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Abstract

Auction-based Federated Learning (AFL) fosters collaboration among self-
interested data consumers (DCs) and data owners (DOs). A major challenge
in AFL pertains to how DCs select and bid for DOs. Existing methods are gen-
erally static, making them ill-suited for dynamic AFL markets. To address this
issue, we propose the Reinforcement Learning-based Bidding Strategy for DCs in
Auction-based Federated Learning (RLB-AFL). We incorporate historical states into
a Deep Q-Network to capture sequential information critical for bidding decisions.
To mitigate state space sparsity, where specific states rarely reoccur for each DC
during auctions, we incorporate the Gaussian Mixture Model into RLB-AFL. This
facilitates soft clustering on sequential states, reducing the state space dimensional-
ity and easing exploration and action-value function approximation. In addition,
we enhance the e-greedy policy to help the RLB-AFL agent balance exploitation and
exploration, enabling it to be more adaptable in the AFL decision-making process.
Extensive experiments under 6 widely used benchmark datasets demonstrate that
RLB-AFL achieves superior performance compared to 8 state-of-the-art approaches.
It outperforms the best baseline by 10.56% and 3.15% in terms of average total
utility.

1 Introduction

Driven by stringent user privacy and data confidentiality requirements, federated learning (FL) has
recently attracted substantial attention from both academic and industrial domains [1H7]. With
data owners (DOs), also known as FL clients, being self-interested entities that weigh a myriad of
factors (ranging from costs to potential utility gains) when deciding which FL data consumer (DC)
to collaborate with, the design of FL incentive mechanisms [8, 9] has taken center stage. These
mechanisms aim to incentivize DOs to participate in FL through various reward strategies.

Auction-based federated learning (AFL) is an important sub-field of FL incentive mechanism design,
due to its potential to achieve both efficiency and fairness [10}|11]]. In AFL, the incentive mechanism
between DOs and DCs is organized in the form of an auction. This process is overseen by an
auctioneer, who acts as an intermediary to facilitate the exchange of data for FL training. AFL
methods can be roughly categorized into three main groups [[12[]: 1) DC-side methods, 2) auctioneer-
side methods, and 3) DO-side methods. The DC-side methods focus on how DCs select and place
bids on DOs, aiming to optimize key performance indicators (KPIs) while staying within budget
constraints. The auctioneer-side methods optimize DC-DO matching and pricing strategies, along
with the design of effective auction mechanisms. The goal is to achieve specific operational objectives,
such as maximizing social welfare or minimizing social costs, for the AFL ecosystem. DOs care
more about determining the allocation of local resources and setting their reserve prices for profit
maximization [[13]].
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In recent times, there has been a growing research interest [14} [15] in investigating DC-side issues,
developing optimal bidding strategies to assist them in effectively bidding for DOs. However, existing
methods are generally static approaches. They are essentially represented by either non-linear or
linear functions with parameters derived from historical auction data using heuristic techniques.
Then, these parameters are applied to new auctions, even if the dynamics of these new auctions
might vary significantly from those in the historical data. In practice, the inherent dynamism of
AFL markets poses a considerable challenge for static DC bidding methods to consistently achieve
desirable outcomes.

To bridge this important gap, we propose a Reinforcement Learning-based Bidding Strategy for DCs
in Auction-based FL (RLB-AFL). It incorporates historical states into a Deep Q-Network to capture
sequential information critical for AFL DC bidding decisions. To mitigate the state space sparsity
issue in AFL, where specific states rarely re-appear for a DC, we propose to integrate the Gaussian
Mixture Model into RLB-AFL to enable soft clustering on sequential states, thereby reducing the
state space dimensionality, which in turn eases exploration and action-value function approximation.
Moreover, we improve the e-greedy policy to help an RLB-AFL agent strike a balance between
exploitation and exploration, enhancing its applicability in the decision-making process for each DC
within an AFL ecosystem.

To our best knowledge, RLB-AFL is the first cluster-based reinforcement learning approach that
facilitates a large number of DCs to compete for a common pool of DOs. Extensive experiments
conducted on 6 widely used benchmark datasets demonstrate the superiority of RLB-AFL compared
to 8 state-of-the-art existing approaches. It outperforms the best baseline by 10.56% and 3.15% in
terms of average total utility and model accuracy, respectively.

2 Related Works

Existing AFL DC-side methods, the primary focus of this paper, can be broadly categorized into two
main groups based on the auction mechanism adopted: 1) those for reverse auction scenarios, and 2)
those for forward auction scenarios.

Methods like [16-H27]] designed for reverse auction scenarios aim to help the DC select DOs after
receiving their asking profiles (which may include available data resources and the corresponding
asking prices). [24] combined a quality-aware model aggregation algorithm with reverse auction,
and proposed the FAIR method. It employs a greedy algorithm based on Myerson’s theorem [28]] to
determine the winning DOs and maximize the valuation for the DC. However, a crucial limitation of
these methods arises from their assumption that there is only one DC and multiple DOs in the AFL
marketplace. This monopoly market assumption is unrealistic in practice, where multiple DCs are
typically present.

Methods like [29}114} 130,31} [15] focus on assisting DCs in bidding for DOs under a competitive AFL.
market setting, employing forward auction mechanisms. These methods design bidding strategies
to guide DCs in determining bid prices for DOs. [[15] introduced the Fed-Bidder bidding strategy
which considers DC budget constraints, DO relevance and prior auction-related knowledge to design
a bidding function. It also emphasized the critical roles played by accurate estimation of DO utility
and the selection of an appropriate winning function in shaping optimal bidding strategies.

