KSOD: Knowledge Supplement for LLMs On Demand

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various tasks,
yet still produce errors in domain-specific
tasks. To further improve their performance,
we propose KSOD (Knowledge Supplement
for LLMs On Demand), a novel framework
that empowers LLMs to improve their capa-
bilities with knowledge-based supervised fine-
tuning (SFT). KSOD analyzes the causes of
errors from the perspective of knowledge defi-
ciency by identifying potential missing knowl-
edge in LLM that may lead to the errors. Sub-
sequently, KSOD tunes a knowledge module
on knowledge dataset and verifies whether the
LLM lacks the identified knowledge based on
it. If the knowledge is verified, KSOD supple-
ments the LLM with the identified knowledge
using the knowledge module. Tuning LLMs
on specific knowledge instead of specific task
decouples task and knowledge and our experi-
ments on two domain-specific benchmarks and
four general benchmarks empirically demon-
strate that KSOD enhances the performance
of LLMs on tasks requiring the supplemented
knowledge while preserving their performance
on other tasks. Our findings shed light on the
potential of improving the capabilities of LLMs
with knowledge-based SFT.

1 Introduction

Large Language Models (LLMs) have demon-
strated excellent performance across a wide range
of tasks, showing their remarkable general-purpose
capabilities(Brown et al., 2020; Ouyang et al.,
2022; OpenAl, 2023; Touvron et al., 2023; Chowd-
hery et al., 2023; Jiang et al., 2024a). However,
LLMs still hallucinate and produce factually incor-
rect, irrelevant, or incomplete content, leading to
the errors in their outputs.

Existing methods(An et al., 2023; Ying et al.,
2024; Tong et al., 2024) for improving the outputs
of LLMs commonly depend on supervised fine-
tuning (SFT). These methods necessitate extensive

Task 1 Prompt

Combine sentences into a coherent text.

Task 2 Prompt

Split complex sentence into simple
sentences.

/ an: { Task Prompt1 } Sentences: Ultraa in
turn starts beating up Captain Atom .

& { Task Prompt1 } Sentences: No entry]

visa into the country is required to stay.
Some countries require a transit visa. Text:

Maxima intervenes and tells him to leave .
[& No entry visa into the country is

Text:

required to stay. Some countries require
atransit visa . "

N\

to leave .

: Ultraa in turn starts beating up Captain
require a transit visa.

Atom, Maxima intervenes and tells
him to leave.

&

|

|

|

: Ultraa in turn starts beating up Captain I

[Atom . Maxima intervenes and tells him Jl
|

[|
|

I

: { Task Prompt1 } Sentences: The boys
go to Santa Claus for help. He turns out
merely to be Frosty in disguise. Text:

o { Task Prompt2 } Complex: Sairecabur
proper is accompanied by a wide caldera,
before the formation of this caldera the
| volcano may have been high and thus one
| I of the highest volcanoes on Earth. Simple:

!
|
|
|
|
|
|
|
|
|
I
|

‘&: The boys go to Santa Claus for help. He
tums out merely to be Frosty in disguise."®

1%

|

|

. J
|

I[Rei No entry visa into the country is]
| required to stay, although some countries
I

; i
|

I

|

|

|

Ref: The boys go to Santa Claus for help,

[but he turns out merely to be Frosty in I 'i Sairecabur proper is ... have been

disguise. ! l high. This may have been the highest J
volcano on Earth.

L

|
Venfled

'g : Sairecabur proper is [...] a wide caldera.
I the formation [...] volcanoes on
N

Figure 1: On the left side of the figure, samples from
Task 1 is presented in the form of (input, output with er-
rors, correct reference). Based on these samples, KSOD
identifies the missing knowledge as discourse relations.
After verify that LLM lacks this knowledge, it is supple-
mented into the LLM. As shown on the right side of the
figure, after supplementation, the model generates cor-
rect outputs not only for Task 1 but also for another task
(Task 2) that requires the discourse relation knowledge.

training datasets generated with stronger LLMs
(e.g. GPT-4) or costly human annotations, which
may not always be accessible. Furthermore, the
application of SFT on datasets collected from some
tasks can potentially compromise the capabilities
of LLMs on other tasks. Consequently, many stud-
ies explore the potential of self-correction, where
the LLM itself is prompted or guided to repair the
errors in its own output by refining the output(Pan
et al., 2023). Despite the self-correction method im-
proves the fluency and understandability, it leads to
false positive optimization and reduces diversity in
text generation because of the universal existence
of self-bias(Xu et al., 2024). Moreover, LLMs
cannot solve the errors caused by the lack of knowl-
edge or ability based on the feedback generated by

Dataset for knowledge

XN
~
Candidate U N —
Knowledge : Ux : PLM

-

xN xM
Knowledge Knowledge
——
Module ~> Vector L

(a)

Invalidated® Validated v/ m
A
-
-]
m
<0

Outputs with errors } o 2098

(b) (c)

Figure 2: Our KSOD framework consists of three stages: (a) Knowledge Identification; (b) Knowledge Verification;

(c) Knowledge Supplement.

themselves.

