
BooVAE: Boosting Approach for Continual Learning of VAE

Evgenii Egorov
⇤†

University of Amsterdam
egorov.evgenyy@ya.ru

Anna Kuzina
⇤†

Vrije Universiteit
av.kuzina@yandex.ru

Evgeny Burnaev

Skoltech, AIRI
e.burnaev@skoltech.ru

Abstract

Variational autoencoder (VAE) is a deep generative model for unsupervised learn-
ing, allowing to encode observations into the meaningful latent space. VAE is
prone to catastrophic forgetting when tasks arrive sequentially, and only the data
for the current one is available. We address this problem of continual learning for
VAEs. It is known that the choice of the prior distribution over the latent space is
crucial for VAE in the non-continual setting. We argue that it can also be helpful
to avoid catastrophic forgetting. We learn the approximation of the aggregated
posterior as a prior for each task. This approximation is parametrised as an additive
mixture of distributions induced by encoder evaluated at trainable pseudo-inputs.
We use a greedy boosting-like approach with entropy regularisation to learn the
components. This method encourages components diversity, which is essential as
we aim at memorising the current task with the fewest components possible. Based
on the learnable prior, we introduce an end-to-end approach for continual learning
of VAEs and provide empirical studies on commonly used benchmarks (MNIST,
Fashion MNIST, NotMNIST) and CelebA datasets. For each dataset, the proposed
method avoids catastrophic forgetting in a fully automatic way.

1 Introduction

Variational Autoencoders (VAEs) (Kingma & Welling, 2013) are deep generative models used in
various domains (Lee et al., 2017; Zhou et al., 2020). The VAE model consists of deep neural networks
(DNNs): an encoder (inference network) and decoder (generative network). DNNs are known to
reduce their quality on previously learned tasks when trained on data from a new task. Several
directions to address this problem of catastrophic forgetting were suggested. But this phenomenon is
mainly considered without attention to the specific properties of the VAE. We want to discuss current
approaches to continual learning and formulate requirements for the ideal solution.

Dynamic architecture approach adds task-specific last layers (multi-heads) to encoder and decoder
for each task (Rusu et al., 2016; Nguyen et al., 2018; Li & Hoiem, 2018). We suppose that practical
applications of VAE require the common latent space, which is violated in multi-heads. Using multi-
heads requires deciding which head to apply to the new data and when to expand the architecture.
They reduce reuse of similarities between tasks. Hence, we suppose that the approach should keep

the static architecture for both encoder and decoder.

The generative replay (Shin et al., 2017; Rao et al., 2019) uses a "teacher" generative model for
generating "fake" data that mimics former training examples. Then the "student" model is trained
on joint "fake" and new data. This approach is conceptually simple, model-agnostic and overcomes
forgetting. However, these benefits come with a computational price. We need to retrain model while
generating the dataset from all the past tasks, asses samples quality and the task-balance. Thus the
approach should avoid generative replay).
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Weight penalty approach (Liu et al., 2018; Kirkpatrick et al., 2017) forms the trust-region around the
optimum of the previous task for protecting parameters. This approach preserves the architecture
and avoids generative replay. However, for DNNs a change in the weights is a poor proxy for the
difference in the outputs (Benjamin et al., 2018). It is an even more critical issue for VAE model as it
consists of a pair DNNs: encoder and decoder. Thus the approach should link the data-space and the

latent-space.

We propose a novel continual learning approach for the VAEs. For each task, we expand current
prior to get the approximation of an aggregated posterior over the whole data. We parametrise
approximation as an additive mixture of distributions induced by encoder evaluated at trainable
pseudo-inputs. These pseudo-inputs link the data-space and latent-space and help to memorise
knowledge about past tasks. The problem of matching the aggregated posterior is ill-posed since
we observe only its empirical version. As a solution, we use a greedy boosting-like approach with
entropy regularisation. This method encourages components in the learned approximation to be
diverse, which is essential as we aim at memorising the current task with the fewest components
possible. The proposed approach is orthogonal to other methods mentioned above and can be applied
in combination with them. Our main contributions are the following:

• We relate the approximation of optimal prior, the aggregated posterior and the continual
learning task for VAE model. We find optimal additive perturbation in order to approximate
optimal prior distribution. We derive the algorithm of effective approximation of the optimal
prior for the continual learning framework.