RLB-AFL falls into the category of methods designed for forward auction scenarios. However, it is
noteworthy that most existing bidding strategies designed for DCs are static, and thus may not be
suitable for dynamic AFL markets.

3 Preliminaries

AFL Market: Generally, an AFL market consists of three types of participants [[12]: 1) Data Owners
(DOs): entities possessing potentially sensitive yet valuable data, who are willing to share or sell
access to their data resources for FL task training in exchange for appropriate compensation. 2) Data
Consumers (DCs): organizations or individuals requiring data to train their machine learning models
via FL. 3) Auctioneer: a trusted third-party entity orchestrating the auction process between DOs and
DCs. It facilitates the exchange of data resources for FL training tasks through an auction mechanism,
such as the Second-Price Sealed-Bid (SPSB) auction.



When a DO is ready to offer its services for FL task training, it notifies the auctioneer, specifying its
bid request and the reserve priceE] The auctioneer then announces the auction to all DCs currently
participating in the AFL market. Any DC whose required the corresponding data resources aligns
with the DO’s offering submits a bid for the auction.

Each DO can trigger the following auction process: 1) Bid Request Initiation: DO i € [C;] generates
a bid request about itself (e.g., identity, data quantity, etc.) and sends it along with the the reserve
price (i.e., the lowest price it is willing to accept for selling the corresponding resources [32]) to the
auctioneer. 2) Bid Request Dissemination: The auctioneer disseminates the received bid request
to the relevant DCs whose FL tasks are relevant to the data resources of the DO being auctioned.
3) Bidding Response: Each relevant DC evaluates the potential value and cost of the received bid
request, and decides on a bid price based on its bidding strategy. The DCs submit their bids to
the auctioneer. When a DC has exhausted its budget, it will forfeit future auctions. 4) Outcome
Determination: Upon receiving bids from relevant DCs, the auctioneer determines the winning price
based on an auction mechanism. It then compares the winning price with the reserve price set by
each DO. If the winning price is lower than the reserve price, the auctioneer terminates the auction
and informs the DO to initiate another auction for the same resources. Otherwise, the auctioneer
informs the winning DC about the cost (i.e., the winning price) it needs to pay, informs the losing
DCs, and informs the DO about the winning DC it shall join.

The FL training process for the target DC based on its recruited DOs commences once either their
budget is depleted or all available DOs have been recruited by DCs.

Problem Formulation: The AFL DC bidding can be framed as an optimization problem within
budget B limit [15] to maximize the DC’s total utility with respect to a set of DOs [1, C]:

max Z ' x v, st Z z' x pt < B, (1

iE[LC] ie[lvc]

where v* denotes the utility the DC can gain from DO i being auctioned. The specific process to
calculate v* is described in the subsequent section. Here, ¢ € {0,1} denotes whether the target
DC wins i, and p’ denotes the payment from the target DC to i. Notably, under the SPSB auction
mechanism [33], if a DC wins the bid for a DO i, p® equals to the second-highest bid price among all
the bids received by the auctioneer; otherwise, p’ = 0.

In [15]}, it has been shown that under SPSB, the optimal bidding strategy is:
b=t /w. 2

w 1is a scaling factor. When the sequence of DO arrival is known in advance, the optimal w value
(w*) can be determined using a greedy approximation algorithm [34]. Unfortunately, in practice,
strategies must be executed in real-time without prior knowledge of the available data resources
being auctioned. Moreover, the auction environment typically exhibits high nonstationarity due to the
dynamic behaviors of all participating DCs, making the derivation of w* challenging.

Data Owner Reputation Modeling: Following [35]], we assess the utility of attracting a DO i for a
DC by evaluating i’s reputation. To calculate 4’s reputation (¢°) for a DC, we start by adopting the
computationally efficient GTG-Shapley method [36], which measures 7’s contribution to the DC in
the Shapley Value sense [37]]. This value is then fed into the Beta Reputation System (BRS) [38] to
obtain ¢ reputation value.

The contribution of a DO 7 to a DC can be grouped into two categories: 1) negative (i.e., ¢* < 0)
and 2) positive (i.e., ¢* > 0). We adopt the variables nc' and pc' to record the number of negative
contributions and the number of positive contributions made by ¢ for the DC, respectively. Then, we
employ the BRS to compute the reputation value v; for DO i on the target DC as:

pct 41
pet +nct +2°
It is essential to emphasize that, as illustrated in Eq. (@), DO 4’s reputation undergoes dynamic updates
throughout the FL model training process. Additionally, in situations where no prior information

is accessible, the default initial reputation value of 7 is established as the uniform distribution,
represented by v* = U(0,1) = Beta(1,1).

v" = E[Beta(pc' + 1,nc’ +1)] = 3)

"Following [[15]], we assume that DOs arrive and make their bid requests sequentially, one after the other.
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Figure 1: The RLB-AFL system architecture.

