A Reinforcement Learning-based Bidding Strategy for Data Consumers in Auction-based Federated Learning

Xiaoli Tang¹, Han Yu¹, Xiaoxiao Li^{2,3}

¹College of Computing and Data Science, Nanyang Technological University, Singapore ²Department of Electrical and Computer Engineering, University of British Columbia, Canada ³Vector Institute, Canada

Abstract

Auction-based Federated Learning (AFL) fosters collaboration among selfinterested data consumers (DCs) and data owners (DOs). A major challenge in AFL pertains to how DCs select and bid for DOs. Existing methods are generally static, making them ill-suited for dynamic AFL markets. To address this issue, we propose the Reinforcement Learning-based Bidding Strategy for DCs in <u>Auction-based Federated Learning (RLB-AFL)</u>. We incorporate historical states into a Deep Q-Network to capture sequential information critical for bidding decisions. To mitigate state space sparsity, where specific states rarely reoccur for each DC during auctions, we incorporate the Gaussian Mixture Model into RLB-AFL. This facilitates soft clustering on sequential states, reducing the state space dimensionality and easing exploration and action-value function approximation. In addition, we enhance the ϵ -greedy policy to help the RLB-AFL agent balance exploitation and exploration, enabling it to be more adaptable in the AFL decision-making process. Extensive experiments under 6 widely used benchmark datasets demonstrate that RLB-AFL achieves superior performance compared to 8 state-of-the-art approaches. It outperforms the best baseline by 10.56% and 3.15% in terms of average total utility.

1 Introduction

Driven by stringent user privacy and data confidentiality requirements, federated learning (FL) has recently attracted substantial attention from both academic and industrial domains [1–7]. With data owners (DOs), also known as FL clients, being self-interested entities that weigh a myriad of factors (ranging from costs to potential utility gains) when deciding which FL data consumer (DC) to collaborate with, the design of FL incentive mechanisms [8, 9] has taken center stage. These mechanisms aim to incentivize DOs to participate in FL through various reward strategies.

Auction-based federated learning (AFL) is an important sub-field of FL incentive mechanism design, due to its potential to achieve both efficiency and fairness [10, 11]. In AFL, the incentive mechanism between DOs and DCs is organized in the form of an auction. This process is overseen by an auctioneer, who acts as an intermediary to facilitate the exchange of data for FL training. AFL methods can be roughly categorized into three main groups [12]: 1) DC-side methods, 2) auctioneer-side methods, and 3) DO-side methods. The DC-side methods focus on how DCs select and place bids on DOs, aiming to optimize key performance indicators (KPIs) while staying within budget constraints. The auctioneer-side methods optimize DC-DO matching and pricing strategies, along with the design of effective auction mechanisms. The goal is to achieve specific operational objectives, such as maximizing social welfare or minimizing social costs, for the AFL ecosystem. DOs care more about determining the allocation of local resources and setting their reserve prices for profit maximization [13].

In recent times, there has been a growing research interest [14, 15] in investigating DC-side issues, developing optimal bidding strategies to assist them in effectively bidding for DOs. However, existing methods are generally static approaches. They are essentially represented by either non-linear or linear functions with parameters derived from historical auction data using heuristic techniques. Then, these parameters are applied to new auctions, even if the dynamics of these new auctions might vary significantly from those in the historical data. In practice, the inherent dynamism of AFL markets poses a considerable challenge for static DC bidding methods to consistently achieve desirable outcomes.

To bridge this important gap, we propose a Reinforcement Learning-based Bidding Strategy for DCs in Auction-based FL (RLB-AFL). It incorporates historical states into a Deep Q-Network to capture sequential information critical for AFL DC bidding decisions. To mitigate the state space sparsity issue in AFL, where specific states rarely re-appear for a DC, we propose to integrate the Gaussian Mixture Model into RLB-AFL to enable soft clustering on sequential states, thereby reducing the state space dimensionality, which in turn eases exploration and action-value function approximation. Moreover, we improve the ϵ -greedy policy to help an RLB-AFL agent strike a balance between exploitation and exploration, enhancing its applicability in the decision-making process for each DC within an AFL ecosystem.

To our best knowledge, RLB-AFL is the first cluster-based reinforcement learning approach that facilitates a large number of DCs to compete for a common pool of DOs. Extensive experiments conducted on 6 widely used benchmark datasets demonstrate the superiority of RLB-AFL compared to 8 state-of-the-art existing approaches. It outperforms the best baseline by 10.56% and 3.15% in terms of average total utility and model accuracy, respectively.

2 Related Works

Existing AFL DC-side methods, the primary focus of this paper, can be broadly categorized into two main groups based on the auction mechanism adopted: 1) those for reverse auction scenarios, and 2) those for forward auction scenarios.

Methods like [16–27] designed for reverse auction scenarios aim to help the DC select DOs after receiving their asking profiles (which may include available data resources and the corresponding asking prices). [24] combined a quality-aware model aggregation algorithm with reverse auction, and proposed the FAIR method. It employs a greedy algorithm based on Myerson's theorem [28] to determine the winning DOs and maximize the valuation for the DC. However, a crucial limitation of these methods arises from their assumption that there is only one DC and multiple DOs in the AFL marketplace. This monopoly market assumption is unrealistic in practice, where multiple DCs are typically present.

Methods like [29, 14, 30, 31, 15] focus on assisting DCs in bidding for DOs under a competitive AFL market setting, employing forward auction mechanisms. These methods design bidding strategies to guide DCs in determining bid prices for DOs. [15] introduced the Fed-Bidder bidding strategy which considers DC budget constraints, DO relevance and prior auction-related knowledge to design a bidding function. It also emphasized the critical roles played by accurate estimation of DO utility and the selection of an appropriate winning function in shaping optimal bidding strategies.

RLB-AFL falls into the category of methods designed for forward auction scenarios. However, it is noteworthy that most existing bidding strategies designed for DCs are static, and thus may not be suitable for dynamic AFL markets.

3 Preliminaries

AFL Market: Generally, an AFL market consists of three types of participants [12]: 1) Data Owners (DOs): entities possessing potentially sensitive yet valuable data, who are willing to share or sell access to their data resources for FL task training in exchange for appropriate compensation. 2) Data Consumers (DCs): organizations or individuals requiring data to train their machine learning models via FL. 3) Auctioneer: a trusted third-party entity orchestrating the auction process between DOs and DCs. It facilitates the exchange of data resources for FL training tasks through an auction mechanism, such as the Second-Price Sealed-Bid (SPSB) auction.

