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Abstract001

Large Language Models (LLMs) have demon-002
strated remarkable capabilities in various tasks,003
yet still produce errors in domain-specific004
tasks. To further improve their performance,005
we propose KSOD (Knowledge Supplement006
for LLMs On Demand), a novel framework007
that empowers LLMs to improve their capa-008
bilities with knowledge-based supervised fine-009
tuning (SFT). KSOD analyzes the causes of010
errors from the perspective of knowledge defi-011
ciency by identifying potential missing knowl-012
edge in LLM that may lead to the errors. Sub-013
sequently, KSOD tunes a knowledge module014
on knowledge dataset and verifies whether the015
LLM lacks the identified knowledge based on016
it. If the knowledge is verified, KSOD supple-017
ments the LLM with the identified knowledge018
using the knowledge module. Tuning LLMs019
on specific knowledge instead of specific task020
decouples task and knowledge and our experi-021
ments on two domain-specific benchmarks and022
four general benchmarks empirically demon-023
strate that KSOD enhances the performance024
of LLMs on tasks requiring the supplemented025
knowledge while preserving their performance026
on other tasks. Our findings shed light on the027
potential of improving the capabilities of LLMs028
with knowledge-based SFT.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated excellent performance across a wide range032

of tasks, showing their remarkable general-purpose033

capabilities(Brown et al., 2020; Ouyang et al.,034

2022; OpenAI, 2023; Touvron et al., 2023; Chowd-035

hery et al., 2023; Jiang et al., 2024a). However,036

LLMs still hallucinate and produce factually incor-037

rect, irrelevant, or incomplete content, leading to038

the errors in their outputs.039

Existing methods(An et al., 2023; Ying et al.,040

2024; Tong et al., 2024) for improving the outputs041

of LLMs commonly depend on supervised fine-042

tuning (SFT). These methods necessitate extensive043

Combine sentences into a coherent text.
Task 1 Prompt

Split complex sentence into simple 
sentences.

Task 2 Prompt

: Ultraa in turn starts beating up Captain 
Atom . Maxima intervenes and tells him 
to leave .

: { Task Prompt1 } Sentences: Ultraa in 
turn starts beating up Captain Atom . 
Maxima intervenes and tells him to leave . 
Text:

: Ultraa in turn starts beating up Captain 
Atom, but Maxima intervenes and tells 
him to leave.

: { Task Prompt2 } Complex: Sairecabur 
proper is accompanied by a wide caldera, 
before the formation of this caldera the 
volcano may have been high and thus one 
of the highest volcanoes on Earth. Simple:

: Sairecabur proper is … have been 
high. This may have been the highest 
volcano on Earth.

: Sairecabur proper is […] a wide caldera. 
Before the formation […] volcanoes on 
Earth.

: { Task Prompt1 } Sentences: No entry 
visa into the country is required to stay. 
Some countries require a transit visa. Text:

: No entry visa into the country is 
required to stay. Some countries require 
a transit visa .

Discourse Relation

Verified

: { Task Prompt1 } Sentences: The boys 
go to Santa Claus for help. He turns out 
merely to be Frosty in disguise. Text:

: The boys go to Santa Claus for help. He 
turns out merely to be Frosty in disguise.

Ref: The boys go to Santa Claus for help, 
but he turns out merely to be Frosty in 
disguise.

Ref: No entry visa into the country is 
required to stay, although some countries 
require a transit visa.

Figure 1: On the left side of the figure, samples from
Task 1 is presented in the form of (input, output with er-
rors, correct reference). Based on these samples, KSOD
identifies the missing knowledge as discourse relations.
After verify that LLM lacks this knowledge, it is supple-
mented into the LLM. As shown on the right side of the
figure, after supplementation, the model generates cor-
rect outputs not only for Task 1 but also for another task
(Task 2) that requires the discourse relation knowledge.

training datasets generated with stronger LLMs 044

(e.g. GPT-4) or costly human annotations, which 045

may not always be accessible. Furthermore, the 046

application of SFT on datasets collected from some 047

tasks can potentially compromise the capabilities 048

of LLMs on other tasks. Consequently, many stud- 049

ies explore the potential of self-correction, where 050

the LLM itself is prompted or guided to repair the 051

errors in its own output by refining the output(Pan 052

et al., 2023). Despite the self-correction method im- 053

proves the fluency and understandability, it leads to 054

false positive optimization and reduces diversity in 055

text generation because of the universal existence 056

of self-bias(Xu et al., 2024). Moreover, LLMs 057

cannot solve the errors caused by the lack of knowl- 058

edge or ability based on the feedback generated by 059
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Figure 2: Our KSOD framework consists of three stages: (a) Knowledge Identification; (b) Knowledge Verification;
(c) Knowledge Supplement.