4 The Proposed RLB-AFL Approach

The system architecture of RLB-AFL is illustrated in Fig. [T} In response to the limitations of current
DC bidding methods within dynamic AFL markets, as well as the challenges arising from the lack of
access to private information about DOs and the underlying AFL system dynamics, we propose a
reinforcement learning (RL) framework, RLB-AFL, for modeling each DC’s bidding process as an w
control problem. RL is pivotal in tackling this problem due to its ability to learn optimal decision-
making policies directly from interactions with the environment. Following [29], we leverage the
Deep Q-Network (DQN) [39] as the underlying RL model, which uses deep neural networks to
approximate the optimal action-value function, enabling effective decision-making in complex, high-
dimensional state spaces. Our design incorporates Gaussian Mixture Model (GMM) into RLB-AFL
to perform soft clustering on the continuous state space, mitigating the curse of dimensionality. In
addition, we improve the e-greedy policy to strike a balance between exploration and exploitation,
enabling RLB-AFL to adapt to new market conditions while capitalizing on its learned knowledge.

4.1 POMDP Modeling

RLB-AFL frames the bidding agent for the target DC by sequentially regulating w under the Partially

Observable Markov Decision Process (POMDP) setting [40]. The objective of the DC agent is to

acquire an optimal w controlling policy that maximizes the accumulated reward chﬂ ~= 1t while

ensuring that ZzC:l x' x p' < B. The fundamental components of the POMDP are:

. olls,ﬂ Before the bid for DO i, the observation o; consists of: 1) B': the remalmng budget,
2) (C — i): the remaining DOs, and 3) v%: the utility the target DC can gain from DO i, and
is formulated as:

= (B',C —i,v"). 4

* a;: We introduce several adjustment rates to w, often taking the form of an action a € A as
w; =wi—1 X (1 + Ag), where \, represents the adjustment rate related to a.

e r;: The reward for bidding for DO i is computed as r; = x' x v’, where z* € {0,1}
indicates whether the DC wins the auction.

* ~: The objective of the target DC is to maximize the overall utility of winning DOs, subject
to the budget constraint B, irrespective of utility over time. Therefore, the reward discount
factor y is setas 1,i.e.,v = 1.

Although the state formulation in Eq. (@) is straightforward, it resides within an infinitely continuous
state space. In light of this, the occurrence of a particular state might be rare in AFL processes,
particularly when sequential information is incorporated. Consequently, accurately learning an
approximation of the value function becomes extremely challenging. Furthermore, this issue leads to
high exploration costs. Therefore, it is crucial to map the state space into a lower-dimensional and,
ideally, finite space. To tackle this issue, we propose a state clustering method.

*In this paper, while it might be more accurate to refer to it as an observation, we continue to use the both
term state and term observation concerning the bidding process without ambiguity.



4.2 State Clustering

During the decision-making process, an agent can rely on historical information. This intuition has
been widely adopted in multiple domains (e.g., recommendation systems [41], click-through rate
estimation in computational advertising [42]), and has been proven effective. This suggests that it
might be useful to base DC bidding strategies on the historical information from recent auctions,
rather than only on the current state. Motivated by this observation, we frame the state from the
perspective of modeling the sequential information of states (i.e., historical states). Specifically, we
define the sequential information of states as:

S; = <si7W+17"' 7Si>7 (5)

where W is a hyperparameter representing the window size. If i —j < 0 (0 < j < W — 1), s;_; is
configured as a zero vector. Following this, we obtain the combined state 3; through the application
of the state mapping function fgase(-) as:

§i - fstate (Si)- (6)

In the context of AFL, an intuitive observation is that similar historical state sequences tend to yield
comparable rewards under a given bidding strategy. This key insight emphasizes the potential benefits
of grouping similar state sequences together through clustering. However, within an AFL market,
each DC faces a continuous state space comprising numerous elements (e.g., utility derived from
auctioned data, remaining budget, available time steps). Navigating this extensive state space and
learning an effective bidding strategy is a formidable challenge, as it requires capturing the intricate
dynamics and stochasticity of the environment without direct access to DOs’ private information.

To address this critical issue, we design a soft clustering approach over the historical state sequences
based on GMM [43]]. It effectively reduces the dimensionality of the state space, while preserving the
essential information encoded in the sequential state trajectories. Dimensionality reduction is crucial
for mitigating the state space sparsity issue, which can otherwise hinder accurate value function
approximation and incur excessive exploration costs during the RL process. The ability of GMM to
model complex data distributions through a mixture of Gaussian components makes it well-suited for
clustering the continuous and high-dimensional state representations arising from the incorporation
of historical state information.

Specifically, let K denote the number of clusters of the historical states, and {s1, s2, -+ , sn} denote
the available historical states. The conditional probability of each historical state s; for a cluster k is
modeled by a Gaussian distribution:

p(silzi = k; s, B) = N (s, i) (7

Alternatively, the prior probability of each cluster & is assumed to adhere to a Multinomial distribution
Multinomial (u), with:

ug > 0, Zuk:L p(zi = k) = uy. 8)
k
Then, the total log-likelihood of the historical states is:
N K
L(u,p, %) = ZlOgZN(Mk, k) U ©)
i=1 k=1

Following the Expectation-Maximization (EM) algorithm, RLB-AFL gradually learns the parameters
u, p and Y. Specifically, in the E-step, the weight recording the affinity of historical state s; to cluster

k is calculated as: N )
i My 2k ) Uk
wy, = p(zi = klsi;u, 1, X) = —5 : (10)
Ej:l N (g, %5)u;

In the M-step, the parameters of cluster & are updated as:

N N . N .
1 i im1 Wi Si im1 W(8i — pr)(8: — px)’
W:NZW,M:Z%J% m:ZAk“NQ< m)
i=1 Zi:l Wy, Zi=1 Wy,




The E-step and the M-step are iteratively repeated until convergence. Eventually, the weight vector
I'(s;) expressing the inclination of s; towards each cluster k € [1, K], is

However, obtaining a set of historical states and subsequently estimating the parameters of the GMM
in a sequential manner is not practical for DCs newly joining the AFL process. Therefore, we also
propose the following EM algorithm to dynamically update the GMM clusters in an adaptive fashion.
Given the current state s;, utilizing the prevailing GMM, we begin by computing the posterior
probabilities I'(s;) as outlined in Eq. (I0). Then, the M-step is enhanced as (the first two equations
have been consolidated into a single line):

ug = (1 — K)ug + liw,i, e = [ + /iw,isi, Y =X+ mw,i(si — ) (s — pup)t,  (13)

where x € {0, 1} denotes the hyperparameter balancing the weight assigned to the incoming instance.