When a DO is ready to offer its services for FL task training, it notifies the auctioneer, specifying its bid request and the reserve price. The auctioneer then announces the auction to all DCs currently participating in the AFL market. Any DC whose required the corresponding data resources aligns with the DO's offering submits a bid for the auction.

Each DO can trigger the following auction process: 1) **Bid Request Initiation**: DO $i \in [C_s]$ generates a bid request about itself (e.g., identity, data quantity, etc.) and sends it along with the the reserve price (i.e., the lowest price it is willing to accept for selling the corresponding resources [32]) to the auctioneer. 2) **Bid Request Dissemination**: The auctioneer disseminates the received bid request to the relevant DCs whose FL tasks are relevant to the data resources of the DO being auctioned. 3) **Bidding Response**: Each relevant DC evaluates the potential value and cost of the received bid request, and decides on a bid price based on its bidding strategy. The DCs submit their bids to the auctioneer. When a DC has exhausted its budget, it will forfeit future auctions. 4) **Outcome Determination**: Upon receiving bids from relevant DCs, the auctioneer determines the winning price based on an auction mechanism. It then compares the winning price with the reserve price set by each DO. If the winning price is lower than the reserve price, the auctioneer terminates the auction and informs the DO to initiate another auction for the same resources. Otherwise, the auctioneer informs the winning DC about the cost (i.e., the winning price) it needs to pay, informs the losing DCs, and informs the DO about the winning DC it shall join.

The FL training process for the target DC based on its recruited DOs commences once either their budget is depleted or all available DOs have been recruited by DCs.

Problem Formulation: The AFL DC bidding can be framed as an optimization problem within budget B limit [15] to maximize the DC's total utility with respect to a set of DOs [1, C]:

$$\max \sum_{i \in [1,C]} x^i \times v^i, \quad s.t. \sum_{i \in [1,C]} x^i \times p^i \le B, \tag{1}$$

where v^i denotes the utility the DC can gain from DO i being auctioned. The specific process to calculate v^i is described in the subsequent section. Here, $x^i \in \{0,1\}$ denotes whether the target DC wins i, and p^i denotes the payment from the target DC to i. Notably, under the SPSB auction mechanism [33], if a DC wins the bid for a DO i, p^i equals to the second-highest bid price among all the bids received by the auctioneer; otherwise, $p^i = 0$.

In [15], it has been shown that under SPSB, the optimal bidding strategy is:

$$b^i = v^i/\omega. (2)$$

 ω is a scaling factor. When the sequence of DO arrival is known in advance, the optimal ω value (ω^*) can be determined using a greedy approximation algorithm [34]. Unfortunately, in practice, strategies must be executed in real-time without prior knowledge of the available data resources being auctioned. Moreover, the auction environment typically exhibits high nonstationarity due to the dynamic behaviors of all participating DCs, making the derivation of ω^* challenging.

Data Owner Reputation Modeling: Following [35], we assess the utility of attracting a DO i for a DC by evaluating i's reputation. To calculate i's reputation (ϕ^i) for a DC, we start by adopting the computationally efficient GTG-Shapley method [36], which measures i's contribution to the DC in the Shapley Value sense [37]. This value is then fed into the Beta Reputation System (BRS) [38] to obtain i reputation value.

The contribution of a DO i to a DC can be grouped into two categories: 1) negative (i.e., $\phi^i < 0$) and 2) positive (i.e., $\phi^i \ge 0$). We adopt the variables nc^i and pc^i to record the number of negative contributions and the number of positive contributions made by i for the DC, respectively. Then, we employ the BRS to compute the reputation value v_i for DO i on the target DC as:

$$v^{i} = \mathbb{E}[Beta(pc^{i} + 1, nc^{i} + 1)] = \frac{pc^{i} + 1}{pc^{i} + nc^{i} + 2}.$$
 (3)

It is essential to emphasize that, as illustrated in Eq. (3), DO i's reputation undergoes dynamic updates throughout the FL model training process. Additionally, in situations where no prior information is accessible, the default initial reputation value of i is established as the uniform distribution, represented by $v^i = U(0,1) = Beta(1,1)$.

¹Following [15], we assume that DOs arrive and make their bid requests sequentially, one after the other.

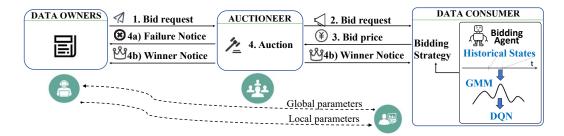


Figure 1: The RLB-AFL system architecture.

4 The Proposed RLB-AFL Approach

The system architecture of RLB-AFL is illustrated in Fig. 1. In response to the limitations of current DC bidding methods within dynamic AFL markets, as well as the challenges arising from the lack of access to private information about DOs and the underlying AFL system dynamics, we propose a reinforcement learning (RL) framework, RLB-AFL, for modeling each DC's bidding process as an ω control problem. RL is pivotal in tackling this problem due to its ability to learn optimal decision-making policies directly from interactions with the environment. Following [29], we leverage the Deep Q-Network (DQN) [39] as the underlying RL model, which uses deep neural networks to approximate the optimal action-value function, enabling effective decision-making in complex, high-dimensional state spaces. Our design incorporates Gaussian Mixture Model (GMM) into RLB-AFL to perform soft clustering on the continuous state space, mitigating the curse of dimensionality. In addition, we improve the ϵ -greedy policy to strike a balance between exploration and exploitation, enabling RLB-AFL to adapt to new market conditions while capitalizing on its learned knowledge.

4.1 POMDP Modeling

RLB-AFL frames the bidding agent for the target DC by sequentially regulating ω under the Partially Observable Markov Decision Process (POMDP) setting [40]. The objective of the DC agent is to acquire an optimal ω controlling policy that maximizes the accumulated reward $\sum_{i=1}^{C} \gamma^{i-1} r^i$, while ensuring that $\sum_{i=1}^{C} x^i \times p^i \leq B$. The fundamental components of the POMDP are:

• o_i/s_i^2 : Before the bid for DO i, the observation o_i consists of: 1) B^i : the remaining budget, 2) (C-i): the remaining DOs, and 3) v^i : the utility the target DC can gain from DO i, and is formulated as:

$$o_i = (B^i, C - i, v^i). \tag{4}$$

- a_i : We introduce several adjustment rates to ω , often taking the form of an action $a \in \mathcal{A}$ as $\omega_i = \omega_{i-1} \times (1 + \lambda_a)$, where λ_a represents the adjustment rate related to a.
- r_i : The reward for bidding for DO i is computed as $r_i = x^i \times v^i$, where $x^i \in \{0,1\}$ indicates whether the DC wins the auction.
- γ : The objective of the target DC is to maximize the overall utility of winning DOs, subject to the budget constraint B, irrespective of utility over time. Therefore, the reward discount factor γ is set as 1, i.e., $\gamma = 1$.