themselves.060

To address these challenges, we introduce the061

KSOD (Knowledge Supplement for LLMs On De-062

mand) framework to correct the errors by supple-063

menting LLMs with required knowledge on de-064

mand. KSOD framework diverges from conven-065

tional SFT methods by decoupling knowledge and066

task to correct the errors of specific task from the067

perspective of knowledge rather than the task itself.068

As illustrated in Figure 1, supplementing LLMs069

with missing knowledge, identified as the cause070

of errors in Task 1, not only mitigates these errors071

within in task 1, but also yields consistent improve-072

ments in tasks that also rely on the same knowledge,073

such as Task 2. Furthermore, our empirical eval-074

uation on general tasks that explicitly require this075

knowledge demonstrates that KSOD introduces lit-076

tle to no degradation to LLMs’ performance in077

these tasks.078

In specific, KSOD first identifies the knowledge079

missing in LLMs that may lead to the errors and080

collects dataset containing the required knowledge081

from existing datasets. Subsequently, we train a082

knowledge module on the identified dataset. To en-083

sure that the learned knowledge is genuinely miss-084

ing in LLMs rather than already possessed, which085

could introduce noise, KSOD performs a knowl-086

edge verification step. Notably, only knowledge087

modules that pass this verification phase proceed088

to the knowledge supplement stage, where they are089

injected into the LLM. Finally, the verified knowl-090

edge module is integrated into LLMs to correct091

errors arising from missing knowledge. Figure 2092

provides an overview of our framework.093

To validate the performance of KSOD, we con-094

duct comprehensive experiments with open source095

LLMs on both two error-prone tasks where the er-096

rors occurred and four general tasks. Our results097

show that supplementing knowledge with KSOD 098

brings a notable reduction in errors, leading to no- 099

table performance improvements. Furthermore, af- 100

ter supplementing the missing knowledge through 101

KSOD, the performance of LLMs on four general 102

tasks and the remaining error-prone task remains 103

unchanged or slightly decreases, with some cases 104

even showing improvement. These empirical find- 105

ings demonstrate that KSOD effectively correct 106

errors by supplementing the desired knowledge 107

missing in LLMs while preserving the LLMs’ per- 108

formance on other tasks. This finding highlights 109

the potential of enhancing LLMs performance by 110

supplementing knowledge in a task-agnostic way. 111

In summary, our contributions are as follows: 112

• Given specific knowledge, KSOD provides a 113

general method to verify whether LLM lacks 114

the knowledge. 115

• We propose the KSOD framework, which 116

corrects the errors from LLMs by supple- 117

menting required knowledge on demand 118

with knowledge-based SFT, while preserving 119

LLM’s performance on other tasks. 120

• With extensive experiments, we validate the 121

effectiveness of our proposed framework and 122

reveal the potential of enhancing LLMs’ per- 123

formance by supplementing knowledge in a 124

task-agnostic way. 125

2 KSOD Framework 126

2.1 Proposed Research Questions 127

To correcting the errors in outputs of LLMs from 128

the perspective of knowledge, we try to research 129

knowledge-based SFT to supplement the knowl- 130

edge desired to generate correct outputs but miss- 131
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ing in LLMs. Specifically, we aim to address the132