To address these challenges, we introduce the
KSOD (Knowledge Supplement for LLMs On De-
mand) framework to correct the errors by supple-
menting LL.Ms with required knowledge on de-
mand. KSOD framework diverges from conven-
tional SFT methods by decoupling knowledge and
task to correct the errors of specific task from the
perspective of knowledge rather than the task itself.
As illustrated in Figure 1, supplementing LLMs
with missing knowledge, identified as the cause
of errors in Task 1, not only mitigates these errors
within in task 1, but also yields consistent improve-
ments in tasks that also rely on the same knowledge,
such as Task 2. Furthermore, our empirical eval-
uation on general tasks that explicitly require this
knowledge demonstrates that KSOD introduces lit-
tle to no degradation to LLMs’ performance in
these tasks.

In specific, KSOD first identifies the knowledge
missing in LLMs that may lead to the errors and
collects dataset containing the required knowledge
from existing datasets. Subsequently, we train a
knowledge module on the identified dataset. To en-
sure that the learned knowledge is genuinely miss-
ing in LLMs rather than already possessed, which
could introduce noise, KSOD performs a knowl-
edge verification step. Notably, only knowledge
modules that pass this verification phase proceed
to the knowledge supplement stage, where they are
injected into the LLM. Finally, the verified knowl-
edge module is integrated into LLMs to correct
errors arising from missing knowledge. Figure 2
provides an overview of our framework.

To validate the performance of KSOD, we con-
duct comprehensive experiments with open source
LLM:s on both two error-prone tasks where the er-
rors occurred and four general tasks. Our results

show that supplementing knowledge with KSOD
brings a notable reduction in errors, leading to no-
table performance improvements. Furthermore, af-
ter supplementing the missing knowledge through
KSOD, the performance of LLMs on four general
tasks and the remaining error-prone task remains
unchanged or slightly decreases, with some cases
even showing improvement. These empirical find-
ings demonstrate that KSOD effectively correct
errors by supplementing the desired knowledge
missing in LLMs while preserving the LLMs’ per-
formance on other tasks. This finding highlights
the potential of enhancing LLMs performance by
supplementing knowledge in a task-agnostic way.
In summary, our contributions are as follows:

* Given specific knowledge, KSOD provides a
general method to verify whether LLM lacks
the knowledge.

* We propose the KSOD framework, which
corrects the errors from LLMs by supple-
menting required knowledge on demand
with knowledge-based SFT, while preserving
LLM'’s performance on other tasks.

* With extensive experiments, we validate the
effectiveness of our proposed framework and
reveal the potential of enhancing LLMs’ per-
formance by supplementing knowledge in a
task-agnostic way.

2 KSOD Framework

2.1 Proposed Research Questions

To correcting the errors in outputs of LLMs from
the perspective of knowledge, we try to research
knowledge-based SFT to supplement the knowl-
edge desired to generate correct outputs but miss-

ing in LLMs. Specifically, we aim to address the
following research questions (RQs):

* RQ1: How to verify whether LLMs lack spe-
cific knowledge?

* RQ2: What are the effects of knowledge-
based SFT on tasks that require such knowl-
edge and those that do not?

2.2 Preliminaries: Knowledge-based SFT

We begin with preliminaries, formally introducing
knowledge-based SFT and the scope of two RQs.

In the context of LLMs, the knowledge can be
implicit knowledge encoded within the model’s pa-
rameters. Given a LLM represented by parameter
0o, the objective of knowledge-based SFT is update
the parameters of LLM as ' = 6y + A#, where
A0 is a low-rank update relative to 6y and encodes
a specific type of knowledge that is missing in the
original LLM.

In this study, we focus on knowledge of cat-
egories that can be formalized as a classification
task. Therefore, the scope of two RQs are restricted
to knowledge learned as a classification task in this
work.

2.3 KSOD Overview

In this section, we present our knowledge-based
SFT framework, KSOD, to correct the errors in out-
puts of LLMs from the perspective of knowledge.
As shown in Figure 2, KSOD consists of three
stages: Knowledge Identification (§3.1), Knowl-
edge Verification (§3.2) and Knowledge Supple-
ment (§4).

The knowledge identification stage aims to find
dataset containing the missing knowledge, whose
deficiency may cause the errors in outputs of LLMs.
During knowledge verification stage, KSOD fine-
tunes the LLMs on these datasets using LoRA(Hu
et al., 2021) as a knowledge module and verifies
whether the LLMs lack specific knowledge based
on the embeddings distribution of the knowledge
module. Clearly, not all knowledge identified in
the knowledge identification stage is missing in the
LLM. Only the knowledge that passes verification
will be passed to the knowledge supplement stage.
During this stage, the verified knowledge module
will be supplemented into the LLMs to enhance the
performance of LLMs on the tasks that requiring
the knowledge.

