+qlmC6QSPWN9SiSOmg2yeeYbOrDJEYazskwbN1d8bGY60nkbETuYZ9bKXi/95/dSEN0HGZZIaJuniUJgKZGKUF4CGXDFqxNQSTBW3WREdY4WpsTVVbAne8pdXSadR967qlw8XteZtUUcZTuAUzsGDa2jCPbSgDRQSeIZXeHNS58V5dz4WoyWn2DmGP3A+fwANipG1</latexit>

b2
<latexit sha1_base64="sDZ11F6PlPZhTV2BSTo4RyZOGtw=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCtYWmlMn0ph06mYSZiVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4NvfbT6g0j+WDmSTYi+hQ8pAzaqzk+xE1oyDMgmnf61drbt2dgSwTryA1KNDsV7/8QczSCKVhgmrd9dzE9DKqDGcCpxU/1ZhQNqZD7FoqaYS6l80yT8mJVQYkjJV90pCZ+nsjo5HWkyiwk3lGvejl4n9eNzXhdS/jMkkNSjY/FKaCmJjkBZABV8iMmFhCmeI2K2EjqigztqaKLcFb/PIyeTyre5f1i/vzWuOmqKMMR3AMp+DBFTTgDprQAgYJPMMrvDmp8+K8Ox/z0ZJT7BzCHzifPwwGkbQ=</latexit>

b1
<latexit sha1_base64="FHbzdBqSeQfN3YYMf3KKKMUiI5Y=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqswUX8uiG5cV7AM6Q0nSTBuayQxJRihDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JNDEsG1cd1vp7S2vrG5Vd6u7Ozu7R9UD486Ok4VZW0ai1j1CNZMcMnahhvBeoliOCKCdcnkLve7T0xpHstHM01YEOGR5CGn2FjJ9yNsxiTMyGzQGFRrbt2dA60SryA1KNAaVL/8YUzTiElDBda677mJCTKsDKeCzSp+qlmC6QSPWN9SiSOmg2yeeYbOrDJEYazskwbN1d8bGY60nkbETuYZ9bKXi/95/dSEN0HGZZIaJuniUJgKZGKUF4CGXDFqxNQSTBW3WREdY4WpsTVVbAne8pdXSadR967qlw8XteZtUUcZTuAUzsGDa2jCPbSgDRQSeIZXeHNS58V5dz4WoyWn2DmGP3A+fwANipG1</latexit>

b2

<latexit sha1_base64="FHbzdBqSeQfN3YYMf3KKKMUiI5Y=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqswUX8uiG5cV7AM6Q0nSTBuayQxJRihDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JNDEsG1cd1vp7S2vrG5Vd6u7Ozu7R9UD486Ok4VZW0ai1j1CNZMcMnahhvBeoliOCKCdcnkLve7T0xpHstHM01YEOGR5CGn2FjJ9yNsxiTMyGzQGFRrbt2dA60SryA1KNAaVL/8YUzTiElDBda677mJCTKsDKeCzSp+qlmC6QSPWN9SiSOmg2yeeYbOrDJEYazskwbN1d8bGY60nkbETuYZ9bKXi/95/dSEN0HGZZIaJuniUJgKZGKUF4CGXDFqxNQSTBW3WREdY4WpsTVVbAne8pdXSadR967qlw8XteZtUUcZTuAUzsGDa2jCPbSgDRQSeIZXeHNS58V5dz4WoyWn2DmGP3A+fwANipG1</latexit>

b2
<latexit sha1_base64="FHbzdBqSeQfN3YYMf3KKKMUiI5Y=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqswUX8uiG5cV7AM6Q0nSTBuayQxJRihDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JNDEsG1cd1vp7S2vrG5Vd6u7Ozu7R9UD486Ok4VZW0ai1j1CNZMcMnahhvBeoliOCKCdcnkLve7T0xpHstHM01YEOGR5CGn2FjJ9yNsxiTMyGzQGFRrbt2dA60SryA1KNAaVL/8YUzTiElDBda677mJCTKsDKeCzSp+qlmC6QSPWN9SiSOmg2yeeYbOrDJEYazskwbN1d8bGY60nkbETuYZ9bKXi/95/dSEN0HGZZIaJuniUJgKZGKUF4CGXDFqxNQSTBW3WREdY4WpsTVVbAne8pdXSadR967qlw8XteZtUUcZTuAUzsGDa2jCPbSgDRQSeIZXeHNS58V5dz4WoyWn2DmGP3A+fwANipG1</latexit>

b2

<latexit sha1_base64="DQivyqc5aaxOS/nKsGU/cG22g/Y=">AAAB9HicbVDLSgMxFL3xWeur6tJNsIiuykzxtSy6cVnBPqAdSibNtKGZzJhkCmXod7hxoYhbP8adf2OmnYW2HggczrmXe3L8WHBtHOcbrayurW9sFraK2zu7e/ulg8OmjhJFWYNGIlJtn2gmuGQNw41g7VgxEvqCtfzRXea3xkxpHslHM4mZF5KB5AGnxFjJ64bEDP0g9adnvWqvVHYqzgx4mbg5KUOOeq/01e1HNAmZNFQQrTuuExsvJcpwKti02E00iwkdkQHrWCpJyLSXzkJP8alV+jiIlH3S4Jn6eyMlodaT0LeTWUi96GXif14nMcGNl3IZJ4ZJOj8UJAKbCGcN4D5XjBoxsYRQxW1WTIdEEWpsT0Vbgrv45WXSrFbcq8rlw0W5dpvXUYBjOIFzcOEaanAPdWgAhSd4hld4Q2P0gt7Rx3x0BeU7R/AH6PMHchaR5g==</latexit>

b0
2

<latexit sha1_base64="MMgGFiilJ3ioMsz7VFCTk65GsZM=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvoqsyIr2XRjcsK9gHtUDJppg3NJGOSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7skJYs60cd1vp7Cyura+UdwsbW3v7O6V9w+aWiaK0AaRXKp2gDXlTNCGYYbTdqwojgJOW8HoLvNbY6o0k+LRTGLqR3ggWMgINlbyuxE2wyBMg+lpz+uVK27VnQEtEy8nFchR75W/un1JkogKQzjWuuO5sfFTrAwjnE5L3UTTGJMRHtCOpQJHVPvpLPQUnVilj0Kp7BMGzdTfGymOtJ5EgZ3MQupFLxP/8zqJCW/8lIk4MVSQ+aEw4chIlDWA+kxRYvjEEkwUs1kRGWKFibE9lWwJ3uKXl0nzvOpdVS8fLiq127yOIhzBMZyBB9dQg3uoQwMIPMEzvMKbM3ZenHfnYz5acPKdQ/gD5/MHcJKR5Q==</latexit>