following research questions (RQs):133

• RQ1: How to verify whether LLMs lack spe-134

cific knowledge?135

• RQ2: What are the effects of knowledge-136

based SFT on tasks that require such knowl-137

edge and those that do not?138

2.2 Preliminaries: Knowledge-based SFT139

We begin with preliminaries, formally introducing140

knowledge-based SFT and the scope of two RQs.141

In the context of LLMs, the knowledge can be142

implicit knowledge encoded within the model’s pa-143

rameters. Given a LLM represented by parameter144

θ0, the objective of knowledge-based SFT is update145

the parameters of LLM as θ′ = θ0 + ∆θ, where146

∆θ is a low-rank update relative to θ0 and encodes147

a specific type of knowledge that is missing in the148

original LLM.149

In this study, we focus on knowledge of cat-150

egories that can be formalized as a classification151

task. Therefore, the scope of two RQs are restricted152

to knowledge learned as a classification task in this153

work.154

2.3 KSOD Overview155

In this section, we present our knowledge-based156

SFT framework, KSOD, to correct the errors in out-157

puts of LLMs from the perspective of knowledge.158

As shown in Figure 2, KSOD consists of three159

stages: Knowledge Identification (§3.1), Knowl-160

edge Verification (§3.2) and Knowledge Supple-161

ment (§4).162

The knowledge identification stage aims to find163

dataset containing the missing knowledge, whose164

deficiency may cause the errors in outputs of LLMs.165

During knowledge verification stage, KSOD fine-166

tunes the LLMs on these datasets using LoRA(Hu167

et al., 2021) as a knowledge module and verifies168

whether the LLMs lack specific knowledge based169

on the embeddings distribution of the knowledge170

module. Clearly, not all knowledge identified in171

the knowledge identification stage is missing in the172

LLM. Only the knowledge that passes verification173

will be passed to the knowledge supplement stage.174

During this stage, the verified knowledge module175

will be supplemented into the LLMs to enhance the176

performance of LLMs on the tasks that requiring177

the knowledge.178

3 Verifying whether the LLM lacks 179

specific knowledge 180

This section focus on the verification of identified 181

knowledge and aims to solve RQ1. The verification 182

process is outlined in Algorithm 1. 183

Algorithm 1 Process of knowledge identification
and knowledge verification stages.

Input: Language model πθ0 , a set of samples
F = {s1, ..., sK}, expert model E, classifica-
tion layer πθc , knowledge module π∆θ, thresh-
old ϵ

Output: A set of verified knowledge moduleM
1: K ← E(F)
2: M← {}
3: for knowledge k in K do
4: Dataset dk ← Collect(k)
5: Update πθc with πθ0 frozen on dk
6: Update π∆θ with πθ0 and πθc frozen on dk
7: Ek ← Embed(π∆θ, dk)
8: Sk ← S_C(Ek, dk)
9: if Sk ≥ ϵ then

10: M← {π∆θ} ∪M
11: end if
12: end for

This algorithm corresponds to stages (a) and (b) 184

in Figure 2. Specifically, Collect(·) refers to gath- 185

ering the dataset corresponding to the knowledge 186

(line 4 of Algorithm 1), Embed(·) denotes obtain- 187

ing the distribution of embeddings from knowledge 188

module on dk (line 7 of Algorithm 1) in and S_C(·) 189

represents the computation of the Silhouette Coef- 190

ficient (line 8 of Algorithm 1). 191

3.1 Knowledge Identification 192

To learn from errors from the perspective of knowl- 193

edge, KSOD identifies the knowledge whose defi- 194

ciency in LLMs may cause the errors. 195

Formally, given a set F consisting of samples in 196

the format of (input, erroneous output, correct ref- 197

erence), the aim of knowledge identification stage 198

is to construct the set that contains the knowledge 199

whose absence in LLMs may cause the errors in F . 200

This set can be denoted as K = {k1, k2...}. 201

To construct K, we manually select N samples 202

with similar errors from F . Leveraging the pow- 203

erful knowledge storage and language processing 204

capabalities, we utilize strong LLMs like GPT-4 205

to identify the knowledge whose absence in LLM 206

may cause the errors in F . The simplified parompt 207
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template is as follows:208

Prompt for Knowledge Identification

{TASK DEFINITION} Please analyze the
errors that arise in output of {TASK NAME}
task in the given samples.
{
sample i:
Input: {input text}
Target: {correct reference}
Output: {output with errors}
} i = 1,2,...,N
Firstly, provide a step-by-step analysis for
the common characteristics of the errors
from all samples.
Next, identify the potential knowledge lack-
ing in LLM that may have led to these er-
rors.

