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Abstract
ULLER (Unified Language for LEarning and Reasoning) offers a unified first-order logic
(FOL) syntax, enabling its knowledge bases to be used directly across a wide range of
neurosymbolic systems. The original specification endows this syntax with three pairwise
independent semantics—classical, fuzzy, and probabilistic—each accompanied by dedicated
semantic rules. We show that these seemingly disparate semantics are all instances of one
categorical framework based on monads, the very construct that models side effects in func-
tional programming. This enables the modular addition of new semantics and systematic
translations between them. As example, we outline the addition of generalized quantifi-
cation in Logic Tensor Networks (LTN) to arbitrary (also infinite) domains by extending
the Giry monad to probability spaces. In particular, our approach allows a modular imple-
mentation of ULLER in Python and Haskell, of which we have published initial versions
on GitHub.

1. Introduction
Neurosymbolic integration is a rapidly developing branch of AI. In the past, numerous
heterogeneous approaches have emerged, each with its own code base. [15] introduces
ULLER, a unified neurosymbolic library that aspires to play for neurosymbolic systems the
role that TensorFlow and PyTorch play for deep-learning workflows. Their theoretical core
is the concept of a NeSy system: standard first-order logic enriched with neural components.
In particular, formulas of the form

x := m(T1, . . . , Tn)(F ) (Ti terms, F a formula involving x,m a neural model)

are used to integrate neural models m into logical formulas. These formulas go beyond
classical first-order logic. Instead, they perform computations that may return multiple
values and typically involve non-determinism or probability distributions as illustrated in
the following toy example [15]:

∀x ∈ ImageData
(n1 := classify(x.im1)
(n2 := classify(x.im2)
(n1 + n2 = x.sum) ))
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This specifies to classify two images of digits and to check whether the sum of the resulting
numbers is as specified in the dataset. The resulting (e.g. fuzzy or probabilistic) truth value
can be used in a loss function. A shorthand notation for this is:

∀x ∈ ImageData
(
n1 := classify(x.im1), n2 := classify(x.im2) (n1 + n2 = x.sum)

)
While the notion of NeSy system in [15] is very powerful, it also has several shortcomings:

• There is no uniform inductive definition of truth, i.e. of the truth value of a sentence in
an interpretation. Rather, the notion of NeSy system has the inductive interpretation
function as a component, meaning that classical, probabilistic and fuzzy NeSy systems
employ three different inductive definitions of truth. Parts of these definitions of truth
are copied verbatim from one NeSy system to another, other parts need to be replaced.
This duplication of semantic rules is not modular. By contrast, we aim at a truly
uniform inductive definition of truth value that is independent of the NeSy system
and hence can be reused for different NeSy systems, such that the NeSy system itself
is a parameter of the inductive definition of truth.

• The case of continuous probability distributions (involving probability kernels or
Markov kernels) is not covered faithfully, because in this case, measurable spaces
are required to properly define the mentioned Markov kernels. However, measurable
spaces are not considered in [15].

• The treatment of logical connectives is not uniform across NeSy systems, i.e. the
different sets of connectives are not considered as instances of a common abstract
(algebraic) notion. Also, quantifiers in probabilistic semantics are defined using pos-
sibly infinite products, without requiring a suitable order structure on domains and
without discussing convergence.

• The high‑level concepts of semantics and computation are not properly separated.
Computation (namely sampling) is mixed into the semantics at least in two places.
The first one in the classical semantics, where the possibly multi-valued argmax can
only be properly evaluated using sampling. We conceptualize the argmax differently
as a transition between semantics. The second time is in ”Sampling Semantics”, which
is not really semantics but computation (sampling).

We argue that ULLER is conceptually robust and show that a monadic formulation resolves
all of the foregoing issues. In particular, ULLER formulas of the form

x := m(T1, . . . , Tn)(F ) (Ti terms, F a formula involving x,m a neural model)

can be modeled using Moggi’s notion of computational monad [9], which has been introduced
to model side effects in (functional) programming. Although monads originate in category
theory, we present them using a set-theoretic approach that does not involve any category
theory. The generalization to an arbitrary category, which is needed for continuous proba-
bilities and some aspects of infinite domains, has been relegated to the appendix. We call
our categorical approach ”monadic ULLER”, ”modular ULLER”, or simply ”mULLER”1.
1. muller: noun, a heavy tool of stone or iron used to grind and mix material.
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2. Set-Based NeSy Frameworks
A neurosymbolic framework (NeSy framework) is a general framework for NeSy systems
combining neural models with symbolic logic, and it provides the semantic background for
the specific logic involved. Examples are the logics behind DeepProbLog [8] or Logic Tensor
Networks [3].