• We use this result and present Boosting Approach for Continual Learning of VAE (BooVAE),
a framework for training VAE models in the continual framework with static architecture.

• We empirically validate the proposed algorithm on commonly used benchmarks (MNIST,
Fashion-MNIST, NotMNIST) and CelebA for disjoint sequential image generation tasks.
The proposed generative model could be efficiently used in a generative replay for discrimi-
native models. We train both generative and discriminative models incrementally, avoiding
retraining the generative model for each task from scratch or storing several generative
models. We provide code at https://github.com/AKuzina/BooVAE.

2 Background

Variational Autoencoders (VAEs) Let p✓(x, z) be the joint distribution of observed variable
x2RD and hidden latent variable z, with the distribution ⇡(z). Given the distribution x⇠pe(x)
we aim to find ✓ which maximizes the marginal log-likelihood Epe(x)

⇥
log

R
p✓(x, z)dz

⇤
. Since

the marginal likelihood is often intractable, we solve this optimization problem by the variational
inference (Jordan et al., 1999). Variational autoencoders (VAE) (Kingma & Welling, 2013) amortize
inference with q�(z|x) as variational posterior (encoder) and p✓(x|z) as likelihood (decoder). The
encoder and decoder are parameterized by neural networks with parameters �, ✓. Nets are optimized
simultaneously via maximisation of the evidence lower bound (ELBO) objective:

L(✓,�, �),E pe(x)
q�(z|x)

(log p✓(x|z)⇡(z)� log q�(z|x))Epe(x)


log

Z
p✓(x, z)dz

�
. (1)

Typically, instead of the density pe(x) we are given a dataset {xn}Nn=1 and consider an empirical
distribution 1

N

PN
n=1 �xn(x).

Optimal Prior and Aggregated Posterior Hoffman & Johnson (2016); Goyal et al. (2017) discuss
the choice of the prior distribution over latent space ⇡(z) and observe that default choice of the
Gaussian prior significantly restricts the expressiveness of the model. Tomczak & Welling (2018)
proposes to use a prior that optimizes the ELBO(1). The solution of this problem is the aggregated
variational posterior:

q̂(z) = Epe(x)q�(z|x). (2)
For an empirical pe(x), q̂(z)= 1

N

PN
n=1 q�(z|xn) and Tomczak & Welling (2018) proposes a para-

metric approximation to avoid over-fitting and reduce computational costs: ⇡(z)= 1
K

PK
k=1 q�(z|uk).

Parameter {uk}Kk=12RK⇥D is optimized simultaneously with (✓,�) by the ELBO(1) maximization,
and K is a hyper-parameter of the algorithm. The additive structure of the optimal prior ⇡

⇤(z) over
the dataset points motivates us to consider such a prior distribution for continual learning.
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Continual learning framework In the continual learning framework, we do not have access to the
whole dataset. We define the sequence of tasks to be solved t=1, . . . , T . Subsets of the data for each
task D1

, . . . , DT arrive sequentially and we have access only to the data of the current task. For each
task t, we consider the empirical distribution p

t
e(x)= 1

|Dt|
P

xn2Dt

�xn(x).

3 BooVAE Algorithm (Proposed Method)

We start from defining an optimal prior for the VAE model in the continual learning framework. Next,
we find the optimal additive expansion of the current prior to match the innovation coming from the
new task. We use obtained result and provide a general algorithm for training the VAE model in the
continual learning framework. It works as an iterative Minorization-Maximization algorithm. In the
minorization step, we expand the current approximation of the prior and learn pseudo-inputs. At the
Maximization step, we update parameters of the encoder and the decoder with the prior being fixed.