b0
1

<latexit sha1_base64="sv/verkNBVaHGuvYOzFPYfDFwmk=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK6KjPia1l047KCfcB0KJk004ZmkiG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE8ENuO63U1pZXVvfKG9WtrZ3dveq+wdto1JNWYsqoXQ3JIYJLlkLOAjWTTQjcShYJxzf5X7niWnDlXyEScKCmAwljzglYCW/FxMYhVE2mp72qzW37s6Al4lXkBoq0OxXv3oDRdOYSaCCGON7bgJBRjRwKti00ksNSwgdkyHzLZUkZibIZpGn+MQqAxwpbZ8EPFN/b2QkNmYSh3Yyj2gWvVz8z/NTiG6CjMskBSbp/KMoFRgUzu/HA64ZBTGxhFDNbVZMR0QTCralii3BWzx5mbTP695V/fLhota4LeoooyN0jM6Qh65RA92jJmohihR6Rq/ozQHnxXl3PuajJafYOUR/4Hz+AEx4kUc=</latexit>

h0 <latexit sha1_base64="sv/verkNBVaHGuvYOzFPYfDFwmk=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK6KjPia1l047KCfcB0KJk004ZmkiG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE8ENuO63U1pZXVvfKG9WtrZ3dveq+wdto1JNWYsqoXQ3JIYJLlkLOAjWTTQjcShYJxzf5X7niWnDlXyEScKCmAwljzglYCW/FxMYhVE2mp72qzW37s6Al4lXkBoq0OxXv3oDRdOYSaCCGON7bgJBRjRwKti00ksNSwgdkyHzLZUkZibIZpGn+MQqAxwpbZ8EPFN/b2QkNmYSh3Yyj2gWvVz8z/NTiG6CjMskBSbp/KMoFRgUzu/HA64ZBTGxhFDNbVZMR0QTCralii3BWzx5mbTP695V/fLhota4LeoooyN0jM6Qh65RA92jJmohihR6Rq/ozQHnxXl3PuajJafYOUR/4Hz+AEx4kUc=</latexit>

h0

<latexit sha1_base64="sv/verkNBVaHGuvYOzFPYfDFwmk=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK6KjPia1l047KCfcB0KJk004ZmkiG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE8ENuO63U1pZXVvfKG9WtrZ3dveq+wdto1JNWYsqoXQ3JIYJLlkLOAjWTTQjcShYJxzf5X7niWnDlXyEScKCmAwljzglYCW/FxMYhVE2mp72qzW37s6Al4lXkBoq0OxXv3oDRdOYSaCCGON7bgJBRjRwKti00ksNSwgdkyHzLZUkZibIZpGn+MQqAxwpbZ8EPFN/b2QkNmYSh3Yyj2gWvVz8z/NTiG6CjMskBSbp/KMoFRgUzu/HA64ZBTGxhFDNbVZMR0QTCralii3BWzx5mbTP695V/fLhota4LeoooyN0jM6Qh65RA92jJmohihR6Rq/ozQHnxXl3PuajJafYOUR/4Hz+AEx4kUc=</latexit>

h0 <latexit sha1_base64="sv/verkNBVaHGuvYOzFPYfDFwmk=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK6KjPia1l047KCfcB0KJk004ZmkiG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE8ENuO63U1pZXVvfKG9WtrZ3dveq+wdto1JNWYsqoXQ3JIYJLlkLOAjWTTQjcShYJxzf5X7niWnDlXyEScKCmAwljzglYCW/FxMYhVE2mp72qzW37s6Al4lXkBoq0OxXv3oDRdOYSaCCGON7bgJBRjRwKti00ksNSwgdkyHzLZUkZibIZpGn+MQqAxwpbZ8EPFN/b2QkNmYSh3Yyj2gWvVz8z/NTiG6CjMskBSbp/KMoFRgUzu/HA64ZBTGxhFDNbVZMR0QTCralii3BWzx5mbTP695V/fLhota4LeoooyN0jM6Qh65RA92jJmohihR6Rq/ozQHnxXl3PuajJafYOUR/4Hz+AEx4kUc=</latexit>

h0
· score = min(2.8,)·

New goals ,
<latexit sha1_base64="MMgGFiilJ3ioMsz7VFCTk65GsZM=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvoqsyIr2XRjcsK9gHtUDJppg3NJGOSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7skJYs60cd1vp7Cyura+UdwsbW3v7O6V9w+aWiaK0AaRXKp2gDXlTNCGYYbTdqwojgJOW8HoLvNbY6o0k+LRTGLqR3ggWMgINlbyuxE2wyBMg+lpz+uVK27VnQEtEy8nFchR75W/un1JkogKQzjWuuO5sfFTrAwjnE5L3UTTGJMRHtCOpQJHVPvpLPQUnVilj0Kp7BMGzdTfGymOtJ5EgZ3MQupFLxP/8zqJCW/8lIk4MVSQ+aEw4chIlDWA+kxRYvjEEkwUs1kRGWKFibE9lWwJ3uKXl0nzvOpdVS8fLiq127yOIhzBMZyBB9dQg3uoQwMIPMEzvMKbM3ZenHfnYz5acPKdQ/gD5/MHcJKR5Q==</latexit>

b0
1

<latexit sha1_base64="DQivyqc5aaxOS/nKsGU/cG22g/Y=">AAAB9HicbVDLSgMxFL3xWeur6tJNsIiuykzxtSy6cVnBPqAdSibNtKGZzJhkCmXod7hxoYhbP8adf2OmnYW2HggczrmXe3L8WHBtHOcbrayurW9sFraK2zu7e/ulg8OmjhJFWYNGIlJtn2gmuGQNw41g7VgxEvqCtfzRXea3xkxpHslHM4mZF5KB5AGnxFjJ64bEDP0g9adnvWqvVHYqzgx4mbg5KUOOeq/01e1HNAmZNFQQrTuuExsvJcpwKti02E00iwkdkQHrWCpJyLSXzkJP8alV+jiIlH3S4Jn6eyMlodaT0LeTWUi96GXif14nMcGNl3IZJ4ZJOj8UJAKbCGcN4D5XjBoxsYRQxW1WTIdEEWpsT0Vbgrv45WXSrFbcq8rlw0W5dpvXUYBjOIFzcOEaanAPdWgAhSd4hld4Q2P0gt7Rx3x0BeU7R/AH6PMHchaR5g==</latexit>

b0
2

Figure 2: A snapshot of the search procedure, depicting a partial proof undergoing a rule application,
as well as the fringe containing all active partial proofs sorted by their lowest soft unification score.

templates and term slots in parallel with predicted term vector indices j and assigning successive
ti,j to each head/body slot. For example, if we had two templates h1 :– and h2 :– b2,1,b2,2, we
would predict four term vectors ti,j for j ∈ [1..4]; we would assign ti,1 to h1, ti,2 to h2, ti,3 to
b2,1, and ti,4 to b2,2, producing the instantiated rules ti,1 :– and ti,2 :– ti,3, ti,4.

Split Rule Encoding We assume for the experiments in this work that each sentence corresponds
to a rule, so we encode embedding sequences E and perform the attention operation in (4) sepa-
rately for each input sentence, and only compute t vectors (and thus rules) for the final token in each
sentence. Encoding rules independently prevents the TLM from “shortcutting” the NTP; put an-
other way, split rule encoding helps us restrict the hypothesis space during learning to generalizable
solutions that use the search module to synthesize premise information.