3 Verifying whether the LLM lacks
specific knowledge

This section focus on the verification of identified
knowledge and aims to solve RQ1. The verification
process is outlined in Algorithm 1.

Algorithm 1 Process of knowledge identification
and knowledge verification stages.

Input: Language model mg,, a set of samples
F = {s1, ..., Sk }, expert model F, classifica-
tion layer mg_, knowledge module 7y, thresh-
old e

Output: A set of verified knowledge module M

1: K+ E(F)
22 M+ {}
3: for knowledge & in IC do

Dataset d;, < Collect(k)

Update 7, with 7, frozen on dj,

Update mag with g, and 7y, frozen on dj,

Ek «— Embed(ﬂ'Ag, dk)

Sk — S_C(Ek, dk)

if S, > e then

10: M+ {71' Ag} umM

11: endif

12: end for

L X DA

This algorithm corresponds to stages (a) and (b)
in Figure 2. Specifically, Collect(-) refers to gath-
ering the dataset corresponding to the knowledge
(line 4 of Algorithm 1), Embed(-) denotes obtain-
ing the distribution of embeddings from knowledge
module on d, (line 7 of Algorithm 1) in and S_C(-)
represents the computation of the Silhouette Coef-
ficient (line 8 of Algorithm 1).

3.1 Knowledge Identification

To learn from errors from the perspective of knowl-
edge, KSOD identifies the knowledge whose defi-
ciency in LLMs may cause the errors.

Formally, given a set F consisting of samples in
the format of (input, erroneous output, correct ref-
erence), the aim of knowledge identification stage
is to construct the set that contains the knowledge
whose absence in LLMs may cause the errors in F.
This set can be denoted as K = {k1, ka...}.

To construct X, we manually select N samples
with similar errors from F. Leveraging the pow-
erful knowledge storage and language processing
capabalities, we utilize strong LL.Ms like GPT-4
to identify the knowledge whose absence in LLM
may cause the errors in F. The simplified parompt

template is as follows:

Prompt for Knowledge Identification

{TASK DEFINITION} Please analyze the
errors that arise in output of { TASK NAME}
task in the given samples.

{

sample i:

Input: {input text}

Target: {correct reference}

Output: {output with errors}

}i=12,..,N

Firstly, provide a step-by-step analysis for
the common characteristics of the errors
from all samples.

Next, identify the potential knowledge lack-
ing in LLM that may have led to these er-
Tors.

After obtaining k;, the process of finding the
datasets containing knowledge K; from available
existing NLP datasets becomes more straightfor-
ward and simple. For sample, huggingface' offers
more than 250K datasets where we can search and
download dataset containing the identified knowl-
edge.

3.2 Knowledge Verification

After fine-tuning a LLM on the target task using
LoRA, its performance in maintaining capabilities
on other tasks surpasses full fine-tuning, and even
common regularization methods (Biderman et al.,
2024). Therefore, LoRA is a suitable method for
LLMs to learn the knowledge they lack without
affecting the initial capabilities of LLMs on other
tasks. Based on the hypothesis that the change in
weights during fine-tuning is low rank, the vanilla
LoRA is mathematically represented as:

W' =Wy + AW
= Wp + %BA 1)
— Wy +nBA

where W/, Wy € R™" B € R™ " and A €
R™™, with < min(m, n). W is the pre-trained
weight matrix and 7 is a hyperparameter serving
as a scalar weight, where both of them are frozen
during fine-tuning. Only A and B contain trainable
parameters. As stated in Section 2.2, knowledge-
based SFT in this work is performed in the form

"https://huggingface.co/datasets

of a classification task. Therefore, we additionally
introduce a classifier layer, which is also trainable.

However, when utilizing the LoRA to learn
knowledge, ideally, the scalar of LoRA should be
large when current knowledge is deficient and em-
ploy the parameters in A, B for learning. Con-
versely, the scalar should be small when the knowl-
edge is sufficient, thus avoid introducing noise. To
enable LoRA adeptly adjust the scalar value based
on different knowledge, we follows Liu et al. (2024)
and set 7 to be trainable, which has already been
proven to be an important design for improving
LoRA’s performance.

Furthermore, to further reduce the impact of
LoRA on the general capabilities of LLMs, we
divided the training of LoRA on knowledge dataset
into two stages: in the first stage, only the clas-
sification layer is tuned with LLM frozen; in the
second stage, only LoRA is tuned with both LLM
and the tuned classification layer frozen.

Based on the LoRA with trainable scalar, we
call the LoRA variant, which is fine-tuned on a
specific knowledge dataset, a knowledge module.
We hypothesize that the embedding distribution of
knowledge module will exhibit clustering charac-
teristics consistent with knowledge categorization
if and only if the LLMs lack the knowledge. To
prove this hypothesis, we examine the embedding
distribution of knowledge modules tuned on differ-
ent knowledge datasets in Section 3.4.