The notion of NeSy framework is not defined in [15]. Rather, they define a notion
of NeSy system, which is quite ad-hoc, because it simultaneously makes two choices: (1)
a choice of a particular interpretation with functions, predicates and neural models (e.g.,
probabilities for traffic lights, or neural networks learning addition of digit images), and (2)
a choice of semantic rules for interpreting terms (which also involves a choice of the logic,
e.g. classical or probabilistic or fuzzy). This causes semantic rule duplication.

Our notion of NeSy framework provides a means to disentangle these two choices. More-
over, our approach makes semantic rules independent not only of particular interpretations,
but also of the choice of logic (classical, probabilistic, or fuzzy).

In the sequel, we first introduce some background on monads, which are the key concept
of our approach, and on the algebraic structure needed to model the space of truth values.
Then we go on to define the notions of NeSy framework and NeSy system.

2.1. Set-Based Monads
We interpret formulas x := m(T1, . . . , Tn)(F ) involving neural models m (= certain com-
putations) using Moggi’s notion of computational monad [9] in the form of Kleisli triples:

Definition 1 A Kleisli triple (monad) (T , η, (−)∗) consists of:

• A mapping T , mapping sets X to sets T X (of computations with values from X),

• A family of functions: ηX : X → T X for each set X (construing a value a ∈ X as
stateless computation ηX(a) ∈ T X),

• A function that assigns to each function f : X → T Y a function f∗ : T X → T Y
(called the Kleisli extension), needed for sequential composition of computations,

such that the following axioms hold:

1. (ηX)∗ = idT X ,

2. f∗ ◦ ηX = f for all f : X → T Y ,

3. (g∗ ◦ f)∗ = g∗ ◦ f∗ for all f : X → T Y and g : Y → T Z.

Given computations ma : T A and mb(x) : T B, we can compose them to (λx : A.mb(x))∗(ma)
of type T B. In Haskell’s do-notation, this is written as do x← ma; mb(x).

Example 1 Non-empty Powerset monad P 6=∅ For a set X:

P 6=∅X := {A ⊆ X | A 6= ∅} (non-empty subsets of X),

ηX(x) := {x}, f∗(A) :=
⋃
a∈A

f(a)
(
f : X → P 6=∅Y,A ∈ P 6=∅X

)
.
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Example 2 Probability distribution monad (Kleisli triple) D.2

DX :=
{
ρ : X → [0, 1] finitely supported

∣∣∣ ∑
x∈X

ρ(x) = 1
}

(prob. distributions on X),

ηX(x) := δx, δx(y) =

{
1, x = y
0, x 6= y

f∗(ρ)(y) :=
∑
x∈X

f(x)(y) · ρ(x)
(
f : X→DY, ρ ∈ DX

)
.

δx is the probability distribution that assigns all probability mass to x. f∗(ρ) corresponds
to a two-level random process: first x is drawn from ρ, then y is drawn from f(x). This
results in a marginal distribution of Y for the joint distribution ρ̂(x, y) := f(x)(y) · ρ(x).
do x← ma; mb(x) can be interpreted as “sample x from ma and then proceed with mb(x)”.

2.2. Double Semigroup Bounded Lattices (2Sg-Bl)
We need an algebraic structure to model the space of truth values. We weaken the notion
of BL algebra of [6] from fuzzy logic as follows:

Definition 2 A double semigroup bounded lattice (2Sg-Bl) R is a tuple(
S, ≤, ⊥, >, ⊗, ⊕, →, ¬

)
in which S is a set, L := (S,≤) a bounded lattice, while ⊥ ∈ S and > ∈ S are its bottom
and top elements.3 Also (S, ⊗) and (S, ⊕) are semigroups, → is a map S × S → S, and
¬ is a map S → S.

Also, we want to allow different aggregation operations other than infinite meet and join to
cover the quantifiers of Logic Tensor Networks [3], motivating the following definition:4

Definition 3 An aggregated 2Sg-Bl has for each set X two order-preserving maps:

aggr∀X , aggr∃X : LX −→ L.