3.2 SEARCH

Our architecture relies on the soft proof search procedure to perform reasoning. This procedure,
which we describe in Algorithm 1 and show more abstractly in Figure 2, is derived from the NTP
algorithm of Rocktäschel & Riedel (2017) described in §2.1. Two major changes are required to
make this algorithm practical at our scale: pruning partial proofs, and parallelizing unification.

Pruning As we conduct search, early complete proofs provide a useful lower bound on proof
scores. We can immediately abandon a partial proof as soon as a rule is applied whose unification
score is lower than the current best-scoring proof, as the score of a proof is the minimum across its
unification scores, and we only need Algorithm 1 to return the proof with the highest possible score.

As originally described, the NTP did not feature pruning (Rocktäschel & Riedel, 2017). Inefficiency
posed a problem for its applicability to real problems, motivating subsequent work to restrict the
number of instantiated rules (Minervini et al., 2020b, i.a.). However, restricting the number of rules
doesn’t solve the underlying issue of being unable to abandon partial proofs. Dynamic pruning
allows us to extend the depth of search dramatically beyond what would otherwise be possible, even
while maintaining large rule sets.

Parallelism The naı̈ve recursive implementation of backtracking search is ill-suited to modern
compute hardware, as it visits search states in series. In order to take advantage of GPU parallelism,
we design Alg. 1 so that the unification operation can be performed for multiple search states
at the same time, as opposed to interleaved with each state’s visitation logic. This allows term
comparisons, which in our case translate to inner products, to be executed on the GPU as larger
vectorized operations without incurring separate dispatch overhead for each term vector.

Predicting provability We write ŷ = σ(NTP(g(x))) to denote the final prediction score. We
classify examples with a score above τ = 0.5 as provable.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Our version of the NTP search routine
1: Inputs:
2: Rules {hr :– br,1..br,|Br| | r ∈ [1..n]} with hr,br,i ∈ Rd

3: Goal g ∈ Rd

4: budget ∈ N
5: maxDepth ∈ N
6: Unification batch size b ∈ N
7: define states s ∈ S to be either the empty state ∅ or to contain:
8: Open goals: goals(s) = [g1..gk ∈ Rd]
9: Score: score(s) ∈ R

10: Best subproof score: best(s) ∈ R
11: Parent state: parent(s) ∈ S ▷ State whose first open goal this state closes

12: let depth(s ∈ S) =
{

if parent(s) = ∅ 0

else 1 + depth(parent(s))

13: let lowerBound(s ∈ S) =
{

if parent(s) = ∅ best(s)

else max(best(s), lowerBound(parent(s)))
14: function APPLY(rule r ∈ [1..n], state s ∈ S, rule score u ∈ R)
15: o← State(score = min(score(s), u),best = −∞)
16: if score(o) < lowerBound(s) ∨ (depth(s) = maxDepth ∧ |Br| > 0) then
17: return ∅ ▷ Prune if score too low or subgoals would break depth limit
18: if |Br| = 0 then ▷ Rule is a fact, we can close a subproof
19: c← s
20: while c ̸= ∅ ∧ |goals(c)| = 1 do ▷ Find ancestor with more than 1 open goal
21: best(c)← max(best(c), score(o)) ▷ Update ancestor score bounds
22: c← parent(c)
23: if c = ∅ then
24: goals(o)← [] ▷ No ancestors with more than 1 goal, proof is complete
25: parent(o)← ∅
26: else
27: goals(o)← [gi | gi ∈ goals(c) ∧ i > 1] ▷ Subproof is complete, close 1 goal
28: parent(o)← parent(c)
29: else ▷ Rule has body terms, so we introduce them as subgoals
30: goals(o)← [br,i | 1 ≤ i ≤ |Br|]
31: parent(o)← s
32: return o

33: procedure SEARCH(goal g ∈ Rd)
34: sinit ← State(goals = [g], score =∞,best = −∞,parent = ∅)
35: visits← 0
36: fringe← {sinit}
37: while visits < budget do
38: stateBatch← argtopk

s∈fringe, k=b
score(s)

39: fringe← fringe \ stateBatch
40: visits← visits + |stateBatch|
41: stepScores[r, s]← hr · goals(s)1 ∀ r ∈ [1..n], s ∈ stateBatch ▷ Batched dot product
42: for (r, s) ∈ stepScores do
43: s′ ← APPLY(r, s, stepScores[r, s])
44: if s′ = ∅ then
45: continue
46: else if |goals(s′)| = 0 then
47: yield score(s′)
48: else
49: fringe← fringe ∪ {s′}

50: let NTP(g ∈ Rd) = max
v∈SEARCH(g)

v

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 LEARNING

The PSALM NTP module is fully differentiable: unification scores and proof scores have well-
defined (sub)derivatives with respect to the TLM’s parameters. This offers us several points at
which we can potentially apply supervision during training in order to achieve the kind of reasoning
behavior we want out of the system. We consider four different objectives at three levels of granu-
larity: examples, proofs, and rules.

4.1 END-TO-END

The simplest way to train a PSALM is to leave all intermediate structure latent and optimize end-to-
end for proving correct statements and not proving incorrect statements. We do this by applying a
binary cross entropy loss, LE2E, on the predicted proof score (see Algorithm 1) against the example
label y (provable or not): LE2E(x) = y log σ(ŷ) + (1− y) log(1− σ(ŷ)).

We will show in Section 6 that this objective is not sufficient to learn the right latent structure. As
noted by De Jong & Sha (2019), this is due to the sparsity of the gradient flow in the vanilla NTP
definition: at each training step, only a single proof step’s unification score actually receives non-
zero gradient in the backward pass. They propose pooling proof scores across multiple alternate
proofs; we take this insight a step further. We relax the hard maximum over proof scores to a smooth
maximum over the top k highest scoring proofs, but we also relax the hard minimum over step scores
to a smooth minimum and add a small amount of Gaussian noise to the unification scores. The cor-
responding modifications to Algorithm 1 are described in Appendix A.2; we refer to the end-to-end
loss using these modifications as LE2ER.

4.2 PROOF DEMONSTRATIONS

The score NTP(g(x)) produced by the NTP algorithm is not normalized in any way: the stepwise
scores are not locally-normalized probability distributions, nor do we view the NTP as placing a
globally-normalized distribution over proofs. However, at training time we can still choose to treat
the proof process as a generative one and optimize to maximize the likelihood of a collection of gold
proof demonstrations. We locally normalize the rule application scores with softmax, yielding a
distribution over rule applications at each step, where g is the current goal term vector. We can then
define the probability of a proof as the product of its rule application probabilities:

prule(i | g) =
ehi·g∑n
j=1 e

hj ·g

pproof(P | g) = prule (r(P) | g)
∏
k

pproof
(
Sk(P) | br(P),k

) (5)

Given a set of gold symbolic rules corresponding to the sentences in an example x, we can then
construct a reference proof Pref(x) by using symbolic inference, then mapping symbolic rules to
the soft rules extracted from their respective sentences with the same number of body terms. The
root goal g(x) is the goal term vector provided by the rule extractor. The demonstration objective
Ldemo(x) is the negative log-likelihood loss over these reference proofs Pref(x):

Ldemo(x) = − log pproof (Pref(x) | g(x)) (6)

4.3 RULE REPRESENTATIONS

If we have reference symbolic rules, we can supervise rule representations directly. Our rule rep-
resentation loss Lrule(x) computes the symbolic unification results between all reference rule head
and body terms, and encourages the soft unification scores between rule term vectors to align with
those of their discrete counterparts. For instance, in Figure 1, we want to encourage the first term
vector (happy) to have a similar representation to the happy term vector in the second rule, even
though the NTP treats both of these as latent vectors with distinct parameters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We assume a setting where we have N sentences as in Figure 1, where each sentence maps to exactly
one symbolic rule. Let |Bi| be the number of body terms in the i-th rule. We construct the target
matrix T with the results of symbolic unification of all reference head terms hi against all body
terms bi,j and the goal g, with cells equal to 1 where unification succeeds and 0 otherwise:

T (x) =

unify(h1, b1,1) . . . unify(hN , b1,1)

...
. . .