209

After obtaining ki, the process of finding the210

datasets containing knowledge Ki from available211

existing NLP datasets becomes more straightfor-212

ward and simple. For sample, huggingface1 offers213

more than 250K datasets where we can search and214

download dataset containing the identified knowl-215

edge.216

3.2 Knowledge Verification217

After fine-tuning a LLM on the target task using218

LoRA, its performance in maintaining capabilities219

on other tasks surpasses full fine-tuning, and even220

common regularization methods (Biderman et al.,221

2024). Therefore, LoRA is a suitable method for222

LLMs to learn the knowledge they lack without223

affecting the initial capabilities of LLMs on other224

tasks. Based on the hypothesis that the change in225

weights during fine-tuning is low rank, the vanilla226

LoRA is mathematically represented as:227

W ′ = W0 +∆W

= W0 +
α

r
BA

= W0 + ηBA

(1)228

where W ′,W0 ∈ Rm×n, B ∈ Rm×r, and A ∈229

Rr×n, with r ≪ min(m,n). W0 is the pre-trained230

weight matrix and η is a hyperparameter serving231

as a scalar weight, where both of them are frozen232

during fine-tuning. Only A and B contain trainable233

parameters. As stated in Section 2.2, knowledge-234

based SFT in this work is performed in the form235

1https://huggingface.co/datasets

of a classification task. Therefore, we additionally 236

introduce a classifier layer, which is also trainable. 237

However, when utilizing the LoRA to learn 238

knowledge, ideally, the scalar of LoRA should be 239

large when current knowledge is deficient and em- 240

ploy the parameters in A, B for learning. Con- 241

versely, the scalar should be small when the knowl- 242

edge is sufficient, thus avoid introducing noise. To 243

enable LoRA adeptly adjust the scalar value based 244

on different knowledge, we follows Liu et al. (2024) 245

and set η to be trainable, which has already been 246

proven to be an important design for improving 247

LoRA’s performance. 248

Furthermore, to further reduce the impact of 249

LoRA on the general capabilities of LLMs, we 250

divided the training of LoRA on knowledge dataset 251

into two stages: in the first stage, only the clas- 252

sification layer is tuned with LLM frozen; in the 253

second stage, only LoRA is tuned with both LLM 254

and the tuned classification layer frozen. 255

Based on the LoRA with trainable scalar, we 256

call the LoRA variant, which is fine-tuned on a 257

specific knowledge dataset, a knowledge module. 258

We hypothesize that the embedding distribution of 259

knowledge module will exhibit clustering charac- 260

teristics consistent with knowledge categorization 261

if and only if the LLMs lack the knowledge. To 262

prove this hypothesis, we examine the embedding 263

distribution of knowledge modules tuned on differ- 264

ent knowledge datasets in Section 3.4. 265

In summary, the Knowledge Verification stage 266

can be divided into two steps as shown in Algo- 267

rithm 1: initially, we fine-tune LoRA based on the 268

dataset procured during the knowledge identifica- 269

tion stage to obtain the knowledge module; subse- 270

quently, we evaluate the effectiveness of the knowl- 271

edge module by verifying whether the embedding 272

distribution of the knowledge module exhibits clus- 273

tering characteristics consistent with knowledge 274

categories in dataset. If these clustering charac- 275

teristics do not become apparent, it is inferred 276

that the LLM does not lack this particular type 277

of knowledge. As a result, we verify the next kind 278

of knowledge identified during knowledge identi- 279

fication stage. If the clustering characteristics is 280

apparent, the knowledge is verified and will be sup- 281

plemented to LLMs during knowledge supplement 282

stage. 283

3.3 Experiment for knowledge identification 284

Tasks and Datasets. We collect samples with 285

errors in Sentence Fusion task, whose target is join- 286
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E
xa

m
pl

es
w

ith
er

ro
rs Output: He [...] managed eventually to pay

his creditors in full. Some inheritance was
left for his descendants.

Target: He [...] managed eventually to pay
his creditors in full so that some inheritance
was left for his descendants.

Output: They finished third among the
league’s eight teams, with Gore as their start-
ing center fielder. O’Rourke had moved to
left due to the departure of Slattery.

Target: They finished third among the
league’s eight teams, with Gore as their
starting center fielder, while O’Rourke had
moved to left due the departure of Slattery.