In case of a complete lattice, aggr∀X can be chosen as meet
∧

X and aggr∃X as join
∨

X .

2.3. Definition of Set-Based NeSy Framework
Given some basic notion of truth Ω, our NeSy systems work on the monadic space of truth
values T Ω, which is required to be an aggregated 2Sg-Bl. If T is the identity monad, T {0, 1}
is just the two-element set {0, 1} of classical truth values. If T is the distribution monad,
T {0, 1} is isomorphic to the unit interval [0, 1], regarded as the space of probabilistic or
fuzzy truth values.

2. Note that the sums below are only finite if one excludes all the zero addenda.
3. In many cases we have ⊥ is neutral element for ⊕ and ⊤ is neutral element for ⊗, for example inside

of the unit interval [0, 1]. In some cases, like Gödel logic, we even have ⊕ = ∨ and ⊗ = ∧. Also, →
is normally chosen as right adjoint to ⊗ or as x → y := ¬x ⊕ y. In the first case ¬ can be defined as
implication to zero, in the second one it is defined independently. Check table B.2 for details.

4. This is inspired by the notion of aggregated functions in [4].
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Definition 4 A NeSy framework F = (T ,Ω,R) consists of

1. a monad T ,

2. A set Ω acting as truth basis,5

3. an aggregated 2Sg-Bl R on the truth space T Ω.

Examples are given in Table 1 and discussed in more detail in section 4. Note that further
examples arise by varying the 2Sg-Bl R on [0, 1]. Examples requiring category theory are
given in Table 4 in the appendix.

Table 1: NeSy Framework Examples (set-based)
Logic/Theory T Ω T Ω R Subsection
Classical Identity {0, 1} {0, 1} Boolean Alg. 4.1
Three-valued LP Powerset P 6=∅ {0, 1} {0, B, 1} Kleene/Priest Alg. 4.1
Distributional Distribution D {0, 1} [0, 1] Product BL–Alg. 4.2
Finitary LTNp Distribution D {0, 1} [0, 1] Product SBL-Alg. 4.3
Classical Fuzzy Identity [0, 1] [0, 1] Classical BL–Alg. –

3. Syntax and Semantics of mULLER
3.1. Syntax of First-Order Logic
The ULLER language of [15] features computational function symbols that can be realized
e.g. by neural networks. In a similar spirit, we here add computational predicate symbols,
which are also realized by neural networks, for example in Logic Tensor Networks [3].

Definition 5 A NeSy signature Σ consists of

• a set S of sorts of Σ,

• two disjoint sets Pred, MPred of predicate symbols and computational predicate
symbols of form p : s1, . . . , sn, where p is a name and each si ∈ S a sort,

• two disjoint sets Func, MFunc of function symbols and computational function sym-
bols of form f : s1, . . . , sn → s, , where f is a name and s, si ∈ S are sorts.

(Computational) predicate symbols with no arguments are called (computational) proposi-
tional symbols (Prps and MPrps respectively). Function symbols with one argument are
called properties (Prop), those with none are called constants (Const).

5. Similar to the basis of a vector space.
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Concerning syntax, we largely follow the definitions given in [15]. That is, given a signature
Σ of non-logical symbols and set of variables V, we can define the syntax of first-order logic
(FOL) formulas over Σ and V as a context-free grammar:

Terms:
T ::= x : s [x ∈ V, s ∈ S]

T ::= c | T.prop | f(T, . . . , T ) [c ∈ Const, prop ∈ Prop, f ∈ Func]

Atomic Formulas:
F ::= R | P (T, . . . , T ) [R ∈ Prps, P ∈ Pred]

F ::= N |M(T, . . . , T ) [N ∈ MPrps,M ∈ MPred]

Compound Formulas:
F ::= ⊥ | > | F → F | ¬F | F‖F | F&F | (F )

F ::= ∃x : s (F ) | ∀x : s (F ) [x ∈ V, s ∈ S]

F ::= x := m(T, . . . , T )(F ) [m ∈ MFunc]

3.2. Tarskian Semantics
Definition 6 For a NeSy signature Σ, a NeSy interpretation I on a set-based NeSy
framework (T ,Ω,R) is given by

• a set I(s) for every sort s,

• a function I(f) : I(s1) × . . . × I(sn) → I(s) for every (normal) function symbol
f : s1, . . . , sn → s ∈ Func,

• a function I(m) : I(s1) × . . . × I(sn) → T (I(s)) for every computational function
symbol m : s1, . . . , sn → s ∈ MFunc,

• a function I(P ) : I(s1)× . . .× I(sn)→ Ω for every predicate symbol P : s1, . . . , sn ∈
Pred,

• and a function I(M) : I(s1) × . . . × I(sn) → T Ω for every computational predicate
symbol M : s1, . . . , sn ∈ MPred.

