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Abstract:

We introduce DIAR (Diffusion-model-guided Implicit Q-learning with Adaptive
Revaluation), a novel offline reinforcement learning approach that tackles learn-
ing from fixed datasets and making effective long-horizon decisions. DIAR lever-
ages diffusion models to learn state-action sequence distributions for balanced
decision-making combined with value functions. The key innovation is the Adap-
tive Revaluation mechanism, which dynamically adjusts decision lengths by com-
paring current and future state values, enhancing long-term flexibility and tra-
jectory selection. DIAR enables precise Q-function learning through diffusion-
guided value functions and generates diverse latent trajectories for improved pol-
icy robustness. We evaluate DIAR on D4RL benchmarks, demonstrating compet-
itive performance and consistent improvements over existing offline RL methods.
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Figure 1: Performance comparison across D4RL environments with long-horizon and sparse-reward
Maze2D tasks. Our method (DIAR) consistently outperforms Diffuser and LDCQ.

1 Introduction

Offline reinforcement learning (offline RL) is a type of reinforcement learning where an agent learns
a policy using pre-collected datasets instead of gathering data through direct interactions with the
environment [1]. By avoiding real-world interactions, offline RL eliminates safety concerns and
makes efficient use of collected data, which is especially beneficial when gathering new data is
costly or time-consuming. However, offline RL depends on the dataset, meaning the policy it learns
may perform poorly if the data is low quality or biased. Moreover, a distributional shift can occur
during the learning from offline data [2], leading to degraded performance in the real environment.

To overcome these limitations, recent research has leveraged diffusion models, a type of genera-
tive model [3]. Incorporating diffusion models allows for learning the overall distribution of state
and action spaces, allowing decisions to be made based on this knowledge. Methods such as Dif-
fuser [3] and Decision Diffuser [4] use diffusion models to predict entire decision horizons simul-
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taneously rather than autoregressively, achieving strong performance in long-horizon tasks. Addi-
tionally, methods like LDCQ [5] propose using latent diffusion models to learn the Q-function,
allowing the Q-function to make more appropriate predictions for out-of-distribution state-actions.
While many diffusion-based offline RL methods bypass Q-functions, recent research has proposed
approaches that leverage diffusion models to assist Q-learning [5, 6]. This enables handling Q-values
across various states and actions, with diffusion-generated samples improving agent performance.

Therefore, we propose DIAR (Diffusion-model-guided Implicit Q-learning with Adaptive Revalu-
ation), which integrates value functions and diffusion-generated samples into training and decision
processes. This approach provides an objective assessment of current states, enabling Q-functions
to balance long-horizon decision-making with step-by-step refinement. The Q-function and value
function alternately learn from datasets and diffusion samples, while the value function reevaluates
decisions to explore optimal action sequences.

DIAR consistently outperforms existing offline RL algorithms, particularly in environments involv-
ing complex route planning and long-horizon tasks. Our method achieves strong performance on
challenging benchmarks, including Maze2D, AntMaze, and Kitchen [7], demonstrating the poten-
tial of diffusion models to enhance policy abstraction and adaptability in offline RL.

Figure 2: DIAR-generated trajectories in challenging Maze2D situations. DIAR reliably reaches the
goal even from starting points (blue) that are far from the goal (red). DIAR shows strong perfor-
mance regardless of starting position.

2 Preliminary: Latent Diffusion Reinforcement Learning

To train the Q-network, a diffusion model that has trained based on latent representations is required.
The first step is to learn how to represent an action-state sequence of length H as a latent vector using
(-Variational Autoencoder (5-VAE) [8]. The second step is to train the diffusion model using the
latent vectors generated by the encoder of the S-VAE. This allows the diffusion model to learn
the latent space corresponding to the action-state sequence. Subsequently, the Q-network is trained
using the latent vectors generated by the diffusion model.

