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ABSTRACT

We explore the impact of entropy change in deep learning systems via noise in-
jection at different levels, i.e., the latent space and input. The applications in this
work focus on supervised learning tasks within computer vision, but the proposed
method can be further adapted to other fields. Noise is conventionally viewed as
a harmful perturbation in various deep learning architectures, such as convolu-
tional neural networks (CNNs) and vision transformers (ViTs), as well as differ-
ent learning tasks like image classification and transfer learning. However, this
work shows noise can be an effective way to influence the entropy of the learn-
ing systems. We demonstrate that specific noise can boost the performance of
various deep architectures under certain conditions. We theoretically prove the
enhancement gained from positive noise by reducing the task complexity defined
by information entropy and experimentally show the significant performance gain
in large image datasets, such as the ImageNet. Herein, we use the information en-
tropy to define the complexity of the task. We categorize the noise into two types,
positive noise (PN) and harmful noise (HN), based on whether the noise can help
reduce the complexity of the task. Extensive experiments of CNNs and ViTs have
shown performance improvements by proactively injecting positive noise, where
we achieved an unprecedented top 1 accuracy of over 95% on ImageNet. Both the-
oretical analysis and empirical evidence have confirmed that the presence of posi-
tive noise can benefit the learning process, while the traditionally perceived harm-
ful noise indeed impairs deep learning models. The different roles of noise offer
new explanations for deep models on specific tasks and provide a new paradigm
for improving model performance. Moreover, it reminds us that we can influence
the performance of learning systems via information entropy change.

1 INTRODUCTION

In supervised learning tasks, models are carefully crafted to improve the quality of representations
and mappings between input data and their corresponding labels. A well-trained model can signif-
icantly reduce task uncertainty, thus providing predictions with a remarkable degree of confidence
throughout the training process Van Engelen & Hoos (2020). Fortunately, the concept of entropy
from information theory offers an excellent framework for illustrating uncertainty and, consequently,
offers insights into enhancing the performance of learning systems through entropy manipulation
Shannon (1948). A straightforward but effective way to influence the entropy of the learning sys-
tems is to add noise Li (2022). Noise, conventionally regarded as a hurdle in machine learning tasks,
is universal and unavoidable in science and engineering tasks, most works assume that noise has a
negative impact on the current task Sethna et al. (2001) Owotogbe et al. (2019). However, noise
can actually help reduce the task complexity that is defined by information entropy and positively
influence learning systems Radnosrati et al. (2020) Zhang et al. (2023).

We recognize that task complexity is the essential concept in our work that needs to be explicitly
introduced in the first place. We utilize task complexity to characterize a learning system. High
task complexity signifies greater uncertainty, indicating suboptimal performance, while low task
complexity denotes lower uncertainty, signifying a high-performance learning system. The task
complexity is measured by the information entropy, rooted in the information theory. By using the
definition of task complexity, it is possible to categorize noise into two distinct categories: positive

1



Under review as a conference paper at ICLR 2024

noise (PN) and harmful noise (HN). PN decreases the complexity of the task, while HN increases
it, aligning with the conventional understanding of noise.

Our work aims to comprehensively investigate how various types of noise affect task complexity
and impact learning system performance. Specifically, the study focuses on three common types of
noise, i.e., Gaussian noise, linear transform noise, and salt-and-pepper noise. Gaussian noise refers
to random fluctuations that follow a Gaussian distribution in pixel values at the image level or latent
representations in latent space Russo (2003). Linear transforms, on the other hand, refer to affine
elementary transformations to the latent representations or input images, where the transformation
matrix is row equivalent to an identity matrix Marcus & Moyls (1959). Salt-and-pepper noise is a
kind of image distortion that adds random black or white values at the image level or to the latent
representations Chan et al. (2005).

This paper analyzes the impact of these types of noise on the performance of deep learning models
for image classification and domain adaptation tasks. Two popular model families, Vision Trans-
formers (ViTs) and Convolutional Neural Networks (CNNs), are considered in the study. Image
classification is one of the most fundamental tasks in computer vision, where the goal is to predict
the class label of an input image. Domain adaptation is a practically meaningful task where the
training and test data come from different distributions, also known as different domains. By inves-
tigating the effects of different types of noise on ViTs and CNNs for typical deep learning tasks, the
paper provides insights into the influences of noises on deep models. The findings presented in this
paper hold practical significance for enhancing the performance of various types of deep learning
models in real-world scenarios.