Definition 7 A NeSy system can be defined as a quadrubple (T ,Ω,R, I), where (T ,Ω,R)
is a NeSy framework and I a NeSy interpretation on that same NeSy framework.

Compared to [15], we have added computational predicate symbols, because LTN and other
NeSy frameworks use these. However note that for probabilistic logic and weighted model
counting, ULLER makes independence assumptions due to the nature of its notion of in-
terpretation.6 While computational function symbols enable the use of conditional prob-
abilities, computational predicate symbols are always independent of each other. Hence,
ULLER supports a certain combination of probabilistic and fuzzy logic, and so do LTNs.
For details, see Appendix C.1.

6. See [16] for a critical discussion.
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Also, we have dropped uniformity of the notion of interpretation—it now becomes depen-
dent on the monad at hand. This is necessary for faithfully distinguishing finitely supported
and continuous probability distributions and for dealing with LTN-style quantification on
infinite domains. Still, computational symbols can be realised by neural networks in all of
these cases. However, the details of the mapping from neural networks to interpretations
of computational symbols differ.

In [15], based on an interpretation, the notion of NeSy system provides a Tarskian
inductive definition J·K of the semantics of formulas and thus it implicitly also defines the
semantics of the logical symbols. The drawback of this approach is that the Tarskian
semantics J·K is inherently tied to the specific NeSy system.

We can modularise matters here, because we first give a semantics of the logical symbols
via a NeSy framework, and based on that, the interpretation provides the semantics of the
non-logical symbols. Hence, the inductive definition of the Tarskian semantics J·K needs to
be given only once, and this definition holds across all NeSy frameworks and systems.

Definition 8 The Tarskian semantics J·K of a NeSy system (T ,Ω,R, I) is given by:

Formulas: JF KI : VF → T Ω, Terms: JT KI : VT → I(sT ).

Table 2: Inductive definition of the Tarskian semantics

Syntax Set Semantics J·KI,ν
Terms

Jx : sK ν(x)JcK, JT.propK, Jf(T )K I(c), I(prop)(JT K), I(f)(JT K)
Atomic formulas

JP K, JR(T )K ηΩ(I(P )), ηΩ
(
I(R)(JT K))JNK, JM(T )K I(N), I(M)

(JT K)
Compound formulas

J⊥K, J>K ⊥R, >RJF → GK, J¬F K JF K→R JGK, ¬RJF KJF‖GK, JF&GK JF K⊕R JGK, JF K⊗R JGKJ∃x:sF K, J∀x:sF K aggr∃I(s)(λa.JF Kν[x 7→a]), aggr∀I(s)(λa.JF Kν[x 7→a])Jx := m(T )(F )K do a← I(m)(JT K); JF Kν[x 7→a]

Here, we define VT :=
∏

x:t∈ΓT
I(t), where ΓT is the context of T and sT is the (unique)

sort of the term T . Analogously VF :=
∏

x:t∈ΓF
I(t). T stands for T1, . . . , Tn. We work

with variable valuations ν ∈ VT (or ν ∈ VF ) in local (term or formula) contexts, noting that
elements of

∏
x:t∈ΓT

I(t) map variables x : t to values in I(t). We write JT KI,ν = JT KI(ν)
and JF KI,ν = JF KI(ν). That said, we mostly omit I and ν if clear from the context.
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4. Examples of Set-Based Semantics
In the sequel, we will discuss some NeSy frameworks in more detail and spell out how
the semantic rules look when instantiated. We often implicitly define parts of the 2Sg-Bl
through the semantic rules. E.g. the aggr∃ and aggr∀ functions are implicitly defined by
listing semantic rules for the quantifiers.

4.1. Classical and Three-valued Semantics
Classical semantics is simply given by the identity monad and the Boolean algebra on
Ω = {0, 1}, which results in classical first-order logic.