E
xp

er
tJ

us
tifi

ca
tio

n Knowledge Type: Understanding of Logical
and Causal Relationships. (GPT-4o)

The model fails to detect and explicitly rep-
resent causal or logical links [...] (GPT-4o)

Knowledge Type: Discourse Structure Un-
derstanding. (DeepSeek-R1)

LLMs struggle to recognize implicit dis-
course relationships (e.g., cause-effect, con-
trast) between sentences and select appropri-
ate connectives (as a result, while, so that).
[...] (DeepSeek-R1)

Table 1: One example of knowledge identification with two strong LLMs. This table presents 2 out of the 4
examples; the full prompt can be found in Appendix A.

ing several independent sentences into a single co-287

herent text. Specifically, we used DiscoFuse(Geva288

et al., 2019), a large-scale sentence fusion dataset,289

to collect the initial outputs with errors from LLMs.290

Experimental Setup. In terms of selecting291

LLMs for the experiments, we need to select two292

kinds of LLMs: the LLMs generate outputs with293

errors and the strong LLMs for identifying the miss-294

ing knowledge that may cause the errors in outputs.295

For the former, we employ 2 different open-source296

LLMs for experiments as follows:297

• LLaMA-3.1-8B (Dubey et al., 2024) (denoted298

as LLaMA-3) is a dense LLM with mas-299

sive pre-training on extremely large corpora,300

which is developed by Meta.301

• Qwen2.5-7B (Yang et al., 2024) (denoted as302

Qwen2) is a powerful multilingual LLM de-303

veloped by Alibaba Cloud.304

For the latter, we employ GPT-4o (Hurst et al.,305

2024) and DeepSeek-R1 (Guo et al., 2025) to iden-306

tify knowledge.307

We manually selected 4 samples with similar308

errors and used the prompt presented in Section 3.1309

to analyze the potentially missing knowledge.310

Identified Knowledge. As shown in Table 1, all311

of the samples with errors have difficulty in utiliz-312

ing proper conjunctions. Consequently, both GPT-313

4o and DeepSeek-R1 concluded that discourse re-314

lations constitute the most probable knowledge315

Dataset #Class #Train #Dev #Test Deficiency
DiscoWiki 4 20,000 2,500 2,500 Yes
SST-2 2 20,000 2,500 2,500 No
EXPECT 15 15,187 2,413 2,416 Yes
AEGIS2.0 2 21,446 1,087 1,567 No

Table 2: Data Statistics of four datasets for knowledge
verification. For datasets with a large size (DiscoWiki,
SST-2), we sample the same number of instances from
the dataset itself as the experimental dataset.

whose absence causes the errors in samples. There- 316

fore, we select discourse relation as the first knowl- 317

edge to be verified. 318

3.4 Experiment for knowledge verification 319

Tasks and Datasets. To get the corresponding 320

dataset for discourse relation classification, we use 321

an automatically rule-based method (Ma et al., 322

2019) to label the WikiSplit++ (Tsukagoshi et al., 323

2024) dataset, obtaining a dataset with discourse 324

relation labels, which we called DiscoWiki. Dis- 325

coWiki contains four types of discourse relation 326

following PDTB3.0(Webber et al., 2019) and we 327

have selected an equal number of samples for each 328

type of discourse relations. To validate the effec- 329

tiveness of the knowledge verification method, we 330

introduce three additional types of knowledge and 331

determine whether the LLM lacks them based on 332

existing research: 333

• Discourse relation: DiscoWiki is used for 334

4-class classification of discourse relations. 335

According to the evaluation by Chan et al. 336
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Figure 3: T-SNE (Van der Maaten and Hinton, 2008) visualization of the embedding distribution and each color
represents a category within categorical knowledge based on dataset labels. The embedding is the last token
embedding from B matrix of LoRA on test set.

(2024), LLMs still struggle to classify implicit337

discourse relations. Therefore, we conclude338

that this knowledge is missing in the LLM.339

• Sentiment: Stanford Sentiment Treebank bi-340

nary (SST-2) is used for 2-class sentiment clas-341

sification. The binary sentiment classification342

is typically well mastered by LLMs and LLMs343

do not lack it.344

• Grammatical error: EXPECT (Fei et al.,345

2023) is used for 15-class classification of346

grammatical error types. The error types347

can be used to enhance the performance348

of LLMs on Grammatical Error Correction349

(GEC) task(Fei et al., 2023), where LLMs of-350

ten underperform task-specific models in this351

task(Davis et al., 2024). The LLMs lack this352

knowledge so that supplementing LLMs with353

it allows for performance improvement on the354

GEC task.355

• Safety risk: AEGIS2.0 (Ghosh et al.) is356

used for 2-class classification of safety risks.357

Zheng et al. (2024) have found that LLMs are358

naturally capable of distinguishing harmful359

and harmless queries without safety prompts.360

Hence, the safety risks knowledge is not miss-361

ing in LLMs.362

The detailed statistics of four datasets have listed363

in Table 2.364

Dataset Llama3 Qwen2
DiscoWiki 0.0423 0.0233
SST-2 0.0098 0.0027
EXCEPT 0.0478 0.0663
AEGIS2.0 0.0125 0.0108

Table 3: SC for embeddings clustering.