...
unify(h1, bN,|BN |) . . . unify(hN , bN,|BN |)

unify(h1, g) . . . unify(hN , g)

 (7)

Note that T is a statement about symbolic unification and does not yet relate to the soft rules. Let
M be the number of soft rule templates; in this setup we have NM total soft rules, not all of which
should be active. Let ϕ : [1 .. N]→ [1 .. NM] be a mapping from symbolic rule indices to soft rule
indices. We define ϕ[i] to be the index of the soft rule from the i-th sentence with the same number
of body terms as the i-th symbolic reference rule, i.e. the one soft rule that should be active among
those predicted from that location. We construct a soft unification matrix U over active rule term
vectors and the predicted goal vector to align with T :

U =

hϕ[1] · bϕ[1],1 . . . hϕ[N] · bϕ[1],1

...
. . .

...
hϕ[1] · bϕ[N],|BN | . . . hϕ[N] · bϕ[N],|BN |

hϕ[1] · g . . . hϕ[N] · g

 (8)

Broadly speaking we want to encourage high values for entries of U corresponding to valid symbolic
unifications in T . We can represent this in an objective as:

Lrule(x) =
1

|U|
∑
i,j

Ti,j log σ(Ui,j) + (1− Ti,j) log(1− σ(Ui,j)) (9)

This objective only accounts for the soft rules with the right shape; i.e., a rule with two body terms
for the first sentence in Figure 1. In order to learn to downweight inactive rules, we concatenate
additional columns onto U for inactive rule head unifications, and add corresponding zeroes to T .
As the label distribution in T can be highly unbalanced, we also apply a rebalancing weight equal
to the ratio of the number of 0 labels to the number of 1 labels. The augmented forms of the U and
T matrices, along with the rebalanced objective, are given in appendix §A.1.

5 EXPERIMENTS

We evaluate PSALMs trained with each of the objectives described in §4, a vanilla TLM trained to
predict provable/not provable labels directly, as well as the proprietary OpenAI GPT-4o (0-shot, tem-
perature 0) and o1-preview systems. As Ldemo does not produce appropriate ŷ scores on its own, we
also evaluate a combination of Ldemo and LE2E which undergoes an initial round of training under
Ldemo followed by a round of fine-tuning with LE2E added to its objective.

We conduct an additional comparison in which we first train a PSALM on templated data with Lrule,
then fine-tune it on a smaller amount of paraphrased data with LE2E, comparing it to a vanilla TLM
trained with the same data recipe.

All systems we train use DeBERTa v3 Large (He et al., 2023) as the base TLM, with 435M pa-
rameters. The PSALM rule extractor adds 4M parameters. We execute PSALM inference with
budget = 1024 and unification state batch size b = 41. We train models using the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 1e−5 and 1000 steps of linear learning rate warmup
followed by linear learning rate decay over 24k total steps with a batch size of 8.

Our primary metric of interest is prediction accuracy (whether ŷ = y), more specifically accuracy
under distribution shift. We also evaluate the soundness of proofs predicted by PSALM systems by
translating soft proofs back to discrete ones using the inverse of the discrete→soft rule mapping ϕ
from §4.3.

1Note that batched unification also applies all rules in parallel, resulting in a larger effective batch size.
On average, unification batches in our training data contain ∼400 term vectors. We experimented with only
batching over rules (b = 1) as well as larger batch sizes, finding that b = 4 yielded the best inference speed.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: System performance in-distribution (ID) on held out rule-priority samples from depths
0-4 and out-of-distribution (OOD) on label-priority samples from depths 5-6. The vanilla TLM
does not predict proofs and is therefore excluded from soundness comparisons. ∗The OOD split is
imbalanced in the opposite direction from the ID split, and systems can err towards the minority
class. †Ldemo does not supervise proof scores with respect to τ , so training with this objective alone
is not enough for classification.

System ID acc. ID soundness OOD acc. OOD soundness

Majority class 66.6 – 76.7 –
Vanilla TLM 99.6 – 64.0 –

GPT-4o – – 79.6 –
o1-preview – – 96.0 –

PSALM-LE2E 76.2 3.9 23.3∗ 0.0
PSALM-Ldemo 66.9† 58.1 23.3† 8.6
PSALM-Ldemo+LE2E 82.3 64.1 28.4∗ 26.2
PSALM-LE2ER 100.0 100.0 99.9 98.1
PSALM-Lrule 100.0 100.0 96.7 86.3

PSALM-Ldemo+LE2E PSALM-LE2ER

ID OOD ID OOD

5.0 2.5 0.0 2.5
Proof score

0

20

40
Neg
Pos

1 0 1 2 3
Proof score

0

10

20

30

40

20 0 20
Proof score

0

50

100

150

200

20 10 0 10 20
Proof score

0

50

100

Figure 3: Proof score spreads on each problem distribution for our two end-to-end system variants.

5.1 DATA

We train and evaluate systems on the SimpleLogic task of Zhang et al. (2023), a synthetic task where
a system is given a set of text rules and facts and must predict whether a query statement holds under
the premises. An example of the task format is shown in Figure 7. SimpleLogic examples can be
sampled using multiple algorithms. The rule-priority algorithm (RP) first samples rules and facts
randomly, then computes the label via forward-chaining deduction. The label-priority algorithm
(LP) first samples whether or not particular predicates are true or false, then derives premises that are
compatible with this truth table. Samples from each algorithm are formatted identically and follow
the same decision rule. However, each algorithm leaves its own statistical traces: for example, the
probability of an example’s label being positive under the RP algorithm grows as the number of
rules increases, but this doesn’t hold for the LP algorithm.

We train on 10,000 samples from the RP algorithm sampled to have balanced gold proof depths
between 0 and 4. We evaluate on 1,000 held-out samples from this distribution (ID in Table 1) as
well as 1,000 samples with gold proof depths of 5 and 6 sampled from the LP algorithm (OOD).
We additionally generate ID-Para and OOD-Para, sets of 1,000 examples each from the ID and
OOD splits respectively whose premises and queries have been automatically paraphrased with
gpt-3.5-turbo. An example from ID-Para is shown in Figure 8.

