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ABSTRACT

Protecting the intellectual property of open-source Large Language Models
(LLMs) is very important, because training LLMs costs extensive computational
resources and data. Therefore, model owners and third parties need to identify
whether a suspect model is a subsequent development of the victim model. To
this end, we propose a training-free REEF to identify the relationship between
the suspect and victim models from the perspective of LLMs’ feature representa-
tions. Specifically, REEF computes and compares the centered kernel alignment
similarity between the representations of a suspect model and a victim model on
the same samples. This training-free REEF does not impair the model’s general
capabilities and is robust to sequential fine-tuning, pruning, model merging, and
permutations. In this way, REEF provides a simple and effective way for third
parties and models’ owners to protect LLMs’ intellectual property together.

1 INTRODUCTION

The training process of Large Language Models (LLMs) requires extensive computational re-
sources and time. Therefore, open-source models are usually released with specific licenses (e.g.,
Apache2.0, and LLaMA 2 Community License (Meta AI, 2023)) to protect their intellectual prop-
erties (IPs). Unfortunately, some developers claim to have trained their own LLMs but actually
wrapped or fine-tuned based on other base LLMs (e.g., Llama-2 and MiniCPM-V) (OpenBMB,
2023; 01-ai, 2023). It is urgent for model owners and third parties to identify whether the suspect
model is a subsequent development of the victim model (e.g., Code-llama trained from Llama-2) or
is developed from scratch (e.g., Mistral).

The key is to extract unique features (i.e., fingerprints) that can authenticate the victim model. Wa-
termarking methods artificially inject triggers into the victim model to make it generate specific
content for identification (Peng et al., 2023a; Xu et al., 2024). However, watermarks introduce extra
training costs and impair the model’s general capabilities (Russinovich & Salem, 2024), or even
can be removed (Wang & Kerschbaum, 2019; Chen et al., 2023a). More crucially, these methods
can not be applied to models that have already been open-released. An alternative is to extract in-
trinsic features of the victim model, avoiding additional training and the compromise of capabilities.
Weight-based fingerprints are one of intrinsic features that allow calculating the similarity between a
suspect model and a victim model’s weights for identification (Zeng et al., 2023; Refael et al., 2024).
However, these methods are fragile to major changes in weights, e.g., weight permutations, pruning,
and extensive fine-tuning (Fernandez et al., 2024; Xu et al., 2024). This necessitates extracting more
robust intrinsic features as fingerprints to identify victim models and protect their IPs.

In this paper, we propose to solve this problem from the perspective of the feature representations
of LLMs, beginning with the following visualization analysis. It is generally acknowledged that
different models encode informative and intrinsic features based on their training data and model
architecture, resulting in distinct feature representations across models (Mikolov et al., 2013; Boluk-
basi et al., 2016; Karras et al., 2021; Chen et al., 2023b; Zou et al., 2023). Figure 1(a) illustrates that
the representations of Llama are markedly distinct from those of Baichuan and Qwen, while largely
comparable to its fine-tuned models (i.e., Llama-chat and Chinese-llama).

Such findings inspire us to construct representation-based fingerprints. Specifically, we apply neural
networks to extract fingerprints of a victim model from its representation space. Figure 1(b) shows
that the classifier trained on representations of a victim model (i.e., Llama) can be generalized to its
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Figure 1: (a) t-SNE visualization of different LLMs’ representations on the same samples. (b)
Performance of classifiers trained on representations from the victim model evaluated on suspect
models. (c) Robustness of REEF under variant LLMs that cause ICS (Zeng et al., 2023) ineffective.

variant models (e.g., Llama-chat and Vicuna), but fail to other models (e.g., Baichuan and Qwen).
Although the effectiveness of representation-based fingerprints has been validated, such fingerprints
still have limitations. On one hand, the input dimensions of neural networks are fixed, making them
inapplicable to model pruning that alters the representation dimensions of the victim model (Frantar
& Alistarh, 2023; Xia et al., 2023; 2024), which is prevalent in scenarios such as model compression
for deployment on mobile devices. On the other hand, these fingerprints lack robustness against
representation permutations, a challenging issue because developers may intentionally manipulate
model representations to evade detection (Zeng et al., 2023; Refael et al., 2024).

To this end, we propose a simple and effective approach, namely REEF, which is robust against
pruning and evading detection. Specifically, REEF is a representation-based fingerprinting method
that compares the Centered Kernel Alignment (CKA) similarity (Kornblith et al., 2019) between
the representations of the same samples from a suspect model and a victim model. Experimental
results indicate that models derived from the victim model exhibit high similarity. Moreover, REEF
is resilient to dimensional changes, and we theoretically prove that CKA is invariant to column-wise
permutations and scaling transformations. Figure 1(c) demonstrates that REEF maintains its effec-
tiveness even under extreme conditions that cause weight-based methods (Zeng et al., 2023) ineffec-
tive. These conditions include extensive fine-tuning (using data with up to 700B tokens (Azerbayev
et al., 2023)), a high ratio pruning (up to 90% of parameters (Ma et al., 2023)), model merging
(merging LLMs with different architectures (Wan et al., 2024a)), and permutations (parameter vec-
tor direction change through weight rearrangements (Fernandez et al., 2024)).

REEF utilizes the intrinsic feature from the perspective of representations to identify whether a
suspect model is derived from a victim model under the white-box scenario. This training-free
REEF does not impair model’s general capabilities and is robust to various subsequent developments
compared to weight-based fingerprints and watermarks. Consequently, REEF is a promising method
for protecting the IPs of model owners and provides an efficient and effective way for third parties
to review models, combating unethical or illegal activities such as unauthorized use or reproduction.

2 RELATED WORK

Model fingerprinting protects IPs by allowing model owners and third parties to authenticate model
ownership. There are two types of fingerprints for LLMs. One is injected fingerprints, which are ar-
tificially added during training or fine-tuning to facilitate model identification, such as watermarking
methods (Peng et al., 2023a; Xu et al., 2024). The other is intrinsic fingerprints, which are inherent
properties that naturally emerge from the models’ training data and architectures, including model
weights (i.e., parameters) and feature representations, also known as embeddings or activations.

Injected Fingerprint. Watermarking methods inject a backdoor trigger into a victim model so that
it will generate specific content in the presence of this trigger, allowing identification of whether a
suspect model derives from the victim model. A large number of approaches embed the watermarks
through backdoor attacks (Adi et al., 2018; Zhang et al., 2018; Li et al., 2019b), and digital signature
technology and hash functions (Guo & Potkonjak, 2018; Li et al., 2019a; Zhu et al., 2020) are also
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used to design trigger words that contain the owner’s identity information to protect the IPs of DNNs.
For generative language models, the high computational resource and time costs of training pose an
urgent need to protect their IPs. Researchers have proposed various methods to inject watermarks
as fingerprints to identify the victim model (Li et al., 2023; Peng et al., 2023b; Kirchenbauer et al.,
2023; Zhao et al., 2023; Russinovich & Salem, 2024; Xu et al., 2024), but such methods inevitably
impair the model’s overall performance.

Intrinsic Fingerprint. Such fingerprints use the inherent and native attributes of the victim model,
without requiring additional tuning which could impair the model’s general capabilities, and are
more stable and can not be removed. Model weights are one of the intrinsic features that can be used
to compute the similarity of parameters between a suspect model and a victim model for identifica-
tion (Zeng et al., 2023; Refael et al., 2024). Semantic analysis methods conduct statistical analysis
on the content generated by different models, exploiting the linguistic patterns and semantic prefer-
ences exhibited by various LLMs as their unique fingerprints (Iourovitski et al., 2024; Pasquini et al.,
2024; McGovern et al., 2024). However, both methods suffer from insufficient robustness (Xu et al.,
2024). The internal representations of LLMs are derived from the data, strategies, and frameworks
used during the training process, and serve as intrinsic features for model identification (Sevast-
janova et al., 2022). For example, the logits space can be leveraged to identify the victim model
(Yang & Wu, 2024). However, this approach remains highly sensitive to parameter permutation,
posing significant challenges for effective fingerprinting.