Although the state formulation in Eq. (4) is straightforward, it resides within an infinitely continuous state space. In light of this, the occurrence of a particular state might be rare in AFL processes, particularly when sequential information is incorporated. Consequently, accurately learning an approximation of the value function becomes extremely challenging. Furthermore, this issue leads to high exploration costs. Therefore, it is crucial to map the state space into a lower-dimensional and, ideally, finite space. To tackle this issue, we propose a state clustering method.

²In this paper, while it might be more accurate to refer to it as an observation, we continue to use the both term state and term observation concerning the bidding process without ambiguity.

4.2 State Clustering

During the decision-making process, an agent can rely on historical information. This intuition has been widely adopted in multiple domains (e.g., recommendation systems [41], click-through rate estimation in computational advertising [42]), and has been proven effective. This suggests that it might be useful to base DC bidding strategies on the historical information from recent auctions, rather than only on the current state. Motivated by this observation, we frame the state from the perspective of modeling the sequential information of states (i.e., historical states). Specifically, we define the sequential information of states as:

$$\mathbf{s}_i = \langle s_{i-W+1}, \cdots, s_i \rangle, \tag{5}$$

where W is a hyperparameter representing the window size. If i-j < 0 $(0 < j \le W-1)$, s_{i-j} is configured as a zero vector. Following this, we obtain the combined state \hat{s}_i through the application of the state mapping function $f_{state}(\cdot)$ as:

$$\hat{s}_i = f_{state}(\mathbf{s}_i). \tag{6}$$

In the context of AFL, an intuitive observation is that similar historical state sequences tend to yield comparable rewards under a given bidding strategy. This key insight emphasizes the potential benefits of grouping similar state sequences together through clustering. However, within an AFL market, each DC faces a continuous state space comprising numerous elements (e.g., utility derived from auctioned data, remaining budget, available time steps). Navigating this extensive state space and learning an effective bidding strategy is a formidable challenge, as it requires capturing the intricate dynamics and stochasticity of the environment without direct access to DOs' private information.

To address this critical issue, we design a soft clustering approach over the historical state sequences based on GMM [43]. It effectively reduces the dimensionality of the state space, while preserving the essential information encoded in the sequential state trajectories. Dimensionality reduction is crucial for mitigating the state space sparsity issue, which can otherwise hinder accurate value function approximation and incur excessive exploration costs during the RL process. The ability of GMM to model complex data distributions through a mixture of Gaussian components makes it well-suited for clustering the continuous and high-dimensional state representations arising from the incorporation of historical state information.

Specifically, let K denote the number of clusters of the historical states, and $\{s_1, s_2, \dots, s_N\}$ denote the available historical states. The conditional probability of each historical state s_i for a cluster k is modeled by a Gaussian distribution:

$$p(\mathbf{s}_i|z_i=k;\mu_k,\Sigma_k) = \mathcal{N}(\mu_k,\Sigma_k). \tag{7}$$

Alternatively, the prior probability of each cluster k is assumed to adhere to a Multinomial distribution Multinomial(u), with:

$$u_k > 0, \ \sum_k u_k = 1, \quad p(z_i = k) = u_k.$$
 (8)

Then, the total log-likelihood of the historical states is:

$$L(u, \mu, \Sigma) = \sum_{i=1}^{N} \log \sum_{k=1}^{K} \mathcal{N}(\mu_k, \Sigma_k) u_k.$$
(9)

Following the Expectation-Maximization (EM) algorithm, RLB-AFL gradually learns the parameters u, μ and Σ . Specifically, in the E-step, the weight recording the affinity of historical state s_i to cluster k is calculated as:

$$w_k^i = p(z_i = k | \mathbf{s}_i; u, \mu, \Sigma) = \frac{\mathcal{N}(\mu_k, \Sigma_k) u_k}{\sum_{j=1}^K \mathcal{N}(\mu_j, \Sigma_j) u_j}.$$
 (10)

In the M-step, the parameters of cluster k are updated as:

$$u_k = \frac{1}{N} \sum_{i=1}^{N} w_k^i, \quad \mu_k = \frac{\sum_{i=1}^{N} w_k^i s_i}{\sum_{i=1}^{N} w_k^i}, \quad \Sigma_k = \frac{\sum_{i=1}^{N} w_k^i (s_i - \mu_k) (s_i - \mu_k)^i}{\sum_{i=1}^{N} w_k^i}.$$
(11)

The E-step and the M-step are iteratively repeated until convergence. Eventually, the weight vector $\Gamma(s_i)$ expressing the inclination of s_i towards each cluster $k \in [1, K]$, is:

$$\Gamma(\boldsymbol{s}_i) = (w_1^i, w_2^i, \cdots, w_K^i). \tag{12}$$

However, obtaining a set of historical states and subsequently estimating the parameters of the GMM in a sequential manner is not practical for DCs newly joining the AFL process. Therefore, we also propose the following EM algorithm to dynamically update the GMM clusters in an adaptive fashion. Given the current state s_i , utilizing the prevailing GMM, we begin by computing the posterior probabilities $\Gamma(s_i)$ as outlined in Eq. (10). Then, the M-step is enhanced as (the first two equations have been consolidated into a single line):

$$u_k = (1 - \kappa)u_k + \kappa w_k^i, \quad \mu_k = \mu_k + \kappa w_k^i \mathbf{s}_i, \quad \Sigma_k = \Sigma_k + \kappa w_k^i (\mathbf{s}_i - \mu_k)(\mathbf{s}_i - \mu_k)^i, \quad (13)$$

where $\kappa \in \{0,1\}$ denotes the hyperparameter balancing the weight assigned to the incoming instance.

4.3 Enhanced ϵ -greedy Policy

DQN implements the ϵ -greedy policy to strike a balance between exploitation and exploration, where the agent selects action $a^* = \operatorname{argmax}_a Q(o, a)$ with a probability of $(1 - \epsilon)$, while taking a random action with a probability of ϵ . The parameter ϵ is typically set to a larger value and slowly anneals over time to a smaller value. Yet, determining an appropriate annealing rate is crucial, as a high annealing rate limits exploration, while a low one can lead to slow policy convergence.