3.1 Optimal prior in continual learning

In this section, we derive an optimal prior for the VAE model in the continual framework and provide
the algorithm to it approximation. We provide skipped technical details in Sup.(A.1). We start from
the following decomposition of the ELBO(1):

L(✓,�,⇡)=Epe(x)[Eq�(z|x) log p✓(x|z)�(KL[q�(z|x)|q̂(z)]+KL[q̂(z)|⇡(z)])], (3)

where q̂(z)=Epe(x)q�(z|x) is the aggregated variational posterior. As KL-divergence is non-negative,
the global maximum of Eq.(3) over ⇡ is reached when:

⇡
⇤(z)= q̂(z)=Epe(x)q�(z|x). (4)

We assume that for the sequence of the two tasks, we can write the data distribution as the discrete
mixture of two distributions: pe(x)=↵ p

1
e(x)+(1�↵) p

2
e(x), ↵2(0; 1). This assumption holds

for empirical data distribution, which is of the most interest for us: pe(x)= 1
N

PN
n=1 �xn(x)=

|D1|
|D1|+|D2|p

1
e(x)+ |D2|

|D1|+|D2|p
2
e(x). Then we can decompose the ELBO(1) as following:

L(✓,�,⇡)=E pe(x)
q�(z|x)

log p✓(x|z)�
X

i=1,2

↵i(Epi
e(x)

KL[q�(z|x)|q̂i(z)]+KL[q̂i(z)|⇡(z)]), (5)

where ↵1=↵, ↵2=1�↵ and q̂i(z)=Epi
e(x)

q�(z|x). Keeping only terms with dependence over the
prior distribution, we conclude to the optimization problem over the probability density space P:

min
⇡(z)2P

↵ KL[q̂1(z)|⇡(z)] + (1 � ↵) KL[q̂2(z)|⇡(z)]. (6)

Hence, if we can store the data for both tasks we can use the same optimal prior Ex q�(z|x), where
expectation is taken with respect to ↵ p

1
e(x)+(1�↵) p

2
e(x). However, in continual setting we don’t

have access to the p
1
e(x), neither it is reasonable to store q̂1(z). Thus after Task 1, we consider

using the approximation of the aggregated variational posterior of the first task q̂
a
1 (z)⇡ q̂1(z). This

modification of the problem (6) leads to the following prior:

⇡
1,2(z) = ↵q̂

a
1 (z)+(1�↵)q̂2(z) = arg min

⇡(z)2P
↵ KL[q̂a(z)|⇡(z)]+(1�↵) KL[q̂2(z)|⇡(z)]. (7)

Next, we consider that the optimal prior for the first task ⇡
1(z) is a good start for a new prior after

observing the new task. Hence, we propose using an additive expansions of the current prior to match
innovation induced by the new task. Then the objective of the problem (7) transforms to:

min
h2P

↵ KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]+(1�↵) KL[q̂2(z)|(1��)⇡1(z)+�h(z)]). (8)

The optimization problem (8) is bi-convex over h and �. We consider the Functional Frank-Wolfe
algorithm (informally, "boosting") (Wang et al., 2015) for the corresponded objective:

F↵,� [q̂a1 (z), q̂2(z); ⇡1(z), h(z)]=

=↵ KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]+(1�↵) KL[q̂2(z)|(1��)⇡1(z)+�h(z)]).
(9)
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Figure 1: We propose to expand prior distribution in order to match new information from the coming
task. We parametrize each component in the prior distribution with encoder, evaluated on the trainable
pseudo-inputs. These pseudo inputs store information about the data at the correspondent task.

We aim to find h as the projection of the functional gradient to the probability density space P and
then optimize over � with the stochastic gradient method, while h fixed. The functional gradient of
the objective (8) with respect to perturbation h is ↵

q̂a1 (z)
⇡1(z) +(1�↵) q̂2(z)

⇡1(z) in the following sense:

F↵,� [q̂a1 (z), q̂2(z); ⇡1(z), h(z)]=

=F↵[q̂a1 (z), q̂2(z); ⇡1(z)]��

✓Z
dz h(z)


↵

q̂
a
1 (z)

⇡1(z)
+(1�↵)

q̂2(z)

⇡1(z)

�
�1

◆
+o(�).

(10)

We consider projection to the probability space as the solution of the optimization problem:

max
h2P

log

Z
h(z)


↵

q̂
a
1 (z)

⇡1(z)
+(1�↵)

q̂2(z)

⇡1(z)

�
dz�max

h2P

Z
h(z) log


↵

q̂
a
1 (z)

⇡1(z)
+(1�↵)

q̂2(z)

⇡1(z)

�
dz.