3 EXPLORING THE POTENTIAL OF FEATURE REPRESENTATIONS AS
FINGERPRINTS

In this section, we propose to utilize feature representations as LLM fingerprints to identify whether
a suspect model is a subsequent development of the victim model in a white-box scenario (open-
source LLMs), based on the following two observations. (1) Feature representations of fine-tuned
victim models are similar to feature representations of the original victim model, while the feature
representations of unrelated models exhibit distinct distributions, as shown in Figure 1(a). (2) Some
high-level semantic concepts are “linearly” encoded in the representation space of LLMs and can be
easily classified, such as safety or unsafety and honest or dishonest (Zou et al., 2023; Slobodkin et al.,
2023; Qian et al., 2024). According to these two observations, we can train a binary classifier on
the representations of the victim model and then apply it to various suspect models’ representations,
i.e., LLMs derived from the victim model and unrelated LLMs. In this way, such a classifier may
generalize to different fine-tuned victim models, because they have similar feature representations.

The binary classifier can employ various Deep Neural Network (DNN) architectures, such as a lin-
ear classifier, Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Graph
Convolutional Network (GCN). For training, we use the TruthfulQA dataset (Lin et al., 2022), con-
catenating each question with its truthful answer as positive samples and with its false answer as
negative samples. The dataset is split into training and test sets with a 4:1 ratio. To evaluate the
classifier’s performance, we conduct experiments on LLMs of varying sizes. Specifically, we select
Llama-2-7b and Llama-2-13b as the victim models, while derived models and unrelated LLMs serve
as suspect models for comparison.

Classifiers trained on representations of a victim model can effectively generalize to its vari-
ants but not to others. Figure 2(a) shows that a classifier trained on the 18th layer representation
of Llama-2-7b achieves approximately 80% classification accuracy when applied to its fine-tuned
models (e.g., Chinese-llama-2-7b). However, the accuracy drops to around 50% on unrelated models
(e.g., Mistral-0.1-7b), which is close to the level of random guessing. Classifiers trained on represen-
tations from other layers show the same results, as discussed in Appendix B. Additionally, similar
findings are observed for Llama-2-13b (Figure 2(b)), indicating the scalability of the representation-
based fingerprints. These experimental results indicate that representations can serve as fingerprints
to protect the victim model’s IP.

Challenges to using the classifier for victim model identification: (1) DNNs have fixed input
dimensions and cannot be applied to models pruned from the victim model, e.g., reducing repre-
sentation dimensions. For example, the pruned models Sheared-llama-1.3b and Sheared-llama-2.7b
have dimensions of 2048 and 2560, respectively (Xia et al., 2024). However, the classifier trained on
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Figure 2: Accuracies of classifiers trained on representations from the victim model: (a) Llama-2-7b
as the victim model, (b) Llama-2-13b as the victim model.

Llama-2-7b can only process inputs of 4096 dimensions. (2) DNNs are not robust to permutations
of the input feature representations, such as when columns are permuted through coupled matrix
multiplications, which malicious developers might use to evade detection (Fernandez et al., 2024).

4 ROBUST REPRESENTATION-BASED FINGERPRINTING WITH REEF

To address the challenges of classifiers in victim model identification, we propose REEF, an ad-
vanced representation-based fingerprinting approach for open-source LLMs that can adapt to suspect
models with varying representation dimensions and is robust to representation permutations.

REEF identifies whether a suspect model is derived from a victim model, given the representations
of these two models on certain examples. Specifically, let X ∈ Rm×p1 denote activations of the l-th
layer from the suspect model on m examples and Y ∈ Rm×p2 denotes activations of the l

′
-th layers

from the victim model on the same m examples, where p1 is independent of p2, meaning there is
no limitation on dimensional consistency. Therefore, we need a similarity index s(·, ·) to measure
representations’ similarity between the suspect and victim models. In this way, a high s(X,Y )
score indicates that the suspect model is more likely derived from the victim model. In contrast, a
low s(X,Y ) score means that the suspect model is less likely derived from the victim model.

Centered Kernel Alignment. CKA (Kornblith et al., 2019) is a similarity index based on Hilbert-
Schmidt Independence Criterion (HSIC) (Gretton et al., 2005), which measures the independence
between two sets of random variables. The CKA similarity between X and Y can be computed as
follows

CKA(X,Y ) =
HSIC(X,Y )√

HSIC(X,X) · HSIC(Y, Y )
, (1)

where HSIC(X,Y ) = 1
(m−1)2 tr(KXHKY H). Specifically, H = I − 1

m11T is a centering matrix.
KX and KY are Gram matrices that measure the similarity of a pair of examples based on kernel
function k, i.e., (KX)ij = k(Xi, Xj) and (KY )ij = k(Yi, Yj). Xi and Xj denote the i-th and j-th
row of X , respectively.

Kernel Selection. In this study, we consider a linear kernel and a Radial Basis Function (RBF)
kernel. In the linear kernel case, Gram matrix KX = XX⊤. In the RBF kernel case, k(Xi, Xj) =
exp(−||Xi − Xj ||22/(2σ2)). Empirically, we discover that linear and RBF kernels obtain similar
experimental results. Please see Section 5.1 for more discussions. Unless otherwise specified, we
adopt linear CKA due to its high efficiency.

Theorem 1 (Proof in Appendix A) Given two matrices X ∈ Rm×p1 and Y ∈ Rm×p2 , the CKA
similarity score between X and Y is invariant under any permutation of the columns and column-
wise scaling transformation. Formally, we have:

CKA(X,Y ) = CKA(XP1, Y P2) = CKA(c1X, c2Y ) (2)

4
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Figure 3: Heatmaps depicting the CKA similarity between the representations of the victim LLM
(Llama-2-7B) and those of various suspect LLMs on the same samples.

where P1 ∈ Rp1×p1 and P2 ∈ Rp2×p2 denote permutation matrices. c1 ∈ R+ and c2 ∈ R+ are two
positive scalars.

Theorem 1 indicates that the CKA similarity score is theoretically invariant and robust to any
column-wise permutations and scaling transformations. Kornblith et al. (2019) have shown that
CKA is able to the correspondence between representations of different dimensions. Therefore,
REEF is highly robust to various subsequent developments of the victim model in practical scenar-
ios, including model pruning and representation permutation, ensuring accurate identification of the
victim model through representation-based fingerprints to protect its IP.

5 EXPERIMENTS

In this section, we provide a comprehensive evaluation of REEF. Section 5.1 evaluates REEF’s effec-
tiveness in distinguishing LLMs derived from the victim model from unrelated models. Following
this, Section 5.2 assesses REEF’s robustness to subsequent developments of the victim model, such
as fine-tuning, pruning, merging, and permutations. Section 5.3 presents ablation studies on REEF
across varying sample numbers and datasets. Finally, Section 5.4 discusses REEF’s sensitivity to
training data and its capacity for adversarial evasion.

5.1 EFFECTIVENESS VERIFICATION

In this subsection, we demonstrate that REEF can effectively model the fingerprint from the repre-
sentation. The CKA similarity between the victim model’s representations and those of its derived
models, as well as unrelated models, shows significant differences. This makes REEF a reliable
fingerprinting method for protecting the victim model’s IP.

Settings. For the LLMs, we select Llama-2-7b as the victim model and choose a range of suspect
models, including quantization and fine-tuned variants of Llama-2-7b (e.g., Llama-2-7b-chat, Code-
llama-7b, and Llama-2-7b-4bit) as well as unrelated models (e.g., Qwen-1.5-7b, Baichuan-2-7b, and
Mistral-7b). We use both a linear kernel and an RBF kernel to compute the layer-wise and inter-layer
CKA similarity of representations between the victim and suspect models on 200 samples from the
TruthfulQA dataset (Lin et al., 2022). The resulting heatmap is shown in Figure 3.