However, in the context of AFL DC bidding, the optimal bidding theory guarantees a consistent optimal ω^* for each DO $i \in [1, C]$. Given the observation o_i , taking the optimal action is equivalent to adjusting ω to approach ω^* . Any deviation from this optimal action results in a reduction in potential value, as reflected by a lower Q value. Hence, considering our action space A, which encompasses a range of adjustment rates denoted as $\{\lambda_a\}$), the action-value distribution $Q(o_i, a_i)$ across the action space A sorted according to the adjustment scale λ_a of action, should ideally exhibit unimodality [44]. Therefore, if the distribution is not unimodal, it implies an abnormal estimation of Q. It is necessary to increase ϵ to encourage exploration in this state.

Algorithm 1 RLB-AFL

Initialize $Q(o, a; \theta)$ and its target network with $\hat{\theta} \leftarrow \theta$, update frequency of target network τ , replay memory \mathcal{D} , training batch size m.

```
1: Initialize \omega_0;
```

- 2: **for** i = 1 to C **do**
- 3: Obtain the state s_i based on the GMM;
- Compute a_i according to the enhanced ϵ -greedy policy w.r.t Q; 4:
- 5: Obtain ω_i based on ω_{i-1} ;
- Calculate b_i according to Eq. (2); 6:
- 7: Submit b^i to the auctioneer;
- 8: Get reward r_i and the payment p^i ;
- 9: Store transition tuples in \mathcal{D} ;
- Sample a random minibatch of m samples from \mathcal{D} ; 10:
- 11:
- $\begin{array}{l} \hat{y} = r + \gamma \max_{a'} Q(o, a'; \hat{\theta}); \\ \text{Update } \theta \text{ by minimizing } \sum_{m} [(y Q(o, a; \theta))^2]; \end{array}$ 12:
- $\hat{\theta} \leftarrow \theta$ every τ steps; 13:
- 14: **end for**

The Training Process of RLB-AFL 4.4

RLB-AFL is based on DQN. The action-value function Q(o, a) is modeled by a deep neural network (DNN) with parameter θ . To enhance training stability, we leverage a target network parameterized by $\hat{\theta}$, adopting a similar DNN architecture to approximate Q(o, a) (Algorithm 1).

Updating of the parameters θ is achieved by minimizing $\mathcal{L}(\theta) = \frac{1}{2} \mathbb{E}_{(o,a,r,o') \sim \mathcal{D}}[(y - Q(o,a;\theta))^2]$. Here, \mathcal{D} is a replay buffer that stores transition tuples $\langle o, a, r, o' \rangle$, where o' denotes the new observation of the bidding agent following the action a, derived from the initial observation o and

corresponding reward r. Randomly sampling batches of transitions during training, buffer $\mathcal D$ facilitates learning from past experience. Let γ denote the discount factor. The temporal difference target y is computed as $y=r+\gamma\max_{a'}Q(o',a';\hat\theta)$. $Q(o',a';\hat\theta)$ denotes the predicted action-value function of the DC bidding agent for its subsequent observation o' considering all feasible actions a'. $\hat\theta$ denotes the parameters of the target network, and $Q(o',a';\hat\theta)$ denotes the predicted action-value function. The target network ensures training stability by maintaining a fixed target throughout the training process, periodically updated to synchronize with the current action-value network.

5 Experimental Evaluation

5.1 Experiment Settings

Datasets: We adopt six widely used datasets in FL studies: 1) MNIST³, 2) CIFAR-10⁴, 3) Fashion-MNIST (a.k.a. FMNIST) [45], 4) EMNIST-digits (a.k.a. EMNISTD) [46], 5) EMNIST-letters (a.k.a. EMNISTL) [46] and 6) Kuzushiji-MNIST (a.k.a. KMNIST) [47]. The FL models used are the same as those employed in [15].

Comparison Baselines: We compare RLB-AFL against the following eight well-established bidding approaches: 1) Constant Bid (Const) [48], 2) Randomly Generated Bid (Rand) [22, 23], 3) Below Max Utility Bid (Bmub) [49], 4) Linear-Form Bid (Lin) [50], 5) Bidding Machine (BM) [51], 6) Reinforcement Learning-based Bid (RLB) [29, 14, 52]. More detailed descriptions of these methods can be found in [29]. In addition, we include Fed-Bidder [15] which is specifically designed for AFL DCs. It guides DCs to competitively bid for DOs to maximize their utility under a given budget constraint. Fed-Bidder is implemented as two variants: 7) Fed-Bidder-sim (FBs) with a simple winning function and 8) Fed-Bidder-com (FBc) with a complex winning function.

Experimental Scenarios: We conduct experiments under two scenarios, each involving 10,000 DOs: 1) IID data: Each DO possesses a set of 1,000 images, including some noisy ones. To facilitate the effective evaluation of DOs' reputations by DCs, the 10,000 DOs are organized into five groups, each comprising 2,000 DOs. In addition, different percentages of noisy data are introduced for each DO group as follows: DOs in the first, second, third, fourth, and last groups each owns 0%, 10%, 25%, 40%, and 60% noisy data, respectively. 2) Non-IID data: By adjusting the class distribution among individual DOs, which hold 1,000 images, we intentionally introduce data heterogeneity in this experimental setup. Following [35], the Non-IID setup is implemented as follows: one class (for datasets except EMNISTL) or six classes (for EMNISTL) are designated as the minority class, assigned to 100 DOs. Therefore, images for all classes are possessed by these 100 DOs, while the other nine or twenty classes except the minority class, are exclusively held by all other DOs. Scenarios in which the minority classes are with 10% or 25% noisy data are also included.

Implementation Details: To deal with the challenge of lacking a publicly available dataset related to AFL, we conducted simulations where we tracked the behaviors of DCs under the setting of forward auction and generalized second-price sealed-bid (SPSB) over time in four distinct scenarios, each involving 160 DCs. 1) One-eighth of the DCs adopts each of the eight comparison approaches. 2) Three-sixteenths of the total population adopt each of RLB, FBs, FBc and BM, while one-sixteenth of all DCs adopt the other four approaches. 3) Custom-tailored for AFL with both Fed-Bidder variants and RLB-AFL, we fine-tuned the ratio of DCs choosing FBc and FBs to surpass those opting for the remaining six baseline methods. Specifically, 50 DCs chose FBc and FBs each, while the other six baselines were adopted by 10 DCs each. 4) Following the settings in Scenario 3, 65 DCs chose FBc and FBs each, while the other six baselines were adopted by 5 DCs each..