In summary, the Knowledge Verification stage
can be divided into two steps as shown in Algo-
rithm 1: initially, we fine-tune LoRA based on the
dataset procured during the knowledge identifica-
tion stage to obtain the knowledge module; subse-
quently, we evaluate the effectiveness of the knowl-
edge module by verifying whether the embedding
distribution of the knowledge module exhibits clus-
tering characteristics consistent with knowledge
categories in dataset. If these clustering charac-
teristics do not become apparent, it is inferred
that the LLM does not lack this particular type
of knowledge. As a result, we verify the next kind
of knowledge identified during knowledge identi-
fication stage. If the clustering characteristics is
apparent, the knowledge is verified and will be sup-
plemented to LLLMs during knowledge supplement
stage.

3.3 Experiment for knowledge identification

Tasks and Datasets. We collect samples with
errors in Sentence Fusion task, whose target is join-

Output: He [...] managed eventually to pay
his creditors in full. Some inheritance was
left for his descendants.

Target: He [...] managed eventually to pay
his creditors in full so that some inheritance
was left for his descendants.

Output: They finished third among the
league’s eight teams, with Gore as their start-
ing center fielder. O’Rourke had moved to
left due to the departure of Slattery.

Target: They finished third among the
league’s eight teams, with Gore as their
starting center fielder, while O’Rourke had
moved to left due the departure of Slattery.

Knowledge Type: Understanding of Logical
and Causal Relationships. (GPT-40)

The model fails to detect and explicitly rep-
resent causal or logical links [...] (GPT-40)

Knowledge Type: Discourse Structure Un-

derstanding. (DeepSeek-R1)

Expert Justification | Examples with errors

LLMs struggle to recognize implicit dis-
course relationships (e.g., cause-effect, con-
trast) between sentences and select appropri-
ate connectives (as a result, while, so that).
[...] (DeepSeek-R1)

Table 1: One example of knowledge identification with two strong LLMs. This table presents 2 out of the 4

examples; the full prompt can be found in Appendix A.

ing several independent sentences into a single co-
herent text. Specifically, we used DiscoFuse(Geva
et al., 2019), a large-scale sentence fusion dataset,
to collect the initial outputs with errors from LLMs.

Experimental Setup. In terms of selecting
LLMs for the experiments, we need to select two
kinds of LLMs: the LLMs generate outputs with
errors and the strong LLMs for identifying the miss-
ing knowledge that may cause the errors in outputs.
For the former, we employ 2 different open-source
LLMs for experiments as follows:

e LLaMA-3.1-8B (Dubey et al., 2024) (denoted
as LLaMA-3) is a dense LLM with mas-
sive pre-training on extremely large corpora,
which is developed by Meta.

* Qwen2.5-7B (Yang et al., 2024) (denoted as
Qwen?2) is a powerful multilingual LLM de-
veloped by Alibaba Cloud.

For the latter, we employ GPT-40 (Hurst et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) to iden-
tify knowledge.

We manually selected 4 samples with similar
errors and used the prompt presented in Section 3.1
to analyze the potentially missing knowledge.

Identified Knowledge. As shown in Table 1, all
of the samples with errors have difficulty in utiliz-
ing proper conjunctions. Consequently, both GPT-
40 and DeepSeek-R1 concluded that discourse re-
lations constitute the most probable knowledge

Dataset #Class #Train #Dev #Test Deficiency
DiscoWiki 4 20,000 2,500 2,500 Yes
SST-2 2 20,000 2,500 2,500 No
EXPECT 15 15,187 2413 2416 Yes
AEGIS2.0 2 21,446 1,087 1,567 No

Table 2: Data Statistics of four datasets for knowledge
verification. For datasets with a large size (DiscoWiki,
SST-2), we sample the same number of instances from
the dataset itself as the experimental dataset.

whose absence causes the errors in samples. There-
fore, we select discourse relation as the first knowl-
edge to be verified.

3.4 Experiment for knowledge verification

Tasks and Datasets. To get the corresponding
dataset for discourse relation classification, we use
an automatically rule-based method (Ma et al.,
2019) to label the WikiSplit++ (Tsukagoshi et al.,
2024) dataset, obtaining a dataset with discourse
relation labels, which we called DiscoWiki. Dis-
coWiki contains four types of discourse relation
following PDTB3.0(Webber et al., 2019) and we
have selected an equal number of samples for each
type of discourse relations. To validate the effec-
tiveness of the knowledge verification method, we
introduce three additional types of knowledge and
determine whether the LLM lacks them based on
existing research:

e Discourse relation: DiscoWiki is used for
4-class classification of discourse relations.
According to the evaluation by Chan et al.

Llama3

Qwen2.5
e

Discourse relation Sentiment

S
Sy

Grammatical error Safety risk

Figure 3: T-SNE (Van der Maaten and Hinton, 2008) visualization of the embedding distribution and each color
represents a category within categorical knowledge based on dataset labels. The embedding is the last token

embedding from B matrix of LoRA on test set.

(2024), LLMs still struggle to classify implicit
discourse relations. Therefore, we conclude
that this knowledge is missing in the LLM.