REEF can accurately distinguish between models derived from the victim model and unrelated
models. As shown in Figure 3, for LLMs derived from the victim model, the CKA similarity with
the victim model is high (higher than 0.8), whereas unrelated LLMs show low similarity (lower than
0.5). This is reflected in the marked color contrast between the first two rows and the third row. To
quantify results, the average similarity of LLMs derived from the victim model is 0.9585, which is
higher than that of unrelated LLMs, whose average similarity is 0.2361. Additionally, for LLMs
derived from the victim model, the similarity is notably high along the diagonal of the heatmaps,
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which represents the similarity between corresponding layers of the victim and suspect models, with
an average of 0.9930. Furthermore, the inter-layer similarity is also significant, reaching 0.9707.

Linear and RBF kernels yield similar results in identifying whether a suspect model is derived
from the victim model. As shown in the first two rows of Figure 3, the CKA similarity between
the victim model and the LLMs derived from it, calculated using both the linear and RBF kernels,
exceeded 0.95. This demonstrates that both kernels are suitable for fingerprinting in REEF. We adopt
the linear CKA due to its higher computational efficiency.

CKA from a single layer is sufficient for fingerprint identification. The similarities between
representations on a specific layer of the victim model and those of the derived and unrelated models
differ significantly (e.g., 0.9973 and 0.2223 for layer 18, respectively). Consequently, we focus
on reporting the similarity at layer 18 in subsequent experiments, due to its informativeness and
efficiency. The complete heatmap results are provided in Appendix C.

5.2 ROBUSTNESS VERIFICATION

In this subsection, we apply REEF to suspect models that are developed from a victim model through
fine-tuning, pruning, merging, permutations, and scaling transformations (Appendix D provides
REEF’s application across more different LLM families, including Qwen and Mistral). These tech-
niques can introduce significant changes to the model’s structure or parameters, making it challeng-
ing for existing methods to identify the victim model. However, REEF remains effective in these
scenarios, demonstrating its robustness.

5.2.1 BASELINE METHODS

Weight-based Fingerprinting Methods. Following Zeng et al. (2023), we use model weight simi-
larity methods, including PCS and ICS, to identify whether a suspect model is derived from a victim
model. Specifically, PCS flattens all weight matrices and biases of an LLM into vectors and directly
compares the cosine similarity between these vectors for the two models. ICS constructs invariant
terms from the weights of the last two layers and calculates the cosine similarity between these in-
variant terms for the two models. A high cosine similarity indicates that the suspect model is derived
from the victim model, and vice versa.

Representation-based Fingerprinting Methods. Yang & Wu (2024), referring to the Logits
method, implements LLM fingerprinting by analyzing unique attributes of each LLM’s logits output.
This method evaluates the similarity between the output spaces of the victim and suspect models.
A high similarity suggests that the suspect model is derived from the victim model. We conduct
experiments on the TruthfulQA dataset to extract logit output for the suspect models.

5.2.2 FINE-TUNING

Xu et al. (2024) point out that weight-based fingerprints are not reliable when models undergo
extensive fine-tuning with larger deviations in parameters. Given this challenge, we seek to assess
the robustness of REEF under such demanding scenarios.

Settings. We use Llama-2-7b as the victim model and select a diverse set of its fine-tuned models
as suspect models, with fine-tuning (FT) data volumes ranging from 5 million to 700 billion tokens.
The suspect models include Llama-2-finance-7b, Vicuna-1.5-7b, Wizardmath-7b, Chinese-llama-2-
7b, Code-llama-7b, and Llemma-7b, with each model’s fine-tuning data volume being 5M, 370M,
1.8B, 13B, 500B, and 700B tokens, respectively (Chiang et al., 2023; Luo et al., 2023; Cui et al.,
2023; Roziere et al., 2023; Azerbayev et al., 2023).

REEF is robustness to extensive fine-tuning. As shown in Table 1, even for models fine-tuned on
datasets with up to 700B tokens (i.e., Llemma-7B), REEF still achieves a high similarity of 0.9962.
In contrast, PCS becomes ineffective as early as fine-tuning with 1.8B tokens (i.e., Wizardmath-7b).
ICS performance significantly degrades with increasing fine-tuning data volume, with 13B tokens
(i.e., Chinese-llama-2-7b) and 500B tokens (i.e., Code-llama-7B) yielding similarity of 0.4996 and
0.2550, respectively. Although the Logits method shows relatively less degradation, it still exhibits
sensitivity to the volume of fine-tuning data. Notably, Logits method is particularly sensitive to
changes in the vocabulary, e.g., Chinese-llama-2-7b has expanded its vocabulary during fine-tuning,
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Table 1: Similarity of various LLM fingerprinting methods applied to suspect models developed
through fine-tuning, pruning, merging, permutations, and scaling transformations. In this table,
indicate similarity greater than 0.8, indicate similarity between 0.5 and 0.8, and indicate
similarity less than 0.5.

Model Fine-tuning
Llama-2-finance-7b

(5M Tokens)
Vicuna-1.5-7b
(370M Tokens)

Wizardmath-7b
(1.8B Tokens)

Chinesellama-2-7b
(13B Tokens)

Codellama-7b
(500B Tokens)

Llemma-7b
(700B Tokens)

PCS 0.9979 0.9985 0.0250 0.0127 0.0105 0.0098
ICS 0.9952 0.9949 0.9994 0.4996 0.2550 0.2257

Logits 0.9999 0.9999 0.9999 0.7033 0.7833 0.6367
REEF 0.9950 0.9985 0.9979 0.9974 0.9947 0.9962

Structured Pruning
Sheared-llama-

1.3b-pruned
Sheared-llama-

1.3b
Sheared-llama-
1.3b-sharegpt

Sheared-llama-
2.7b-pruned

Sheared-llama-
2.7b

Sheared-llama-
2.7b-sharegpt

PCS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ICS 0.4927 0.3512 0.3510 0.6055 0.4580 0.4548

Logits 0.9967 0.9999 0.9999 0.9967 0.9999 0.9999
REEF 0.9368 0.9676 0.9710 0.9278 0.9701 0.9991

Unstructured Pruning Distribution Merging (Fusechat-7b)
Sparse-llama-

2-7b
Wanda-llama-

2-7b
GBLM-llama-

2-7b
Internlm2-chat-

20b
Mixtral-8x7b-

instruct
Qwen-1.5-chat-

72b
PCS 0.9560 0.9620 0.9616 0.0000 0.0000 0.0000
ICS 0.9468 0.9468 0.9478 0.1772 0.0105 0.0635

Logits 0.9999 0.9999 0.9999 0.0000 0.0000 0.0000
REEF 0.9985 0.9986 0.9991 0.9278 0.9701 0.9991

Weight Merging (Evollm-jp-7b) Distribution Merging(Fusellm-7b)
Shisa-gamma-7b-v1 Wizardmath-7b-1.1 Abel-7b-002 Llama-2-7b Openllama-2-7b Mpt-7b

PCS 0.9992 0.9990 0.9989 0.9997 0.0194 0.0000
ICS 0.9992 0.9988 0.9988 0.1043 0.2478 0.1014

Logits 0.9933 0.9999 0.9999 0.9999 0.0100 0.0000
REEF 0.9635 0.9526 0.9374 0.9996 0.6713 0.6200

Permutation Scaling Transformation
Llama-2-7b Mistral-7b Qwen-1.5-7b Llama-2-7b Mistral-7b Qwen-1.5-7b

PCS 0.0000 0.0000 0.0000 0.9999 0.9989 0.9999
ICS 0.1918 0.9847 0.9912 0.9999 0.9999 0.9998

Logits 0.0000 0.0000 0.0000 0.9999 0.9999 0.9999
REEF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

yielding a lower similarity than Code-llama-7b (0.7033 vs 0.7833), despite being fine-tuned on a
smaller dataset (13B vs 500B tokens).