To assess the efficacy of RLB-AFL, 9 AFL DCs are implemented, each employing one of the previously mentioned bidding methods to bid for DOs. For the action-value function utilized by the bidding agent, RLB-AFL employs fully connected neural networks. These networks consist of three hidden layers, each comprising 64 nodes. The RMSprop with a 0.0001 learning rate is adopted to train all the neural networks. The discount factor γ for the reward is set to 1, as the primary aim of a DC is to maximize the overall utility gained from winning DOs within the budget constraints. A replay buffer $\mathcal D$ of size 6,000 is used for training the action-value function Q (i.e., $|\mathcal D|=6,000$). During training, 32 samples from $\mathcal D$ are utilized for updating Q at each training step (i.e., m=32). Furthermore, the

³http://yann.lecun.com/exdb/mnist/

⁴https://www.cs.toronto.edu/kriz/cifar.html

Table 1: Comparison results of the total utilities and FL model accuracy (%) across different datasets and budget settings under the IID scenario. "Bud" means budget and "Acc" means accuracy. The best

results are highlighted in Bold.

Court	s are mgn	MNIST CIFAR			EMAN	MNIST EMNISTD		EMNICTI		KMNIST				
Bud	Method						FMNIST				EMNISTL			
		Utility	Acc	Utility	Acc	Utility	Acc	Utility	Acc	Utility	Acc	Utility	Acc	
	Const	7.28	78.03	6.68	35.28	7.53	69.95	7.32	78.52	7.53	68.82	7.05	62.67	
	Rand	6.73	73.23	7.40	34.93	9.02	70.55	7.84	79.83	8.08	67.40	8.25	61.52	
	Bmub	8.48	80.72	9.67	35.74	9.56	71.31	9.45	80.36	9.97	70.39	9.12	63.54	
	Lin	11.42	82.02	10.96	37.70	11.14	71.84	11.15	80.76	11.22	71.23	11.18	64.19	
	BM	13.21	83.07	13.61	38.30	13.83	73.81	12.96	81.27	14.10	72.08	14.24	66.02	
100	FBs	15.22	83.12	14.66	39.78	15.05	73.82	14.83	81.65	14.89	73.19	14.99	68.91	
	FBc	15.16	83.38	15.72	40.33	15.23	74.63	14.80	81.66	14.90	73.23	14.89	68.63	
	RLB	15.91	83.24	15.30	40.24	15.36	74.18	15.41	81.96	15.33	73.36	15.71	68.25	
	RLB-AFL	18.62	85.86	16.84	41.83	17.68	76.82	17.95	83.69	17.56	74.79	17.37	70.66	
	w/o c	16.97	84.42	15.98	41.11	16.71	75.68	16.64	82.37	16.48	73.82	16.04	69.34	
	w/o e ϵ	16.25	84.55	16.25	41.09	16.29	75.79	16.58	83.46	15.37	73.59	16.33	70.26	
	Const	9.04	81.00	9.18	37.81	9.34	69.06	8.03	79.32	9.22	70.94	8.65	63.45	
200	Rand	8.50	81.10	8.67	38.60	10.87	71.20	8.45	79.80	9.23	70.76	9.58	61.87	
	Bmub	12.08	81.90	10.72	39.39	11.48	72.23	10.15	81.37	11.63	71.99	10.48	64.74	
	Lin	13.80	82.13	13.43	40.13	13.55	72.85	13.29	81.40	13.56	73.05	13.62	68.99	
	BM	15.64	84.55	16.02	41.33	16.55	75.29	15.45	82.46	16.96	73.56	17.22	71.76	
	FBs	18.53	84.36	17.73	42.24	18.35	75.36	17.84	82.26	17.88	73.93	18.08	71.98	
	FBc	18.15	84.53	17.53	42.12	18.48	75.25	17.55	82.10	17.80	73.79	17.76	72.16	
	RLB	18.46	85.14	18.03	42.47	18.40	75.03	18.17	82.60	18.23	74.47	18.65	74.60	
	RLB-AFL	19.98	86.89	20.72	44.69	21.31	77.48	20.37	84.48	21.77	77.88	20.86	75.84	
	w/o c	19.18	85.75	19.46	43.55	20.93	76.26	19.25	84.19	20.41	76.15	19.81	74.80	
	w/o e ϵ	19.24	86.19	19.58	43.86	19.96	76.86	19.75	83.83	19.35	75.88	19.92	75.32	
400	Const	7.43	81.25	8.39	39.03	8.91	70.92	7.50	80.14	9.10	71.69	8.27	69.26	
	Rand	10.76	80.22	7.08	39.61	10.47	71.03	7.48	79.75	8.11	72.15	8.79	71.58	
	Bmub	11.56	82.30	10.33	40.14	11.35	73.20	10.51	82.05	11.88	73.32	10.70	72.66	
	Lin	14.77	83.31	14.35	41.65	14.38	75.33	14.13	82.04	14.39	73.94	14.52	72.78	
	BM	17.07	84.85	17.04	42.68	17.20	75.40	16.25	82.78	17.82	74.57	18.54	73.87	
	FBs	19.58	85.14	18.66	43.86	19.28	76.74	18.73	83.51	18.73	75.12	19.05	74.17	
	FBc	19.31	85.20	18.45	43.83	19.34	76.31	18.52	83.42	18.63	75.20	18.71	73.95	
	RLB	19.83	85.77	18.97	43.70	19.42	77.10	19.15	83.70	19.06	75.06	19.68	75.94	
	RLB-AFL	22.06	87.63	20.14	45.94	21.67	79.47	20.71	85.24	21.65	77.91	20.91	77.89	
	w/o c	21.94	86.39	19.10	44.37	20.38	78.11	20.24	84.99	20.22	76.69	20.52	77.38	
	w/o e €	20.43	86.28	19.56	44.46	20.79	78.75	20.53	84.17	20.86	77.03	20.44	76.52	
								1		1				

target network for Q is updated once every 30 training steps (i.e., C=30). The window size for historical states is fixed at 40 (i.e., W=40), and the number of clusters K is set to 10 (i.e., K=10). The weight assigned to the incoming instance during the M-step is set to 0.5 (i.e., $\kappa=0.5$). Each recruited DO undergoes 30 local training epochs, with a batch size of 256.

Evaluation Metrics: We employ the following two metrics to assess the compared approaches: 1) **Utility**: It quantifies the total reputation of DOs enlisted by the corresponding target DC upon reaching either the bid request limits or the budget limit. 2) **Test Accuracy (Acc)**: Acc denotes the accuracy of the FL models achieved until reaching either the budget limit or the limits on bid requests.

5.2 Results and Discussion

To perform a comprehensive comparison of all nine bidding methods, experiments are carried out on six datasets with budgets varying from low to high among {100, 200, 400}.

Table 1 illustrates the outcomes of various comparison methods under the IID scenario. It can be observed that the proposed RLB-AFL method consistently achieves the best performance among all the comparison methods in terms of both test accuracy and utility across all three budget settings and all six datasets. In particular, compared to the best-performing baseline, RLB-AFL improves the total utility and the test accuracy of the resulting FL model by 12.18% and 2.93%, respectively. Table 2 illustrates the outcomes of various comparison methods under the Non-IID scenario. The results align with the performance shown in Table 1 with the proposed RLB-AFL improving the test accuracy by 3.19% on average under the Non-IID scenario.