(11)
We use the lower bound in the (11) in order to use Monte-Carlo estimates of the gradients. The
problem is linear over h(z) and the solution is degenerate distribution. To this end, we add the
entropy regularization H[h]=�

R
h(z) log h(z) dz and obtain the final objective:

min
h2P

KL


h

���
↵q̂

a
1 (z)+(1�↵)q̂2(z)

⇡1(z)

�
. (12)

As far as we update the initial prior r
0(z)=⇡

1(z) with the mixture component h: r
1(z)=(1�

�)⇡1(z)+�h(z), we can improve current approximation by finding the new component, solving
the same optimization problem, but using r

1 instead of ⇡
1. The objective (12) encourages a new

component to be different from the already constructed approximation:

KL


h

���
↵q̂

a
1 (z)+(1�↵)q̂2(z)

⇡1(z)

�
=KL [h|↵q̂

a
1 (z)+(1�↵)q̂2(z)]| {z }

match the target prior

�
Z

h(z) log
1

⇡1(z)
dz

| {z }
be different

from the current approximation

.

(13)
To this end, we have defined the algorithm of learning optimal prior for VAE in continual setting.
Now we will use it to formulate the algorithm of VAE training in continual learning framework.

3.2 BooVAE Algorithm

In this section, we formulate the algorithm for continual learning – BooVAE (short for Boosting
VAE). It works as the iterative Minorization-Maximization algorithm. In the minorization step, we
use the obtained optimization problem (12) to learn a new component of the prior. These steps are
alternated with ELBO maximization steps until the desired number of components in prior is reached.
From that point further on, only model parameters are updated until convergence. As at maximization
step follows the usual routine used in training VAEs, our approach can be easily used on top of any
VAE model. The derivations of applications of BooVAE to the VAE with flow-based prior presented
at Sup.(A.2). These steps are summarized in Alg.(1) and idea of prior learning for continual setting is
illustrated in Fig.(1). Now, we are going to consider them in more details.
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Algorithm 1 BooVAE algorithm

input Current task t dataset D : {xn}Nn=1

input Maximal number of components K
Prior to approximate ⇡t=↵rt�1+(1�↵)q̂t.
Initialize prior rt=rt�1

✓⇤,�⇤=arg max✓,� L(rt, ✓,�)
k=1
while not converged and k<K do

h⇤=arg min
h2R

KL
h
h
���⇡�⇤

rt

i

�⇤=arg min
�2(0;1)

KL[�h+(1��)rt|⇡t]

rt=�⇤h⇤+(1��⇤)rt

k=k+1
✓⇤,�⇤=arg max✓,� L(rt, ✓,�)

end while

output rt, ✓⇤, �⇤

Prior Update Step At this step we expand the
current approximation of the optimal prior distribu-
tion. Subsets D1

, . . . , DT arrive sequentially and
may come from different domains. We have ac-
cess only to one subset of data and current prior
at a time but aim at learning the prior distribution

1
|DT |

P
x2DT q�(z|x). At the task t we start

from the current prior r
t(z) :=r

t�1(z). We expand
current approximation with at most K components.
At each step k we add a new component h to the cur-
rent approximation r

t to move it towards an optimal
prior ⇡

t. Following (Tomczak & Welling, 2018),
we select the parametric family R of the compo-
nents h as learnable pseudo-inputs u to the encoder:
h(z)=q�(z|u). This choice connects parameters
of the prior with the data-space. We conclude with
a two step procedure for adding a new component:

1. Train new component:
h
⇤=arg min

h2R
KL

h
h

���⇡
t

rt

i
.

2. Train component weight:
�
⇤=arg min

�2(0;1)
KL

h
�h

⇤+(1��)rt
���⇡t

i
.