Our classical semantics is deterministic, while [15] use probability distributions, causing
the need for selection of values with highest probability, done via argmax. We will model
this as NeSy transformation in section 5 and need a non-deterministic NeSy framework as
target of this transformation. The (non-empty) powerset monad models non-deterministic
computations, cf. multialgebras [18]. These result in non-deterministic truth values as in:

Logic of Paradox Semantics For the Logic of Paradox [11] with the non-empty powerset
monad P 6=∅, we have T = P 6=∅, Ω = {0, 1} (equivalently {F, T}), and T Ω = P 6=∅({0, 1}) =
{{0}, {1}, {0, 1}}. The three truth values correspond to: {0} ≡ F (false only), {1} ≡ T (true
only), and {0, 1} ≡ B (both true and false). Following the uniform Tarskian semantics:

Jx := m(T )(F )K := ⋃
a∈I(m)(JT K)JF Kν[x7→a] (1)

J∃x:s F K := sup
a∈I(s)

JF Kν[x7→a], J∀x:s F K := inf
a∈I(s)

JF Kν[x 7→a] (2)

JF‖GK := max(JF K, JGK), JF&GK := min(JF K, JGK) (3)

JF → GK := max(J¬F K, JGK), J¬F K := {
{0, 1} if JF K = {0, 1}
({0, 1} \ JF K) else

(4)

J⊥K := {0}, J>K := {1} (5)

where the operations implement Priest’s Logic of Paradox with the lattice ordering {0} <LP
{0, 1} <LP {1} (i.e., F < B < T).

4.2. Distributional Semantics
The distributional semantics corresponds to the third row in Table 1, where we use the
distribution monad D over the classical truth basis {0, 1}, yielding the truth space [0, 1]
equipped with a Product BL-algebra structure. This framework provides the semantic
foundation for probabilistic logic programming systems and neural-symbolic approaches
that work with probability distributions over truth values. In this setting, computational
predicates and function symbols return probability distributions rather than deterministic
values. We need to restrict interpretations to finite domains. Finite quantification just
iterates conjunction or disjunction. For infinite quantifiers, check appendix C.1.
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Jx := m(T )(F )K := ∑
a∈I(sm)

JF Kν[x7→a] · ρm(a | T ) (6)

J∃x:s F K := 1−
∏

a∈I(s)

(1− JF Kν[x 7→a]), J∀x:s F K := ∏
a∈I(s)

JF Kν[x 7→a] (7)

JF‖GK := JF K + JGK− JF K · JGK, JF&GK := JF K · JGK (8)

JF → GK := max
(
1, JGK/JF K), J¬F K := 1− JF K (9)J⊥K := 0, J>K := 1. (10)

4.3. Finitary LTNp Semantics
The finitary Logic Tensor Networks (LTN) semantics corresponds to the fourth row in
Table 1, employing the distribution monad D over the classical truth basis {0, 1} with
the truth space [0, 1] equipped with a Product Real Logic structure, what we call the S-
Product Algebra in Table B.2. It is the same as the Product Algebra in the distributional
semantics, only that we use S-Implication (strong implication) instead of R-Implication
(residual implication). Moreover, aggregation differs as well: following [3], quantification
is performed using p-norms, where the parameter p controls the ”softness” of the logical
operations. For existential quantification, we compute the p-norm of truth values, while for
universal quantification, we use the dual formulation 1− ‖1− ·‖p:

J∃x:s F K := ( 1

|Is|
∑
a∈Is

JF K pν[x 7→a]

)1/p
, (11)

J∀x:s F K := 1−
( 1

|Is|
∑
a∈Is

(1− JF Kν[x 7→a])
p
)1/p

, (12)

JF → GK := 1− JF K + JF K · JGK. (13)

This is however only possible for finite domains. For the infinite case and additional quan-
tifier variants, we refer to Appendix C.2.

4.4. Sampling ”Semantics”
While [15] have introduced a sampling semantics, we think that the semantics should define
probabilities, while an implementation can work with e.g. Monte Carlo sampling in order to
obtain an approximation that is easier to implement (and, in the case of quantification over
infinite domains, unavoidable). Hence, we do not discuss sampling semantics here. But we
expect that a Monte Carlo convergence theorem can be stated and proved.

5. NeSy Transformations
The original ULLER paper [15] uses a uniform notion of interpretation. This leads to the
problem that classical semantics needs to extract values with maximal probability (using
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arg max) from a distribution, which is not possible if there is a tie7. Here, we propose an
alternative way of dealing with this problem: namely, using a NeSy transformation, we can
move e.g. from an interpretation in a probabilistic NeSy framework to one in a classical
framework. Deadling with ties can be done using a non-deterministic semantics.