Experimental Setup. To learn knowledge with 365

the selected dataset, we first tune the final classifi- 366

cation linear layer itself with backbone parameters 367

frozen. After tuning the classification linear layer, 368

we learning knowledge with LoRA. Specifically, 369

we set the init scalar η for LoRA to 0, and both A 370

and B are initialized with Gaussian initialization. 371

More details of training can be found in Appendix 372

B. 373

3.5 RQ1: How to verify whether LLMs lack 374

specific knowledge? 375

To ensure the comparability of categorical knowl- 376

edge with different numbers of types, we select 377

two types of data with the most distinct embedding 378

distribution as representatives of this categorical 379

knowledge. To assessing the clustering characteris- 380

tics, we visualize the embeddings of LoRA trained 381

on different datasets and models in Figure 3 and 382

calculate the Silhouette Coefficient (SC) score with 383

knowledge category label to evaluate the cluster 384

characteristics in Table 3. 385
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Model General Language Tasks Sentence Fuse GEC
Drop Squad ARC HellaSwag Avg. DiscoFuse CoNLL14

LLaMA3-8B 47.25 71.81 79.44 79.52 69.51 43.89 37.14
LLaMA3-8B-DR 47.16 71.74 79.35 79.66 69.48 45.13 36.49
LLaMA3-8B-GE 46.88 71.62 79.61 79.70 69.45 44.65 37.74
LLaMA3-8B-DR+GE 46.13 71.24 79.35 79.80 69.13 45.31 36.84

Qwen2-7B 37.93 56.98 89.85 77.84 65.65 43.41 31.03
Qwen2-7B-DR 40.27 57.92 90.02 77.91 66.53 43.81 30.97
Qwen2-7B-GE 38.95 57.63 89.76 78.08 66.11 44.04 31.34
Qwen2-7B-DR+GE 41.31 58.61 89.85 78.21 67.00 44.07 30.58

Table 4: Comparison of evaluation results of knowledge supplement among several benchmarks. DR refers to
discourse relation and GE refers to grammatical error.