The contributions of this paper are summarized as follows:

• We re-examined the conventional view that noise, by default, has a negative impact on deep
learning models. Our theoretical analysis and experimental results show that noise can be
a positive support for deep learning tasks.

• We conducted extensive experiments using various deep models, including CNNs and ViTs,
across different deep learning tasks such as classification and domain adaptation. By lever-
aging positive noise, we attained state-of-the-art (SOTA) results.

• We theoretically analyze the distinction between injecting noise at the image level and in
the latent space. Our findings reveal that injecting noise in the latent space significantly
reduces task complexity compared to image-level operations.

• The theory and framework of reducing task complexity via positive noise in this work can
be applied to any deep learning architecture. There is great potential for exploring the
application of positive noise in other deep-learning tasks beyond the image classification
and domain adaptation tasks examined in this study.

2 RELATED WORK

Positive Noise In fact, within the signal-processing society, it has been demonstrated that random
noise helps stochastic resonance improve the detection of weak signals Benzi et al. (1981). Noises
can have positive support and contribute to less mean square error compared to the best linear un-
biased estimator Radnosrati et al. (2020). Also, it has been reported that noise could increase the
model generalization in natural language processing (NLP) Pereira et al. (2021). Recently, the per-
turbation, a special case of positive noise, has been effectively utilized to implement self-refinement
in domain adaptation and achieved state-of-the-art performance Sun et al. (2022). The latest re-
search shows that by proactively adding specific noise to partial datasets, various tasks can benefit
from the positive noise Li (2022). Besides, noises are found to be able to boost brain power and be
useful in many neuroscience studies McClintock (2002) Mori & Kai (2002).

Deep Model Convolutional Neural Networks have been widely used for image classification, object
detection, and segmentation tasks, and have achieved impressive results LeCun & Bengio (1995)He
et al. (2016). However, these networks have limitations in terms of their ability to capture long-
range dependencies and extract global features from images. Recently, Vision Transformers has
been proposed as an alternative to CNNs Dosovitskiy et al. (2020). ViT relies on self-attention
mechanisms and a transformer-based architecture to enable global feature extraction and modeling
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of long-range dependencies in images Vaswani et al. (2017). ViT has demonstrated impressive
performance on a range of image classification tasks and has the potential to outperform traditional
CNN-based approaches.

3 PRELIMINARY

In information theory, the entropy Shannon (2001) of a random variable x is defined as:

H(x) =

{
−
∫
p(x) log p(x)dx if x is continuous

−
∑

x p(x) log p(x) if x is discrete
(1)

where p(x) is the distribution of the given variable x. The mutual information (MI) of two random
discrete variables (x, y) is denoted as Cover (1999):

MI(x, y) =DKL(p(x, y) ∥ p(x)⊗ p(y))

=H(x)−H(x|y) (2)

where DKL is the Kullback–Leibler divergence Kullback & Leibler (1951), and p(x, y) is the joint
distribution. The conditional entropy is defined as:

H(x|y) = −
∑

p(x, y) log p(x|y) (3)

The above definitions can be readily expanded to encompass continuous variables through the sub-
stitution of the sum operator with the integral symbol. In this work, the noise is denoted by ϵ if
without any specific statement.

Before delving into the correlation between task and noise, it is imperative to address the initial
crucial query of the mathematical measurement of a task T . With the assistance of information
theory, the complexity associated with a given task T can be measured in terms of the entropy of T .
Therefore, we can borrow the concepts of information entropy to explain the difficulty of the task.
For example, a smaller H(T ) means an easier task and vice versa.