Latent representation by 5-VAE. The 3-VAE plays three key roles in the initial stage of our model
training. First, the encoder qp,, (2|St:t+ 1, @r:e+ 1) must effectively represent the action-state se-
quence S¢.¢4 1, @414 f from the dataset D into a latent vector z. Second, the distribution of z gener-
ated by the 5-VAE must be conditioned by the state prior pg_(z|s;). This is learned by minimizing
the KL-divergence between the latent vector generated by the encoder and the one generated by the
state prior. The formation of the latent vector is controlled by adjusting the 8 value, which deter-
mines the weight of KL-divergence. Lastly, the policy decoder 7y, (a¢|st, 2) of the 5-VAE must be
able to accurately decode actions when given the current state and latent vector as inputs. These three
objectives are combined to train the 5-VAE by maximizing the evidence lower bound (ELBO) [9]
as shown in Eq. 1.

t+H—1
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Training latent vector with a diffusion model. The latent diffusion model (LDM) effectively learns
latent representations, focusing on the latent space instead of the original data samples [10]. The
model minimizes a loss function that predict the initial latent z; generated by the VAE encoder gy,
rather than noise as in traditional diffusion models. H-length trajectory segments Sy.¢ f7, Qt.t+ f are
sampled from dataset D and paired with initial states and latent variables (s, z;). The focus lies on
modeling the prior p(z|s;) to capture the distribution of latent z given the state s;. A conditional
latent diffusion model (1, (z|s;) is utilized and refined with a time-dependent denoising function
(27, 8¢, §) to reconstruct 2° through the denoising step j ~ [1,T]. Consequently, the LDM is
trained by minimizing the loss function £(v) as given in Eq. 2.

‘C(dj) = IEl‘j,(s,a),zt,zj (”zt - uw(zj, 3t7j)H2)
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j~ LT, (s,a) ~ D,z ~ qs(2ls,a), 27 ~ py(27|2°)

Q-network by latent representation. To train the Q-network, Eq. 3 reduces extrapolation errors
by restricting policy updates to the empirical distribution of the offline dataset [5]. Prioritizing tra-
jectory accuracy over single-step precision allows the model to mitigate compounding errors and
remain adaptable to novel tasks or goals unseen during training. Furthermore, the integration of
temporal abstraction and latent space modeling notably enhances the mechanisms underlying credit
assignment and improves the effectiveness of policy optimization.

Q(st,2¢) < Q(8t,2¢) + & |1+ max  Q(Se4m, 2y ) — Q(Se, 2t) &)
24t H Y HY

The latent vector z; , ;; generated by the diffusion model is utilized in the training of the Q-function.
The Q-function learns the relation between the Q(s¢4 1, 2;, ;) and Q(s¢, 2¢) like Eq. 3, which are
based on the initial state s; and latent vector z; pairs present in the dataset, and the z; ;; generated
by the diffusion model. 74,1y denotes the sum of rewards with discount factor . This enables the
model to adapt to new tasks or goals that were not observed in the offline data. Furthermore, the
integration of temporal abstraction and latent space modeling significantly enhances the mechanism
of credit assignment, thereby improving the effectiveness of policy optimization. According to Eq. 3,
the trained Q-function is used such that, as shown in Eq. 4, when a state s; is given, the decision is
made by selecting the action that has the highest Q-value.

m(sy) = mo(ay| argmax Q(sy, 2z;)) 4)

zirvpiy (2]81)

3 Proposed Method

Using diffusion models to address long-horizon tasks typically involves training over the full trajec-
tory length [3]. This approach differs from autoregressive methods that focus on selecting the best
action at each step, as it learns the entire action sequence over the horizon. This allows the model
to learn long sequences of decisions at once and generate a large number of actions in a single pass.
However, predicting decisions across the entire horizon may not always lead to optimal outcomes,
as the primary goal is to generate a sequence of decisions corresponding to the sequence length.

Additionally, there is a well-known problem of overestimating the Q-value when training a Q-
network [11, 12, 13, 14, 15]. This occurs when certain actions, appearing intermittently, are as-
signed a high Q(s, a) value. In these cases, the state may not actually hold high value, but the
Q-value becomes “lucky” and inflated. Therefore, it is essential to ensure that the Q-network does
not overestimate and can correctly assess the value based on the current state.

