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Abstract
In this study, we investigate how facial pheno-
types are distorted under neural image compres-
sion and the disparity of this distortion across
racial groups. Neural compression methods are
gaining popularity due to their impressive rate-
distortion performance and their ability to com-
press to extremely small bitrates, below 0.1 bits
per pixel (bpp). As deep learning architectures,
these models are prone to bias during the training
process, leading to unfair outcomes for individ-
uals in different groups. We first demonstrate,
by benchmarking five popular neural compres-
sion algorithms, that compressing facial images
to low bit-rate regimes leads to the degradation
of specific phenotypes (e.g. skin type). Next, we
highlight the bias in this phenotype degradation
across different race groups. We then show that
leveraging a racially balanced dataset does not
help mitigate this bias. Finally, we examine the
relationship between bias and realism of recon-
structed images at different bitrates.

1. Introduction
Lossy image compression aims to faithfully represent im-
ages with a small number of bits. It has been under extensive
research for the past 40 years, and image encoders/decoders
(“codecs”) such as JPEG (Wallace, 1991) have been a crucial
enabling technology in the modern digital world. Despite
the widespread adoption in daily use, traditional codecs suf-
fer greatly at extreme scenarios with low-bandwidth avail-
ability, such as space (Gao et al., 2023), underwater (Li et al.,
2023), low-power communication systems (Ez-Zazi et al.,
2018) and low-latency systems (Hu & Chen, 2021). These
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Figure 1: Reconstructed images by the GaussianMix-Attn
model at different compression rates, trained on CelebA,
reveal that the phenotype classifiers consistently misclassify
images of African and Asian individuals when predicting
hair type and eye type across compression rates. Addition-
ally, the African group suffers from a shift in skin color
at lower rates, which is captured by a skin type classifier
model.

extreme scenarios impose a very narrow information bot-
tleneck that limits the reconstruction quality of traditional
codecs. In recent years, neural network-based compression
(“neural compression”) has enabled image compression un-
der extremely low bitrate scenarios, which is desirable under
these scenarios with extreme information bottlenecks.

Regardless of the compression method used, image recon-
structions at low bitrates suffer from significant distortion
due to the insufficient number of bits passing through the
information bottleneck. In this low-bitrate regime, JPEG
compression has been shown to exhibit biased performance
in facial recognition tasks across different racial and phe-
notype groups (Yucer et al., 2022a). Neural networks also
demonstrate bias in similar settings. When face images are
downsampled or corrupted with high levels of noise and
then reconstructed by a neural network, the resulting images
tend to exhibit distortion in a specific direction: African
American faces tend to be reconstructed to appear Cau-
casian while Caucasian faces maintain their facial features,
a phenomenon known as the “White Obama” problem (Jalal
et al., 2021; Laszkiewicz et al., 2024). While downsampling
or adding noise is not exactly compression, it follows the
same essential principle that images pass through a narrow
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information bottleneck and are then reconstructed.

In this paper, we ask: When using a full neural compression
model, consisting of a neural encoder and decoder, would
it show similar bias, or would it exhibit even worse bias as
it learns from a potentially imbalanced dataset? Despite
extensive research on fairness in machine learning models,
to the best of our knowledge, our work is the first to examine
fairness in machine learning-based compression models.
Unlike existing work (Jalal et al., 2021; Laszkiewicz et al.,
2024; Tanjim et al., 2022) that performs a fixed operation
to create an information bottleneck (e.g., downsampling)
and then applies a neural decoder for reconstruction, our
work investigates the bias that could arise in a jointly-trained
neural encoder-decoder pair.

In this work, we provide a comprehensive empirical analysis
on facial reconstruction bias in state-of-the-art neural com-
pression models. Instead of using conventional distortion
measures (e.g., mean square error), we use a facial phe-
notype classifier to quantify distortion, as we believe this
method better captures how an image from one racial group
transitions to a different racial group at lower bitrates. Using
this framework, we make several interesting observations:

• We benchmark five popular neural compression archi-
tectures and demonstrate that, across all, skin type, eye
type, and hair type degrade faster than other pheno-
types when reducing bitrates.

• We show that for extremely low bitrates, bias can be
amplified, particularly for the African race group.

• We demonstrate that, in general, training with race-
balanced datasets does not help remove bias in pheno-
type degradation at extremely low rates.