Const and Rand perform poorly compared to other methods due to their disregard for DOs' utility in their formulation. Among all the other comparison methods, Bmub and Lin exhibit inferior performance, with Lin being more effective than Bmub. This can be attributed primarily to the introduction of randomness in the bidding strategy of Bmub. The remaining five comparison methods

Table 2: FL model accuracy (%) comparison across different datasets and budget settings under the Non-IID scenario. "Bud" means budget. 10% and 25% represent 10% and 25% noisy data, respectively.

Bud	Method	MNIST		CIFAR		FMNIST		EMNISTD		EMNISTL		KMNIST	
Duu	Method	10%	25%	10%	25%	10%	25%	10%	25%	10%	25%	10%	25%
	Const	66.09	70.06	13.04	13.66	59.98	59.31	76.94	76.67	64.25	63.76	60.12	59.22
	Rand	68.77	67.10	10.61	10.76	61.36	60.77	75.58	78.24	63.50	63.15	59.19	58.52
	Bmub	70.10	70.85	15.02	13.63	62.12	61.60	77.27	77.76	66.18	65.68	63.09	61.78
	Lin	71.95	71.14	18.47	17.76	64.08	64.09	78.45	77.88	65.47	64.75	63.23	62.90
100	BM	72.18	71.91	19.52	19.59	66.89	66.69	79.35	78.83	66.11	65.35	64.57	63.99
	FBs	73.05	72.68	23.37	22.48	70.67	70.54	79.34	78.78	67.34	66.63	65.86	64.75
	FBc	73.45	74.12	23.25	22.59	71.04	70.92	79.77	79.30	66.48	65.61	65.21	64.33
	RLB	73.78	73.94	23.57	22.97	71.41	71.70	79.86	79.10	67.10	66.32	65.98	64.34
ĺ	RLB-AFL	74.84	74.88	25.79	25.42	72.94	73.58	80.46	81.80	69.22	67.47	68.38	65.39
	w/o c	74.13	74.24	24.66	23.95	72.33	72.61	80.05	80.58	68.29	66.94	66.88	64.86
	w/o e ϵ	74.36	74.52	24.83	24.28	72.47	72.84	80.19	80.73	68.46	67.03	67.26	65.12
	Const	69.86	68.12	10.74	10.97	62.25	61.59	77.91	77.69	67.14	66.64	61.33	58.33
	Rand	69.38	69.17	10.31	10.28	62.10	61.32	78.56	78.35	67.68	67.27	62.11	58.42
	Bmub	71.55	71.04	13.34	13.13	63.14	62.84	79.22	78.74	68.39	67.89	64.68	63.25
	Lin	72.49	71.52	18.91	18.28	64.32	64.27	79.28	78.80	69.33	68.88	67.58	66.37
200	BM	73.24	72.86	20.33	20.20	66.81	67.82	80.36	79.82	69.00	68.16	68.39	68.02
	FBs	74.19	73.18	23.67	23.08	71.70	71.79	80.13	79.65	68.79	68.17	68.95	69.00
	FBc	74.03	73.51	23.46	22.87	71.76	71.71	80.25	79.84	69.76	69.09	68.63	67.53
	RLB	75.16	73.69	23.68	23.32	71.20	71.05	80.34	79.88	69.29	68.69	69.61	70.49
	RLB-AFL	77.62	75.67	24.88	25.64	73.93	73.97	82.86	81.55	71.41	70.72	71.75	71.86
	w/o c	75.93	74.44	23.92	24.58	72.02	72.68	81.49	80.38	70.52	69.26	70.46	70.98
	w/o e €	77.34	74.68	24.41	24.76	72.55	72.94	82.23	80.77	70.93	69.84	71.11	71.26
	Const	70.52	69.43	17.07	16.99	61.89	60.96	78.42	78.17	67.56	67.12	67.92	68.42
	Rand	69.59	68.66	20.84	20.58	62.72	62.05	78.59	78.50	68.36	67.99	69.34	69.92
	Bmub	71.87	71.06	21.96	20.98	63.86	63.64	79.82	79.30	69.04	68.57	69.25	68.95
	Lin	72.60	71.81	24.00	23.29	65.49	65.47	79.86	79.37	69.94	69.52	69.90	69.46
400	BM	74.57	73.79	25.33	24.27	66.92	67.38	80.76	80.28	71.09	70.71	71.12	70.77
	FBs	75.39	74.46	26.19	25.06	71.03	70.72	81.19	80.65	71.09	70.62	71.27	71.16
	FBc	75.28	74.53	25.93	24.82	72.00	71.98	81.13	80.60	71.26	70.81	70.77	69.97
	RLB	75.19	75.08	26.50	25.39	72.28	72.27	81.40	80.88	71.40	70.99	71.75	71.21
	RLB-AFL	76.54	76.43	27.86	26.79	73.76	74.78	82.69	82.13	74.25	73.39	72.99	72.15
	w/o c	75.89	75.94	27.12	26.05	72.77	73.41	81.99	81.50	72.68	72.31	72.06	71.66
	w/o e ϵ	76.07	76.15	27.39	26.22	73.16	73.95	82.33	81.74	73.07	72.69	72.37	71.94

consistently exhibit superior performance compared to the aforementioned four simpler approaches. This improved performance can be attributed to the incorporation of auction records, which encompass both bidding records and auction history, as well as the adoption of machine learning/reinforcement learning frameworks. BM, FBs, and FBc underperform RLB and RLB-AFL as they belong to the category of static bidding methods, lacking adaptability to the highly dynamic auction environment of AFL. Compared to BM, FBs and FBc perform better. This can be attributed to the fact that these two methods use a specially designed bidding function to model the market price distribution, enhancing the accuracy of bid cost expectations. In BM, the market price distribution is obtained by marginalizing the prediction of the market price density of bid requests, which may result in overfitting. Nevertheless, these three bidding methods are formulated as either non-linear or linear functions, trained on historical auction data utilising heuristic approaches. When these functions are exposed to new auctions, which might differ from the historical ones due to the dynamism of the AFL market, achieving consistent desired outcomes becomes challenging. Although RLB adopts dynamic programming to enhance its bidding process, it is not specifically designed for AFL DCs, and might face challenges related to state sparsity, potentially leading to poor performance in AFL settings. This limitation has been effectively addressed by RLB-AFL. Furthermore, RLB-AFL integrates an enhanced ϵ -greedy policy into its framework to achieve an advantageous trade-off between exploration and exploitation.