¢ Sentiment: Stanford Sentiment Treebank bi-
nary (SST-2) is used for 2-class sentiment clas-
sification. The binary sentiment classification
is typically well mastered by LLMs and LLMs
do not lack it.

¢ Grammatical error: EXPECT (Fei et al.,
2023) is used for 15-class classification of
grammatical error types. The error types
can be used to enhance the performance
of LLMs on Grammatical Error Correction
(GEC) task(Fei et al., 2023), where LLMs of-
ten underperform task-specific models in this
task(Davis et al., 2024). The LLMs lack this
knowledge so that supplementing LLMs with
it allows for performance improvement on the
GEC task.

» Safety risk: AEGIS2.0 (Ghosh et al.) is
used for 2-class classification of safety risks.
Zheng et al. (2024) have found that LL.Ms are
naturally capable of distinguishing harmful
and harmless queries without safety prompts.
Hence, the safety risks knowledge is not miss-
ing in LLMs.

The detailed statistics of four datasets have listed
in Table 2.

Dataset Llama3 Qwen2
DiscoWiki 0.0423 0.0233
SST-2 0.0098 0.0027
EXCEPT 0.0478 0.0663
AEGIS2.0 0.0125 0.0108

Table 3: SC for embeddings clustering.

Experimental Setup. To learn knowledge with
the selected dataset, we first tune the final classifi-
cation linear layer itself with backbone parameters
frozen. After tuning the classification linear layer,
we learning knowledge with LoRA. Specifically,
we set the init scalar 1 for LoRA to 0, and both A
and B are initialized with Gaussian initialization.
More details of training can be found in Appendix
B.

3.5 RQI1: How to verify whether LLMs lack
specific knowledge?

To ensure the comparability of categorical knowl-
edge with different numbers of types, we select
two types of data with the most distinct embedding
distribution as representatives of this categorical
knowledge. To assessing the clustering characteris-
tics, we visualize the embeddings of LoRA trained
on different datasets and models in Figure 3 and
calculate the Silhouette Coefficient (SC) score with
knowledge category label to evaluate the cluster
characteristics in Table 3.

Model General Language Tasks Sentence Fuse GEC
Drop Squad ARC HellaSwag Avg. DiscoFuse CoNLL14
LLaMA3-8B 4725 7181 79.44 79.52 69.51 43.89 37.14
LLaMA3-8B-DR 47.16 71.74 79.35 79.66 69.48 45.13 36.49
LLaMA3-8B-GE 46.88 71.62 179.61 79.70 69.45 44.65 37.74
LLaMA3-8B-DR+GE 46.13 71.24 79.35 79.80 69.13 45.31 36.84
Qwen2-7B 3793 5698 89.85 77.84 65.65 43.41 31.03
Qwen2-7B-DR 40.27 57.92 90.02 77.91 66.53 43.81 30.97
Qwen2-7B-GE 38.95 57.63 89.76 78.08 66.11 44.04 31.34
Qwen2-7B-DR+GE 4131 58.61 89.85 78.21 67.00 44.07 30.58

Table 4: Comparison of evaluation results of knowledge supplement among several benchmarks. DR refers to

discourse relation and GE refers to grammatical error.

Based the visualization of embeddings distribu-
tion of knowledge for four datasets, it it obvious
that the embeddings distribution of discourse re-
lation and grammatical error exhibits characteris-
tics corresponding to knowledge categories. From
the SC calculation results in the Table 3, we can
also reach the same conclusion that the embed-
dings distribution of knowledge module learned on
DiscoWiki and EXCEPT exhibits clustering char-
acteristics matching knowledge categories, while
the knowledge modules learned on a dataset like
SST-2 that contains knowledge already mastered
by LLMs do not exhibit such characteristics. The
experimental results empirically validate the effec-
tiveness of our knowledge verification method.

4 Effect of knowledge-based SFT
4.1 Knowledge supplement

A task vector is built by the difference between the
weights of a pre-trained model and the weights of
the same model after fine-tuning on a task which
specifies the direction and stride of fine-tuning.
More importantly, simple arithmetic on task vector
can be used to control the behavior of the resulting
model(Ilharco et al., 2022). Inspired by task vec-
tor, we propose knowledge vector, which can be
built simply use the weights of knowledge module
that has been verified during knowledge verifica-
tion stage. In this way, LLMs can learn specific
knowledge through the addition of the correspond-
ing knowledge vector.

Compared with fask vector, knowledge vector
decouples task and knowledge. The task vector
learns knowledge of a specific task, simultaneously,
influences the original task instructions following
ability to utilize corresponding task-specific knowl-

edge, leading to the performance declines on other
tasks (Kotha et al., 2023; Jiang et al., 2024b; Sun
and Gao, 2024). Conversely, the knowledge vec-
tor learns knowledge in a task-agnostic manner,
exerting less impact on the general capabilities of
LLMs.