Discussion about how much fine-tuning data could make REEF ineffective. Despite fine-tuning
Llama-2-7b to Llemma-7b with 700B tokens (Azerbayev et al., 2023), the fine-tuning data is one-
third of Llama-2-7b’s 2T token pre-training data, yet REEF remains effective. We question whether
REEF would remain effective with continued increases in fine-tuning data. Before delving into
this discussion, two statements are listed: (1) To the best of our know, Llemma-7b is the most
extensively fine-tuned Llama-2-7b model, nearly 700B tokens for fine-tuning, and REEF has shown
robustness in this context; (2) Code-llama-7b (Roziere et al., 2023) reports that fine-tuning with
500B tokens requires 4.4T of disk size and 25,000 GPU hours, fine-tuning on this scale is costly.
Such a considerable cost limits further extensive fine-tuning. REEF appears effective in current
fine-tuning scenarios.

5.2.3 MODEL PRUNING

Pruning is widely used in model compression for edge deployment, e.g., serving for mobile devices
and autonomous driving (Vadera & Ameen, 2021; Wang et al., 2024; Lin et al., 2024). However,
pruning could significantly alter both the structural integrity and representation dimensions of mod-
els (Ma et al., 2023; Frantar & Alistarh, 2023; Zhu et al., 2023), posing challenges for fingerprint
identification. To this end, we test REEF on various pruned models of the victim model Llama-2-7b.

Settings. We use Llama-2-7b as the victim model and various pruned models of it as suspect mod-
els. First, we select several pruned models using different pruning strategies, including structured
pruning (e.g.Sheared-llama (Xia et al., 2024)), and unstructured pruning (e.g., SparseGPT (Frantar
& Alistarh, 2023), GBLM-Pruner (Das et al., 2023), and Wanda (Sun et al., 2023)). These meth-
ods prune the models at specific ratios, followed by post-training (e.g., continued pre-training or
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Figure 4: (a)-(c) Similarity between pruned models and the victim model across three pruning strate-
gies at various pruning ratios. (d) Perplexity of the three pruning strategies.

instruction-tuning) to ensure the pruned models maintain their capabilities. Second, we apply LLM-
Pruner (Ma et al., 2023) to prune Llama-2-7b into smaller suspect models at arbitrary pruning ratios,
without post-training. For example, we apply block pruning to reduce Llama-2-7b’s parameters by
10% to as much as 90%, and layer pruning to reduce the number of layers by 3 to as much as 27.

REEF is robust to various pruning strategies. As shown in Table 1, for structured pruned mod-
els, REEF consistently achieves accurate fingerprint identification across all Sheared-llama models,
with similarities exceeding 0.9278. In contrast, PCS fails in this scenario, consistently yielding a
similarity score of zero. ICS does not perform well, e.g., the similarity for the 1.3B pruned model
drops to 0.3512. The Logits method, which relies on the output space, remains unaffected unless
the pruning alters the logits themselves. For unstructured pruned models, all methods are capable of
identifying the victim model, with all similarities exceeding 0.94. In summary, REEF and the Logits
method remain robust across all pruned models.

REEF is robustness to pruning ratio, even up to 90%. Figure 4 shows that REEF remains effec-
tive even with significant pruning, including block pruning of up to 90% of parameters, layer pruning
of up to 27 layers, and channel pruning of up to 60%. Figure 4(d) illustrates that perplexities are
particularly high in these scenarios, especially with 60% channel pruning. As noted by Ma et al.
(2023), channel pruning affects all layers, but the first and last layers are critical for maintaining
model integrity, thus pruning is limited to 60%. In contrast, PCS fails in all pruning scenarios, and
ICS’s effectiveness diminishes as the pruning ratio increases, ultimately failing under layer pruning.
These findings highlight REEF as the most robust and reliable method for fingerprint identification
across various pruning ratios.

5.2.4 MODEL MERGING

Model merging is an effective technique that merges multiple separate models with different capa-
bilities to build a universal model without needing access to the original training data or expensive
computation (Yang et al., 2024). Differing from other sections, the merged model is derived from
several victim models, which pose a challenge in identifying all of them. In this subsection, we
study two types of model merging: weight-based and distribution-based.

Settings. For weight merging, we select Evollm-jp-7b (Akiba et al., 2024) as the suspect
model, which merges three victim models with the same architecture (i.e., Shisa-gamma-7b-v1,
Wizardmath-7b-1.1, and Abel-7b-002) by weighted parameters. For distribution merging, we
choose Fusellm-7b (Wan et al., 2024a) and Fusechat (Wan et al., 2024b) as suspect models, re-
spectively. Fusellm-7b merges three victim LLMs with distinct architectures but with same scale:
Llama-2-7b, Openllama-2-7b, and Mpt-7b. Fusechat merges several chat LLMs of varied architec-
tures and scales, we investigate Internlm2-chat-20b, Mixtral-8x7b-instruct, and Qwen-1.5-chat-72b
as suspect models.

REEF is robust across both weight and distribution merging scenarios. For weight merging,
REEF consistently achieves high accuracy in identifying the origins of merged models, with simi-
larities ranging from 0.9526 to 0.9996, as shown in Table 1. ICS, PCS, and the Logits method also
perform well in this scenario. For distribution merging at the same scales (i.e., Fusellm-7b), REEF
continues to perform well, accurately identifying the victim model Llama-2-7b with a similarity
of 0.9996. Additionally, it remains effective for Openllama-2-7b and Mpt-7b, with similarities of
0.6713 and 0.62, respectively. However, ICS struggles significantly in this scenario, with all three
original victim models achieving low similarities. Although PCS and the Logits method can iden-
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Figure 5: Illustration of the CKA similarity between the representations of the victim LLM (Llama-
2-7B) and various suspect LLMs across different datasets as sample number increases.

tify Llama-2-7b, their performance drops sharply for Openllama-2-7b and Mpt-7b, with similarities
of nearly 0. For distribution merging at the different scales (i.e., Fusechat-7b), REEF is the only
method that continues to work for identifying victim models, while the other methods fail, demon-
strating its consistent reliability in this scenario. Based on these findings, REEF is robust across
various merging strategies and can identify all victim models for the merged model.

5.2.5 PERMUTATION AND SCALING TRANSFORMATION

There are approaches that could camouflage the model without changing its architecture or affecting
its output (Zeng et al., 2023). Malicious developers may modify the model by employing dimension
permutation or coupled matrix multiplications to evade some fingerprint detection methods (Fer-
nandez et al., 2024). This section aims to experiment with the robustness of various fingerprinting
methods in addressing this type of evasion.

Settings. We select Llama-2-7b, Mistral-7b, and Qwen-1.5-7b as victim models, applying column-
wise permutations or scaling transformations (with a scaling factor of 0.8) to both their weight
matrices and feature representations. These operations simulate evasion techniques that malicious
developers might use, enabling us to compare the similarities of the weights and representations
before and after the operations.

REEF is invariant and robust to any column-wise permutations and scaling transformations,
as proved by the Theorem 1. As shown in Table 1, the CKA similarity computed by REEF remains
consistently at 1 before and after the permutation or scaling transformations, indicating that REEF is
invariant to these operations and robust against evasion techniques. However, other methods such as
ICS, PCS, and Logits, while robust to scaling transformations, exhibit a significant drop in similarity
under permutation, with values nearly dropping to 0. These results further reinforce that REEF is a
highly reliable fingerprinting method in practical applications against malicious developers.

5.3 ABLATION STUDY

Number of Samples To evaluate the impact of sample number on the performance of REEF, we
conduct an ablation study using samples from TruthfulQA, ranging from 10 to 1000 in intervals of
10. We use Llama-2-7b as the victim model and select 10 suspect models, consisting of 5 LLMs
derived from Llama-2-7b and 5 unrelated LLMs. We then calculate the CKA similarity between the
sample representations of each suspect model and those of Llama-2-7b at different sample numbers.
Figure 5(a) illustrates the similarities for various models as the number of samples increases.