4.3 Enhanced ¢-greedy Policy

DQN implements the e-greedy policy to strike a balance between exploitation and exploration, where
the agent selects action a* = argmax, Q(0, a) with a probability of (1 — €), while taking a random
action with a probability of e. The parameter ¢ is typically set to a larger value and slowly anneals
over time to a smaller value. Yet, determining an appropriate annealing rate is crucial, as a high
annealing rate limits exploration, while a low one can lead to slow policy convergence.

However, in the context of AFL DC bidding, the optimal bidding theory guarantees a consistent
optimal w* for each DO ¢ € [1, C]. Given the observation o;, taking the optimal action is equivalent to
adjusting w to approach w*. Any deviation from this optimal action results in a reduction in potential
value, as reflected by a lower ) value. Hence, considering our action space .4, which encompasses a
range of adjustment rates denoted as {\, }), the action-value distribution Q(o;, a;) across the action
space A sorted according to the adjustment scale A\, of action, should ideally exhibit unimodality
[44]. Therefore, if the distribution is not unimodal, it implies an abnormal estimation of Q). It is
necessary to increase e to encourage exploration in this state.

Algorithm 1 RLB-AFL

Initialize Q(o, a; #) and its target network with 6« 0, update frequency of target network 7, replay
memory D, training batch size m.
1: Initialize wp;
2: fori=1to C do
3:  Obtain the state s; based on the GMM;
Compute a; according to the enhanced e-greedy policy w.r.t Q);
Obtain w; based on w;_1;
Calculate b; according to Eq. (2);
Submit b* to the auctioneer;
Get reward 7; and the payment p;
9:  Store transition tuples in D;
10:  Sample a random minibatch of m samples from D;
11:  y=r+ymaxy Qo,d’;0);
12:  Update 6 by minimizing Y, [(y — Q(o, a;6))?];
13 6+ 6 every T steps;
14: end for

A A

4.4 The Training Process of RLB-AFL

RLB-AFL is based on DQN. The action-value function Q)(o, a) is modeled by a deep neural network
(DNN) with parameter 6. To enhance training stability, we leverage a target network parameterized

by 0, adopting a similar DNN architecture to approximate Q (o, a) (Algorlthm'
Updating of the parameters 6 is achieved by minimizing £(0) = 1E(, 4.0 ~p[(y — Q(0,a;6))?].

Here, D is a replay buffer that stores transition tuples (o, a,r,0’), where o’ denotes the new ob-
servation of the bidding agent following the action a, derived from the initial observation o and



corresponding reward r. Randomly sampling batches of transitions during training, buffer D fa-
cilitates learning from past experience. Let v denote the discount factor. The temporal difference
target y is computed as y = r + ymax, Q(0’, d’; é) Qo a; é) denotes the predicted action-value
function of the DC bidding agent for its subsequent observation o’ considering all feasible actions a’.
0 denotes the parameters of the target network, and Q(o’, a’; ) denotes the predicted action-value
function. The target network ensures training stability by maintaining a fixed target throughout the
training process, periodically updated to synchronize with the current action-value network.

5 Experimental Evaluation

5.1 Experiment Settings

Datasets: We adopt six widely used datasets in FL studies: 1) MNISTEL 2) CIFAR—I(ﬂ 3) Fashion-
MNIST (a.k.a. FMNIST) [45], 4) EMNIST-digits (a.k.a. EMNISTD) [46], 5) EMNIST-letters (a.k.a.
EMNISTL) [46] and 6) Kuzushiji-MNIST (a.k.a. KMNIST) [47]. The FL models used are the same
as those employed in [[15]].

Comparison Baselines: We compare RLB-AFL against the following eight well-established bidding
approaches: 1) Constant Bid (Const) [48]], 2) Randomly Generated Bid (Rand) [22] 23], 3) Below
Max Utility Bid (Bmub) [49], 4) Linear-Form Bid (Lin) [50], 5) Bidding Machine (BM) [51], 6)
Reinforcement Learning-based Bid (RLB) [29, [14}152]. More detailed descriptions of these methods
can be found in [29]. In addition, we include Fed-Bidder [[15] which is specifically designed for
AFL DCs. It guides DCs to competitively bid for DOs to maximize their utility under a given budget
constraint. Fed-Bidder is implemented as two variants: 7) Fed-Bidder-sim (FBs) with a simple
winning function and 8) Fed-Bidder-com (FBc¢) with a complex winning function.