4.2 Experiment for knowledge supplement

Tasks and Datasets. The evaluation is performed
on four key general benchmarks using the LLM-
Box (Tang et al., 2024), a comprehensive library
for implementing LLMs, including a unified train-
ing pipeline and comprehensive model evaluation.
We evaluate the LLM with knowledge vector with
four benchmarks for general language tasks. Fur-
thermore, we incorporate benchmarks requiring the
verified knowledge, including an augmented ver-
sion of DiscoFuse with multi-reference(Ben-David
et al., 2020) for discourse relation knowledge and
CoNLL14 (Ng et al., 2014) for grammatical error
knowledge.

4.3 RQ2: What are the effects of
knowledge-based SFT on tasks that
require such knowledge and those that do
not?

We compare the performance of pretrained LLM,
LLM with single knowledge vector and LLM with
combination of different knowledge vectors. The
results are presented in Table 4.

In terms of the results using discourse relation
knowledge vector, both LLaMA and Qwen show
significant improvements on the Sentence Fusion
task, while exhibits a slight performance decline on
the GEC task. On general tasks, LLaMA’s perfor-
mance remains largely unaffected, whereas Qwen

demonstrates a notable improvement.

Regarding the results using grammatical error
knowledge vector, LLaMA and Qwen achieve im-
provements on both the Sentence Fusion and GEC
tasks. However, LLaMA exhibits a slight perfor-
mance decline on general tasks, whereas Qwen
shows an improvement.

The results using the combined knowledge vec-
tors of discourse relation and grammatical error
exhibit a more complex pattern. Both LLaMA and
Qwen achieve significant improvements on the Sen-
tence Fusion task, reaching optimal performance,
as both types of knowledge vectors contribute posi-
tively to this task. However, for the GEC task, the
combined knowledge vectors lead to a slight per-
formance decline. On general tasks, LLaMA expe-
riences a slight decrease in performance, whereas
Qwen demonstrates a significant improvement.

In summary, whether used individually or in
combination, knowledge vectors can enhance the
performance of LLLMs on tasks that require such
knowledge while not leading to a significant de-
cline in other tasks.

The results highlight that LLM with single
knowledge vector effectively balances general ca-
pabilities and knowledge-related capabilities.

5 Related Work

Learning from mistakes Humans can learn from
mistakes to improve their capabilities and correct
mistakes. Inspired by this, researchers have ex-
plored leveraging mistakes to enhance the perfor-
mance of LLMs (Tong et al., 2024; An et al., 2023;
Li et al., 2024; Wang et al., 2024). The LEMA
(LEarning from MistAkes) method proposed by
An et al. (2023) fine-tuning LLMs on pairs con-
sisting of errors and their respective corrections
generated by GPT-4. Similarly, Tong et al. (2024)
fine-tuning LLLMs on CoTErrorSet, a benchmark
constructed by having the LLM prompted to cor-
rect its own errors based on the correct reference
and the incorrect response generated by itself.
However, rather than fine-tuning on datasets con-
structed based on error responds across various
tasks, we analyze the causes of errors from the
perspective of knowledge deficiencies and correct
errors by fine-tuning the model to learn the required
knowledge from a curated knowledge dataset.

Self-correction Self-correction typically in-
volves three stages: a LLM generates initial
outputs, a feedback model generates feedback

given the input and initial output and a refinement
model generates a refined output considering
the input, initial output and feedback. In the
context of self-correction, LLMs refine their
own responds based on the feedback from either
themselves (Madaan et al., 2024) or external tools
or knowledge (Shinn et al., 2024; Gou et al., 2023).
Self-correction focus on the utilization of feedback
to refine the outputs of LLM while our KSOD
framework aims to improve the LLM itself from
the perspective of knowledge.

6 Limitations

Although our study presents a promising frame-
work for supplementing LLMs with desired knowl-
edge on demand, its scope is limited to knowl-
edge of categories which can be formalized as a
classification task. Future research could explore
the KSOD framework to other knowledge, such
as knowledge of theories and knowledge of algo-
rithms that cannot be formalized as a classification
task.

7 Conclusion

In this study, we introduce a novel knowledge-
based SFT framework, KSOD, to supplement
knowledge missing in LL.Ms that causes errors in
outputs of LLMs. We propose a knowledge verifi-
cation method and validate its effectiveness. Our
framework effectively balances the LLMs’ perfor-
mance across both general and knowledge-related
tasks. We demonstrated the effectiveness of KSOD
through LLMs with both single and combination
of knowledge vectors, which outperformed pre-
trained LLMs on comprehensive benchmarks.

References

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2023. Learn-
ing from mistakes makes llm better reasoner. arXiv
preprint arXiv:2310.20689.