6 RESULTS

Table 1 shows that a PSALM system with the LE2ER objective yields the best out-of-distribution
performance of the systems we compare. As shown in Figure 9, when examples get complex enough,
even strong pre-trained models can struggle due to autoregressive commitment to the wrong deriva-
tion. The strong performance of o1-preview shows that this can be avoided through search, but

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Lo
ss

E2E
E2E + demo
E2ER
rule

Figure 4: Convergence of each of the objectives
we consider.

Table 2: System performance out-of-distribution
(OOD-Para) on paraphrased label-priority sam-
ples from depths 5-6 after end-to-end fine-
tuning on 1,000 examples of ID-Para, except for
PSALM-Lrule which is not fine-tuned.

System OOD-Para acc.

Majority class 61.0
Vanilla TLM 55.0

PSALM-Lrule 50.5
PSALM-Lrule+LE2E 78.6

10 3 10 2 10 1 100

Elapsed time (s)

40

30

20

10

0

10

20

Pr
oo

f s
co

re

0.03s 0.11s

RP, depth 0-4

Full
No batching
Naïve
Median
1st/3rd quartile

10 2 10 1 100 101

Elapsed time (s)

40

30

20

10

0

10

20

Pr
oo

f s
co

re

0.29s 0.64s

LP, depth 5-6

Figure 5: Inference profiles of Algorithm 1 (Full) along with two ablations: No batching over states
and rules (serial unification), and the original NTP algorithm (Naı̈ve) without pruning or batching.
All variants are profiled over 100 positive (provable) instances and the running maximum over proof
scores is recorded for each example.

applying search in token space is expensive; o1-preview takes nearly a minute to complete a single
example.

The basicLE2E quickly degenerates to predicting a trivial depth-0 proof for all examples, and cannot
escape this solution region as shown in Figure 4. Ldemo on its own yields unbalanced scores that
do not respect τ and cannot be used to classify examples as provable or not. When the two are
combined, the resulting system is able to avoid both pathological behaviors, but the solution this
system converges to is suboptimal compared to the solution found by the relaxed end-to-end objec-
tive; while the proof demonstration supervision is able to pull the model out of a poor local minimum
at initialization, it also provides a confounding signal preventing the model from converging to op-
timal label prediction.

Figure 3 shows the shift in scores assigned to provable and unprovable examples by PSALM-
Ldemo + LE2E and PSALM-LE2ER when transferring to the OOD setting. While class balance shifts
betwen ID and OOD, no qualitative change in scoring pattern is visible when PSALM-LE2ER is ap-
plied to a new problem distribution. This supports our hypothesis that the model’s inductive bias
leads it to a solution that is not dependent on spurious statistical features of its training distribution.

Generalization to paraphrased data The setting in Table 1 does not feature the kind of lexical
diversity a full TLM would be needed to understand. Table 2 shows results on the paraphrased data.
We find that end-to-end label fine-tuning on a small amount of ID-Para data is enough to adapt
a rule-supervised model to handle paraphrased rules with variable syntax and predicate synonymy.
While fine-tuning a vanilla TLM on the same amount of ID-Para data does not exceed majority-
class on OOD-Para, training a PSALM end-to-end on examples from one distribution does yield
performance gains out-of-distribution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Inference cost In Figure 5, we highlight the impact of the changes to the NTP presented in §3.2
and Algorithm 1. Without pruning, the naı̈ve algorithm fails to find any positive-scoring proofs
within the state budget, making it unusable for problems of this size. Adding dynamic pruning
makes it possible to reach successful proofs within 1024 states, with almost all depth 6 proofs
reachable in under 4 seconds by the no batching ablation. Batching unification then provides a
substantial performance boost, bringing most successful depth 6 proofs under 1 second; across all
depths, median time to successful proof is at least halved.

On shallower examples from depths 0-4, every successful proof is reachable in under 0.15s, making
it practical to perform search during training even with an average of 100 active rules per example
and subgoal branching factors up to 3. An additional breakdown of inference speed by depth limit
is presented in Figure 6 in the appendix; while the worst-case complexity of our algorithm is still
exponential, dynamic pruning prevents this cost from being felt in the vast majority of cases.

7 RELATED WORK

A significant line of work has sought to augment LLMs with external solvers. These include calcu-
lators (Gao et al., 2023; Chen et al., 2023), logical solvers like Z3 (Ye et al., 2023; Pan et al., 2023),
planners like PDDL (Liu et al., 2023), and probabilistic programming languages (Wong et al., 2023).
These systems are differentiated from ours mainly by their “hard” solvers. Because they use non-
neural tools, training signal can’t be passed back to the model from the system’s outputs.

The neural theorem prover (Rocktäschel & Riedel, 2017) was originally motivated by this issue,
aiming to support backward chaining proof search in a differentiable way. However, the networks
described by Rocktäschel & Riedel are exponential in size with respect to the depth of the ‘proofs’
required. Subsequent work has sought to make this basic idea practical for larger problems by
summarizing or filtering active rules based on the current goal (Minervini et al., 2018; 2020a;b;
Morris et al., 2022). Weber et al. (2019) in particular adopt a rule score threshold similar to our
pruning policy, although their threshold is not updated recursively, limiting the amount of work
that can be avoided as depth increases. Our system also features a richer parameterization of rules
computed on the fly by a TLM.

Soft proof search is a neural version of a classic discrete algorithm. In this vein, a line of past work
has examined data structures like stacks (Grefenstette et al., 2015; Chen et al., 2020), neural Turing
machines (Graves et al., 2014), and neural GPUs (Kaiser & Sutskever, 2015). Compared to these ar-
chitectures, especially the neural Turing machine, our aim is not to learn a very general computation
engine, but to buttress one particularly weak capability of transformer LLMs, namely the ability to
do deduction and search. This motivation is shared by other recent work fusing transformers with
algorithmic neural modules targeted at reasoning (Bounsi et al., 2024).

Differentiable versions of other logical reasoning procedures have been explored, notably proba-
bilistic predicate logic (Manhaeve et al., 2018; Huang et al., 2021) and natural logic (Feng et al.,
2020; Shi et al., 2021), applied to tasks like textual entailment Beltagy et al. (2013). This last ap-
proach takes logical forms from a separate semantic parser, isolating problem interpretation from
execution. Our approach, in contrast, can make “late” decisions about rule viability during search.

8 CONCLUSION

In this paper, we present an augmented transformer that can invoke a neurosymbolic proof search
module (a neural theorem prover). The transformer instantiates the parameters of the NTP from
text inputs, then executes search to find a soft proof of a query, or returns failure if no proof with
a high enough score is found. Our experiments analyze several forms of supervision, finding that
end-to-end supervision from labels in concert with a relaxed scoring function is sufficient to learn to
parameterize latent rules consistently. In order to tackle problems with dozens of rules, we introduce
algorithmic improvements to the neural theorem prover that drastically improve its efficiency. Crit-
ically, our architecture is able to generalize across problem distributions where standard end-to-end
trained transformers fail.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 39–48, 2016. doi:
10.1109/CVPR.2016.12.

Forough Arabshahi, Jennifer Lee, Mikayla Gawarecki, Kathryn Mazaitis, Amos Azaria, and Tom
Mitchell. Conversational neuro-symbolic commonsense reasoning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(6):4902–4911, May 2021. URL https://ojs.aaai.
org/index.php/AAAI/article/view/16623.