Since the entropy of task T is formulated, it is not difficult to define the entropy change when
additional noise ϵ is present Li (2022),

△S(T , ϵ) = H(T )−H(T |ϵ) (4)

Formally, if the noise can help reduce the complexity of the task, i.e., H(T |ϵ) < H(T ) then the
noise has positive support. Therefore, a noise ϵ is defined as positive noise (PN) when the noise
satisfies △S(T , ϵ) > 0. On the contrary, when △S(T , ϵ) ≤ 0, the noise is considered as the
conventional noise and named harmful noise (HN).{

△S(T , ϵ) > 0 ϵ is positive noise
△S(T , ϵ) ≤ 0 ϵ is harmful noise

(5)

Moderate Model Assumption: The positive noise may not work for deep models with severe
problems. For example, the model is severely overfitting where models begin to memorize the
random fluctuations in the data instead of learning the underlying patterns. In that case, the presence
of positive noise will not have significant positive support in improving the models’ performance.
Besides, when the models are corrupted under brute force attack, the positive noise also can not
work.

4 METHODS

The idea of exploring the influence of noise on the deep models is straightforward. The framework is
depicted in Fig. 1. This is a universal framework where there are different options for deep models,
such as CNNs and ViTs. Through the simple operation of injecting noise into a randomly selected
layer, a model has the potential to gain additional information to reduce task complexity, thereby
improving its performance. It is sufficient to inject noise into a single layer instead of multiple
layers since it imposes a regularization on multiple layers simultaneously.

3



Under review as a conference paper at ICLR 2024

Input (Images) Predicted Classes

CNN (ResNet) ViT

Deep Model

Inject Noise

conv

pool

conv

conv

conv

conv

conv

conv

conv

conv

Average Pool

FC

..
.

Norm

Multi-Head

Attention

Norm

MLP

1×

Transformer Layer

Patch Embedding

Transformer Layer

..
.

FC

L×

Transformer Layer

Class token

FC: Fully Connected Layer

Noise

Choose a Random Layer

Noise

Class 1

Class 2

Class 3

Figure 1: An overview of the proposed method. Above the black line is the standard pipeline for
image classification. The deep model can be CNNs or ViTs. The noise is injected into a randomly
chosen layer of the model represented by the blue arrow.

For a classification problem, the dataset (X,Y ) can be regarded as samplings derived from DX ,Y ,
where DX ,Y is some unknown joint distribution of data points and labels from feasible space X
and Y , i.e., (X,Y ) ∼ DX ,Y Shalev-Shwartz & Ben-David (2014). Hence, given a set of k data
points X = {X1, X2, ..., Xk}, the label set Y = {Y1, Y2, ..., Yk} is regarded as sampling from
Y ∼ DY|X . The complexity of T on dataset X is formulated as:

H(T ;X) = H(Y ;X)−H(X) (6)

Accordingly, the operation of adding noise at the image level can be formulated as Li (2022):{
H(T ;X + ϵ) = −

∑
Y ∈Y p(Y |X + ϵ) log p(Y |X + ϵ) ϵ is additive noise

H(T ;Xϵ) = −
∑

Y ∈Y p(Y |Xϵ) log p(Y |Xϵ) ϵ is multiplicative noise
(7)

While the operation of proactively injecting noise in the latent space can be formulated as:{
HL(T ;X + ϵ) := H(Y ;X + ϵ)−H(X) ϵ is additive noise

HL(T ;Xϵ) := H(Y ;Xϵ)−H(X) ϵ is multiplicative noise
(8)

The definition of Eq. 8 differs from the conventional definition, as our method injects the noise into
the latent representations instead of the original images. The Gaussian noise is additive, the linear
transform noise is also additive, while the salt-and-pepper is multiplicative.