• We highlight the relationship between bias and realism
for different neural compression models and illustrate
the sporadic trend at lower bitrates.

2. Related Work
Neural Image Compression In the recent years, we have
witnessed rapid advancements in neural compression mod-
els. Yang et al. (2023) and (Chen et al., 2024) give a holis-
tic overview of recent works. State-of-the-art neural com-
pression models demonstrate superior rate-distortion perfor-
mance compared to popular traditional image codecs such
as JPEG, BPG (Bellard, 2014), and even the latest hand-
engineered codec in VVC (Bross et al., 2021). Early work in
this field (Toderici et al., 2015; 2017) utilized recurrent neu-
ral networks, while many subsequent studies have employed
VAE-based architectures (Townsend et al., 2019; Duan et al.,
2023a;b).

Fairness in Face Analysis The processing of facial im-
ages is utilized across various domains, including facial
biometrics, and facial expression recognition. Fairness in
such systems is crucial and has been studied in various
aspects of face and biometric analysis (Drozdowski et al.,
2020; Vangara et al., 2019; Serna et al., 2019). Buolamwini
& Gebru (2018) evaluated commercial gender classifica-
tion tools and identified that darker-skinned females suffer
from significantly higher misclassification rate than lighter-
skinned males. Klare et al. (2012) found that various face
recognition systems exhibited the poorest performance on
cohorts comprising females, Black individuals, and those
aged 18-30. Motivated by the imbalanced distribution of
datasets used for facial expression detection, Xu et al. (2020)
investigate biases across gender, race, and age groups, and
propose methods to mitigate these biases in such models.

Fairness in Image Denoising and Upsampling Stem-
ming from the “White Obama” problem, fairness has been
explored across image upsampling, denoising, and super-
resolution models. Jalal et al. (2021) design fairness def-
initions and highlight tradeoffs for these types of models.
Tanjim et al. (2022) examine the disappearance of minority
attributes during image-to-image generation. Laszkiewicz
et al. (2024) study the fairness in face image upsampling,
demonstrating bias when imbalanced datasets are used while
training these upsampling methods.

Fairness in Image Compression Our work is closely
related to Yucer et al. (2022a), which studies the impact
of JPEG compression on facial verification and identifica-
tion tasks and the amount of adverse impact of JPEG com-
pression to different racial and phenotype-based subgroups.
They define bias as the different amount of downstream task
performance degradation across groups. They find pheno-
type groups of darker skin tones, wide nose, curly hair, and
monolid eye shape suffer the most adverse impact in the
facial recognition tasks.

3. Problem Definition and Experimental Setup
3.1. Problem Definition

Phenotype
Analysis

Original 
Image

 
(with label )

PredictionReconstructed
Image

Q

E

D

Figure 2: Diagram of the evaluation methodology. Q repre-
sents quantization, and E and D represent standard entropy
encoders and decoders, b is the compressed bitstream.

Let D = {(xi, yi, ai)}ni=1 be our dataset, where xi ∈ X is
our image, yi ∈ Y is our phenotype label, and ai ∈ A is our
protected attribute (race). Our goal is to examine how yi is
preserved in reconstructions of xi after neural compression
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and how this trend differs across A. An overview of our
evaluation pipeline can be found in Figure 2.

Neural Compression Neural compression models consist
of an encoder genc : X → Z and a decoder gdec : Z → X ,
each built from learnable network layers. For each xi, the
encoder is used to obtain the latent space output zi, which is
then quantized to ẑi and compressed losslessly to a bitstream
b. b is then decompressed to ẑi and passed through the
decoder to provide the reconstruction x̂i.

Phenotype Degradation To examine phenotype degra-
dation in neural compression reconstructions, we train a
phenotype classifier. Labelling the phenotypes in these
reconstructions manually may be the most accurate way
to examine degradation, but a neural classifier acts as a
close proxy. This is similar to approaches in previous litera-
ture (Jalal et al., 2021; Tanjim et al., 2022).