Definition 9 A NeSy transformation α : F → F ′ between two NeSy frameworks
is a family of functions8 αΣ : IntpF (Σ) → IntpF ′(Σ). Here, the interpretation function
IntpF : Σ 7→ Intp(F ,Σ) sends a signature to the set of interpretations on F for that
signature. We write α for αΣ if Σ is clear from context.

Argmax transformation: From distributional to non-deterministic semantics
For a given distributional interpretation I(m) of a computational function symbol m, we
can define a non-deterministic interpretation α(I)(m) of m by defining, where sm is the
sort of m, and likewise, M is a computational predicate symbol:

α(I)(m) := argmax
a∈I(sm)

[
I(m)(a)

]
, α(I)(M) := argmax

b∈Ω={0,1}

[
I(M)(b)

]
,

and for all other symbols set α(I) := I. This definition is not possible in the general prob-
abilistic case, because probability measures often return zero on all single values. It is also
a non-deterministic interpretation since it returns a set of values instead of a single value.
The resulting semantics is three-valued, as in section 4.1. This argmax transformation is
just one example of many possible NeSy transformations.

Then, in the practical implementation of ULLER, we use random sampling (see sec-
tion 4.4) over a uniform distrubtion to obtain a single value from the set of values α(I)(m).
This gives a precise foundation for the use of argmax in the classical semantics in [15].

6. Conclusion
The ULLER language [15] aims at a unifying foundation for neurosymbolic systems. In
this paper, we have developed a new semantics for ULLER, based on Moggi’s formalisation
of computational effects as monads. In contrast to the original semantics, our semantics
is truly modular. It is based on a notion of NeSy framework that provides the structure
of the computational effects and the space of truth values. This modularity will enable a
cleaner, more modular implementation of ULLER in Python and an easier integration of
new frameworks, as well as a structured method of translating between different frameworks.
First implementations of our mULLER framework are available in Python and Haskell, see
https://github.com/cherryfunk/mULLER. Note that the distributional and probabilistic
NeSy frameworks will make parameterized interpretations in the sense of [15] differentiable
and that this can be integrated by using a category of differentiable manifolds and functions.

Our work suggests an analogy between ULLER’s formulas x := m(T1, . . . , Tn)(F ) and
Haskell’s do-notation do x ← m(T1, . . . , Tn);F for computational effects. Inspired by this
analogy, one could extend ULLER to a language with computational terms and formulas
that may be nested.

7. Or in case of an infinite distribution (see Appendix C.1)
8. For those interested in category theory; this is in fact a natural transformation, hence the name.
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Appendix A. Brief Introduction to Category Theory
The main part of this paper does not use category theory. Indeed, we have introduced
set-based notions of monad and of Double semigroup bounded lattice. They do not rely
on category theory, nor do the central definitions of mULLER, in particular, the notions
of NeSy framework, of signature, interpretation and formula, nor the rules of the Tarskian
semantics.

By contrast, in this appendix, we will heavily make use of category theory. The main
purpose of that is the possibility to work with continuous probability distributions.9 An-
other motivation is the need for quantification structures for infinite domains, which are
common in first-order logic. In these cases, we need to work with structured objects and
structure-preserving maps, like measurable spaces and measurable functions. Without or-
ganising such spaces and maps into a category, we still can use the set-theoretic variant of

9. The lack of which is described as a major limitation and shortcoming of traditional NeSy systems by
[13].
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the semantics. However, we would need to restrict to structure-preserving maps in places
like the definition of interpretation (Def. 6), and, more severely, would need to prove that
the semantic rules in Def. 8 again yield structure-preserving maps.

When using category theory, we can avoid such proofs and base our theory on a certain
structure that is required for the involved categories. That said, we still can use the set-
theoretic semantics rules for convenience, also for categories other than Set, just because the
categorical version of the rules tells us that the resulting maps will be structure-preserving.10

We now recall some basic notions of category theory. See [14] for an introduction with
a focus on application in database theory, [2] for a logical and type-theoretic overview, and
[7] as a general reference.