Gaussian Noise The Gaussian noise is one of the most common additive noises that appear in
computer vision tasks. The Gaussian noise is independent and stochastic, obeying the Gaussian
distribution. Without loss of generality, defined as N (µ, σ2). Since our injection happens in the
latent space, therefore, the complexity of the task is:

HL(T ;X +N ) = H(Y ;X +N )−H(X). (9)

We assume that both X and Y follow a multivariate normal distribution, which is a typical assump-
tion in signal processing. Additionally, we can transform the distributions of X and Y to make
them (approximately) follow the multivariate normal distribution, even if they initially do not Box
& Cox (1964) Feng et al. (2014). According to the definition in Equation 4, the entropy change with
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Gaussian noise is:
△S(T ,N ) =H(T ;X)−HL(T ;X +N )

=H(Y ;X)−H(X)− (H(Y ;X +N )−H(X))

=H(Y ;X)−H(Y ;X +N )

=
1

2
log

|ΣX ||ΣY −ΣY XΣ−1
X ΣXY |

|ΣX+N ||ΣY −ΣY XΣ−1
X+NΣXY |

=
1

2
log

1

(1 + σ2
ϵ

∑k
i=1

1
σ2
Xi

)(1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))
)

(10)

where λ =
σ2
ϵ

1+
∑k

i=1
1

σ2
Xi

, σ2
ϵ is the variance of the Gaussian noise, cov(Xi, Yi) is the covariance of

sample pair Xi, Yi, σ2
Xi

and σ2
Yi

are the variance of data sample Xi and data label Yi, respectively.
The detailed derivations can be found in the supplementary. Since ϵ2 ≥ 0 and λ ≥ 0, σ2

Xi
σ2
Yi

−
cov2(Xi, Yi) = σ2

Xi
σ2
Yi
(1−ρ2XiYi

) ≥ 0, where ρXiYi
is the correlation coefficient, the denominator

is greater than 1. Therefore, the entropy change is negative. We can conclude that Gaussian noise
injected into the latent space is harmful to the task.

Linear Transform Noise This type of noise is obtained by a linear transformation of the features
matrix, i.e., ϵ = QX , where Q is a linear transformation matrix. We name the Q the quality matrix
since it controls the property of linear transform noise and determines whether positive or harmful.
In the case of linear transform noise injection in the latent space, the task complexity is:

HL(T ;X +QX) = H(Y ;X +QX)−H(X) (11)

The entropy change is then formulated as:

△S(T , QX) =H(T ;X)−HL(T ;X +QX)

=H(Y ;X)−H(X)− (H(Y ;X +QX)−H(X))

=H(Y ;X)−H(Y ;X +QX)

=
1

2
log

|ΣX ||ΣY −ΣY XΣ−1
X ΣXY |

|Σ(I+Q)X ||ΣY −ΣY XΣ−1
X ΣXY |

=
1

2
log

1

|I +Q|2

=− log |I +Q|

(12)

Since we want the entropy change to be greater than 0, we can formulate Equation 12 as an opti-
mization problem:

max
Q

△S(T , QX)

s.t. rank(I +Q) = k

Q ∼ I

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(13)

where ∼ means the row equivalence. The key to determining whether the linear transform is positive
noise or not lies in the matrix of Q. The most important step is to ensure that I + Q is reversible,
which is |(I +Q)| ≠ 0. The third constraint is to make the trained classifier get enough information
about a specific image and correctly predict the corresponding label. For example, for an image
X1 perturbed by another image X2, the classifier obtained dominant information from X1 so that it
can predict the label Y1. However, if the perturbing image X2 is dominant, the classifier can hardly
predict the correct label Y1 and is more likely to predict as Y2. The fourth constraint is to maintain
the norm of latent representations. More in-depth discussion and linear transform noise added to the
image level are provided in the supplementary.

Salt-and-pepper Noise The salt-and-pepper noise is a common multiplicative noise for images.
The image can exhibit unnatural changes, such as black pixels in bright areas or white pixels in dark
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areas, specifically as a result of the signal disruption caused by sudden strong interference or bit
transmission errors. In the Salt-and-pepper noise case, the entropy change is:
△S(T , ϵ) =H(T ;X)−HL(T ;Xϵ)

=H(Y ;X)−H(X)− (H(Y ;Xϵ)−H(X))

=H(Y ;X)−H(Y ;Xϵ)

=−
∑
X∈X

∑
Y ∈Y

p(X,Y ) log p(X,Y ) +
∑
X∈X

∑
Y ∈Y

∑
ϵ∈E

p(Xϵ,Y ) log p(Xϵ,Y )

=E
[
log

1

p(X,Y )

]
− E

[
log

1

p(Xϵ,Y )

]
=E

[
log

1

p(X,Y )

]
− E

[
log

1

p(X,Y )

]
− E

[
log

1

p(ϵ)

]
=−H(ϵ)

(14)

Obviously, the entropy change is smaller than 0, which indicates the complexity is increasing when
injecting salt-and-pepper noise into the deep model. As can be foreseen, the salt-and-pepper noise
is pure detrimental noise. More details and Salt-and-pepper added to the image level are in the
supplementary.