Ablation Study: We created two ablated versions of RLB-AFL: 1) **w/o c**: excluding the states clustering part from RLB-AFL. 2) **w/o e** ϵ : the proposed ϵ -greedy policy in RLB-AFL is replaced by the general ϵ -greedy policy. These modifications is to examine the impact of incorporating the states clustering operation and the enhanced ϵ -greedy policy into RLB-AFL. Tables 1 and 2 present the results. It can be observed that RLB-AFL outperforms its ablated variants in terms of the total utility and accuracy of FL models. Therefore, the two proposed designs are effective and improve the performance of RLB-AFL.

Sensitivity Analysis on Number of Clusters: To see the impact of the GMM cluster number on RLB-AFL, we vary the number of GMM clusters from $\{3,5,10,15,20\}$. The averaged accuracy of the FL models under the 400 budget settings is shown in Table 3. Initially, as the number of clusters increases, there is a noticeable ascent in accuracy, followed by a subsequent decline. This trend suggests that a higher cluster count initially yield a more precise state mapping function. However, excessive growth leads to increased GMM representation size and state sparsity. Within our experimental framework, it becomes apparent that selecting a cluster size ranging between 10 to 15 leads to optimal outcomes for the model user. This range strikes a balance, steering clear of the limitations associated with a smaller cluster count, while also avoiding the over-expansion of GMM representation that triggers state sparsity.

Table 3: Accuracy (%) under various number of GMM clusters (K).

K	MNIST	CIFAR	FMNIST	EMNISTD	EMNISTL	KMNIST
3	85.54	41.62	75.93	83.11	73.49	70.33
5	86.09	43.88	77.42	83.85	74.84	72.41
10	87.63	45.94	79.47	85.24	77.91	77.89
15	86.21	43.46	78.38	82.93	75.72	75.84
20	85.32	43.02	76.59	81.60	74.65	73.92

6 Conclusions

To address the limitations of static bidding strategies in dynamic AFL markets, we propose RLB-AFL, a novel RL-based bidding method for DCs. It frames bidding as a ω -control problem using a DQN architecture. Given the high-dimensional, continuous state space, including utility, budget, and time, training a generalizable RL model is challenging. RLB-AFL tackles this with Gaussian mixture model-based soft clustering and a refined ϵ -greedy policy to balance exploration and exploitation. However, while RLB-AFL and other methods focus solely on competition among DCs, they overlook potential collaboration, which can indirectly influence behavior. Future work will incorporate these complex inter-DC relationships.

Acknowledgments

The research is supported, in part, by the Ministry of Education, Singapore, under its Academic Research Fund Tier 1 (RG101/24); the RIE2025 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) (Award I2301E0026), administered by A*STAR, as well as supported by Alibaba Group and NTU Singapore through Alibaba-NTU Global e-Sustainability CorpLab (ANGEL).

References

- [1] Fan, T., H. Gu, et al. Ten challenging problems in federated foundation models. *IEEE Transactions on Knowledge and Data Engineering*, 2025.
- [2] Sun, H., X. Tang, C. Yang, et al. Hifi-gas: Hierarchical federated learning incentive mechanism enhanced gas usage estimation. In he 36th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-24), pages 22824–22832. 2024.
- [3] Tang, X., H. Yu, R. Tang, et al. Dual calibration-based personalised federated learning. In *Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24)*, pages 4982–4990. 2024.
- [4] Qi, Z., L. Meng, Z. Chen, et al. Cross-silo prototypical calibration for federated learning with non-iid data. In *Proceedings of the 31st ACM International Conference on Multimedia*, pages 3099–3107. 2023.
- [5] Qi, Z., L. Meng, Z. Li, et al. Cross-silo feature space alignment for federated learning on clients with imbalanced data. In *The 39th Annual AAAI Conference on Artificial Intelligence (AAAI-25)*, pages 19986–19994. 2025.
- [6] Tang, Y.-P., C. Ren, X. Tang, et al. Efficient heterogeneity-aware federated active data selection. In *Proceedings of the 42nd International Conference on Machine Learning (ICML'25)*. 2025.

- [7] Meng, L., Z. Qi, L. Wu, et al. Improving global generalization and local personalization for federated learning. *IEEE Transactions on Neural Networks and Learning Systems*, 36, 2024.
- [8] Zhan, Y., J. Zhang, Z. Hong, et al. A survey of incentive mechanism design for federated learning. *IEEE T EMERG TOP COM*, 10(2):1035–1044, 2021.
- [9] Khan, L. U., S. R. Pandey, N. H. Tran, et al. Federated learning for edge networks: Resource optimization and incentive mechanism. *IEEE Commun Mag*, 58(10):88–93, 2020.
- [10] Tang, X. Stakeholder-oriented decision support for auction-based federated learning. In *Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24)*, pages 8514–8515. 2024.
- [11] Tang, X., H. Yu. Reputation-aware revenue allocation for auction-based federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, pages 20832–20840. 2025.
- [12] Tang, X., H. Yu, X. Li, et al. Intelligent agents for auction-based federated learning: A survey. In Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24), pages 8253–8261. 2024.
- [13] Tang, X., H. Yu. Agent-oriented joint decision support for data owners in auction-based federated learning. In *Proceedings of the 2024 IEEE International Conference on Multimedia* and Expo (ICME'24). 2023.
- [14] Tang, X., H. Yu, X. Li. Multi-session budget optimization for forward auction-based federated learning. In *Proceedings of the 42nd International Conference on Machine Learning (ICML'25)*. 2025.
- [15] Tang, X., H. Yu. Utility-maximizing bidding strategy for data consumers in auction-based federated learning. In *Proceedings of the 2023 IEEE International Conference on Multimedia and Expo (ICME'23)*, pages 330–335. 2023.
- [16] Jiao, Y., P. Wang, D. Niyato, et al. Toward an automated auction framework for wireless federated learning services market. *IEEE Transactions on Mobile Computing*, 20(10):3034–3048, 2020.
- [17] Batool, Z., K. Zhang, M. Toews. Block-racs: Towards reputation-aware client selection and monetization mechanism for federated learning. *ACM SIGAPP Applied Computing Review*, 23(3):49–66, 2023.
- [18] Le, T. H. T., N. H. Tran, Y. K. Tun, et al. Auction based incentive design for efficient federated learning in cellular wireless networks. In *Proceedings of the 2020 IEEE wireless communications and networking conference (WCNC'20)*, pages 1–6. 2020.
- [19] Zhou, R., J. Pang, Z. Wang, et al. A truthful procurement auction for incentivizing heterogeneous clients in federated learning. In *Proceedings of the 41st IEEE International Conference on Distributed Computing Systems (ICDCS'21)*, pages 183–193. 2021.
- [20] Yuan, Y., L. Jiao, K. Zhu, et al. Incentivizing federated learning under long-term energy constraint via online randomized auctions. *IEEE Transactions on Wireless Communications*, 21(7):5129–5144, 2021.
- [21] Wu, L., S. Guo, Z. Hong, et al. Long-term adaptive vcg auction mechanism for sustainable federated learning with periodical client shifting. *IEEE Transactions on Mobile Computing*, 2023.
- [22] Zhang, J., Y. Wu, R. Pan. Incentive mechanism for horizontal federated learning based on reputation and reverse auction. In *Proceedings of the Web Conference 2021 (WWW'21)*, page 947–956. 2021.
- [23] Zhang, J., Y. Wu, R. Pan". Online auction-based incentive mechanism design for horizontal federated learning with budget constraint. *arXiv preprint*, page 2201.09047, 2022.