To resolve both of these issues, we propose Diffusion-model-guided Implicit Q-learning with Adap-
tive Revaluation (DIAR), introducing a value function to assess the value of each situation. Unlike
the Q-network, which learns the value of both state and action, the state-value function learns only



the value of the state. By introducing constraints from the value function, we can train a more bal-
anced Q-network and, during the decision-making phase, make more optimal predictions with the
help of the value function.
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Figure 3: Three training stages of DIAR. (a) The 8-VAE is trained by encoding a state-action se-
quence spanning an H-length horizon into a latent space, followed by a policy decoder that outputs
actions based on the encoded latent z and the state s; contained within it. (b) A diffusion model is
trained using the encoded latent and the initial state s;. (¢) The Q-network is trained on the offline
dataset, while the value network is trained on data generated by the diffusion model. This inter-
play allows the value function and Q-function to guide each other, enabling more balanced learning
across both offline samples and generated data.

3.1 Diffusion-model-guided Q-learning Framework

The value-network V,, with parameter 7 evaluates the value of the current state s;, and the Q-network
Q4 with parameter ¢ evaluates the value of the current state s; and action a;. Additionally, by
combining value-network learning with Q-network learning, constraints can be applied to the Q-
network, resulting in more balanced training. Instead of relying on the dataset to train the value
network and Q-network, we enhance the process by introducing latent vectors generated through a
diffusion model. By doing so, we minimize extrapolation errors for unseen decisions in the dataset,
leading to more accurate value estimation.

The training of the value-network should aim to reduce the difference between the Q-value and the
state-value. Therefore, it is crucial to include the difference between Q(s, z) and V (s) in the loss
function. To achieve this, rather than using MSE loss, we apply weights to make the data distribution
more flexible and to respond more sensitively to differences. We use an asymmetric weighted loss
function that multiplies the weights of variables u by an expectile factor 7, as shown in Eq. 5. In the
next step, u is used as the difference between the Q-value and the state-value for loss calculation.

L3 (u) = |7 = I(u < 0)|u® (5)

By using an asymmetrically weighted loss function, the value-network is trained to reduce the dif-
ference between the Q-value and the state-value. We set 7 to a value greater than 0.5 and apply Eq. 6
to assign more weight when the difference between the Q-value and the value is large. Additionally,



instead of using latent vector encoded from the dataset, we use latent vectors 2z, generated by the
diffusion model to guide the learning of a more generalized Q-network.

Ly (1) = Bain, 20w, [L2 (Qy(50.20) = Vi(s1)) | ©)

After the loss for the value-network is calculated, the loss for the Q-network is computed. The
loss in Eq. 7 is not based on the Q-network alone but is learned based on the current value and
reward, ensuring balance with the value network. The value-network learning, using latent vectors
generated by the diffusion model, allows it to handle diverse trajectories, while the Q-network is
trained on data pairs (8¢, 24, Tt 5, St+) ~ D from the dataset, learning the Q-value of state-
latent vector pairs based on existing trajectories. Q-network and value-network training processes
form a complementary relationship.

Lo(¢) = Es, 2 iriesm80sm)~D [(Tt:t+H + AV, (8e4m) — Qolst, 2))° @)

To ensure stable Deep Q-network training and prevent Q-value overestimation, we employed the
Clipped Double Q-learning method [16]. Additionally, we used a prioritized replay buffer 3, where
the Q-network is trained based on the priority of the samples [17]. B stores (8¢, 2¢, Tt.4+H, St—H)>
which are generated from the offline dataset. The state, action, and reward are taken from the offline
dataset, and the latent vector z; is encoded by gy, (2|8, a). The encoded latent vector z;, along with
the current state s, is used to guide the MLP model through the diffusion model to learn the Q-value.
The Q-network and value-network are trained alternately, maintaining a complementary relationship
through their respective loss functions. The value-network’s loss Ly (1) is calculated based on the
difference between the Q-value and the state-value, which is adjusted by the expectile factor 7. The
Q-network’s loss L (¢) is computed using the Bellman equation with the reward and value, where
the effect of distant timesteps is controlled by the discount factor . The calculated Q-network loss
Lo(¢) is updated in the model @), via backpropagation, and the target Q-network @ é is gradually
updated based on the update rate p. The detailed process can be found in Algorithm 1.