First, given a dataset D, we split into Dtrain and Dtest
and use Dtrain to train a classifier f : X → Y to pre-
dict the phenotype labels. Then, given a pretrained en-
coder and decoder at bitrate r, the original test dataset
Dtest is compressed to the bitrate r and reconstructed to
D̂test

r (genc, gdec) = {(x̂i, yi, ai)}ni=1. To measure phenotype
degradation at the given rate, we evaluate the accuracy of f
on D̂test

r :

Acc(genc, gdec, r) = P(x̂,y)∼D̂test
r (genc,gdec)

(f(x̂) = y). (1)

We further define groupwise accuracy as follows:

Acc(genc, gdec, r|a)
= P(x̂,y,a)∼D̂test

r (genc,gdec)
(f(x̂) = y|A = a). (2)

Training details for the phenotype classifier are highlighted
in Appendix A.1.

Bias To quantify bias, we leverage accuracy disparity, the
maximum difference of accuracy across all groups. Given a
rate r, an encoder genc, and a decoder gdec, the bias metric is
defined as:

Bias(r, genc, gdec)

≜ max
a,b∈A

[Acc(r, genc, gdec|a)− Acc(r, genc, gdec|b)]. (3)

This definition of bias is derived from a popular fairness
metric, accuracy parity, in which equal accuracies across
all groups imply fairness in a classifier (Berk et al., 2017;
Zafar et al., 2017).

Remark We acknowledge that these phenotype classifiers
can be biased themselves. Following the bias definition
in Equation 3, the bias of the classifier at a single rate is

captured in Bias(r, genc, gdec), however, our focus of the
paper is evaluating how Bias(r, genc, gdec) amplifies as we
reduce the rate r. By using a single classifier trained on the
clean image data, we can compare bias values across various
bitrates (e.g. Bias(rlow, genc, gdec) − Bias(rhigh, genc, gdec))
to examine how bias is amplified as bitrates are reduced.
This provides insight into the bias induced by the neural
compression algorithm. The bias in the classifier is worthy
of thorough investigation in the future. We highlight future
directions in Section 5.

3.2. Experimental Setup
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Figure 3: Distribution of phenotype classes for each cate-
gory across racial groups in RFW dataset.

Datasets For phenotype analysis, we use the Racial Faces
in the Wild (RFW) dataset (Wang et al., 2019) and a recently
released facial phenotype annotation dataset specifically
for RFW (Yucer et al., 2022b). This annotation dataset
provides labels for six phenotype categories—eye type, hair
type, hair color, lip type, nose type, and skin type—across
four racial groups: African, Indian, Asian, and Caucasian.
The distribution of phenotypes across these racial groups is
depicted in Figure 3.

When measuring bias, we utilize the racial groups as our
sensitive attribute, defining A as the set of all racial groups.
When performing inference for multiclass classification
tasks (hair color, skin type, and hair type), we group the
three most dominant classes for each group. This allows us
to evaluate the extent to which phenotypes flipped to those
not prevalent in the racial group of the initial image.

We train neural image compression models on both racially
balanced and imbalanced datasets. To train these models,
we use the CelebA dataset (Liu et al., 2018), which has a
significantly imbalanced racial composition with more than
70% of the images from the white racial group (Kärkkäinen
& Joo, 2019). Additionally, we leverage the FairFace dataset
(Kärkkäinen & Joo, 2019) to investigate the effect of a bal-
anced training dataset. The FairFace dataset contains over
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100,000 images with a balanced racial composition across
seven race groups: White, Black, Indian, East Asian, South-
east Asian, Middle Eastern, and Latino. Finally, to quantify
the relationship between realism and bias, we utilize the
DemogPairs dataset (Hupont & Fernández, 2019) as a refer-
ence to compute FID scores of decoded images.

Neural Image Compression We evaluate a diverse col-
lection of neural image compression models with differ-
ent bitrates. We evaluate three fixed-rate models, Hyper-
prior (Ballé et al., 2018), Joint (Minnen et al., 2018), and
GaussianMix-Attn (Cheng et al., 2020). All of these mod-
els are trained towards a fixed trade-off between rate and
distortion. We train these models to five rates with differ-
ent operational bitrates. The model proposed in the QRes
paper (Duan et al., 2023b) is a progressive decoding model
that supports encoding images to 12 bitrates with one trained
model. This is achieved by encoding only a subset from all
the available latent variables. We follow this approach and
encode images to 5 different bitrates with progressive decod-
ing. The VarQRes model (Duan et al., 2023a) is a variable
rate compression model. The network is trained to encode
and decode images that lies in a range of rate-distortion
trade-off points. We train neural compression models on the
CelebA and FairFace datasets. These datasets are chosen
to do comparisons between the impact of racially balanced
and imbalanced training sets. For the fixed rate models, we
adopt the implementations from the CompressAI (Bégaint
et al., 2020) library. For the other two models, we adopt the
official implementation provided by the authors (Duan et al.,
2023b). Training details are listed in Appendix A.2.