REEF is highly efficient regarding the number of samples required for robust model finger-
printing. Figure 5(a) shows that the similarities for most models stabilize after 200-300 samples,
suggesting that REEF can achieve reliable fingerprint identification with a smaller sample number.
Notably, LLMs derived from Llama-2-7b (e.g., Chinese-lama-2-7b and Code-llama-7b) consistently
maintain high similarities close to 1.0 across all sample numbers. This indicates that these models
potentially share the same representation space as the victim model, verifying that representation is
an intrinsic feature for fingerprinting. In contrast, unrelated LLMs (e.g., Qwen-7b-v1.5 and Mistral-
7b) exhibit lower similarities that gradually decrease and stabilize at levels below 0.2 as the number
of samples increases. This suggests that these models are more distinct and require a larger num-
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itself, and (b) paired LLMs with the same architecture but different pre-training data.

ber of samples for accurate fingerprinting. Overall, few samples from TruthfulQA are effective for
REEF in identifying LLMs derived from the victim model compared to unrelated LLMs.

Different Datasets To assess the effectiveness of REEF across various data types, we also con-
duct experiments using SST2 (Socher et al., 2013), ConfAIde (Mireshghallah et al., 2023), PKU-
SafeRLHF (Ji et al., 2024), and ToxiGen (Hartvigsen et al., 2022). Following the same settings
described in the previous section, we plot the similarities between the victim model and various sus-
pect models for different datasets as the number of samples increases, as shown in Figure 5(b)-(e).

REEF is effective across various datasets. Figure 5(b)-(e) show that the similarity between the
victim model and its derived LLMs is significantly higher than the similarity with unrelated LLMs
across different datasets. This clear distinction demonstrates that REEF can effectively identify
whether a suspect model is derived from the victim model. Furthermore, the gap in the similarity
between derived LLMs and unrelated LLMs varies by dataset, e.g., the gap is approximately 0.8 on
TruthfulQA and about 0.5 on ToxiGen. A larger gap indicates a stronger identification capability.
Our findings suggest that while REEF is effective across diverse datasets, TruthfulQA emerges as
the optimal choice for model fingerprinting, as it exhibits the most substantial differentiation in
similarity between LLMs derived from the victim model and unrelated LLMs.

5.4 FURTHER DISCUSSION

REEF can distinguish between models with the same architecture but different pre-training
data. Openllama-7b (Geng & Liu, 2023) and Amber (Liu et al., 2023) are open-source LLMs
that utilize the same Llama architecture but are trained from scratch on distinct pre-training datasets.
Figure 6 demonstrates that REEF effectively identifies the differences between Llama-2-7b and both
Openllama-7b and Amber, as evidenced by their low similarities. Additionally, similar results are
observed when analyzing LLMs across different generations, such as Llama-2-7b versus Llama-3-
8b, and Internlm-7b versus Internlm2-7b. Each of these models reflects variations in pre-training
data and strategies, which REEF accurately identifies.

Malicious developers fail to fine-tune models with a customized loss function to evade detec-
tion by the REEF. We assume these developers are aware of the REEF approach and attempt to
design customized loss functions during fine-tuning to bypass detection. Since REEF relies on the
observation that developed LLMs share similar representational spaces with the victim model. The
developer may use the customized loss function to widen the gap between the two representations.
Experimental results in Appendix E indicate that such fine-tuning seriously damage the model’s
general capabilities and renders the fine-tuned models unusable. This is because the capabilities
of LLMs stem from their representational distribution, and such intentional fine-tuning inevitably
leads to the model losing its language modeling ability. Therefore, malicious developers are unable
to evade REEF detection through this method.

6 CONCLUSION

This paper proposes REEF, a robust representation-based fingerprinting method for LLMs in a
white-box scenario, which effectively identifies models derived from victim models. REEF does not
impair LLMS’s general capability and remains resilient against various subsequent developments,
including pruning, fine-tuning, merging, and permutations. Therefore, REEF is highly suitable for
protecting model IPs for both third parties and model owners, as a reliable solution for safeguarding
models from unauthorized use or reproduction.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this study, we have uploaded the source code as part of the supple-
mentary material. Furthermore, the code and datasets will be made available on GitHub after the
completion of the double-blind review process, enabling others to replicate our study.
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A PROOF FOR THEOREM 1

Theorem 1 Given two matrices X ∈ Rm×p1 and Y ∈ Rm×p2 , the CKA similarity score between X
and Y is invariant under any permutation of the columns and column-wise scaling transformation.
Formally, we have:

CKA(X,Y ) = CKA(XP1, Y P2) = CKA(c1X, c2Y ) (1)

where P1 ∈ Rp1×p1 and P2 ∈ Rp2×p2 denote permutation matrices. c1 ∈ R+ and c2 ∈ R+ are two
positive scalars.

Proof.

A.1 CASE 1: PERMUTATION INVARIANCE

For Linear CKA, the Gram matrices of X and Y are KX = XX⊤ and KY = Y Y ⊤, respectively.

In this way, we have

KXP1
= (XP1)(XP1)

⊤ = X P1P
⊤
1︸ ︷︷ ︸

=I

X⊤ = XX⊤ = KX . (2)

Since P1 is an orthogonal permutation matrix, thus P1P
⊤
1 = I .

Similarly, we have

KY P2 = (Y P2)(Y P2)
⊤ = Y P2P

⊤
2︸ ︷︷ ︸

=I

Y ⊤ = Y Y ⊤ = KY . (3)

According to (Gretton et al., 2005),

HSIC(X,Y ) =
1

(m− 1)2
tr(KXHKY H)

=
1

(m− 1)2
tr(KXP1

HKY H)︸ ︷︷ ︸
HSIC(XP1,Y )

=
1

(m− 1)2
tr(KXHKY P2H)︸ ︷︷ ︸

HSIC(X,Y P2)

=
1

(m− 1)2
tr(KXP1HKY P2

H)︸ ︷︷ ︸
HSIC(XP1,Y P2)

(4)

Thus, we have

HSIC(X,Y ) = HSIC(XP1, Y ) = HSIC(X,Y P2) = HSIC(XP1, Y P2). (5)
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Taking Eq.5 into Eq. 1, we have

CKA(X,Y ) =
HSIC(X,Y )√

HSIC(X,X) · HSIC(Y, Y )

=
HSIC(XP1, Y )√

HSIC(XP1, XP1) · HSIC(Y, Y )︸ ︷︷ ︸
CKA(XP1,Y )

=
HSIC(X,Y P2)√

HSIC(X,X) · HSIC(Y P2, Y P2)︸ ︷︷ ︸
CKA(X,Y P2)

=
HSIC(XP1, Y P2)√

HSIC(XP1, XP1) · HSIC(Y P2, Y P2)︸ ︷︷ ︸
CKA(XP1,Y P2)

(6)

Finally, we obtain

CKA(X,Y ) = CKA(XP1, Y ) = CKA(X,Y P2) = CKA(XP1, Y P2) (7)

For RBF CKA, the RBF kernel function is

k(Xi, Xj) = exp

(
−∥Xi −Xj∥22

2σ2

)
= exp

(
−∥XiP1 −XjP1∥22

2σ2

)
︸ ︷︷ ︸

K(XiP1,XjP1)

(8)

The pairwise distances ∥Xi −Xj∥2 are invariant to the column permutation of X , because P1 is a
permutation matrix. Therefore, we can obtain KXP1 = KX .