Eyal Ben-David, Orgad Keller, Eric Malmi, Idan Szpek-
tor, and Roi Reichart. 2020. Semantically driven
sentence fusion: Modeling and evaluation. arXiv
preprint arXiv:2010.02592.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, et al. 2024. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Chunkit Chan, Cheng Jiayang, Weiqi Wang, Yuxin
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.
2024. Exploring the potential of ChatGPT on sen-
tence level relations: A focus on temporal, causal,
and discourse relations. In Findings of the Associ-
ation for Computational Linguistics: EACL 2024,
pages 684-721, St. Julian’s, Malta. Association for
Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages
568-572.

Christopher Davis, Andrew Caines, @istein Andersen,
Shiva Taslimipoor, Helen Yannakoudakis, Zheng
Yuan, Christopher Bryant, Marek Rei, and Paula
Buttery. 2024. Prompting open-source and com-
mercial language models for grammatical error cor-
rection of english learner text. arXiv preprint
arXiv:2401.07702.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Yuejiao Fei, Leyang Cui, Sen Yang, Wai Lam, Zhen-
zhong Lan, and Shuming Shi. 2023. Enhancing gram-
matical error correction systems with explanations.
arXiv preprint arXiv:2305.15676.

Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. Discofuse: A large-scale dataset for
discourse-based sentence fusion. arXiv preprint
arXiv:1902.10526.

Shaona Ghosh, Prasoon Varshney, Makesh Narsimhan
Sreedhar, Aishwarya Padmakumar, Traian Rebe-
dea, Jibin Rajan Varghese, and Christopher Parisien.
Aegis2. 0: A diverse ai safety dataset and risks tax-
onomy for alignment of llm guardrails. In Neurips
Safe Generative AI Workshop 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024a.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Gangwei Jiang, Caigao Jiang, Zhaoyi Li, Sigiao Xue,
Jun Zhou, Linqi Song, Defu Lian, and Ying Wei.
2024b. Interpretable catastrophic forgetting of large
language model fine-tuning via instruction vector.
arXiv preprint arXiv:2406.12227.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghu-
nathan. 2023. Understanding catastrophic forgetting
in language models via implicit inference. arXiv
preprint arXiv:2309.10105.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Bin Sun, Xinglin Wang, Heda Wang, and Kan Li.
2024. Turning dust into gold: Distilling complex rea-
soning capabilities from llms by leveraging negative
data. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, pages 18591-18599.

Wei Liu, Ying Qin, Zhiyuan Peng, and Tan Lee. 2024.
Sparsely shared lora on whisper for child speech
recognition. In ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 11751-11755. IEEE.

Mingyu Derek Ma, Kevin Bowden, Jiagi Wu, Wen Cui,
and Marilyn Walker. 2019. Implicit discourse re-
lation identification for open-domain dialogues. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 666—
672, Florence, Italy. Association for Computational
Linguistics.

https://arxiv.org/abs/2005.14165
https://aclanthology.org/2024.findings-eacl.47/
https://aclanthology.org/2024.findings-eacl.47/
https://aclanthology.org/2024.findings-eacl.47/
https://aclanthology.org/2024.findings-eacl.47/
https://aclanthology.org/2024.findings-eacl.47/
https://doi.org/10.18653/v1/P19-1065
https://doi.org/10.18653/v1/P19-1065
https://doi.org/10.18653/v1/P19-1065

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
eighteenth conference on computational natural lan-
guage learning: shared task, pages 1-14.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. arXiv preprint arXiv:2308.03188.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Huashan Sun and Yang Gao. 2024. Reviving dormant
memories: Investigating catastrophic forgetting in
language models through rationale-guidance diffi-
culty. arXiv preprint arXiv:2411.11932.

Tianyi Tang, Hu Yiwen, Bingqian Li, Wenyang Luo,
ZiJing Qin, Haoxiang Sun, Jiapeng Wang, Shiyi Xu,
Xiaoxue Cheng, Geyang Guo, et al. 2024. Llmbox:
A comprehensive library for large language models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
3: System Demonstrations), pages 388-399.

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei
Teng, and Jingbo Shang. 2024. Can llms learn from
previous mistakes? investigating llms’ errors to boost
for reasoning. arXiv preprint arXiv:2403.20046.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Hayato Tsukagoshi, Tsutomu Hirao, Makoto Morishita,
Katsuki Chousa, Ryohei Sasano, and Koichi Takeda.

10

2024. Wikisplit++: Easy data refinement for split
and rephrase. arXiv preprint arXiv:2404.09002.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang,
and Timothy Baldwin. 2024. Learning from fail-
ure: Integrating negative examples when fine-tuning
large language models as agents. arXiv preprint
arXiv:2402.11651.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind
Joshi. 2019. The penn discourse treebank 3.0 annota-
tion manual. Philadelphia, University of Pennsylva-
nia, 35:108.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401-415.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming
Pan, Lei Li, and William Wang. 2024. Pride and
prejudice: Llm amplifies self-bias in self-refinement.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 15474—15492.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Jiahao Ying, Mingbao Lin, Yixin Cao, Wei Tang,
Bo Wang, Qianru Sun, Xuanjing Huang, and
Shuicheng Yan. 2024. LLMs-as-instructors: Learn-
ing from errors toward automating model improve-
ment. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 11185-
11208, Miami, Florida, USA. Association for Com-
putational Linguistics.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie
Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun
Peng. 2024. On prompt-driven safeguarding for large
language models. In Forty-first International Confer-
ence on Machine Learning.

https://doi.org/10.48550/ARXIV.2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654
https://doi.org/10.18653/v1/2024.findings-emnlp.654

Task Prompt —

Sentence fusion is the task of joining several independent sentences into a single coherent
text. Please analyze the errors that arise in output of sentence fusion task in the given
examples.