4. Evaluation
This section is organized as follows. In Section 4.1 we
demonstrate the performance of our phenotype classifier
and identify phenotypes lost during low bitrate neural com-
pression. Section 4.2 introduces the racial bias of the neural
compression algorithms at low bitrates. Section 4.3 pro-
vides a qualitative analysis of image reconstructions across
different bitrates. Section 4.4 examines the effect of using
a racially balanced dataset. Finally, Section 4.5 discusses
bias-realism relationships across the different neural com-
pression models.

4.1. Phenotype Degradation in Neural Compression

First, we examine how phenotype classification accuracies
on decoded images change as we reduce the compression bi-
trate. We first observe significant accuracy decreases across
the skin type, eye type, hair type and lip type phenotypes as
we utilize smaller bitrates. Additionally, phenotypes such
as nose type and hair color experience moderate accuracy
decreases. The only exception to this decreasing trend is
skin type, where the accuracy occasionally increases at the

lowest bitrate. This phenomenon occurs sporadically but
appears interesting and requires further investigation in fu-
ture works. The trends we observe are relatively consistent
across all of the neural compression architectures we evalu-
ate (Appendix B).

4.2. Phenotype Degradation by Racial Group
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Figure 4: Bias for skin type across different races for Joint
reconstructions trained on the CelebA dataset. As bitrate is
lowered, the classification accuracy for the African group
reduces significantly, leading to an increase of bias at the
lower rates.

In this section, we evaluate bias in phenotype preservation
with the metric defined in Equation 3. We illustrate this bias
for one phenotype in Figure 4. In this figure, we observe, a
significant decrease in the skin type classification accuracy
for individuals in the African group at low bitrates for the
Joint model. The accuracy for images in other racial groups
have minimal changes. This reduction in accuracy for the
African group leads to an amplification of bias as the bitrate
is lowered.
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Figure 5: Bias across different phenotypes for Joint trained
on the CelebA dataset. As the bitrate is lowered, bias in-
creases for Skin Type, Eye Type, and Hair Type, while re-
maining relatively level for other phenotypes.

To better understand the amplification of bias for the Joint
model, we highlight the bias across all phenotype tasks in
Figure 5. Here, we observe that skin type, eye type, and hair
type experience amplification of bias as we reduce bitrates
while nose type, lip type and hair color do not. Specifically,
the increase in bias is due to the reduction in accuracy for
the the African group in hair type classification, and the
non-Asian groups for eye type classification at lower rates.
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Figure 6: Image reconstructions from Hyperprior unless otherwise mentioned. (a): (i): African skin color lightens but is not
captured by the classifier [QRes]. (ii): African skin color lightens and is captured by the classifier. (iii): Asian skin color
changes but is not captured by the classifier [GaussianMix-Attn]. (b): (i): African curly hair becomes straight [Joint]. (ii-iii):
African curly hair becomes straight. (c): (i): Indian eye type becomes narrow. (ii): Caucasian eye type becomes narrow (iii):
Asian eye type becomes normal [GaussianMix-Attn].

These plots and plots for other neural compression models
are displayed in Appendix C.

The trends that we observe for the Joint model hold con-
sistently across all neural compression architectures. The
exception to this trend is the eye type classification task for
the GaussianMix-Attn model. In this scenario, we observe
an increase in bias due to the accuracy drop for the Asian
group. We further investigate this in result in Section 4.3.

4.3. Qualitative Analysis of Image Reconstructions

We provide selected examples in Figure 6 and describe our
main conclusions from a qualitative analysis of the image re-
constructions across different bitrates. First, we observe that
in most cases, individuals with darker skin have their skin
lightened at lower bitrates. Through this effect we observe
individuals for the African, Asian, and Indian groups ap-
pearing Caucasian at the lowest bitrates. This suggests that
a “White Obama” problem occurs in neural compression
at low bitrates. These conclusions are consistent with Jalal
et al. (2021) where they find dark faces can be reconstructed
to light faces after super-resolution. This phenomenon is typ-
ically captured by our phenotype classifier but occasionally
missed. We demonstrate examples of this in Figure 6(a) (i)
and 6a (iii). Additionally we observe the smoothing of hair
type and eyes becoming more narrow as the bitrates are
reduced. This is highlighted in Figure 6(b) and Figure 6(c).
We conjecture that these effects are due to the natural pro-
cess of neural compression which tends to blur images more
at lower bitrates. This leads to the loss of features that are
smaller and more correlated with textures in the original
image. The one exception to this is in GaussianMix-Attn,