Similarly, it is easily derived KY P2
= KY as follows,

k(Yi, Yj) = exp

(
−∥Yi − Yj∥22

2σ2

)
= exp

(
−∥YiP2 − YjP2∥22

2σ2

)
︸ ︷︷ ︸

K(YiP2,YjP2)

(9)

In this way, we have

HSIC(X,Y ) =
1

(m− 1)2
tr(KXHKY H)

=
1

(m− 1)2
tr(KXP1

HKY H)︸ ︷︷ ︸
HSIC(XP1,Y )

=
1

(m− 1)2
tr(KXHKY P2

H)︸ ︷︷ ︸
HSIC(X,Y P2)

=
1

(m− 1)2
tr(KXP1HKY P2H)︸ ︷︷ ︸

HSIC(XP1,Y P2)

(10)
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Taking Eq.10 into Eq. 1, we have

CKA(X,Y ) =
HSIC(X,Y )√

HSIC(X,X) · HSIC(Y, Y )

=
HSIC(XP1, Y )√

HSIC(XP1, XP1) · HSIC(Y, Y )︸ ︷︷ ︸
CKA(XP1,Y )

=
HSIC(X,Y P2)√

HSIC(X,X) · HSIC(Y P2, Y P2)︸ ︷︷ ︸
CKA(X,Y P2)

=
HSIC(XP1, Y P2)√

HSIC(XP1, XP1) · HSIC(Y P2, Y P2)︸ ︷︷ ︸
CKA(XP1,Y P2)

(11)

Finally, we obtain

CKA(X,Y ) = CKA(XP1, Y ) = CKA(X,Y P2) = CKA(XP1, Y P2) (12)

A.2 CASE 2: SCALING INVARIANCE

For Linear CKA, let X̃ = c1X and c1 ∈ R+. Then,

KX̃ = X̃X̃⊤

= (c1X)(c1X)⊤

= c21XX⊤

= c21KX (13)

Similarly, let Ỹ = c2Y and c2 ∈ R+. Then,

KỸ = Ỹ Ỹ ⊤

= (c2Y )(c2Y )⊤

= c22Y Y ⊤

= c22KY . (14)

In this way,

HSIC(c1X, c2Y ) =
1

(m− 1)2
tr(KX̃HKỸ H)

=
1

(m− 1)2
tr(c21KXHc22KY H)

=
1

(m− 1)2
tr(c21c

2
2KXHKY H)

=
c21c

2
2

(m− 1)2
tr(KXHKY H)

= c21c
2
2HSIC(X,Y ). (15)

Accordingly,
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HSIC(c1X, c1X) =
1

(m− 1)2
tr(KX̃HKX̃H)

=
1

(m− 1)2
tr(c21KXHc21KXH)

=
1

(m− 1)2
tr(c41KXHKXH)

=
c41

(m− 1)2
tr(KXHKXH)

= c41HSIC(X,X). (16)

HSIC(c2Y, c2Y ) =
1

(m− 1)2
tr(KỸ HKỸ H)

=
1

(m− 1)2
tr(c22KY Hc22KY H)

=
1

(m− 1)2
tr(c42KY HKY H)

=
c42

(m− 1)2
tr(KY HKY H)

= c42HSIC(Y, Y ). (17)

Therefore, we have

CKA(c1X, c2Y ) =
HSIC(c1X, c2Y )√

HSIC(c1X, c1X) · HSIC(c2Y, c2Y )

=
c21c

2
2HSIC(X,Y )√

c41HSIC(X,X) · c42HSIC(Y, Y )

=
c21c

2
2HSIC(X,Y )

c21c
2
2

√
HSIC(X,X) · HSIC(Y, Y )

=
HSIC(X,Y )√

HSIC(X,X) · HSIC(Y, Y )︸ ︷︷ ︸
CKA(X,Y )

(18)

Finally, we obtain

CKA(X,Y ) = CKA(c1X, c2Y ) (19)

For RBF CKA, the RBF kernel function is

k(c1Xi, c1Xj) = exp

(
−∥c1Xi − c1Xj∥22

2σ2

)
= exp

(
−c21∥Xi −Xj∥22

2σ2

)
(20)

Following Kornblith et al. (2019), the bandwidth σ is chosen as a fraction of the median distance,
i.e., σ = α · median(∥Xi −Xj∥2) for the constant α > 0. In this way, Eq. 20 is transformed as,
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k(c1Xi, c1Xj) = exp

(
− c21∥Xi −Xj∥22
2(αc21 · median(∥Xi −Xj∥2))2

)
= exp

(
−c21∥Xi −Xj∥22

2c21σ
2

)
︸ ︷︷ ︸

k(Xi,Xj)

. (21)

Similarly, it is easily derived k(c2Yi, c2Yj) = k(Yi, Yj) as follows,

k(c2Yi, c2Yj) = exp

(
− c22∥Yi − Yj∥22
2(αc22 · median(∥Yi − Yj∥2))2

)
= exp

(
−c22∥Yi − Yj∥22

2c22σ
2

)
︸ ︷︷ ︸

k(Yi,Yj)

. (22)

Therefore, we can obtain HSIC(X,Y ) = HSIC(c1X, c2Y ), HSIC(X,X) = HSIC(c1X, c1X), and
HSIC(Y, Y ) = HSIC(c2Y, c2Y )

Finally, we have

CKA(c1X, c2Y ) =
HSIC(c1X, c2Y )√

HSIC(c1X, c1X) · HSIC(c2Y, c2Y )

=
HSIC(X,Y )√

HSIC(X,X) · HSIC(Y, Y )

= CKA(X,Y ). (23)

Finally, we obtain
CKA(X,Y ) = CKA(c1X, c2Y ). (24)

B THE EFFECTIVENESS OF CLASSIFIERS TRAINED ON REPRESENTATIONS
OF A VICTIM MODEL

This appendix provides a detailed analysis of the experiments conducted to evaluate the effectiveness
of classifiers trained on the representations of a victim model to identify whether a suspect model
is derived from it, thus protecting its intellectual property. We explore the classifiers’ accuracy
when utilizing representations from different layers to train classifiers and applying them to the
corresponding layers of the suspect model (B.1), as well as applying classifiers trained on one layer’s
representation to representations from other layers of the suspect model (B.2).

B.1 APPLY CLASSIFIERS TO THE CORRESPONDING LAYER

Research has shown that representations from the middle and later layers of LLMs contain rich
encoded information, which can be used to classify high-dimensional concepts, such as safety or
unsafety, and honesty or dishonesty (Burns et al., 2023; Rimsky et al., 2023; Zou et al., 2023; Qian
et al., 2024). Following Section 3, we explore the effectiveness of classifiers trained on representa-
tions from different layers.

Specifically, we use Llama-2-7b and llama-2-13b as victim models, extracting representations from
the 24th and 30th layers of Llama-2-7b and from the 32nd and 40th layers of Llama-2-13b for the
TruthfulQA dataset. We then train various classifiers (e.g., linear, MLP, CNN, GCN) on repre-
sentations from each layer. These classifiers are subsequently applied to various suspect models,
including LLMs derived from the victim models as well as unrelated LLMs.
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Figure 7: Accuracies of classifiers trained on representations from Llama-2-7b.
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Figure 8: Accuracies of classifiers trained on representations from Llama-2-13b.

Classifiers trained on representations from different layers of the victim model are all capable of
identifying whether a suspect model is derived from the victim model. Figures 7 and 8 show the
results of applying classifiers trained on representations from the 24th and 30th layers of Llama-2-7b
and from the 32nd and 40th layers of Llama-2-13b to suspect models on the TruthfulQA dataset.
It can be observed that across different layers, all classifiers (linear, MLP, CNN, GCN) achieve an
accuracy over 70% on representations from LLMs derived from the victim model. This accuracy is
close to the classification results of the victim model itself. However, the accuracy dropped to about
50% when applied to representations from unrelated models, which is close to random guessing and
significantly lower than the classification results on the victim model’s representations.

The results demonstrate that REEF, our representation-based fingerprinting method, does not depend
on representations from any specific layer. By leveraging the powerful representation modeling
capabilities of LLMs, REEF can use representations from various layers to identify the victim model
within a suspect model, thereby protecting its intellectual property.