Algorithm 1: Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation

1 Input: Q-network @)y, target Q-network @ & value-network V,,, diffusion model 1, (2]s),
prioritized replay buffer 53, horizon H, number of sampling latent vectors n, latent vector
z, update rate p, max iteration 7, learning rate Ag, Ay

b

t«0

while t < T do

(8,26, Tt St4m) < B

n bW N

6 Z?+Hv Zt1+H7 cee Z:?I; — py(z]8trm)

7 n<n—AvVyLv(n) # Training value-network
8 O+ 0 —XoVyLg(d) # Training Q-network
9 | b po+(1—p)d

10 Update priority of B
11 end

3.2 Adaptive Revaluation in Policy Execution

DIAR method reforms a decision if the value of the current state is higher than the value of the state
after making a decision over the horizon length H. We refer to this process as Adaptive Revaluation.
Using the value-network V), if the current state’s value V' (s;) is greater than V(s ), the value
after making a decision for H steps, the method generates a new latent vector z; from the current



state s; and continues the decision-making process. When predicting over the horizon length, there
may be cases where taking a different action midway through the horizon would be more optimal.
In such cases, the value-network V;, checks this, and if the condition is met, a new latent vector is
generated.
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Figure 4: Inference step with DIAR. The current state s; is put into the diffusion model to extract
candidate latent vectors. Then, the latent vector z; with the highest ()(s¢, z;) is selected as the best
latent vector. This latent vector z; is subsequently decoded to generate the action a;. Additionally,
the future state s; p is also decoded to be used for calculating the future value V' (s; 7).
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Figure 5: The process of finding a better trajectory using Adaptive Revaluation. The process involves
making a decision and taking action based on the skill latent z; with the highest Q(s¢, z;). The
current latent vector z; is used to predict the future state s; p, based on which the value V (s;4 )
of the future state s;1 p is calculated. (a) If the value V'(s;) of the current state s; is greater than the
value V' (s, ) of the future state s;4 g, it is considered non-ideal, and re-sampling is performed.
(b) If the value V'(s¢ ) of the future state s; s is greater than or equal to the value V (s;) of the
current state s, it is considered ideal, and the action a; decoded by the latent vector z; is executed
continuously.

Adaptive Revaluation uses the difference in value to examine whether the agent’s predicted decision
is optimal. Since the current state s; can be obtained directly from the environment, it is easy to
compute the value V (s;) of the current state s;. Whether the current trajectory is optimal can be
determined using a state decoder fy (S r|St, z¢). By inputting the current state s; and latent vector
z; into the state decoder, the future state s; i can be predicted. This predicted s; g is passed into
the value-network V;, to estimate its future value V' (s,4+ ). By comparing these two values, if the
current value V (s;) is higher, the agent generates new latent vectors and selects the one with the
highest Q(s¢, z;). The detailed Adaptive Revaluation algorithm is shown in Appendix B.

4 Experiments

We compare the performance of our model with other models under various conditions and environ-
ments. We focus on goal-based tasks in environments with long-horizons and sparse rewards. For
offline RL, we use the Maze2D, AntMaze, and Kitchen datasets to test the strengths of our model in
long-horizon sparse reward settings [7]. These environments feature very long trajectories in their



datasets, and rewards are only given upon reaching the goal, making them highly suitable for eval-
uating our model. We also compare the performance improvements achieved when using Adaptive
Revaluation, analyzing whether it allows for reconsideration of decisions when incorrect ones are
made and enables the generation of the correct trajectory. Furthermore, to ensure more accurate per-
formance measurements, all scores are averaged over 100 runs and repeated 5 times, with the mean
and standard deviation reported.

4.1 Performance on Offline RL Benchmarks

In this section, we compare the performance of our model in offline RL. To evaluate our model, we
compare it against various models. These include behavior cloning (BC), which imitates the dataset,
and offline RL methods based on Q-learning, such as IQL [18] and IDQL [19]. We also compare
our model with DT [20], which uses the transformer architecture employed in LLMs, and methods
that use diffusion models, such as Diffuser [3], DD [4], and LDCQ [5]. Through these comparisons
with various algorithms, we conduct a quantitative performance evaluation of our model.

Datasets like Maze2D and AntMaze require the agent to learn how to navigate from a random start-
ing point to a random location. Simply mimicking the dataset is insufficient for achieving good
performance. The agent must learn what constitutes a good decision and how to make the best judg-
ments throughout the trajectory. Additionally, the ability to stitch together multiple paths through tra-
jectory combinations is essential. In particular, the AntMaze dataset involves a complex state space
and requires learning and understanding high-dimensional policies. Our method DIAR consistently
demonstrated strong performance in these challenging tasks, where high-dimensional abstraction
and reasoning are critical. For more demonstrations, please refer to the Appendix G.