where at the lowest rate, Asian eye types become normal
(Figure 6(c) (iii)). This observation is consistent with the ob-
servation that the GaussianMix-Attn model produces more
generic Caucasian faces at the lowest bitrates.

4.4. Balanced Dataset Comparison with FairFace

Next, we evaluate the effect of a balanced training dataset
for neural compression models on the phenotype degrada-
tion bias. We use the FairFace dataset to train our neural
compression models and examine how classification perfor-
mance and bias changes as we reduce bitrates.

We highlight the results of this experiment for the
GaussianMix-Attn architecture in Figure 7. The dataset com-
parison plots slightly vary across other neural compression
architectures (Appendix D). We observe, in general, that for
skin type, eye type, and hair type, the FairFace dataset has
minimal effect in reducing bias and in many cases amplifies
bias. This suggests that training on a race-balanced dataset is
not sufficient to resolve bias for low-rate compression. This
finding is consistent with that of Cherepanova et al. (2023)
that class-balanced learning does not necessarily lead to
fair classification. Additionally, the amplification of bias by
using FairFace could be attributed to the facial orientation
differences between FairFace and CelebA (Laszkiewicz
et al., 2024). Facial images in CelebA are mostly forward
facing, while facial orientations in FairFace are more di-
verse. This difference in data quality could make it easier
for models to learn an average face from CelebA than from
FairFace. For future works, it will be beneficial to train neu-
ral compression models on two datasets that have similar
face orientations.
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Figure 7: Bias for Skin Type, Eye Type, and Hair Type for
the GaussianMix-Attn model. A racially balanced training
set (FairFace) does not generally improve bias compared to
an imbalanced training set (CelebA).

4.5. Bias-Realism Relationship

We systematically assess the relationship between bias and
realism across various neural compression models. Realism
is quantified using FID (Heusel et al., 2017) and bias values
are derived from Equation 3. To ensure that we are measur-
ing realism with respect to general facial datasets, we utilize
the Demogpairs dataset (Hupont & Fernández, 2019) as
the reference dataset for computing FID. This approach en-
ables us to capture the fidelity of the reconstructions without
spurious correlations.

The relationship between bias and realism is highlighted in
Figure 8. Overall, for all phenotypes that show significant
bias (i.e., skin type, hair type, eye type), we observe a linear
correlation between bias and realism at higher rates (larger
than 0.1 bpp). This indicates that models that produce highly
biased reconstructions also produce unrealistic reconstruc-
tions. However, at low bit rates (less than 0.1 bpp), this
relationship becomes more sporadic. We believe that the
exploration of the relationship between bias and realism at
low bit rates remains an interesting future direction. Further
work in neural compression can explore the development of
models that produce values with high realism and low bias
at low bitrates.

5. Conclusion and Discussion
We reveal bias in phenotype loss under low-rate neural com-
pression, notably for non-Asian individuals’ eye types and
African individuals’ skin and hair type. We find that racially
balancing training data fails to mitigate this bias. Further-
more, at low bitrates, the relationship between realism and
bias becomes more variable. This pioneering analysis of
bias in low-rate neural image compression prompts further
exploration. Future research directions include:

Phenotype classifier variability While we report the re-
sults for a single classifier, we have observed that per-race
accuracy and bias can vary significantly with different ran-
dom initialization of the classifier while the overall accuracy
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Figure 8: At high bitrates (> 0.1 bpp), there is a strong
linear correlation between bias and realism. At low bitrates
(< 0.1 bpp), however, this correlation diminishes and the
relationship between bias and realism is more variable.

remains mostly constant. We relate this to predictive mul-
tiplicity (Hsu & Calmon, 2022; Marx et al., 2020) and un-
derstanding the variability of the classifier should be further
investigated.