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, and Raymond Mooney.
Montague meets Markov: Deep semantics with probabilistic logical form. In Mona Diab, Tim
Baldwin, and Marco Baroni (eds.), Second Joint Conference on Lexical and Computational Se-
mantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pp. 11–21, Atlanta, Georgia, USA, June 2013. Association for Computational
Linguistics. URL https://aclanthology.org/S13-1002.

Wilfried Bounsi, Borja Ibarz, Andrew Dudzik, Jessica B. Hamrick, Larisa Markeeva, Alex Vitvit-
skyi, Razvan Pascanu, and Petar Veličković. Transformers meet neural algorithmic reasoners.
arXiv 2406.09308, 2024. URL https://arxiv.org/abs/2406.09308.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions of
Machine Learning Research, 2023. URL https://openreview.net/forum?id=YfZ4ZPt8zd.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Xiaodong Song, and Denny Zhou. Compo-
sitional generalization via neural-symbolic stack machines. In Neural Information Processing
Systems, 2020. URL https://proceedings.neurips.cc/paper files/paper/2020/hash/
12b1e42dc0746f22cf361267de07073f-Abstract.html.

Michiel De Jong and Fei Sha. Neural theorem provers do not learn rules without exploration. arXiv
1906.06805, 2019. URL https://arxiv.org/abs/1906.06805.

Yufei Feng, Zi’ou Zheng, Quan Liu, Michael Greenspan, and Xiaodan Zhu. Exploring end-to-end
differentiable natural logic modeling. In Donia Scott, Nuria Bel, and Chengqing Zong (eds.),
Proceedings of the 28th International Conference on Computational Linguistics, pp. 1172–1185,
Barcelona, Spain (Online), December 2020. International Committee on Computational Lin-
guistics. doi: 10.18653/v1/2020.coling-main.101. URL https://aclanthology.org/2020.
coling-main.101.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. PAL: Program-aided language models. In Proceedings of the Interna-
tional Conference on Machine Learning, volume abs/2211.10435, 2023. URL https://api.
semanticscholar.org/CorpusID:253708270.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and Chris Pal. Measuring systematic generalization in
neural proof generation with transformers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 22231–
22242. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper files/
paper/2020/file/fc84ad56f9f547eb89c72b9bac209312-Paper.pdf.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv 1410.5401, 2014.
URL https://arxiv.org/abs/1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In Neural Information Processing Systems, 2015. URL
https://api.semanticscholar.org/CorpusID:7831483.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and Matt Gardner. Neural module networks
for reasoning over text. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SygWvAVFPr.

11

https://ojs.aaai.org/index.php/AAAI/article/view/16623
https://ojs.aaai.org/index.php/AAAI/article/view/16623
https://aclanthology.org/S13-1002
https://arxiv.org/abs/2406.09308
https://openreview.net/forum?id=YfZ4ZPt8zd
https://proceedings.neurips.cc/paper_files/paper/2020/hash/12b1e42dc0746f22cf361267de07073f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/12b1e42dc0746f22cf361267de07073f-Abstract.html
https://arxiv.org/abs/1906.06805
https://aclanthology.org/2020.coling-main.101
https://aclanthology.org/2020.coling-main.101
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:253708270
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc84ad56f9f547eb89c72b9bac209312-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc84ad56f9f547eb89c72b9bac209312-Paper.pdf
https://arxiv.org/abs/1410.5401
https://api.semanticscholar.org/CorpusID:7831483
https://openreview.net/forum?id=SygWvAVFPr

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa using
ELECTRA-style pre-training with gradient-disentangled embedding sharing. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=sE7-XhLxHA.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie
Si. Scallop: From probabilistic deductive databases to scalable differentiable reasoning. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 25134–25145. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper files/paper/2021/file/
d367eef13f90793bd8121e2f675f0dc2-Paper.pdf.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 1266–1279, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.82. URL https://aclanthology.org/2022.emnlp-main.82.

Lukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv: Learning, 2015. URL
https://api.semanticscholar.org/CorpusID:2009318.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Robert Kowalski. Logic programming. In Jörg H. Siekmann (ed.), Computational Logic, volume 9
of Handbook of the History of Logic, pp. 523–569. North-Holland, 2014. doi: https://doi.org/
10.1016/B978-0-444-51624-4.50012-5. URL https://www.sciencedirect.com/science/
article/pii/B9780444516244500125.

B. Liu, Yuqian Jiang, Xiaohan Zhang, Qian Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LLM+P: Empowering Large Language Models with Optimal Planning Proficiency. ArXiv,
abs/2304.11477, 2023. URL https://api.semanticscholar.org/CorpusID:258298051.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
DeepProbLog: Neural probabilistic logic programming. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, and Sebastian Riedel. Towards neural theo-
rem proving at scale. arXiv 1807.08204, 2018. URL https://arxiv.org/abs/1807.08204.

Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette.
Differentiable reasoning on large knowledge bases and natural language. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):5182–5190, Apr. 2020a. doi: 10.1609/aaai.v34i04.
5962. URL https://ojs.aaai.org/index.php/AAAI/article/view/5962.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 6938–6949. PMLR, 13–18 Jul 2020b.
URL https://proceedings.mlr.press/v119/minervini20a.html.

Matthew Morris, Pasquale Minervini, and Phil Blunsom. Learning proof path selection policies in
neural theorem proving. In Artur S. d’Avila Garcez and Ernesto Jiménez-Ruiz (eds.), Proceedings
of the 16th International Workshop on Neural-Symbolic Learning and Reasoning as part of the
2nd International Joint Conference on Learning & Reasoning (IJCLR 2022), Cumberland Lodge,
Windsor Great Park, UK, September 28-30, 2022, volume 3212 of CEUR Workshop Proceedings,
pp. 64–87. CEUR-WS.org, 2022. URL https://ceur-ws.org/Vol-3212/paper5.pdf.

12

https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://aclanthology.org/2022.emnlp-main.82
https://api.semanticscholar.org/CorpusID:2009318
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.sciencedirect.com/science/article/pii/B9780444516244500125
https://www.sciencedirect.com/science/article/pii/B9780444516244500125
https://api.semanticscholar.org/CorpusID:258298051
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://arxiv.org/abs/1807.08204
https://ojs.aaai.org/index.php/AAAI/article/view/5962
https://proceedings.mlr.press/v119/minervini20a.html
https://ceur-ws.org/Vol-3212/paper5.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 3806–3824, Singapore, December 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-emnlp.248. URL https://aclanthology.org/2023.
findings-emnlp.248.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/2017/file/
b2ab001909a8a6f04b51920306046ce5-Paper.pdf.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson series in ar-
tificial intelligence. Pearson, 2020. ISBN 9780134610993. URL https://aima.cs.berkeley.
edu.

Jihao Shi, Xiao Ding, Li Du, Ting Liu, and Bing Qin. Neural natural logic inference for inter-
pretable question answering. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3673–3684, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.298. URL
https://aclanthology.org/2021.emnlp-main.298.