Table 1: Comparison with other methods in long horizon sparse reward D4RL environments.

Dataset BC IQL DT IDQL Diffuser DD LDCQ DIAR

maze2d-umaze-v1 3.8 474 273 579 113.5 - 1342 141.8+£4.3
maze2d-medium-v1 303 349 321 895 121.5 - 1253  139.243.5
maze2d-large-v1 50 586 181 90.1 123.0 - 150.1  200.3+3.4

antmaze-umaze-diverse-v2 456 622 54.0 62.0 - - 81.4 88.8t1.5
antmaze-medium-diverse-v2 0.0 70.0 0.0 83.5 45.5 24.6 68.9 68.246.7
antmaze-large-diverse-v2 00 475 0.0 56.4 22.0 7.5 57.7 60.6+2.4

kitchen-complete-v0 65.0 625 - - - - 62.5 68.8+2.1
kitchen-partial-vO 38.0 463 420 - - 570 678 63.3+0.9
kitchen-mixed-v0 51.5 51.0 50.7 - - 65.0 623 60.8+1.4

4.2 TImpact of Adaptive Revaluation

In this section, we analyze the impact of Adaptive Revaluation. We directly compare the cases where
Adaptive Revaluation is used and not used in our model. The test is conducted on long-horizon
sparse reward tasks, where rewards are sparse. For overall training, an expectile value of 7 = 0.9
was used, with H = 30 for Maze2D and H = 20 for AntMaze and Kitchen. Other training settings
were generally the same, and detailed configurations can be found in the Appendix A.

When Adaptive Revaluation is used, it checks whether a better decision might exist according to
the value function and discovers a better latent vector to re-create the trajectory. If the value of the
current state is higher than the value of a future state, it indicates that a better trajectory might exist
than the currently selected decision. This enables the agent to choose a more accurate abstraction
and form a more optimal trajectory based on it. The improvement in decision-making with Adaptive
Revaluation can be observed in Table 2, which shows how much the agent’s decisions improve when
using this method.



(a) umaze w/o AR (b) medium w/o AR (c) large w/o AR
(d) umaze w/ AR (e) medium w/ AR (f) large w/ AR

Figure 6: (a)~(c) Three Maze2D results that only the Q-function is used without Adaptive Reval-
uation. (d)~(f) Three Maze2D results for improved decision making using Adaptive Revaluation.
Even without Adaptive Revaluation, our model performs well, but we can observe that using Adap-
tive Revaluation enables more efficient decision-making.

Table 2: Comparison of performance changes with Adaptive Revaluation (AR) in D4RL tasks.

Dataset DIAR w/o AR DIAR w/ AR
maze2d-umaze-v1 135.6£2.8 141.8+4.3
maze2d-medium-v1 138.2+3.1 139.2+3.5
maze2d-large-v1 193.5+£4.7 200.3+3.4
antmaze-umaze-diverse-v2 88.8£1.5 85.4+2.6
antmaze-medium-diverse-v2 68.24+6.7 67.4+3.4
antmaze-large-diverse-v2 56.0+£4.6 60.6t2.4
kitchen-complete-v0 68.81+2.1 63.8+3.0
kitchen-partial-v0 63.3+0.9 63.0£2.5
kitchen-mixed-v0 60.0+0.7 60.8+1.4

5 Conclusion

In this study, we proposed Diffusion-model-guided Implicit Q-learning with Adaptive Revalua-
tion (DIAR), which leverages diffusion models to enhance abstraction capabilities and train more
adaptive agents in offline RL. Our approach consists of two key components. First, we introduced
an Adaptive Revaluation algorithm based on the value function, enabling long-horizon predic-
tions while allowing agents to flexibly revise decisions for better outcomes. Second, we devel-
oped Diffusion-model-guided Implicit Q-learning to address the challenge of evaluating out-of-
distribution state-action pairs in offline RL. By leveraging generative diffusion models, we balance
value function and Q-function learning to cover a broader range of scenarios. Through the combina-
tion of these methods, DIAR demonstrates strong performance in long-horizon sparse reward tasks
including Maze2D, AntMaze, and Kitchen. Notably, DIAR achieves competitive results without re-
quiring extensive task-specific hyperparameter tuning. We believe that latent diffusion models offer
significant advantages for offline RL and hold considerable potential for applications across various
domains, particularly in robotics.
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A Experiments Details

DIAR consists of three main components: the S-VAE for learning latent skills, the latent diffusion
model for learning distributions through latent vectors, and the Q-function, which learns the value of
state-latent vector pairs and selects the best latent. These three models are trained sequentially, and
when learning the same task, the earlier models can be reused. Detailed model settings and hyperpa-
rameters are discussed in the next section. For more detailed code implementation and process, you
can refer directly to the code on GitHub.