B.2 APPLY CLASSIFIERS CROSS LAYERS

To further investigate the generalizability of our approach, we conduct cross-layer experiments by
applying classifiers trained on representations from one layer to representations from other layers.
For instance, we apply a linear classifier trained on the 18th layer representations of Llama-2-7b to
the 24th layer representations of suspect models. This cross-layer analysis provides insights into the
similarity of representations across different layers of the model.

Following the same training process as previously described, for Llama-2-7b, we select one layer’s
representations from the 18th, 24th, or 30th layer to train a linear classifier, which is then applied
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Table 2: Accuracies of classifiers applied across layers for victim model Llama-2-7b. Gray shading
indicates that the classifier was trained using representations from that specific layer.

Victim LLM LLMs derived from the victim model Unrelated LLMs
Llama-2

-7b

Llama-2

-7b-chat

Vicuna-1.5

-7b

Chinese-

llama-2-7b

Xwimlm

-7b

Mistral

-7b

Baichuan

-2-7b

Qwen

-1.5-7b

Internlm

-7b

Layer-18 0.8003 0.7437 0.7642 0.7578 0.7421 0.5078 0.4513 0.5063 0.5094

Layer-24 0.7123 0.7008 0.6965 0.7081 0.7060 0.4953 0.5314 0.5283 0.5016

Layer-30 0.6715 0.6778 0.6809 0.6762 0.6636 0.5031 0.4890 0.5094 0.5252

Layer-18 0.7014 0.7030 0.7124 0.7077 0.6967 0.4717 0.5283 0.5418 0.5130

Layer-24 0.7720 0.7233 0.7390 0.7055 0.7547 0.4780 0.4984 0.5235 0.5031

Layer-30 0.6723 0.6629 0.7085 0.6660 0.6975 0.4513 0.4953 0.5126 0.4764

Layer-18 0.6982 0.6945 0.6914 0.6950 0.6840 0.5225 0.5096 0.4827 0.5189

Layer-24 0.7097 0.7050 0.7191 0.7034 0.7233 0.5189 0.4959 0.4591 0.4686

Layer-30 0.7453 0.7061 0.7360 0.7045 0.7296 0.5157 0.5270 0.4953 0.5036

Table 3: Accuracies of classifiers applied across layers for victim model Llama-2-13b.
Gray shading indicates that the classifier was trained using representations from that specific layer.

Victim model LLMs derived from the victim model Unrelated LLMs
Llama-2

-13b

Llama-2

-13b-chat

Vicuna-1.5

-13b

Chinese-

llama-2-13b

Xwimlm

-13b

Plamo

-13b

Baichuan

-2-13b

Qwen

-1.5-14b

Internlm

-20b

Layer-24 0.8412 0.8223 0.8066 0.8081 0.8223 0.4827 0.5283 0.4276 0.4946

Layer-32 0.8050 0.7783 0.7814 0.7909 0.8082 0.4811 0.4827 0.4450 0.4546

Layer-40 0.7767 0.7248 0.7783 0.7421 0.7594 0.4780 0.5372 0.4906 0.4289

Layer-24 0.8381 0.7925 0.8113 0.8145 0.8192 0.4874 0.5329 0.5236 0.4996

Layer-32 0.8223 0.7909 0.7799 0.7799 0.7909 0.5000 0.5220 0.5079 0.5057

Layer-40 0.7767 0.7484 0.7642 0.7186 0.7767 0.5083 0.5152 0.5350 0.4893

Layer-24 0.8302 0.827 0.8129 0.8113 0.8223 0.4858 0.5412 0.5000 0.4734

Layer-32 0.8113 0.7783 0.8035 0.7814 0.8003 0.4560 0.5397 0.5031 0.4896

Layer-40 0.8239 0.7842 0.8187 0.8014 0.8207 0.4780 0.5314 0.5173 0.5000

to the representations from the other two layers across various suspect models. For instance, linear
classifiers trained on representations from the 18th layer are applied to the representations of the
24th and 30th layers in different suspect models. Similarly, for Llama-2-13b, we choose representa-
tions from the 24th, 32nd, or 40th layer to conduct the same cross-layer classifier application. The
experimental results are presented in Tables 2 and 3, respectively, which provide detailed accuracy
metrics for each cross-layer classification task.

Table 2 shows that the classifier trained on the specific layer’s representations (e.g., 18th layer) of
Llama-2-7b, when applied to other layers’ representations (e.g., 24th and 30th layer) of suspect
models, maintained the accuracy 70% for derived models and 50% for unrelated models. Table
3 demonstrates similar results for experiments conducted on the larger Llama-2-13b model, with
significantly distinct accuracy ranges. These results indicate that classifiers trained on one layer’s
representations remain effective when applied to other layers, suggesting a significant similarity in
the representation spaces across different layers of the model.

The ability of these classifiers to generalize across layers further strengthens the reliability of our
fingerprinting detection method. It indicates that the distinctive features learned by the classifiers
are not confined to a specific layer but are present throughout the model’s architecture. This char-
acteristic enhances the robustness of our approach, making the use of representations as fingerprints
for protecting the intellectual property of the victim model more reliable through cross-layer valida-
tion. Additionally, this insight inspires us to use heatmaps to depict the CKA similarity between the
representations of the victim LLM and those of various suspect LLMs across the same samples, as
presented in the main text.
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C HEATMAPS OF THE VICTIM MODEL AND DIFFERENT SUSPECT MODELS

In Section 5.2, we report REEF’s similarity of representations from the 18th layer between the vic-
tim model and various suspect models. These suspect models are derived from the victim model
through a range of developments, including fine-tuning, pruning, merging, permutation, and scaling
transformation. To provide a clearer and more intuitive comparison, we supplement this analysis
with heatmaps in Figure 9, depicting the layer-wise and inter-layer CKA similarity of representa-
tions for the same samples between each pair of victim and suspect models. Figure 9 demonstrates
that, regardless of the type of development applied to the victim model, our representation-based
fingerprint REEF can significantly identify the victim model, as shown by the high CKA similarities
in the heatmap.
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Figure 9: Heatmaps depicting the layer-wise and inter-layer CKA similarity of representations for
the same samples between each pair of victim and suspect models.
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Table 4: Similarity of various LLM fingerprinting methods applied to suspect models developed
from the Qwen-2.5-7b.

Qwen-2.5-7b-coder Qwen-2.5-7b-pruning Qwent-7b Qwen-2.5-7b-permutation
PCS 0.6769 0.0000 0.9499 0.0000
ICS 0.9461 0.7638 0.9989 0.9197

Logits 0.0670 0.9999 0.8167 0.0000
REEF 0.9411 0.9785 0.9599 1.0000

Table 5: Similarity of various LLM fingerprinting methods applied to suspect models developed
from the Mistral-7b.

Mathstral-7B Mistral-7b-pruning Evollm-jp-7b Mistral-7b-permutation
PCS 0.9803 0.0000 0.9989 0.0000
ICS 0.9883 0.6392 0.9928 0.9847

Logits 0.3867 0.9999 0.9999 0.0000
REEF 0.9344 0.9868 0.9516 1.0000

D REEF’S APPLICATION ACROSS DIFFERENT LLM FAMILIES

To demonstrate the generalizability of REEF across different model families, we select Qwen-2.5-7b
and Mistral-7b as victim models. Then, We apply REEF to various suspect models derived from the
victim model, including fine-tuning, pruning, merging, and parameter perturbation.

For the Qwen-2.5-7b victim model, we use several variants through different modification ap-
proaches: domain-specific fine-tuning with code data (Qwen-2.5-7b-coder), 20% block-wise prun-
ing (Qwen-2.5-7b-pruning), weight merging between qwen-2-7b and qwen-2.5-7b (Qwent-7b), and
parameter perturbation (Qwen-2.5-7b-permutation). Similarly, for the Mistral-7b victim model, we
use variants including mathematical domain fine-tuning (Mathstral-7B), 20% block-wise pruning
(Mistral-7b-pruning), a weighted parameter merge of Shisa-gamma-7b-v1, Wizardmath-7b-1.1, and
Abel-7b-002 (Evollm-jp-7b), and parameter perturbation (Mistral-7b-permutation).