As it was already mentioned, we define optimal prior to be equal to aggregate posterior. Therefore, it
stores all the information about training dataset. The optimal prior for tasks 1: t can be expressed
with prior from the previous step (e.g. aggregate posterior over tasks 1: t�1) and training dataset
from the current task only:

⇡
t(z)=

|Dt�1|
|Dt| ⇡

t�1(z)+
|Dt|
|Dt|

1

|Dt|
X

xn2Dt

q�(z|xn). (14)

Since we don’t have access to the data from the previous tasks, we suggest using trained prior r
t�1

as a proxy for the corresponding part of the mixture. We use random subset from the current task
Mt⇢Dt containing Nt observations to estimate aggregate posterior of the current task.

⇡
t⇡ |Dt�1|

|Dt| r
t�1(z|{u}t�1)+

|Dt|
|Dt|

1

Nt

X

x2Mt

q�(z|x). (15)

Such formulation allows an algorithm not to forget information from the previous task, which is stored
in the prior distribution and pseudo-inputs {u}t�1. The prior distribution performs regularization
for the VAE model. As the budget of components learning per-task is reached, we perform component
pruning by weights optimization, see Supp.(A.3).

ELBO Maximization Step. At this step parameters of the encoder and decoder ✓,� are updated.
We add regularization term, to ensure that the model remembers the information, which is stored
in the pseudo-inputs. Given the fixed mean-parameters of prior distribution from the previous task
r
t�1, we keep its components during training the task t as well as distribution of their fixed decoded

mean-parameters p
t�1(·):

Renc(�)=
X

u2rt�1

KLsym
⇥
q�(z|u)|rt�1(z|u)

⇤
, Rdec(✓)=

X

z⇠rt�1

KLsym
⇥
p✓(x|z)|pt�1(x|z)

⇤
.

(16)

where KLsym(p|q)= 1
2 (KL(p|q)+KL(q|p)). We use symmetric KL-divergence, since we have

observed that it help to avoid encoder and decoder to memorizing delta-function centered in the
pseudo-input and results in more diverse samples from the previous tasks. Final objective for the
maximization step over �, ✓ for the task t is the following:

E x⇠Dt,
z⇠q(z|x)

[log p✓(x|z)�KL[q�(z|x)|rt(z)]]��(Renc(�)+Rdec(✓)). (17)
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4 Related Work

Boosting density approximation. The approximation of the unnormalized distribution with the
sequential mixture models has been considered previously in several studies. Several works (Miller
et al., 2017; Gershman et al., 2012) perform direct optimization of ELBO with respect to the new
component’s parameters. Unfortunately, it leads to unstable optimization problem. Therefore, other
works consider functional Frank-Wolfe framework, where subproblems are linearized (Wang et al.,
2015). At each step, KL-divergence functional is linearized at the current approximation point by
its convex perturbation, obtaining tractable optimization subproblems over distribution space for
each component. Guo et al. (2016) suggested using concave log-det regularization for gaussian base
learners. Egorov et al. (2019), Locatello et al. (2018) used entropy-based regularization. In our work,
we come up with a similar optimization algorithm. We optimize different objective for different

propose: the weighted sum of exclusive KL to approximate optimal prior for VAE, while mentioned
works approximate inclusive KL, in order to approximate posterior distriubtion.

Continual learning for VAE. (Lesort et al., 2019) compare EwC, generative replay and random
coresets. We use a single pair of encoder and decoder for all the tasks unless otherwise stated. Nguyen
et al. (2018) propose to use multi-head VAE architecture, where a separate encoder is trained for each
task, and an extra head is added to the decoder. We believe that even though this model was shown to
produce good results, it has several crucial limitations. Firstly, it makes scalability of the method
very poor, since the number of parameters in the models increases dramatically with the number of
tasks. Secondly, it requires task labels to be known both during training and validation to use the
suitable "head" for each data point. Finally, it limits the amount of information we can share between
tasks and thus may lead to worse performance for the tasks, which has fewer data available and have
a lot of similarities with other tasks. We have observed the latter phenomenon on the CelebA dataset,
where all the tasks are supposed to generate images with faces but with different hair color. Recent
work (Rao et al., 2019) use learnable mixture as prior distribution. However, this reached by also
expanding the architecture of encoder with multi-heads and using self-replay to overcome forgetting.
Achille et al. propose similar ideas of encoder expansion and use also use self-replay. However,
our goal is to provide orthogonal approach, which avoids self-replay and multi-heads, but can be
combined with them.