Isolating bias For evaluation, we utilize a single phenotype
classifier across different bitrates. This allows us to isolate
the bias of the classifier by examining the performance dif-
ferences across difference rates. Future work can further
investigate isolating the bias of the phenotype classifier by
leveraging a fair classifier. Dooley et al. (2023) demonstrate
that bias can be inherent to the classifier architecture and that
fair architectures can be found through neural architecture
search. Exploring a fair architecture for neural compression
is an interesting future direction. Additionally, emerging
information theoretic techniques (Goldfeld & Greenewald,
2021; Goldfeld et al., 2022; Wongso et al., 2022; 2023; Tax
et al., 2017; Wibral et al., 2017; Dutta et al., 2020; Dutta &
Hamman, 2023) can be explored to further decouple bias
in the encoder and decoder of neural compression architec-
tures.

Bias in realism-oriented compression Some neural com-
pression models incorporate an adversarial loss term to in-
crease the realism of decoded images (Agustsson et al.,
2023). It is under-explored if there is a trade-off between
the realism and the fairness.

Bias in semantic compression Powerful foundation mod-
els (Radford et al., 2021) give rise to “zero-shot” semantic
image compressors, where the encoder is an image-to-text
model, and decoder a text-to-image model (Lei et al., 2023).
While there is research that tackles the bias in foundation
models (Abid et al., 2021; Bommasani et al., 2021), little
work has been done to investigate these semantic image
compressors.
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Impact Statement
This paper presents work whose goal is to examine bias
present in popular, deep learning-based, neural compression
algorithms. Bias in neural compression can adversely affect
downstream tasks such as biometric analysis. Our goal is
to promote downstream fairness across all tasks which may
stem from neurally compressed data. The removal of bias
has positive societal impacts, as we strive towards building
fair AI systems.
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A. Training details
A.1. Phenotype Classifier

We fine-tuned pretrained ResNet18 models (He et al., 2016) for facial phenotype classification. The classifiers retain the
ResNet18 backbone and include a classification head for classifying the specific attribute. We trained the separate phenotype
classifier models for up to 20 epochs, employing early stopping with patience of 5 epochs. We use cross entropy loss and
optimize the models with the stochastic gradient descent optimizer, a fixed learning rate of 0.01, and a fixed batch size of 32.
To evaluate each compression model at different compression rates, we train the models on decompressed images from
each of the evaluated neural compression models with different compression rates separately, using the provided dataset
annotations.

A.2. Neural Compression Models

For the CompressAI neural compression models, we train for 1000 epochs with an early stopping patience of 50 epochs.
We use a batch size of 64 and an initial learning rate of 0.0001. For the rest of the parameters, we leave them as they
are implemented in the CompressAI repository. For the QRes (Duan et al., 2023b) and VarQres (Duan et al., 2023a)
implementations, we follow the training procedure from the papers.

B. Phenotype Degradation
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Figure B.1: Phenotype degradation across all compression models for the CelebA dataset.
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C. Racial Bias in Degradation
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Figure C.1: Bias in phenotype degradation for the Hyperprior Model trained on CelebA
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Figure C.2: Bias in phenotype degradation for the Joint Model trained on CelebA
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Figure C.3: Bias in phenotype degradation for the GaussianMix-Attn Model trained on CelebA
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Figure C.4: Bias in phenotype degradation for the QRes Model trained on CelebA

11



Gone With the Bits: Benchmarking Bias in Facial Phenotype Degradation Under Low-Rate Neural Compression

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Skin Type

Indian Asian African Caucasian Bias

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel

Ac
cu

ra
cy

Eye Type

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel

Ac
cu

ra
cy

Nose Type

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel

Ac
cu

ra
cy

Lip Type

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel

Ac
cu

ra
cy

Hair Type

0.1 0.2 0.3 0.4 0.5 0.6
Bits per pixel

Ac
cu

ra
cy

Hair Color

Figure C.5: Bias in phenotype degradation for the VarQRes Model trained on CelebA

D. Training with a Balanced Dataset
In Figure D we present the impact of using a balanced training set FairFace on racial bias in phenotype degradation.
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Figure D.1: (a) Hyperprior (b) Joint (c) QRes (d) VarQRes
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E. Bias-Realism Trade-off
In Figure E we present FID vs bias figures for all the phenotypes.
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Figure E.1: (a) Skin Type (b) Lip Type (c) Nose Type (d) Eye Type (e) Hair Type (f) Hair Color
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