A.1 [-Variational Autoencoder

The -VAE consists of an encoder, policy decoder, state prior, and state decoder. The encoder uses
two stacked bidirectional GRUs. The output of the GRU is used to compute the mean and standard
deviation. Each GRU output is passed through an MLP to calculate the mean and standard deviation,
which are then used to compute the latent vector. This latent vector is used by the state prior, state
decoder, and policy decoder. The policy decoder takes the latent vector and the current state as input
to predict the current action. The state decoder takes the latent vector and the current state to predict
the future state. Lastly, the state prior learns the distribution of the latent vector for the current state,
ensuring that the latent vector generated by the encoder is trained similarly through KL divergence.

In Maze2D, H = 30 is used; in AntMaze and Kitchen, H = 20 is used. The diffusion model for the
diffusion prior used in 3-VAE training employs a transformer architecture. This model differs from
the latent diffusion model discussed in the next section, and they are trained independently. Training
the 5-VAE for too many epochs can lead to overfitting of the latent vector, which can negatively
impact the next stage.

Table 3: Hyperparameters for VAE training

Hyperparameter Value
Learning rate Se-5
Batch size 128
Epochs 100
Latent dimension 16
B 0.1
Diffusion prior steps 200
Optimizer Adam

A.2 Latent Diffusion Model

The generative model plays the role of learning the distribution of the latent vector for the current
state. The current state and latent vector are concatenated and then re-encoded for use. The archi-
tecture of the diffusion model follows a U-Net structure, where the dimensionality decreases and
then increases, with each block consisting of residual blocks. Unlike the traditional approach of pre-
dicting noise ¢, the diffusion model is trained to directly predict the latent vector z. This process is
constrained by Min-SNR-v. Overall, the diffusion model operates similarly to the DDPM method.

A.3 Q-learning

In our approach, we utilize both a Q-network and a Value network. The Q-network follows the
DDOQN method, employing two networks that learn slowly according to the update ratio. The Value
network uses a single network. Both the Q-network and the Value network are structured with re-
peated MLP layers. The Q-network encodes the state into a 256-dimensional vector and the latent
vector into a 128-dimensional vector. These two vectors are concatenated and passed through ad-
ditional MLP layers to compute the final Q-value. The Value network only encodes the state into a
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Table 4: Hyperparameters for Diffusion model training

Hyperparameter Value

Learning rate le-4
Batch size 128
Epochs 450
Diffusion steps 500
Drop probability 0.1
Min-SNR () 5
Optimizer Adam

256-dimensional vector, which is then used to compute the value. Between the linear layers, GELU
activation functions and LayerNorm are applied. In this way, both the Q-network and Value network
are implicitly trained under the guidance of the diffusion model.

Table 5: Hyperparameters for Q-learning

Hyperparameter Value
Learning rate Se-4
Batch size 128
Discount factor (v) 0.995
Target network update rate ~ 0.995
PER buffer o 0.7
PER buffer 3 0.3—1
Number of latent samples 500
Expectile (1) 0.9
extra steps 5
Scheduler StepLR
Scheduler step 50
Scheduler ~ 0.3
Optimizer Adam

B DIAR Policy Execution Details

We provide a detailed explanation of how DIAR performs policy execution. It primarily selects the
latent with the highest Q-value. However, if the current state value V' (s;y},) is higher than the future
state value V' (ss4 ), it triggers another search for a new latent. DIAR repeats this process until it
either reaches the goal or the maximum step 7" is reached.

C Training Process for 5-VAE

This section details the process by which the 5-VAE is trained. The 8-VAE consists of four models:
the skill latent encoder, policy decoder, state decoder, and state prior. These four components are
trained simultaneously. Additionally, a diffusion prior is trained alongside to guide the 5-VAE in
generating appropriate latent vectors. The detailed process can be found in Algorithm 3.