Experimental Scenarios: We conduct experiments under two scenarios, each involving 10,000 DOs:
1) IID data: Each DO possesses a set of 1,000 images, including some noisy ones. To facilitate
the effective evaluation of DOs’ reputations by DCs, the 10,000 DOs are organized into five groups,
each comprising 2,000 DOs. In addition, different percentages of noisy data are introduced for each
DO group as follows: DOs in the first, second, third, fourth, and last groups each owns 0%, 10%,
25%, 40%, and 60% noisy data, respectively. 2) Non-IID data: By adjusting the class distribution
among individual DOs, which hold 1,000 images, we intentionally introduce data heterogeneity in
this experimental setup. Following [35]], the Non-IID setup is implemented as follows: one class
(for datasets except EMNISTL) or six classes (for EMNISTL) are designated as the minority class,
assigned to 100 DOs. Therefore, images for all classes are possessed by these 100 DOs, while
the other nine or twenty classes except the minority class, are exclusively held by all other DOs.
Scenarios in which the minority classes are with 10% or 25% noisy data are also included.

Implementation Details: To deal with the challenge of lacking a publicly available dataset related to
AFL, we conducted simulations where we tracked the behaviors of DCs under the setting of forward
auction and generalized second-price sealed-bid (SPSB) over time in four distinct scenarios, each
involving 160 DCs. 1) One-eighth of the DCs adopts each of the eight comparison approaches. 2)
Three-sixteenths of the total population adopt each of RLB, FBs, FBc and BM, while one-sixteenth of
all DCs adopt the other four approaches. 3) Custom-tailored for AFL with both Fed-Bidder variants
and RLB-AFL, we fine-tuned the ratio of DCs choosing FBc and FBs to surpass those opting for the
remaining six baseline methods. Specifically, 50 DCs chose FBc and FBs each, while the other six
baselines were adopted by 10 DCs each. 4) Following the settings in Scenario 3, 65 DCs chose FBc
and FBs each, while the other six baselines were adopted by 5 DCs each..

To assess the efficacy of RLB-AFL, 9 AFL DCs are implemented, each employing one of the previously
mentioned bidding methods to bid for DOs. For the action-value function utilized by the bidding
agent, RLB-AFL employs fully connected neural networks. These networks consist of three hidden
layers, each comprising 64 nodes. The RMSprop with a 0.0001 learning rate is adopted to train all
the neural networks. The discount factor ~y for the reward is set to 1, as the primary aim of a DC is to
maximize the overall utility gained from winning DOs within the budget constraints. A replay buffer
D of size 6,000 is used for training the action-value function @ (i.e., |D| = 6,000). During training,
32 samples from D are utilized for updating () at each training step (i.e., m = 32). Furthermore, the

3http://yann.lecun.com/exdb/mnist/
*https://www.cs.toronto.edu/kriz/cifar.html



Table 1: Comparison results of the total utilities and FL model accuracy (%) across different datasets
and budget settings under the IID scenario. "Bud" means budget and "Acc" means accuracy. The best