Based the visualization of embeddings distribu-386

tion of knowledge for four datasets, it it obvious387

that the embeddings distribution of discourse re-388

lation and grammatical error exhibits characteris-389

tics corresponding to knowledge categories. From390

the SC calculation results in the Table 3, we can391

also reach the same conclusion that the embed-392

dings distribution of knowledge module learned on393

DiscoWiki and EXCEPT exhibits clustering char-394

acteristics matching knowledge categories, while395

the knowledge modules learned on a dataset like396

SST-2 that contains knowledge already mastered397

by LLMs do not exhibit such characteristics. The398

experimental results empirically validate the effec-399

tiveness of our knowledge verification method.400

4 Effect of knowledge-based SFT401

4.1 Knowledge supplement402

A task vector is built by the difference between the403

weights of a pre-trained model and the weights of404

the same model after fine-tuning on a task which405

specifies the direction and stride of fine-tuning.406

More importantly, simple arithmetic on task vector407

can be used to control the behavior of the resulting408

model(Ilharco et al., 2022). Inspired by task vec-409

tor, we propose knowledge vector, which can be410

built simply use the weights of knowledge module411

that has been verified during knowledge verifica-412

tion stage. In this way, LLMs can learn specific413

knowledge through the addition of the correspond-414

ing knowledge vector.415

Compared with task vector, knowledge vector416

decouples task and knowledge. The task vector417

learns knowledge of a specific task, simultaneously,418

influences the original task instructions following419

ability to utilize corresponding task-specific knowl-420

edge, leading to the performance declines on other 421

tasks (Kotha et al., 2023; Jiang et al., 2024b; Sun 422

and Gao, 2024). Conversely, the knowledge vec- 423

tor learns knowledge in a task-agnostic manner, 424

exerting less impact on the general capabilities of 425

LLMs. 426

4.2 Experiment for knowledge supplement 427

Tasks and Datasets. The evaluation is performed 428

on four key general benchmarks using the LLM- 429

Box (Tang et al., 2024), a comprehensive library 430

for implementing LLMs, including a unified train- 431

ing pipeline and comprehensive model evaluation. 432

We evaluate the LLM with knowledge vector with 433

four benchmarks for general language tasks. Fur- 434

thermore, we incorporate benchmarks requiring the 435

verified knowledge, including an augmented ver- 436

sion of DiscoFuse with multi-reference(Ben-David 437

et al., 2020) for discourse relation knowledge and 438

CoNLL14 (Ng et al., 2014) for grammatical error 439

knowledge. 440

4.3 RQ2: What are the effects of 441

knowledge-based SFT on tasks that 442

require such knowledge and those that do 443

not? 444

We compare the performance of pretrained LLM, 445

LLM with single knowledge vector and LLM with 446

combination of different knowledge vectors. The 447

results are presented in Table 4. 448

In terms of the results using discourse relation 449

knowledge vector, both LLaMA and Qwen show 450

significant improvements on the Sentence Fusion 451

task, while exhibits a slight performance decline on 452

the GEC task. On general tasks, LLaMA’s perfor- 453

mance remains largely unaffected, whereas Qwen 454
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demonstrates a notable improvement.455

Regarding the results using grammatical error456

knowledge vector, LLaMA and Qwen achieve im-457

provements on both the Sentence Fusion and GEC458

tasks. However, LLaMA exhibits a slight perfor-459

mance decline on general tasks, whereas Qwen460

shows an improvement.461

The results using the combined knowledge vec-462

tors of discourse relation and grammatical error463

exhibit a more complex pattern. Both LLaMA and464

Qwen achieve significant improvements on the Sen-465

tence Fusion task, reaching optimal performance,466

as both types of knowledge vectors contribute posi-467

tively to this task. However, for the GEC task, the468

combined knowledge vectors lead to a slight per-469

formance decline. On general tasks, LLaMA expe-470

riences a slight decrease in performance, whereas471

Qwen demonstrates a significant improvement.472

In summary, whether used individually or in473

combination, knowledge vectors can enhance the474

performance of LLMs on tasks that require such475

knowledge while not leading to a significant de-476

cline in other tasks.477

The results highlight that LLM with single478

knowledge vector effectively balances general ca-479

pabilities and knowledge-related capabilities.480

5 Related Work481

Learning from mistakes Humans can learn from482

mistakes to improve their capabilities and correct483

mistakes. Inspired by this, researchers have ex-484

plored leveraging mistakes to enhance the perfor-485

mance of LLMs (Tong et al., 2024; An et al., 2023;486

Li et al., 2024; Wang et al., 2024). The LEMA487

(LEarning from MistAkes) method proposed by488

An et al. (2023) fine-tuning LLMs on pairs con-489

sisting of errors and their respective corrections490

generated by GPT-4. Similarly, Tong et al. (2024)491

fine-tuning LLMs on CoTErrorSet, a benchmark492

constructed by having the LLM prompted to cor-493

rect its own errors based on the correct reference494

and the incorrect response generated by itself.495

However, rather than fine-tuning on datasets con-496

structed based on error responds across various497

tasks, we analyze the causes of errors from the498

perspective of knowledge deficiencies and correct499

errors by fine-tuning the model to learn the required500

knowledge from a curated knowledge dataset.501

Self-correction Self-correction typically in-502

volves three stages: a LLM generates initial503

outputs, a feedback model generates feedback504

given the input and initial output and a refinement 505

model generates a refined output considering 506

the input, initial output and feedback. In the 507

context of self-correction, LLMs refine their 508

own responds based on the feedback from either 509

themselves (Madaan et al., 2024) or external tools 510

or knowledge (Shinn et al., 2024; Gou et al., 2023). 511

Self-correction focus on the utilization of feedback 512

to refine the outputs of LLM while our KSOD 513

framework aims to improve the LLM itself from 514

the perspective of knowledge. 515

6 Limitations 516

Although our study presents a promising frame- 517

work for supplementing LLMs with desired knowl- 518

edge on demand, its scope is limited to knowl- 519

edge of categories which can be formalized as a 520

classification task. Future research could explore 521

the KSOD framework to other knowledge, such 522

as knowledge of theories and knowledge of algo- 523

rithms that cannot be formalized as a classification 524

task. 525

7 Conclusion 526

In this study, we introduce a novel knowledge- 527

based SFT framework, KSOD, to supplement 528

knowledge missing in LLMs that causes errors in 529

outputs of LLMs. We propose a knowledge verifi- 530

cation method and validate its effectiveness. Our 531

framework effectively balances the LLMs’ perfor- 532

mance across both general and knowledge-related 533

tasks. We demonstrated the effectiveness of KSOD 534

through LLMs with both single and combination 535

of knowledge vectors, which outperformed pre- 536

trained LLMs on comprehensive benchmarks. 537
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Task Prompt→ Sentence fusion is the task of joining several independent sentences into a single coherent
text. Please analyze the errors that arise in output of sentence fusion task in the given
examples.