D Training Process for Latent Diffusion Model
This section also provides an in-depth explanation of how the latent diffusion model is trained. The

goal of the latent diffusion model is to learn the distribution of latent vectors generated by the (-
VAE. The latent diffusion model is trained by first converting the offline dataset into latent vectors
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Algorithm 2: DIAR Policy Execution

1 Input: environment Env, Q-network Q(s, a), value-network V' (s), policy decoder
Top (als, z), state decoder fg(s;+m|s¢, 2¢), diffusion model (1, (z|s), horizon H, max
step T, number of sampling latent vectors n, latent vector z

2t+0

3 done < False

4 while not done do

5 sy < Env

6 | 202} 20 py(zls) # Sampling latents vectors from diffusion model
7 Q(81,2),Q(st,21), -, Q81,2 1) + Q(s,2) # Calculate Q value
8 2} < argmax Q(sy, 2}), 2' € {20, 2},... 21}

24

9 Stvm < fo(Sermlse, z8) # Predict future state
10 V(sirm) < Vy(s) # Calculate value of future state
11 h<+0

12 for h < H do

13 S¢yn — Env

14 V(se4n) < Vy(s) # Calculate value of current state
15 ifV(sihm) < V(si4n) then

16 | break

17 end

18 else .

19 Appn < Top (@tn|Sttn, 2)

20 Execute action a5,

21 Update done by Env

22 h+—h+1

23 end

24 end

25 t—t+h
26 end

using the encoder of the 3-VAE, and then learning from these latent vectors. The detailed process
can be found in Algorithm 4.

E Theoretical Analysis of DIAR

In this section, we prove that in the case of sparse rewards, when the current timestep ¢, if the value
V(s;) of the current state s; is higher than the value V' (s;4 ) of the future state s; g, there is a
more ideal trajectory than the current trajectory. An ideal trajectory is defined as one where, for all
states at timestep k, the discount factor 0 < v < 1 ensures that V(s;) < V(Sk41). This means
that for an agent performing actions toward a goal, the value of each state in the trajectory increases
monotonically.

Now, consider an assumption about an ideal trajectory: for any timesteps ¢, j with ¢ < j, we assume
that V' (s;) > V(s;) for s; and s; from the dataset D. Furthermore, since the state s; is not the goal
and we are in a sparse reward setting, Vr(s;, a;) = 0. If we write the Bellman equation for the value
function, it results in Eq. 8.

V(si) = E(s;,a5,8,,1)~D (86, @) + 7YV (8i41)] ®)
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Algorithm 3: Training Beta Variational Autoencoder

1 Input: Dataset D, state s;, action ay, epoch M, horizon H, diffusion steps T, Min-SNR 7,

n A W N

o e 9

11
12

13
14

state prior py, (z¢|s:), latent encoder qp, (2¢|St.t+ 5, Qi1+ 1), policy decoder
Top (@tyi|St4i, 2t), state decoder fo(S¢tm|St, 2t), S-VAE parameter 6, diffusion prior
v, KL regularization coefficient

iter < 0
for iter < M do

St:+H, G+ H < D

2zt < Qog (Zt|Sttrm, QrerH) # Encoding latent vector
Ly — Zfi_ol log m,, (@t4i|St4i,s 2t) # Reconstruction loss
Lo+ Drr1(qo,(zt|Stt+m, arevm) || Do, (2¢]8t)) # KL divergence with state prior
L3 < —log fo(st+m|st, 2t) # State decoder loss
Noise latents z; from Gaussian noise, j ~ U[1, T

L4 + min{SNR(5), v}(||zt — (25, 8¢, 3)|1?) # Diffusion prior loss
Liotal < L1+ BLy + L3+ Ly

Update € to minimize Ly¢q;

iter < iter + 1

end

Algorithm 4: Training Latent Diffusion Model

1 Input: Dataset D, state s, action a;, epoch M, horizon H, diffusion steps 7', Min-SNR ,

11

latent encoder gy, (2]s, a), diffusion model 15, variance schedule
al,...aT7d17...dT7617.../8T

iter < 0
for iter < M do

Sti+H, Qt:t+H < D

2t < Qog (2|8t 1, Qrey 1) # Encoding latent vector
Sample diffusion time j ~ U[1, T