5 Experiments

We empirically evaluation our algorithm on both disjoint image generation and classification tasks.
In the latter case we suggest using VAE learned in the continual setting for generative replay (Shin
et al., 2017).

5.1 Disjoint image generation task

Setup. We consider an experimental setup, where each task contains objects of 1 class (e.g. one
digit for MNIST dataset). The resulting generative model, trained on all the classes one-by-one is
supposed to generate images from all the classes. We perform experiments on MNIST, notMNIST,
fashion MNIST and CelebA datasets. Each of MNIST datasets has 10 classes with digits, characters
and pieces of clothing correspondingly. For the CelebA dataset we consider 4 tasks based on the
attributes: black, blond, brown and gray hair. For all the datasets we use VAE (Kingma & Welling,
2013) model with gaussian posterior. A complete description of the experimental setup, architectures
and hyperparameters can be found in Supp. (B.5).

Compared methods. As a baseline we consider standard VAE model. We expect it to suffer from
catastrophic forgetting and use it as a lower bound on the model performance. We refer to this model
as Standard. Our method has some similarities with the regularization-based continual learning
algorithms, which add quadratic penalty on the weights. The difference is that we use prior, defined
as a mixture of the encoded pseudo-inputs, to avoid catastrophic forgetting both for the encoder and
the decoder, Eq. (16). In the experiments we compare with such regularization-based approaches as
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Variational Continual Learning
(VCL) (Nguyen et al., 2018). Our approach uses pseudo-inputs to approximate an optimal prior
distribution for each task. This procedure can also be seen as coreset selection (Huggins et al., 2016;
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Figure 2: Diversity of generated samples, estimated as a KL between discrete distribution with the
equal probability for each class and empirical distribution of samples from VAEs. The lower is the
better. We conclude that BooVAE outperforms other approaches.
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Figure 3: NLL on the full test dataset averaged over 5 runs after continually training on 10 tasks.
Lower is better. We observe that BooVAE performance is comparable or better than of other methods.

Figure 4: Samples from the VAEs after the last task is learned. BooVAE keep sampling different
tasks, while other approaches suffer from catastrophic forgetting.

Bachem et al., 2015). To validate the quality of the learned coresets, we perform the comparison with
random coresets, which was also used in (Nguyen et al., 2018). We store a random subsample of the
training dataset from previous tasks and add them to each batch during training to avoid catastrophic
forgetting. Moreover, we can learn the prior distribution components in the latent space instead of
the data space as we do with the pseudo-inputs. We have conducted experiments, where the prior is
trained as a mixture of Gaussian’s (with diagonal covariance) in the latent space. We refer to this
approach as MoG. Just as we do in BooVAE, in MoG we learn a new mixture of components for
each task and use the regularization from Eq.(16) to avoid catastrophic forgetting.

Metrics. To evaluate the performance of the VAE approach on grey scale images, we a standard
metric – negative log-likelihood (NLL) on the test set. NLL is calculated by importance sampling

Table 1: FID values for CelebA dataset averaged over 5 runs, the lower is the better. Each row
corresponds to the FID for cumulative learned tasks of different hair types. BooVAE outperform
other approaches, including multihead.

#T EWC Multihead + EWC VCL Multihead + VCL Random Coreset (40) Random Coreset (80) Boo (40 comp.)

1 35.8 (0.8) 37.7 (1.1) 35.8 (0.6) 37.93 (1.0) 36.4 (1.3) 38.1 (1.9) 27.5 (0.6)

2 61.4 (1.7) 69.2 (1.3) 58.7 (0.6) 65.54 (0.2) 59.6 (0.4) 59.8 (0.8) 45.7 (2.4)

3 40.7 (0.6) 45.2 (0.8) 39.3 (0.6) 42.18 (0.4) 39.7 (0.8) 41.9 (0.1) 33.4 (1.4)

4 50.7 (0.6) 75.7 (0.8) 48.7 (0.9) 75.16 (2.0) 48.1 (1.1) 47.4 (1.9) 43.1 (0.2)
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Figure 5: Samples from VAE trained on CelebA. For each model rows correspond to cumulatively
learned tasks of different hair types.

method, using 5000 samples for each test observation:

� log p(x) ⇡ � log 1
K

KX

i=1

p✓(x|zi)p(zi)

q�(zi|x)
, zi ⇠ q�(z|x).