Samples→ Example 1: Input: In a family tiff in 1865, his remains were exhumed and reburied in
the family burial plot at Cobham Park, the family home in Warren County, Pennsylvania.
Cobham’s wife and in-laws sued the Cobham family for their return. Target: In a family tiff
in 1865, his remains were exhumed and reburied in the family burial plot at Cobham Park,
the family home in Warren County, Pennsylvania. As a result, cobham’s wife and in-laws
sued the Cobham family for their return. Output: The remains of Charles Sanders Peirce,
an American philosopher and the founder of pragmatism, were exhumed and reburied in
the family burial plot at Cobham Park, the family home in Warren County, Pennsylvania.
Peirce’s wife and in-laws sued the Cobham family for their return. Example 2: Input:
He retired to Boulogne-sur-Mer, so poor that the East India Company had to vote him a
pension, but later returned to England and managed eventually to pay his creditors in full.
Some inheritance was left for his descendants. Target: He retired to Boulogne-sur-Mer,
so poor that the East India Company had to vote him a pension, but later returned to
england and managed eventually to pay his creditors in full so that some inheritance was
left for his descendants. Output: He retired to Boulogne-sur-Mer, so poor that the East
India Company had to vote him a pension, but later returned to England and managed
eventually to pay his creditors in full. Some inheritance was left for his descendants.
Example 3: Input: They finished third among the league’s eight teams, with Gore as
their starting center fielder. O’Rourke had moved to left due the departure of Slattery.
Target: They finished third among the league’s eight teams, with Gore as their starting
center fielder, while O’Rourke had moved to left due the departure of Slattery. Output:
They finished third among the league’s eight teams, with Gore as their starting center
fielder. O’Rourke had moved to left due to the departure of Slattery. Example 4: Input:
The Post Office committee was a regular recipient of complaints from southern states
concerning the transmission of abolitionist mailings, which were seen there as incendiary;
the matter was of some controversy. Southern legislators sought to have these types of
mailings banned. Target: The Post Office committee was a regular recipient of complaints
from southern states concerning the transmission of abolitionist mailings, which were
seen there as incendiary; the matter was of some controversy because southern legislators
sought to have these types of mailings banned. Output: The Post Office committee, which
was a regular recipient of complaints from southern states concerning the transmission of
abolitionist mailings, which were seen there as incendiary, and the matter was of some
controversy. Southern legislators sought to have these types of mailings banned.

Chain-of-thought
prompt→

Firstly, provide a step-by-step analysis for the common characteristics of the errors from
all examples. Next, identify the potential knowledge lacking in LLM that may have led to
these errors.

Table 5: Complement prompt of knowledge identification.

A Prompts for Knowledge Identification765

The templates used for knowledge identification in766

the knowledge identification stage are presented in767

Table 5.768

B Knowledge verification Settings769

B.1 Details of training knowledge module.770

The learning rate for both classification linear layer771

and LoRA is set to 5e-5. For the rank of LoRA, we772

select the value that yields the best model perfor-773

mance from 8, 16, 32, 64 for the final experiments.774

The target module of LoRA is the output matrix in775

the last self-attention layer.776

B.2 Evaluation on benchmarks. 777

Metrics. For four general benchmarks, we use 778

the default settings in LLMBox. For Disco Fuse 779

task, we use SARI (Xu et al., 2016) to evaluate 780

LLMs’ performance. For GEC, we calculate F0.5 781

of M2 score (Dahlmeier and Ng, 2012) to evaluate 782

LLMs’ performance. 783

Inference settings. For four general benchmarks, 784

we use the default settings in LLMBox. For Disco 785

Fuse task, we set temperature to 1.0. top-P to 0.9. 786

For GEC task, we set temperature to 0.5, top-K to 787

50. 788
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