results are highlighted in Bold.
Bud | Method ] MNIST ] CIFAR 'I'?MNIST EMNISTD EMNISTL 'K'MNIST
Utility | Acc | Utility | Acc | Utility | Acc | Utility | Acc | Utility | Acc | Utility | Acc
Const 728 | 78.03 | 6.68 | 3528 | 7.53 | 6995 | 732 | 7852 | 753 | 6882 | 7.05 | 62.67
Rand 6.73 | 7323 | 740 | 3493 | 9.02 | 7055 | 7.84 | 79.83 | 8.08 | 67.40 | 825 | 61.52
Bmub 848 | 80.72 | 9.67 | 3574 | 956 | 71.31 9.45 | 80.36 | 997 | 70.39 | 9.12 | 63.54
Lin 1142 | 82.02 | 1096 | 37.70 | 11.14 | 71.84 | 11.15 | 80.76 | 11.22 | 71.23 | 11.18 | 64.19
BM 13.21 | 83.07 | 13.61 | 38.30 | 13.83 | 73.81 | 12.96 | 81.27 | 14.10 | 72.08 | 14.24 | 66.02
100 FBs 1522 | 83.12 | 14.66 | 39.78 | 15.05 | 73.82 | 14.83 | 81.65 | 14.89 | 73.19 | 14.99 | 68.91
FBc 15.16 | 83.38 | 15.72 | 40.33 | 1523 | 74.63 | 14.80 | 81.66 | 14.90 | 73.23 | 14.89 | 68.63
RLB 1591 | 83.24 | 15.30 | 40.24 | 1536 | 74.18 | 1541 | 81.96 | 1533 | 7336 | 15.71 | 68.25
RLB-AFL | 18.62 [ 85.86 | 16.84 | 41.83 | 17.68 | 76.82 | 17.95 | 83.69 | 17.56 | 74.79 | 17.37 | 70.66
wloc 16.97 | 84.42 | 1598 | 41.11 | 16.71 | 75.68 | 16.64 | 82.37 | 16.48 | 73.82 | 16.04 | 69.34
wloe e 16.25 | 84.55 | 16.25 | 41.09 | 16.29 | 75.79 | 16.58 | 83.46 | 1537 | 73.59 | 16.33 | 70.26
Const 9.04 | 81.00 | 9.18 | 37.81 | 934 | 69.06 | 8.03 | 7932 | 922 | 7094 | 8.65 | 63.45
Rand 8.50 | 81.10 | 8.67 | 38.60 | 10.87 | 71.20 | 8.45 | 79.80 | 9.23 | 70.76 | 9.58 | 61.87
Bmub 12.08 | 81.90 | 10.72 | 39.39 | 11.48 | 72.23 | 10.15 | 81.37 | 11.63 | 71.99 | 10.48 | 64.74
Lin 13.80 | 82.13 | 13.43 | 40.13 | 13.55 | 72.85 | 13.29 | 81.40 | 13.56 | 73.05 | 13.62 | 68.99
BM 15.64 | 8455 | 16.02 | 41.33 | 16.55 | 75.29 | 1545 | 82.46 | 16.96 | 73.56 | 17.22 | 71.76
200 FBs 18.53 | 8436 | 17.73 | 42.24 | 1835 | 75.36 | 17.84 | 82.26 | 17.88 | 73.93 | 18.08 | 71.98
FBc 18.15 | 84.53 | 17.53 | 42.12 | 1848 | 7525 | 17.55 | 82.10 | 17.80 | 73.79 | 17.76 | 72.16
RLB 1846 | 85.14 | 18.03 | 4247 | 18.40 | 75.03 | 18.17 | 82.60 | 18.23 | 74.47 | 18.65 | 74.60
RLB-AFL | 19.98 | 86.89 | 20.72 | 44.69 | 21.31 | 77.48 | 20.37 | 84.48 | 21.77 | 77.88 | 20.86 | 75.84
w/oc 19.18 | 85.75 | 19.46 | 43.55 | 2093 | 76.26 | 19.25 | 84.19 | 20.41 | 76.15 | 19.81 | 74.80
wloee 19.24 | 86.19 | 19.58 | 43.86 | 19.96 | 76.86 | 19.75 | 83.83 | 19.35 | 75.88 | 19.92 | 75.32
Const 743 | 81.25 | 839 [39.03 | 891 7092 | 7.50 [ 80.14 | 9.10 | 71.69 | 827 | 69.26
Rand 10.76 | 80.22 | 7.08 | 39.61 | 1047 | 71.03 | 748 | 79.75 | 8.11 | 7215 | 879 | 71.58
Bmub 11.56 | 82.30 | 10.33 | 40.14 | 11.35 | 73.20 | 10.51 | 82.05 | 11.88 | 73.32 | 10.70 | 72.66
Lin 14.77 | 8331 | 1435 | 41.65 | 1438 | 75.33 | 14.13 | 82.04 | 14.39 | 73.94 | 14.52 | 72.78
BM 17.07 | 84.85 | 17.04 | 42.68 | 17.20 | 75.40 | 16.25 | 82.78 | 17.82 | 74.57 | 18.54 | 73.87
400 FBs 19.58 | 85.14 | 18.66 | 43.86 | 19.28 | 76.74 | 18.73 | 83.51 | 18.73 | 75.12 | 19.05 | 74.17
FBc 19.31 | 8520 | 18.45 | 43.83 | 19.34 | 76.31 | 18.52 | 83.42 | 18.63 | 75.20 | 18.71 | 73.95
RLB 19.83 | 85.77 | 18.97 | 43.70 | 19.42 | 77.10 | 19.15 | 83.70 | 19.06 | 75.06 | 19.68 | 75.94
RLB-AFL | 22.06 | 87.63 | 20.14 | 4594 | 21.67 | 79.47 | 20.71 | 8524 | 21.65 | 77.91 | 20.91 | 77.89
w/o ¢ 21.94 | 86.39 | 19.10 | 44.37 | 2038 | 78.11 | 20.24 | 84.99 | 20.22 | 76.69 | 20.52 | 77.38
w/oee | 2043 | 86.28 | 19.56 | 44.46 | 20.79 | 78.75 | 20.53 | 84.17 | 20.86 | 77.03 | 20.44 | 76.52

target network for () is updated once every 30 training steps (i.e., C' = 30). The window size for
historical states is fixed at 40 (i.e., W = 40), and the number of clusters K is set to 10 (i.e., K = 10).
The weight assigned to the incoming instance during the M-step is set to 0.5 (i.e., k = 0.5). Each
recruited DO undergoes 30 local training epochs, with a batch size of 256.

Evaluation Metrics: We employ the following two metrics to assess the compared approaches:
1) Utility: It quantifies the total reputation of DOs enlisted by the corresponding target DC upon
reaching either the bid request limits or the budget limit. 2) Test Accuracy (Acc): Acc denotes the
accuracy of the FL. models achieved until reaching either the budget limit or the limits on bid requests.

5.2 Results and Discussion

To perform a comprehensive comparison of all nine bidding methods, experiments are carried out on
six datasets with budgets varying from low to high among {100, 200, 400}.

Table [1]illustrates the outcomes of various comparison methods under the IID scenario. It can be
observed that the proposed RLB-AFL method consistently achieves the best performance among all
the comparison methods in terms of both test accuracy and utility across all three budget settings and
all six datasets. In particular, compared to the best-performing baseline, RLB-AFL improves the total
utility and the test accuracy of the resulting FL. model by 12.18% and 2.93%, respectively. Table
[illustrates the outcomes of various comparison methods under the Non-IID scenario. The results
align with the performance shown in Table [T] with the proposed RLB-AFL improving the test accuracy
by 3.19% on average under the Non-IID scenario.

Const and Rand perform poorly compared to other methods due to their disregard for DOs’ utility
in their formulation. Among all the other comparison methods, Bmub and Lin exhibit inferior
performance, with Lin being more effective than Bmub. This can be attributed primarily to the
introduction of randomness in the bidding strategy of Bmub. The remaining five comparison methods



Table 2: FL model accuracy (%) comparison across different datasets and budget settings under
the Non-IID scenario. "Bud" means budget. /0% and 25% represent 10% and 25% noisy data,

respectively.