NLL measures the quality of the reconstructions that VAE produces. It is also essential to evaluate the
diversity of generated images with respect to all the tasks in the continual setting. In our experiments,
each task contains a new class. Thus, we expect our model to generate images from all the classes
t=1, . . . , T in the same proportion as they appear in the training dataset. For the dataset with balanced
classes, this proportion is equal to 1

T . We assess the diversity using the sum of KL-divergences

between T pairs of Bernoulli distributions:
TX

t=1

KL [pt||bpt] , pt ⇠ Be
�
1
T

�
, bpt ⇠ Be

⇣
NtPT
t=1 Nt

⌘
,

where bpt is an empirical distribution of the generated classes, Nt — number of generated images
from the class t. To estimate Nt, we train the classification neural network to achieve high accuracy
and use it to classify images generated by the model. We use 104 samples in total to calculate the
metric. For the CelebA dataset, we used Frechet Inception Distance (FID) (Heusel et al., 2017) over
104 samples, which is supposed to measure both quality and diversity of generated samples. FID
rely heavily on the implementation of Inception network (Barratt & Sharma, 2018); we use PyTorch
version of the Inception V3 network (Paszke et al., 2017).

Results on MNIST(s). In Fig.(2),(3) we provide results for three MNIST datasets. Both figures
depict values averaged over five runs. We report mean values, standard deviations and comparison
with the multihead architectures in Supp.(B.1). We evaluate the performance of VAE on the test
dataset after each new task is added. The x-axis denotes a total number of tasks seen by the models
(and thus, the total number of tasks in the test dataset). The flatter the line is, the less forgetting we
observe as a number of tasks increases. We provide numbers for each task separately in Supp.(B.2).
Notice that BooVAE can be combined with any other weight-regularization method. We have
observed that EWC does not improve performance a lot (see Supp.(B.1)), therefore we report only
results for the combination of BooVAE with VCL, which gives the best performance in terms of
NLL.

We observe that, based on KL metric, pure BooVAE produces the most diverse samples. We plot
several samples from the model after training it on ten tasks in Fig.(4). For MoG, Random Corset and
BooVAE, we use the same amount of components equal to 15 for each task. It is worth mentioning
that the closer the random corset size is to the size of the training data, the better the performance
should be. In the limit case, we can store all the data from the previous tasks, guaranteeing the
absence of catastrophic forgetting. Our goal is to reduce the amount of stored information, thus we
used a pretty small number of components. In Supp.(B.4) we explore, how large the random corset
should be to get the performance comparable to BooVAE.

Results on CelebA We conduct experiments on CelebA dataset for several reasons. Firstly, we
want to show that our method works not only on small-scale images, such as MNIST but also on
higher-dimensional data. Secondly, since the classes differ only by the hair color in this setting,
we may see the advantages of the shared architecture more clearly. In the CelebA dataset there
are much fewer faces with grey hair, compared to other colors. Therefore, information from other

8



(a) MNIST (b) Fashion MNIST

Figure 6: We consider continual learning experiment for MNIST and Fashion MNIST datasets, where
we split the dataset in 5 task, containing pairs of disjoint classes, i.e. ’0/1’, ’2/3’, etc. We train
both BooVAE and classification DNN in continual setting, using VAE for generative replay to avoid
catastrophic forgetting in classification.

classes is essential to obtain good results on these images. We compare the FID values as new
tasks are added to the models in Table(1). The BooVAE outperforms other approaches, including
model with multihead architecture. Notice that multihead fails on the last task, which has much
fewer observations, compared to others. This highlights the benefit of the shared architecture, as
the Multi-heads approach limits the amount of shared information between tasks. Samples from the
different VAEs can be found on Fig.(5). We provide more samples in Supp.(B.3).