Zayne Sprague, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Natural language deduction
with incomplete information. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
8230–8258, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.564. URL https://aclanthology.org/2022.
emnlp-main.564.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 3621–3634, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.findings-acl.317. URL https://aclanthology.org/2021.findings-acl.317.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Entailer: Answering questions with faithful
and truthful chains of reasoning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
2078–2093, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.134. URL https://aclanthology.org/2022.
emnlp-main.134.

M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language.
J. ACM, 23(4):733–742, oct 1976. ISSN 0004-5411. doi: 10.1145/321978.321991. URL https:
//doi.org/10.1145/321978.321991.

Leon Weber, Pasquale Minervini, Jannes Münchmeyer, Ulf Leser, and Tim Rocktäschel. NLProlog:
Reasoning with weak unification for question answering in natural language. In Anna Korhonen,
David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 6151–6161, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1618. URL https://aclanthology.org/
P19-1618.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
VjQlMeSB J.

13

https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2023.findings-emnlp.248
https://proceedings.neurips.cc/paper_files/paper/2017/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf
https://aima.cs.berkeley.edu
https://aima.cs.berkeley.edu
https://aclanthology.org/2021.emnlp-main.298
https://aclanthology.org/2022.emnlp-main.564
https://aclanthology.org/2022.emnlp-main.564
https://aclanthology.org/2021.findings-acl.317
https://aclanthology.org/2022.emnlp-main.134
https://aclanthology.org/2022.emnlp-main.134
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
https://aclanthology.org/P19-1618
https://aclanthology.org/P19-1618
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nathaniel Weir, Peter Clark, and Benjamin Van Durme. NELLIE: A neuro-symbolic inference
engine for grounded, compositional, and explainable reasoning. arXiv 2209.07662, 2023. URL
https://arxiv.org/abs/2209.07662.

L. Wong, Gabriel Grand, Alexander K. Lew, Noah D. Goodman, Vikash K. Mansinghka, Jacob
Andreas, and Joshua B. Tenenbaum. From word models to world models: Translating from
natural language to the probabilistic language of thought. arXiv, abs/2306.12672, 2023. URL
https://arxiv.org/abs/2306.12672.

Kaiyu Yang and Jia Deng. Learning symbolic rules for reasoning in quasi-natural language. Trans-
actions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.
net/forum?id=gwRwHUZUgz.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SatLM: Satisfiability-aided language
models using declarative prompting. In Advances in Neural Information Processing Sys-
tems, 2023. URL https://proceedings.neurips.cc/paper files/paper/2023/hash/
8e9c7d4a48bdac81a58f983a64aaf42b-Abstract-Conference.html.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
paradox of learning to reason from data. In Edith Elkind (ed.), Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 3365–3373. International
Joint Conferences on Artificial Intelligence Organization, 8 2023. doi: 10.24963/ijcai.2023/375.
URL https://doi.org/10.24963/ijcai.2023/375. Main Track.

A APPENDIX

A.1 FULL RULE LOSS

As a reminder, let M be the number of soft rule templates. We have NM total soft rules, N of which
should be active. Let |Bi| be the number of body terms in the i-th rule. We define the target matrix
T to contain the results of symbolic unification of all reference head terms hi against all body terms
bi,j and the reference goal g, where a cell contains 1 if unification succeeds and 0 otherwise. Let
ϕ : [1 .. N] → [1 .. NM] be a mapping from symbolic rule indices to soft rule indices. We define
ϕ[i] to be the index of the soft rule from the i-th sentence with the same number of body terms as
the i-th symbolic reference rule, i.e. the one soft rule that should be active among those predicted
from that location.

inactive = {i | 1 ≤ i ≤ NM ∧ i /∈ ϕ}

U ′ = U :

hi · bϕ[1],1

∀i ∈ inactive
...

hi · bϕ[N],|BN |
hi · g

T ′ = T :

0 ∀i ∈ inactive...
0

w =

|T ′| −
∑
T ′∑

T ′

Lrule(x) =
1

|U ′|
∑
i,j

wT ′
i,j log σ(U ′

i,j) + (1− T ′
i,j) log(1− σ(U ′

i,j)) (10)

14

https://arxiv.org/abs/2209.07662
https://arxiv.org/abs/2306.12672
https://openreview.net/forum?id=gwRwHUZUgz
https://openreview.net/forum?id=gwRwHUZUgz
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://proceedings.neurips.cc/paper_files/paper/2023/hash/8e9c7d4a48bdac81a58f983a64aaf42b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/8e9c7d4a48bdac81a58f983a64aaf42b-Abstract-Conference.html
https://doi.org/10.24963/ijcai.2023/375

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 RELAXED NTP DETAILS

We define smoothmax and smoothmin to be weighted sums with softmax weights:

smoothmax(xi ∈ X) =
∑
i

xie
xi∑

j e
xj

smoothmin(xi ∈ X) = −smoothmax(−X)

To relax the NTP algorithm, yielding NTPR, we make the following changes to Algorithm 1:

Each state s additionally stores stepScores(s), a list of each step score u involved in the computation
of the running score(s).

Line 10: k-best(s) ∈ R[1,k]

Line 13: let lowerBound(s) =
{

if parent(s) = ∅ min(k-best(s))
else max(min(k-best(s)), lowerBound(parent(s)))

Line 21: k-best(c)← top-k(k-best(c) : [score(o)])

Line 41: stepScores[r, s]← hr · goals(s)1 + ϵ ∼ N(0, σ2) ∀ r ∈ [1..n], s ∈ stateBatch

We set the noise scale σ = 0.1, chosen heuristically.

Line 47: yield smoothmin(stepScores(s′))

Line 50: let NTPR(g) = smoothmax(top-k(SEARCH(g)))

A.3 ADDITIONAL RUNTIME ANALYSIS

4 5 6 7
Max depth

10 4

10 3

10 2

10 1

100

101

El
ap

se
d

(s
)

Max/min
1st/3rd quartile
Median

Figure 6: Elapsed time in PSALM search by depth limit (measured over LP samples from depths
0-6). While worst-case time complexity is still exponential, as in the original NTP (reflected in the
elapsed time varying across several orders of magnitude by example), dynamic pruning ensures that
the bulk of cases are handled efficiently; as search depth increases, tighter score bounds are found
to offset the increase in horizon.

A.4 SIMPLELOGIC SAMPLES

Input: If someone is foolish and frantic, then they are nervous.
If someone is excited, then they are different.
Alice is excited.
Alice is foolish.
Q: Alice is nervous.
A:

Label: False

Figure 7: An example of the SimpleLogic task format.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Input: Alice has good manners.
Someone is versatile if they are both brave and scared.
Alice is feeling afraid.
If someone is sure of themselves and filled with questions, then they are terrified.
If someone possesses excitement, meanness, and courage, then they are considered old-fashioned.
Being versatile, hostile, and nervous means that someone is renowned.
Someone’s reputation for being rude, conservative, and well-known indicates their courage.
Alice is adaptable.
Q: Alice is feeling nervous.
A:

Label: True

Figure 8: An example from the paraphrased SimpleLogic ID-Para split.