Samples —

Example 1: Input: In a family tiff in 1865, his remains were exhumed and reburied in
the family burial plot at Cobham Park, the family home in Warren County, Pennsylvania.
Cobham’s wife and in-laws sued the Cobham family for their return. Target: In a family tiff
in 1865, his remains were exhumed and reburied in the family burial plot at Cobham Park,
the family home in Warren County, Pennsylvania. As a result, cobham’s wife and in-laws
sued the Cobham family for their return. Output: The remains of Charles Sanders Peirce,
an American philosopher and the founder of pragmatism, were exhumed and reburied in
the family burial plot at Cobham Park, the family home in Warren County, Pennsylvania.
Peirce’s wife and in-laws sued the Cobham family for their return. Example 2: Input:
He retired to Boulogne-sur-Mer, so poor that the East India Company had to vote him a
pension, but later returned to England and managed eventually to pay his creditors in full.
Some inheritance was left for his descendants. Target: He retired to Boulogne-sur-Mer,
so poor that the East India Company had to vote him a pension, but later returned to
england and managed eventually to pay his creditors in full so that some inheritance was
left for his descendants. Output: He retired to Boulogne-sur-Mer, so poor that the East
India Company had to vote him a pension, but later returned to England and managed
eventually to pay his creditors in full. Some inheritance was left for his descendants.
Example 3: Input: They finished third among the league’s eight teams, with Gore as
their starting center fielder. O’Rourke had moved to left due the departure of Slattery.
Target: They finished third among the league’s eight teams, with Gore as their starting
center fielder, while O’Rourke had moved to left due the departure of Slattery. Output:
They finished third among the league’s eight teams, with Gore as their starting center
fielder. O’Rourke had moved to left due to the departure of Slattery. Example 4: Input:
The Post Office committee was a regular recipient of complaints from southern states
concerning the transmission of abolitionist mailings, which were seen there as incendiary;
the matter was of some controversy. Southern legislators sought to have these types of
mailings banned. Target: The Post Office committee was a regular recipient of complaints
from southern states concerning the transmission of abolitionist mailings, which were
seen there as incendiary; the matter was of some controversy because southern legislators
sought to have these types of mailings banned. Output: The Post Office committee, which
was a regular recipient of complaints from southern states concerning the transmission of
abolitionist mailings, which were seen there as incendiary, and the matter was of some
controversy. Southern legislators sought to have these types of mailings banned.

Chain-of-thought
prompt —

Firstly, provide a step-by-step analysis for the common characteristics of the errors from
all examples. Next, identify the potential knowledge lacking in LLM that may have led to
these errors.

Table 5: Complement prompt of knowledge identification.

B.2 Evaluation on benchmarks.

A Prompts for Knowledge Identification

The templates used for knowledge identification in

the knowledge identification stage are presented in
Table 5.

B Knowledge verification Settings

B.1 Details of training knowledge module.

The learning rate for both classification linear layer
and LoRA is set to 5e-5. For the rank of LoRA, we
select the value that yields the best model perfor-
mance from 8, 16, 32, 64 for the final experiments.
The target module of LoRA is the output matrix in
the last self-attention layer.

11

Metrics. For four general benchmarks, we use
the default settings in LLMBox. For Disco Fuse
task, we use SARI (Xu et al., 2016) to evaluate
LLMs’ performance. For GEC, we calculate F0.5
of M? score (Dahlmeier and Ng, 2012) to evaluate
LLMs’ performance.

Inference settings. For four general benchmarks,
we use the default settings in LLMBox. For Disco
Fuse task, we set temperature to 1.0. top-P to 0.9.
For GEC task, we set temperature to 0.5, top-K to
50.

	Introduction
	KSOD Framework
	Proposed Research Questions
	Preliminaries: Knowledge-based SFT
	KSOD Overview

	Verifying whether the LLM lacks specific knowledge
	Knowledge Identification
	Knowledge Verification
	Experiment for knowledge identification
	Experiment for knowledge verification
	RQ1: How to verify whether LLMs lack specific knowledge?

	Effect of knowledge-based SFT
	Knowledge supplement
	Experiment for knowledge supplement
	RQ2: What are the effects of knowledge-based SFT on tasks that require such knowledge and those that do not?

	Related Work
	Limitations
	Conclusion
	Prompts for Knowledge Identification
	Knowledge verification Settings
	Details of training knowledge module.
	Evaluation on benchmarks.