5 EXPERIMENTS

In this section, we conduct extensive experiments to explore the influence of various types of noises
on deep learning models. We employ popular deep learning architectures, including both CNNs
and ViTs, and show that the two kinds of deep models can benefit from the positive noise. We
employ deep learning models of various scales, including ViT-Tiny (ViT-T), ViT-Small (ViT-S),
ViT-Base (ViT-B), and ViT-Large (ViT-L) for Vision Transformers (ViTs), and ResNet-18, ResNet-
34, ResNet-50, and ResNet-101 for ResNet architecture. The details of deep models are presented
in the supplementary. Without specific instructions, the noise is injected at the last layer of the
deep models. Note that for ResNet models, the number of macro layers is 4, and for each macro
layer, different scale ResNet models have different micro sublayers. For example, for ResNet-18,
the number of macro layers is 4, and for each macro layer, the number of micro sublayers is 2.
The noise is injected at the last micro sublayer of the last macro layer for ResNet models. More
experimental settings for ResNet and ViT are detailed in the supplementary.

5.1 NOISE SETTING

We utilize the standard normal distribution to generate Gaussian noise in our experiments, ensuring
that the noise has zero mean and unit variance. Gaussian noise can be expressed as:

ϵ ∼ N (0, 1) (15)

For linear transform noise, we use a quality matrix of as:

Q = −αI + αf(I) (16)

where I is the identity matrix, α represents the linear transform strength and f is a row cyclic shift
operation switching row to the next row, for example, in a 3× 3 matrix, f will move Row 1 to Row
2, Row 2 to Row 3, and Row 3 to Row 1. For salt-and-pepper noise, we also use the parameter α to
control the probability of the emergence of salt-and-pepper noise, which can be formulated as:{

max(X) if p < α/2

min(X) if p > 1− α/2
(17)

where p is a probability generated by a random seed, α ∈ [0, 1), and X is the representation of an
image.

5.2 IMAGE CLASSIFICATION RESULTS

We implement extensive experiments on large-scale datasets such as ImageNet Deng et al. (2009)
and small-scale datasets such as TinyImageNet Le & Yang (2015) using ResNets and ViTs.
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Table 1: ResNet with different kinds of noise on ImageNet. Vanilla means the vanilla model without
noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard normal
distribution. Linear transform noise used in this table is designed to be positive noise. The difference
is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 63.90 (+0.00) 66.80 (+0.00) 70.00 (+0.00) 70.66 (+0.00)

+ Gaussian Noise 62.35 (-1.55) 65.40 (-1.40) 69.62 (-0.33) 70.10 (-0.56)
+ Linear Transform Noise 79.62 (+15.72) 80.05 (+13.25) 81.32 (+11.32) 81.91 (+11.25)
+ Salt-and-pepper Noise 55.45 (-8.45) 63.36 (-3.44) 45.89 (-24.11) 52.96 (-17.70)

Table 2: ViT with different kinds of noise on ImageNet. Vanilla means the vanilla model without
injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. Linear transform noise used in this table is designed to be positive noise. The
difference is shown in the bracket. Note ViT-L is overfitting on ImageNet Dosovitskiy et al. (2020)
Steiner et al. (2021).