5.2 Generative Replay for Discriminative Model with continual VAE

Motivation Common approach to mitigate catastrophic forgetting in discriminative models is deep
generative replay (Shin et al., 2017). The method is based on the recollection of the past knowledge,
such as the data of past classes, by generating it from the trained generative model. However, since
continual learning for generative models was limited, it was proposed to re-train the generative model
from scratch when a new task arrives. Since we propose the method for the continual learning of the
generative model, we can avoid this. We can continually train VAE along with the discriminative
model.

Setting We perform the continual learning experiment using the MNIST and Fashion MNIST
datasets. We apply splitMNIST setting when the dataset is split into five binary classification tasks.
E.g. the first task containing digits ’0’ and ’1’, the second task — digits ’2’ and ’3’, and so on. We
perform similar splitting into the five tasks for the Fashion MNIST. We train MLP with two hidden
layers, LeakyReLU activations and Dropout layers. For each task, we add a new classification head
(one fully connected layer) and train for 200 epochs with batch size 500.

Results The mean accuracy across all tasks is reported in Fig.(6). We provide two models for
comparison. Exact replay setting reuses all the training data from the previous task, thus, giving
an upper bound on the generative replay’s performance. In the baseline method, we do not use any
information about the previous task. This gives us a lower bound on the performance, i.e. if replay
buffer is not used. We report two versions of the generative replay with VAE. In the first one, we
consider each class as a separate task and train VAE in the continual setting (VAE: 10 tasks) and
sample images from the last available model. We use prior components to label the image classes.
For example, along with the first classification task on MNIST (with digits ’0’ and ’1’) we train VAE
firstly on ’0’s and then on ’1’s. As a result, we have separate components in the prior distribution for
both tasks. Sampling latent vector from these components decoding them gives us the replay buffer
for the next classification task. In the second setting, we combine classes like in splitMNIST setting,
i.e. each task contains two classes (VAE: 5 tasks). In this setting, samples from the prior have to be
classified in order to be used in classification model. We follow the approach from Shin et al. (2017),
using classier from the previous step for this purpose. Results that we observe are comparable with
the MNIST results in Shin et al. (2017)3, while our approach avoids full re-training of the generative
model.

3Authors provide only plot (Fig. 2 in their paper), therefore we are not able to report exact numbers for
comparison
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Figure 7: The mixture of 12 Gaussian is approximated by 2-component Gaussian mixture with Eq.(11).
This toy experiment illustrates the intuition of our approach, where we hope to efficiently approximate
prior ⇡

⇤(z)=Epe(x)q�(z|x) given only empirical version of the target density 1
N

PN
n=1 q�(z|xn).

6 Conclusion

We propose a novel algorithm for continual learning of VAEs with the static architecture by incorpo-
rating the data-driven information about new task into the prior over the latent space. We leverage
the specific structure of the VAE model and match new data innovation with the additive aggregated
posterior expansion. The boosting-like approach allows us to reduce the number of components in
the approximation of the optimal prior distribution without the loss of performance. We empirically
validate performance of our algorithm and compare with other approaches. That being said, the
proposed algorithm is orthogonal to them and could be easily combined. We would like to finalize
with additional comments on performance evaluation and approach intuition.

Model perfomance In the continual learning setting it is important to evaluate the evolution of
the metrics for each task while new task arrives. Hence in Sections (B.1) - (B.3) we provide more
detailed overview of models performance and report NLL and diversity metric after each additional
task is trained. We discuss how the performance changes on the whole test dataset as we keep training
in continual learning setting. Moreover, we report and discuss these metrics for each task separately
in Section (B.2). Finally, we visually study the samples from the model on each step in Section (B.3).

Approach intuition We provide toy-example visualization in Fig.(8,7) to illustrate equations at
Sec.(3).

Prior Aggregated posterior

Standard prior, KL[q(z)|p(z)] = 0.505

Prior Aggregated posterior

Boo prior, KL[q(z)|p(z)] = 0.093

Figure 8: Visualization of the prior density and aggregate posterior for the VAE with 2-d latent space.
In left we present results for the VAE with N (z|0, I) prior and in the right with the proposed Boo
prior. By visual inspection and KL-divergence comparison we conclude that the proposed prior
matches the aggregated posterior better that a standard normal prior.
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