Bud | Method MNIST CIFAR FMNIST EMNISTD EMNISTL KMNIST
10% | 25% | 10% | 25% | 10% | 25% | 10% | 25% | 10% | 25% | 10% | 25%
Const | 66.09 | 70.06 | 13.04 | 13.66 | 59.98 | 59.31 | 76.94 | 76.67 | 64.25 | 63.76 | 60.12 | 59.22
Rand | 68.77 | 67.10 | 10.61 | 10.76 | 61.36 | 60.77 | 75.58 | 78.24 | 63.50 | 63.15 | 59.19 | 58.52
Bmub | 70.10 | 70.85 | 15.02 | 13.63 | 62.12 | 61.60 | 77.27 | 77.76 | 66.18 | 65.68 | 63.09 | 61.78
Lin 7195 | 71.14 | 18.47 | 17.76 | 64.08 | 64.09 | 78.45 | 77.88 | 65.47 | 64.75 | 63.23 | 62.90
100 | BM 7218 | 7191 | 19.52 | 19.59 | 66.89 | 66.69 | 79.35 | 78.83 | 66.11 | 6535 | 64.57 | 63.99
FBs | 73.05 | 72.68 | 23.37 | 2248 | 70.67 | 70.54 | 79.34 | 78.78 | 67.34 | 66.63 | 65.86 | 64.75
FBc | 7345 | 74.12 | 2325 | 22.59 | 71.04 | 70.92 | 79.77 | 79.30 | 66.48 | 65.61 | 65.21 | 64.33
RLB | 73.78 | 73.94 | 23.57 | 22.97 | 71.41 | 71.70 | 79.86 | 79.10 | 67.10 | 66.32 | 65.98 | 64.34
RLB-AFL | 74.84 | 7488 | 25.79 | 25.42 | 72.94 | 73.58 | 80.46 | 81.80 | 69.22 | 67.47 | 68.38 | 65.39
wloc | 74.13 | 74.24 | 24.66 | 23.95 | 72.33 | 72.61 | 80.05 | 80.58 | 68.29 | 66.94 | 66.88 | 64.86
wloee | 7436 | 7452 | 24.83 | 24.28 | 7247 | 72.84 | 80.19 | 80.73 | 68.46 | 67.03 | 67.26 | 65.12
Const | 69.86 | 68.12 | 10.74 | 10.97 | 62.25 | 61.59 | 7791 | 77.69 | 67.14 | 66.64 | 61.33 | 58.33
Rand | 69.38 | 69.17 | 10.31 | 10.28 | 62.10 | 61.32 | 78.56 | 78.35 | 67.68 | 67.27 | 62.11 | 58.42
Bmub | 71.55 | 71.04 | 13.34 | 13.13 | 63.14 | 62.84 | 79.22 | 78.74 | 68.39 | 67.89 | 64.68 | 63.25
Lin 7249 | 71.52 | 18.91 | 18.28 | 64.32 | 64.27 | 79.28 | 78.80 | 69.33 | 68.88 | 67.58 | 66.37
200 | BM | 7324 | 72.86 | 20.33 | 20.20 | 66.81 | 67.82 | 80.36 | 79.82 | 69.00 | 68.16 | 68.39 | 68.02
FBs | 74.19 | 73.18 | 23.67 | 23.08 | 71.70 | 71.79 | 80.13 | 79.65 | 68.79 | 68.17 | 68.95 | 69.00
FBc | 74.03 | 73.51 | 2346 | 22.87 | 71.76 | 71.71 | 80.25 | 79.84 | 69.76 | 69.09 | 68.63 | 67.53
RLB | 75.16 | 73.69 | 23.68 | 23.32 | 71.20 | 71.05 | 80.34 | 79.88 | 69.29 | 68.69 | 69.61 | 70.49
RLB-AFL | 77.62 | 75.67 | 24.88 | 25.64 | 73.93 | 73.97 | 82.86 | 81.55 | 7141 | 7072 | 71.75 | 71.86
wloc | 7593 | 7444 | 23.92 | 2458 | 72.02 | 72.68 | 81.49 | 80.38 | 70.52 | 69.26 | 70.46 | 70.98
wloee | 77.34 | 74.68 | 2441 | 2476 | 7255 | 72.94 | 82.23 | 80.77 | 70.93 | 69.84 | 71.11 | 71.26
Const | 70.52 | 69.43 | 17.07 | 1699 | 61.89 | 60.96 | 78.42 | 78.17 | 67.56 | 67.12 | 67.92 | 68.42
Rand | 69.59 | 68.66 | 20.84 | 20.58 | 62.72 | 62.05 | 78.59 | 78.50 | 68.36 | 67.99 | 69.34 | 69.92
Bmub | 71.87 | 71.06 | 21.96 | 20.98 | 63.86 | 63.64 | 79.82 | 79.30 | 69.04 | 68.57 | 69.25 | 68.95
Lin 72.60 | 71.81 | 24.00 | 2329 | 6549 | 6547 | 79.86 | 79.37 | 69.94 | 69.52 | 69.90 | 69.46
400 | BM | 7457 | 73.79 | 2533 | 2427 | 66.92 | 67.38 | 80.76 | 80.28 | 71.09 | 70.71 | 71.12 | 70.77
FBs | 7539 | 74.46 | 26.19 | 25.06 | 71.03 | 70.72 | 81.19 | 80.65 | 71.09 | 70.62 | 71.27 | 71.16
FBc | 7528 | 7453 | 2593 | 24.82 | 72.00 | 71.98 | 81.13 | 80.60 | 71.26 | 70.81 | 70.77 | 69.97
RLB | 75.19 | 75.08 | 26.50 | 25.39 | 72.28 | 72.27 | 8140 | 80.88 | 71.40 | 70.99 | 71.75 | 71.21
RLB-AFL | 76.54 | 76.43 | 27.86 | 26.79 | 73.76 | 74.78 | 82.69 | 82.13 | 74.25 | 73.39 | 7299 | 72.15
wloc | 75.89 | 75.94 | 27.12 | 26.05 | 72.77 | 73.41 | 81.99 | 81.50 | 72.68 | 72.31 | 72.06 | 71.66
wloee | 7607 | 76.15 | 27.39 | 26.22 | 73.16 | 73.95 | 8233 | 81.74 | 73.07 | 72.69 | 72.37 | 71.94