Model ViT-T ViT-S ViT-B ViT-L
Vanilla 79.34 (+0.00) 81.88 (+0.00) 84.33 (+0.00) 88.64 (+0.00)

+ Gaussian Noise 79.10 (-0.24) 81.80 (-0.08) 83.41 (-0.92) 85.92 (-2.72)
+ Linear Transform Noise 80.69 (+1.35) 87.27 (+5.39) 89.99 (+5.66) 88.72 (+0.08)
+ Salt-and-pepper Noise 78.64 (-0.70) 81.75 (-0.13) 82.40 (-1.93) 85.15 (-3.49)

5.2.1 CNN FAMILY

The results of ResNets with different noises on ImageNet are in Table 1. As shown in the table, with
the design of linear transform noise to be positive noise (PN), ResNet improves the classification
accuracy by a large margin. While the salt-and-pepper, which is theoretically harmful noise (HN),
degrades the models. Note we did not utilize data augmentation techniques for ResNet experiments
except for normalization. The significant results show that positive noise can effectively improve
classification accuracy by reducing task complexity.

5.2.2 VIT FAMILY

The results of ViT with different noises on ImageNet are in Table 2. Since the ViT-L is overfitting on
the ImageNet Dosovitskiy et al. (2020) Steiner et al. (2021), the positive noise did not work well on
the ViT-L. As shown in the table, the existence of positive noise improves the classification accuracy
of ViT by a large margin compared to vanilla ViT. The comparisons with previously published
works, such as DeiT Touvron et al. (2021), SwinTransformer Liu et al. (2021), DaViT Ding et al.
(2022), and MaxViT Tu et al. (2022), are shown in Table 3, and our positive noise-empowered ViT
achieved the new state-of-the-art result. Note that the JFT-300M and JFT-4B datasets are private
and not publicly available Sun et al. (2017), and we believe that ViT large and above will benefit
from positive noise significantly if trained on larger JFT-300M or JFT-4B, which is theoretically
supported in section 5.4.

5.3 ABLATION STUDY

We also proactively inject noise into variants of ViT, such as DeiT Touvron et al. (2021), Swin Trans-
former Liu et al. (2021), BEiT Bao et al. (2021), and ConViT d’Ascoli et al. (2021), and the results
show that positive noise could benefit various variants of ViT by improving classification accuracy
significantly. The results of injecting noise to variants of ViT are reported in the supplementary.
We also did ablation studies on the strength of linear transform noise and the injected layer. The
results are shown in Fig. 2. We can observe that the deeper layer the positive noise injects, the better
prediction performance the model can obtain. There are reasons behind this phenomenon. First,
the latent features of input in the deeper layer have better representations than those in shallow lay-
ers; second, injection to shallow layers obtain less entropy change gain because of trendy replacing
Equation 8 with Equation 7. More results on the small dataset TinyImageNet can be found in the
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Table 3: Comparison between Positive Noise Empowered ViT with other ViT variants. Top 1
Accuracy is shown in percentage. Here PN is the positive noise, i.e., linear transform noise.

Model Top1 Acc. Params. Image Res. Pretrained Dataset
ViT-B Dosovitskiy et al. (2020) 84.33 86M 224 × 224 ImageNet 21k
DeiT-B Touvron et al. (2021) 85.70 86M 224 × 224 ImageNet 21k

SwinTransformer-B Liu et al. (2021) 86.40 88M 384 × 384 ImageNet 21k
MaxViT-B Tu et al. (2022) 88.82 119M 512 × 512 JFT-300M (Private)

ViT-22B Dehghani et al. (2023) 89.51 21743M 224 × 224 JFT-4B (Private)
ViT-B+PN 89.99 86M 224 × 224 ImageNet 21k
ViT-B+PN 91.37 86M 384 × 384 ImageNet 21k

Table 4: Top 1 accuracy on ImageNet with the optimal quality matrix of linear transform noise.
Model Top1 Acc. Params. Image Res. Pretrained Dataset

ViT-B+Optimal Q 93.87 86M 224 × 224 ImageNet 21k
ViT-B+Optimal Q 95.12 86M 384 × 384 ImageNet 21k

supplementary. Additionally, we tested the positive linear transformation noise on another popular
dataset, the ImageNet V2. The corresponding results are reported in the supplementary.

(a) The relationship of the CNN family between the strength of

linear transform noise and Top 1 accuracy.

(b) The relationship of the CNN family between the injected

layer of linear transform noise and Top 1 accuracy.

(c) The relationship of the ViT family between the strength of

linear transform noise and Top 1 accuracy.