- [24] Deng, Y., F. Lyu, J. Ren, et al. Fair: Quality-aware federated learning with precise user incentive and model aggregation. In *Proceedings of the 40th IEEE International Conference on Computer Communications (INFOCOM'21)*. 2021.
- [25] Yang, Y., et al. Bara: Efficient incentive mechanism with online reward budget allocation in cross-silo federated learning. *arXiv preprint arXiv:2305.05221*, 2023.
- [26] Batool, Z., K. Zhang, M. Toews. Fl-mab: client selection and monetization for blockchain-based federated learning. In ACM SIGAPP Applied Computing Review, pages 299–307. 2022.
- [27] Tang, X., H. Yu. Fairness-aware reverse auction-based federated learning. *IEEE Internet of Things Journal*, 12(7):8862 8872, 2024.
- [28] Myerson, R. B. Population uncertainty and poisson games. *International Journal of Game Theory*, 27(3):375–392, 1998.
- [29] Tang, X., H. Yu. Competitive-cooperative multi-agent reinforcement learning for auction-based federated learning. In *Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI'23)*, pages 4262–4270. 2023.
- [30] Tang, X., H. Yu, Z. Li, et al. A bias-free revenue-maximizing bidding strategy for data consumers in auction-based federated learning. In *Proceedings of the 33rd International Joint Conference* on Artificial Intelligence (IJCAI'24), pages 4991–4999. 2024.
- [31] Tang, X., H. Yu. A cost-aware utility-maximizing bidding strategy for auction-based federated learning. *IEEE Transactions on Neural Networks and Learning Systems*, 36(7):12866–12879, 2024.
- [32] Vincent, D. R. Bidding off the wall: Why reserve prices may be kept secret. *Journal of Economic Theory*, 65(2):575–584, 1995.
- [33] Tang, X., H. Yu. Towards trustworthy ai-empowered real-time bidding for online advertisement auctioning. *ACM Computing Surveys*, 57(6):1–36, 2025.
- [34] Dantzig, G. B. Discrete-variable extremum problems. *Operations research*, 5(2):266–288, 1957.
- [35] Shi, Y., H. Yu. Fairness-aware client selection for federated learning. In *Proceedings of the 2023 IEEE International Conference on Multimedia and Expo (ICME'23)*, pages 324–329. 2023.
- [36] Liu, Z., et al. GTG-Shapley: Efficient and accurate participant contribution evaluation in federated learning. ACM Transactions on Intelligent Systems and Technology, 13(4):1–21, 2022.
- [37] Shapley, L. S., et al. A value for n-person games. 1953.
- [38] Josang, A., R. Ismail. The beta reputation system. In *Bled eConference*, vol. 5, pages 2502–2511. Citeseer, 2002.
- [39] Mnih, V., et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.
- [40] Littman, M. L. Markov games as a framework for multi-agent reinforcement learning. In *Machine learning proceedings 1994*, pages 157–163. Elsevier, 1994.
- [41] Tang, X., T. Wang, H. Yang, et al. Akupm: Attention-enhanced knowledge-aware user preference model for recommendation. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (KDD'19)*, pages 1891–1899. 2019.
- [42] Zhou, G., N. Mou, Y. Fan, et al. Deep interest evolution network for click-through rate prediction. In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)*, pages 5941–5948. 2019.
- [43] Rasmussen, C. The infinite gaussian mixture model. In *Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS'99)*. 1999.

- [44] Wu, D., X. Chen, X. Yang, et al. Budget constrained bidding by model-free reinforcement learning in display advertising. In *Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM'18)*, pages 1443–1451. 2018.
- [45] Xiao, H., K. Rasul, R. Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. *arXiv preprint*, page 1708.07747, 2017.
- [46] Cohen, G., S. Afshar, J. Tapson, et al. EMNIST: Extending MNIST to handwritten letters. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN'17), pages 2921–2926. 2017.
- [47] Clanuwat, T., M. Bober-Irizar, A. Kitamoto, et al. Deep learning for classical japanese literature. *arXiv preprint*, page 1812.01718, 2018.
- [48] Zhang, W., S. Yuan, J. Wang. Optimal real-time bidding for display advertising. In *Proceedings* of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'14), pages 1077–1086. 2014.
- [49] Lee, K.-c., B. Orten, A. Dasdan, et al. Estimating conversion rate in display advertising from past erformance data. In *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'12)*, pages 768–776. 2012.
- [50] Perlich, C., B. Dalessandro, R. Hook, et al. Bid optimizing and inventory scoring in targeted online advertising. In *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'12)*, pages 804–812. 2012.
- [51] Ren, K., W. Zhang, K. Chang, et al. Bidding machine: Learning to bid for directly optimizing profits in display advertising. *IEEE Transactions on Knowledge and Data Engineering*, 30(4):645–659, 2017.
- [52] Tang, X., H. Yu. Efficient large-scale personalizable bidding for multi-agent auction-based federated learning. *IEEE Internet of Things Journal*, 11(15):26518–26530, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The contributions and the scope are claimed in the abstract and introduction. Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations of the proposed method has been discussed in the Conclusions section.

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions have been explained in the preliminary section.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental details have been explained in the experiment section.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.

- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We will release the node once the paper is accepted.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All these have been explained in the experiment section and the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All these have been explained in the experiment section and the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: These have been explained in the experiment section and the appendix.

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform and NeurIPS code of ethics. We will relese the code once the paper has been accepted.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: The model has been well safeguarded.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original datasets and references have been properly cited in this paper.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The new asset of this paper is the proposed model. It has been well documented and detailed in the paper.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.