consistently exhibit superior performance compared to the aforementioned four simpler approaches.
This improved performance can be attributed to the incorporation of auction records, which encompass
both bidding records and auction history, as well as the adoption of machine learning/reinforcement
learning frameworks. BM, FBs, and FBc underperform RLB and RLB-AFL as they belong to the
category of static bidding methods, lacking adaptability to the highly dynamic auction environment
of AFL. Compared to BM, FBs and FBc perform better. This can be attributed to the fact that
these two methods use a specially designed bidding function to model the market price distribution,
enhancing the accuracy of bid cost expectations. In BM, the market price distribution is obtained
by marginalizing the prediction of the market price density of bid requests, which may result in
overfitting. Nevertheless, these three bidding methods are formulated as either non-linear or linear
functions, trained on historical auction data utilising heuristic approaches. When these functions are
exposed to new auctions, which might differ from the historical ones due to the dynamism of the AFL.
market, achieving consistent desired outcomes becomes challenging. Although RLB adopts dynamic
programming to enhance its bidding process, it is not specifically designed for AFL DCs, and might
face challenges related to state sparsity, potentially leading to poor performance in AFL settings. This
limitation has been effectively addressed by RLB-AFL. Furthermore, RLB-AFL integrates an enhanced
e-greedy policy into its framework to achieve an advantageous trade-off between exploration and
exploitation.

Ablation Study: We created two ablated versions of RLB-AFL: 1) w/o ¢: excluding the states
clustering part from RLB-AFL. 2) w/o e e: the proposed e-greedy policy in RLB-AFL is replaced
by the general e-greedy policy. These modifications is to examine the impact of incorporating the
states clustering operation and the enhanced e-greedy policy into RLB-AFL. Tables [[]and 2] present
the results. It can be observed that RLB-AFL outperforms its ablated variants in terms of the total
utility and accuracy of FL. models. Therefore, the two proposed designs are effective and improve the
performance of RLB-AFL.



Sensitivity Analysis on Number of Clusters: To see the impact of the GMM cluster number on
RLB-AFL, we vary the number of GMM clusters from {3, 5,10,15,20}. The averaged accuracy
of the FL models under the 400 budget settings is shown in Table [3] Initially, as the number of
clusters increases, there is a noticeable ascent in accuracy, followed by a subsequent decline. This
trend suggests that a higher cluster count initially yield a more precise state mapping function.
However, excessive growth leads to increased GMM representation size and state sparsity. Within
our experimental framework, it becomes apparent that selecting a cluster size ranging between 10 to
15 leads to optimal outcomes for the model user. This range strikes a balance, steering clear of the
limitations associated with a smaller cluster count, while also avoiding the over-expansion of GMM
representation that triggers state sparsity.

Table 3: Accuracy (%) under various number of GMM clusters (K).

K | MNIST | CIFAR | FMNIST | EMNISTD | EMNISTL | KMNIST
3 85.54 41.62 75.93 83.11 73.49 70.33
5 86.09 43.88 77.42 83.85 74.84 72.41
10 | 87.63 45.94 79.47 85.24 77.91 77.89
15 | 86.21 43.46 78.38 82.93 75.72 75.84
20 | 85.32 43.02 76.59 81.60 74.65 73.92

6 Conclusions

To address the limitations of static bidding strategies in dynamic AFL markets, we propose RLB-AFL,
a novel RL-based bidding method for DCs. It frames bidding as a w-control problem using a DQN
architecture. Given the high-dimensional, continuous state space, including utility, budget, and
time, training a generalizable RL model is challenging. RLB-AFL tackles this with Gaussian mixture
model-based soft clustering and a refined e-greedy policy to balance exploration and exploitation.
However, while RLB-AFL and other methods focus solely on competition among DCs, they overlook
potential collaboration, which can indirectly influence behavior. Future work will incorporate these
complex inter-DC relationships.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The contributions and the scope are claimed in the abstract and introduction.
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations of the proposed method has been discussed in the Conclusions
section.

Guidelines:
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Assumptions have been explained in the preliminary section.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experimental details have been explained in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the node once the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All these have been explained in the experiment section and the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All these have been explained in the experiment section and the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These have been explained in the experiment section and the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

16



9.

10.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform and NeurIPS code of ethics. We
will relese the code once the paper has been accepted.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: The model has been well safeguarded.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The original datasets and references have been properly cited in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The new asset of this paper is the proposed model. It has been well documented
and detailed in the paper.
Guidelines:
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology, scientific rigorousness, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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