(d) The relationship of the ViT family between the injected

layer of linear transform noise and Top 1 accuracy.

Figure 2: The relationship between the linear transform noise strength and the top 1 accuracy, and
between the injected layer and top 1 accuracy. Parts (a) and (b) are the results of the CNN family,
while parts (c) and (d) are the results of the ViT family. For parts (a) and (c) the linear transform
noise is injected at the last layer. For parts (b) and (d), the influence of positive noise on different
layers is shown. Layers 6, 8, 10, and 12 in the ViT family are chosen for the ablation study.

5.4 OPTIMAL QUALITY MATRIX

As shown in Equation 13, it is interesting to learn about the optimal quality matrix of Q that maxi-
mizes the entropy change while satisfying the constraints. This equals minimizing the determinant
of the matrix sum of I and Q. Here, we directly give out the optimal quality matrix of Q as:

Qoptimal = diag

(
1

k + 1
− 1, . . . ,

1

k + 1
− 1

)
+

1

k + 1
1k×k (18)
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Table 5: Comparison with various ViT-based methods on Office-Home.
Method Ar→ClAr→PrAr→ReCl→ArCl→PrCl→RePr→ArPr→ClPr→ReRe→ArRe→ClRe→PrAvg.
ViT-B 54.7 83.0 87.2 77.3 83.4 85.6 74.4 50.9 87.2 79.6 54.8 88.8 75.5
TVT-B 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

CDTrans-B 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT-B 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4

TVT-B+PN 78.3 90.6 91.9 87.8 92.1 91.9 85.8 78.7 93.0 88.6 80.6 93.5 87.7

Table 6: Comparison with various ViT-based methods on Visda2017.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
ViT-B 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
TVT-B 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9

CDTrans-B 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8

TVT-B+PN 98.8 95.5 84.8 73.7 98.5 97.2 95.1 76.5 95.9 98.4 98.3 67.2 90.0

where k is the number of data samples. And the corresponding upper boundary of the entropy
change as:

△S(T , QoptimalX) = (k − 1) log (k + 1) (19)

The details are provided in the supplementary. We find that the upper boundary of the entropy
change of injecting positive noise is determined by the number of data samples, i.e., the scale of the
dataset. Therefore, the larger the dataset, the better the effect of injecting positive noise into deep
models. With the optimal quality matrix and the top 1 accuracy of ViT-B on ImageNet can be further
improved to 95% with careful experimental setting, which is shown in Table 4.

5.5 DOMAIN ADAPTION RESULTS

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source
and target domains with different distributions Pan & Yang (2009) Wei et al. (2018). Recently,
transformer-based methods achieved SOTA results on UDA. Therefore, we evaluate the TVT-B
Yang et al. (2023), the first work that adopts Transformer-based architecture for UDA, with the
positive noise on widely used UDA benchmarks. Here the positive noise is the linear transform
noise identical to that used in the classification task. The positive noise is injected into the last layer
of the model, the same as the classification task. The datasets include Office Home Venkateswara
et al. (2017) and VisDA2017 Peng et al. (2017). Detailed datasets introduction and experiments
training settings are in the supplementary. The results are shown in Table 5 and 6. The ViT-B with
positive noise achieves better performance than the existing works. These results show that positive
noise can improve model generality and therefore, benefit deep models in domain adaptation tasks.

6 CONCLUSION

This study delves into the impact of entropy change on learning systems, achieved by proactively
injecting various types of noise into deep models. Our work conducts a comprehensive investigation
into the impact of common noise types, such as Gaussian noise, linear transform noise, and salt-
and-pepper noise, on deep learning systems. We demonstrate that, under specific conditions, noise
can positively affect deep models by reducing task complexity. The experimental results show that
injecting positive noise into the latent space significantly enhances the prediction performance of
deep models in classification and domain adaptation tasks, leading to new state-of-the-art results on
ImageNet. These findings hold broad implications for future research and the potential development
of more accurate models for improved real-world applications. Furthermore, the theory behind our
method is versatile, and we look forward to exploring entropy change in more deep-learning tasks.
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