As shown in Tables 4 and 5, REEF consistently achieves high CKA similarity scores across all sus-
pect models and victim models. This demonstrates that REEF can effectively identify the victim
model regardless of whether it is Qwen-2.5-7b or Mistral-7b, even after various downstream modifi-
cations. The robust performance across different LLM families underscores the general effectiveness
of our approach.

E EVADING REEF WITH FINE-TUNING

We hypothesize that malicious developers aware of the REEF approach might attempt to design
customized loss functions during fine-tuning to evade detection. Given that REEF determines model
similarity based on the representation similarity between the suspect and victim models, malicious
developers aiming to avoid detection would likely design their customized loss to maximize the
representational divergence between these models.

Based on this premise, we designed two experiments to attempt to circumvent REEF detection:

• Integrating the task loss with a customized loss during the fine-tuning process, aiming to achieve
the fine-tuning objective while maximizing the representational dissimilarity with the victim
model.

• Fine-tuning the victim model solely using the customized loss, attempting to maximize the repre-
sentational dissimilarity between the original and fine-tuned models.

To evaluate these scenarios, we conduct experiments using the OPT-1.3B model (Zhang et al., 2022)
and the E2E NLG Challenge dataset (Novikova et al., 2017) for fine-tuning. We employ the LoRA
technique (Hu et al., 2021) for efficient adaptation. The customized loss is designed to measure the
CKA similarity between the logits of the original and fine-tuned models.
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For the first scenario, we formulate a combined loss function: L = Ltask + λLcustom, where Ltask is
the task-specific loss (e.g., cross-entropy for the E2E NLG Challenge), Lcustom is designed to adjust
the CKA similarity between the original and fine-tuned models, and λ is the weighting coefficient.
As for Lcustom, we design two type of loss function. One is the directly CKA similarity between the
logits of the original and fine-tuned models, namely CKA loss. Specifically, the customized CKA
loss is calculated using Equation 1, that is:

CKA(LGori,LGft) =
HSIC(LGori,LGft)√

HSIC(LGori,LGori) · HSIC(LGft,LGft)
, (25)

where LGori and LGft represent the logits of the original and fine-tuned models on the same sample.

The other is the Wasserstein loss, which is use to maximize the divergence between the logits of
the original and fine-tuned models, defined as LW = max (Ex∼D [W (LGori(x)− LGft(x))]), where
W (·, ·) represents the Wasserstein distance between two distributions (e.g., logits of the original and
fine-tuned models)

In this scenario, incorporating different weighting coefficients for the customized loss during the
combined fine-tuning process failed to reduce the representational similarity between the fine-tuned
model and the original model. This suggests that during fine-tuning, the model continues to rely on
the representation modeling capabilities of the original language model. Consequently, achieving
ECE task objectives necessarily preserves the representational distribution.

In the second scenario, although targeted fine-tuning can increase the distributional divergence in
the representation space between the suspect and victim models, the suspect model loses its fun-
damental language expression capabilities, rendering its outputs meaningless. For example, the
fine-tuned model may only respond with repetitive patterns such as “and and and and ...” for any
input, demonstrating a complete loss of linguistic coherence and utility.

Therefore, our method demonstrates resilience against malicious actors’ attempts to evade detection
through fine-tuning strategies. These findings underscore the robustness of REEF in identifying the
victim model, even in the face of sophisticated evasion techniques.

F REEF EVALUATION ON INDEPENDENTLY TRAINED MODELS WITH
SIMILAR DATASETS

To evaluate the performance of REEF on models independently trained on similar datasets, we
perform pre-training from scratch using the 1.5-Pints pre-training corpus, i.e., Expository-Prose-V1
(Tan & Wang, 2024). A new model is locally trained with varying data orders and hyperparameter
configurations, such as learning rates and batch sizes.

Specifically, 1.5-Pints is a Large Language Model that emphasizes data quality over quantity in LLM
training, featuring a meticulously curated pre-training corpus of 57 billion tokens. Using the dataset
provided in the original paper, we conduct pre-training on 8 A100 GPUs with different random seeds
for data shuffling. The hyperparameters for pre-training are set as follows: a global batch size of
512, a learning rate of 4e-4, a micro-batch size of 8, a maximum of 56,960 steps, a weight decay
of 0.1, beta1 of 0.9, beta2 of 0.95, gradient clipping at 1.0, and a minimum learning rate of 4e-5.
The pre-trained model undergoes supervised fine-tuning to obtain 1.5-pints-sft, followed by safety
alignment to generate 1.5-pints-dpo.

In our experimental setup,we choose 1.5-pints-dpo as the suspect model, which is obtained by con-
ducting further safety alignment on the 1.5-pints-sft model. We perform REEF on 1.5-pints-dpo
with 1.5-pints-sft and 1.5-pints-2k to test whether REEF can accurately identify its source from
models trained independently on the same dataset. The performance of REEF across these two
victim models is illustrated in Table 6.

REEF can still correctly identify the victim models from models that are independently trained on
the same dataset. As shown in Table 6, the CKA similarity highlights differences between 1.5-
pints-sft and its derived model (1.5-pints-dpo), compared to models pre-trained on the same dataset
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Table 6: The CKA similarity of 1.5-pints-dpo with 1.5-pints-sft and 1.5-pints-2k, respectively.

8th Layer 12th Layer 16th Layer 20th Layer
1.5-pints-sft 0.9983 0.9978 0.9908 0.9884
1.5-pints-2k 0.7632 0.7603 0.7723 0.7931

Table 7: General capability evaluation of 1.5-Pints model variants.

ARC RACE MatQA BoolQ ToxiGen WinoGrande Lambada PPL
1.5-Pints-2k 0.4727 0.3292 0.2452 0.5229 0.4245 0.5383 0.4751 12.52
1.5-Pints-ft 0.4842 0.334 0.2536 0.4498 0.4085 0.5335 0.4508 16.18

1.5-Pints-dpo 0.4822 0.3464 0.2506 0.5391 0.4064 0.5233 0.4485 16.83

with varied data orders and hyperparameters (1.5-pints-2k). This discriminative ability of REEF
minimizes false positives when analyzing models independently trained on identical datasets.

Furthermore, our comprehensive evaluation comparing independently pre-trained models (1.5-pints-
sft and 1.5-pints-dpo) with the original paper’s models (1.5-pints-2k) across multiple datasets
demonstrates consistent and reliable general capabilities, as shown in Table 7.

G LIMITATIONS

There are several limitations to this work. Firstly, our study focuses on open-source LLMs, which
allows model owners and third parties (e.g., regulatory authorities) to verify and protect model own-
ership. However, for closed-source models, the lack of access to their representations limits the
applicability of our approach. Secondly, regarding fine-tuning, due to the high cost of fine-tuning
with extensive data (more than 700B), although we discuss the effectiveness of our method in main
paper, empirical validation is lacking.

H FUTURE WORK

While REEF demonstrates robust performance in identifying root victim models, there are several
promising directions for future research. A key restriction of our current approach is that REEF
primarily focuses on direct lineage identification between suspect models and their root origins,
rather than tracking multi-generational model development paths. Future work could explore hybrid
approaches that combine our fingerprinting technique with watermarking methods to enable com-
prehensive model genealogy tracking. This would allow for not only identifying the root origin but
also verifying the complete development pathway of suspect models through multiple generations
of modifications, including fine-tuning, merging, and other adaptations. Such capabilities would
be particularly valuable as the LLM ecosystem becomes increasingly complex with models being
iteratively developed and modified across different organizations.
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