Noise latents from Gaussian noise z; ~ N (/@;z, (1 — &;)I)

L+ min{SNR(j), v}(||zt — py (2, 8¢, 5)||?) # Diffusion model loss
Update 1) to minimize £

tter < iter 4+ 1

end

Eq. 8 represents the value function V'(s;) when there is a difference of one timestep. The value
function V'(s;) can be computed using the reward received from the action taken in the current state
s; and the value of the next state s;; ;. Therefore, by iterating Eq. 8 to express the timesteps from 7

to j, we obtain Eq. 9.

Since the current environment is sparse in rewards, no reward is given if the goal is not reached.
Therefore, in Eq. 9, all reward r(s;, a;) terms are zero. By substituting the reward as zero and

J—1
V(St) = E(si;j,ai;j)ND Z rytilr(sta at) + ryjilv(sj)
t=1

reorganizing Eq. 9, we can derive Eq. 10.

V(s1) = E(Sq:j,ai:j)ND [Vjiiv(sj)]
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Since the magnitude of v is 0 < v < 1, the term 77 ~*V(s;) is always less than or equal to V (s;).
This contradicts the initial assumption, indicating that the assumption is incorrect. Therefore, for any
ideal trajectory, all value functions V'(s;) must follow a monotonically increasing function. In other
words, if the trajectory predicted by the agent is an ideal trajectory, the value V' (s;) after making
a decision over the horizon H must always be greater than the current value V'(s;). If the current
value V(s;) is greater than the future value V'(s;), then this trajectory is not an ideal trajectory.
Consequently, generating a new latent vector z; from the current state s; to search for an optimal
decision is a better approach.

F Diffusion Probabilistic Models

Diffusion models [21, 22] function as latent variable generative models, formally expressed through
the equation py () : f po(xo.1), dx1.7. Here, x1, . . ., xp denote the sequence of latent variables,
integral to the model’s capacity to assimilate and recreate the intricate distributions characteristic of
high-dimensional data types like images and audio. In these models, the forward process g(x;|z:—1)
methodically introduces Gaussian noise into the data, adhering to a predetermined variance schedule
delineated by f31,..., 8. This step-by-step addition of noise outlines the approximate posterior
q(x1.7|x0) within a structured mathematical formulation, which is specified as follows:

T
q Z1: T|$0 Hq $t|$t 1
t=1

Q($t|fﬂt—1) = N(xtE v1- 5t£ﬂt—1,ﬂt1)

The iterative denoising process, also known as the reverse process, enables sample generation from
Gaussian noised data, denoted as p(xr) = N(xr;0,I). This process is modeled using a Markov
chain, where each step involves generating the sample of the subsequent stage from the sample of
the previous stage based on conditional probabilities. The joint distribution of the model, pg(xo.7),
can be represented as follows:

(1)

=

po(xo.r) :=p(zr) | | po(zi—1]|ze), (12)

=1
po(@i_1|@e) = N(@p—1; po(xs, 1), Xo (e, 1))

In the Diffusion Probabilistic Model, training is conducted via a reverse process that meticulously re-
constructs the original data from noise. This methodological framework allows the Diffusion model
to exhibit considerable flexibility and potent performance capabilities. Recent studies have further
demonstrated that applying the diffusion process within a latent space created by an autoencoder
enhances fidelity and diversity in tasks such as image inpainting and class-conditional image syn-
thesis. This advancement underscores the effectiveness of latent space methodologies in refining the
capabilities of diffusion models for complex generative tasks [10]. In light of this, the application
of conditions and guidance to the latent space enable diffusion models to function effectively and to
exhibit strong generalization capabilities.

G Qualitative Demonstration through Maze2D

Following the main section, we present additional results in the Maze2D environments, as shown in
Figure 7. We qualitatively demonstrate that DIAR consistently generates favorable trajectories.
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(a) Maze2D-umaze
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(b) Maze2D-medium
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(c) Maze2D-large

Figure 7: DIAR-generated trajectories in diverse Maze2D demonstration. DIAR reliably reaches the
goal even from starting points (blue) that are far from the goal (red). It even exhibits significant
advantages in cases where decisions involve longer horizons.
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