Input: If someone is proud, then they are aggressive. If someone is smart and glamorous, then they are polite.
If someone is hurt, bored, and stubborn, then they are long. If someone is helpful, hurt, and polite, then they are proud.
If someone is stubborn, glamorous, and loving, then they are rude. If someone is naughty and long, then they are wrong.
If someone is vivacious, then they are cruel. If someone is long, loving, and precious, then they are cruel.
If someone is naughty, vivacious, and hurt, then they are sincere. If someone is precious, then they are wrong.
If someone is nervous, polite, and stubborn, then they are dull. If someone is nervous, dull, and proud, then they are bored.
If someone is smart, then they are helpful. If someone is victorious, loving, and long, then they are powerful.
If someone is powerful and outstanding, then they are wrong. If someone is bored, then they are sincere.
If someone is smart, nervous, and wrong, then they are stubborn. If someone is precious, then they are glamorous.
If someone is aggressive and tender, then they are bored. If someone is horrible, hurt, and scared, then they are outstanding.
If someone is glamorous, talented, and smart, then they are wrong. If someone is talented, dull, and loving, then they are vivacious.
If someone is sincere, long, and proud, then they are stubborn. If someone is bored, then they are hurt.
If someone is cruel, then they are condemned. If someone is talented, condemned, and precious, then they are hurt.
If someone is wrong, then they are scared. If someone is cruel, then they are long.
If someone is wrong and pleasant, then they are glamorous. If someone is smart and polite, then they are powerful.
If someone is aggressive, then they are horrible. If someone is long, then they are vivacious.
If someone is dull and tender, then they are outstanding. If someone is aggressive, rude, and wrong, then they are cruel.
If someone is horrible, nervous, and wrong, then they are polite. If someone is smart, then they are stubborn.
If someone is aggressive and precious, then they are sincere. If someone is cruel and smart, then they are naughty.
If someone is hurt, then they are loving. If someone is scared, then they are helpful.
If someone is cruel, then they are talented. If someone is naughty and outstanding, then they are stubborn.
If someone is powerful and horrible, then they are long. If someone is scared, then they are glamorous.
If someone is victorious, then they are frantic. If someone is wrong, then they are victorious.
If someone is aggressive, then they are powerful. If someone is smart and horrible, then they are hurt.
If someone is talented, then they are rude. If someone is long, pleasant, and wrong, then they are glamorous.
If someone is tender, dull, and victorious, then they are frantic. If someone is vivacious and helpful, then they are pleasant.
If someone is long, then they are helpful. If someone is polite, then they are dull.
If someone is frantic, smart, and hurt, then they are cruel. If someone is talented, then they are proud.
If someone is stubborn, then they are precious. If someone is dull and scared, then they are naughty.
If someone is sincere, then they are glamorous. If someone is stubborn, then they are nervous.
If someone is hurt, frantic, and scared, then they are powerful. If someone is polite, then they are tender.
If someone is sincere, then they are smart. If someone is hurt, then they are rude.
If someone is tender, then they are naughty. If someone is scared and sincere, then they are talented.
If someone is vivacious and bored, then they are talented. If someone is aggressive, outstanding, and wrong, then they are bored.
If someone is loving, then they are cruel. If someone is vivacious and sincere, then they are stubborn.
If someone is horrible and dull, then they are powerful. Alice is hurt.
Q: Is Alice powerful?

Label: True

GPT-4o: To determine if Alice is powerful, we need to follow the logical implications given in the statements:

1. Alice is hurt.
2. If someone is hurt, then they are loving.
3. If someone is loving, then they are cruel.
4. If someone is cruel, then they are condemned.
5. If someone is cruel, then they are long.
6. If someone is long, then they are helpful.
7. If someone is long, then they are vivacious.
8. If someone is vivacious, then they are cruel.
9. If someone is cruel, then they are talented.
10. If someone is talented, then they are proud.
11. If someone is proud, then they are aggressive.
12. If someone is aggressive, then they are horrible.
13. If someone is horrible and dull, then they are powerful.

From the above deductions, we can see that Alice is hurt, which leads to her being loving, cruel, condemned, long, helpful, vivacious,
talented, proud, aggressive, and horrible. However, we do not have information about Alice being dull, which is necessary to conclude that
she is powerful based on the statement “If someone is horrible and dull, then they are powerful.”

Therefore, based on the given information, we cannot definitively conclude that Alice is powerful.

Figure 9: A depth-6 SimpleLogic example and GPT-4o’s incorrect prediction. In the final two steps,
highlighted in orange, the model commits to a premise that doesn’t hold, instead of directly using
the premise “If someone is aggressive, then they are powerful.” This greedy overcommitment is a
shortcoming of systems that do not take advantage of search. In contrast, both PSALM and o1-pre-
view predict the correct label. PSALM takes 0.6 seconds; o1-preview uses 4,307 private inference
tokens and takes 46.1 seconds.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 ADDITIONAL RELATED WORK

There is a close conceptual connection between the differentiable proof structures produced by NTP
search and the network structures predicted by neural module networks (Andreas et al., 2016; Gupta
et al., 2020). In a neural module network, differentiable components with specialized inductive
biases are composed hierarchically on an example-by-example basis. Each module is treated as a
function, and the layout of the network is predicted by a semantic parser conditioned on the prob-
lem to be solved. Our approach shares the core idea of generalization through component reuse: if
a complex problem is made up of simple subproblems, we can structure a model’s computational
abilities so that the model is able to solve complex instances of a problem class by inferring how to
decompose them and applying a set of learned solutions to the elementary subproblems. Strategies
like this offer not only better interpretability, but also better data efficiency, as non-compositional
models of compositional problems require the training set to capture a much larger range of combi-
nations of properties or steps.

Other work has investigated forward-chaining (Tafjord et al., 2021; Gontier et al., 2020) and
backward-chaining search in natural language (Sprague et al., 2022; Tafjord et al., 2022) and in
conversational reasoning (Arabshahi et al., 2021). Generating forward-chaining proofs autoregres-
sively is challenging, as models must predict which ground facts to introduce from the bottom up;
doing this accurately requires inferring the entire proof tree before it can be emitted. Regardless
of expansion order, any form of search over generated strings is challenging, as it can quickly run
off the rails due to cascading errors; in contrast, our rule representations don’t require decoding
to strings and thus allow much more efficient and predictable inference. Approaches like maieu-
tic prompting (Jung et al., 2022) limit divergence by only unrolling one or two steps of reasoning.
Weir et al. (2023) achieve better control by specializing backward chaining in natural language to a
particular domain with tailored templates, at the cost of domain flexibility.

Yang & Deng (2023) set out in a less-traveled direction, investigating rule learning for reasoning
over text without gradient descent; their basic inference operation is based on string substitution,
making use of reverse unification to learn more abstract rules from concrete ones.

17

	Introduction
	Background
	The neural theorem prover

	Methods
	Rule encoding
	Search

	Learning
	End-to-end
	Proof demonstrations
	Rule representations

	Experiments
	Data

	Results
	Related work
	Conclusion
	Appendix
	Full rule loss
	Relaxed NTP details
	Additional runtime analysis
	SimpleLogic samples
	Additional related work