Definition 10 A Category C consists of

• a class |C| of objects,

• for any two objects A,B ∈ |C| a set C(A,B) of morphisms from A to B. f ∈ C(A,B)
is written as f : A→ B (not necessarily a function),

• for any object A ∈ |C| an identity morphism idA ∈ C(A,A), i.e. idA : A→ A,

• for any A,B,C ∈ |C| a composition operation ◦ : C(B,C)×C(A,B)→ C(A,C), i.e.
for f : A→ B, g : B → C, we have g ◦ f : A→ C,

such that

• identities are neutral elements for composition, i.e. f ◦ idA = f = idB ◦ f , and

• composition is associative, i.e. (f ◦ g) ◦ h = f ◦ (g ◦ h).

Examples of categories are:

• Set: Sets and functions.

– |Set| = {M |M is a set}
– Set(A,B) = {f | f : A→ B is a function}
– Compositions and identities of functions.

• Meas: measurable spaces and measurable functions.11

– |Meas| = {(X,ΣX) | ΣX is a σ-algebra on X}
– Meas((X,ΣX), (Y,ΣY )) = {f : X → Y | f−1(B) ∈ ΣX for all B ∈ ΣY }
– Compositions and identities of measurable functions.

• Measr: measure spaces and measure preserving functions.12

– |Measr| = {(X,ΣX , µX) | µX is a measure on (ΣX , X)}

10. Technically, this holds for any construct (set-based category) in the sense of [1].
11. More details at https://ncatlab.org/nlab/show/measurable+space.
12. More details at https://ncatlab.org/nlab/show/measure+space.
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– Measr((X,ΣX , µX), (Y,ΣY , µY )) = {f : X → Y | f is measure preserving}
– Compositions and identities of measure preserving functions.

• Prob: probability spaces and measure preserving functions.13

– |Prob| = {(X,ΣX , ρX) | ρX is a probability measure on (ΣX , X)}
– Prob((X,ΣX , ρX), (Y,ΣY , ρY )) = {f : X → Y | f is measure preserving}
– Compositions and identities of measure preserving functions.

Commutative diagrams are often used to visualise equalities between (compositions of)
morphisms in categories. For example, the following diagram shows the composition of
morphisms f : A→ B and g : B → C:

A

B

C

f g

g ◦ f

Definition 11 An object 1 ∈ |C| is called terminal, if for each A ∈ |C| there exists a
unique morphism !A : A→ 1C.

Examples of terminal objects in Set are all singleton sets.

Definition 12 (Products) Let C be a category and let A,B be objects in C. A product of
A and B is an object A×B together with two morphisms (called projections) πA : A×B → A
and πB : A×B → B such that for any object X with morphisms f : X → A and g : X → B,
there exists a unique morphism u : X → A×B such that πA ◦ u = f and πB ◦ u = g. This
unique u is noted as 〈f, g〉 and is called the pairing of f and g.

This universal property can be depicted by the following commutative diagram:

X

A A×B B

u=〈f,g〉

gf

πA πB

This easily generalises to products of finitely many objects. A category having a terminal
object and binary products is called cartesian category.

Appendix B. Categorical NeSy Frameworks
B.1. More (on) Monads
Definition 13 A Kleisli triple or monad on a category C involves a mapping of objects
T : Ob(C) → Ob(C), a family of morphisms ηX : X → T X for each object X in C
(called the unit), and a function that assigns to each morphism f : X → T Y a morphism
f∗ : T X → T Y such that the axioms hold as in Def. 1. Note that a set-based Kleisli triple
is then a Kleisli triple on the category Set.
13. More details at https://ncatlab.org/nlab/show/Prob.
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Definition 14 (Strong Kleisli triple) A Kleisli triple (T , η, (−)∗) on a cartesian category
C is called strong if there is a natural transformation

SA,B : A× T B −→ T (A×B)

satisfying the naturality condition: for any morphisms f : A→ A′ and g : B → B′,

T (f × g) ◦ SA,B = SA′,B′ ◦ (f × T g),

and such that

SA,B ◦ (idA × ηB) = ηA×B, SA,B ◦ (idA × f∗) = (id× f)∗ ◦ SA,C .

Example 3 Identity monad I on Set, the category of sets and functions. For a
set X:

IX := X (identity functor),

ηX(x) := x, f∗(x) := f(x)
(
f : X → Y, x ∈ X

)
.

Example 4 Powerset monad P on Set, the category of sets and functions. For
a set X:

PX := {A ⊆ X} (powerset of X),

ηX(x) := {x}, f∗(A) :=
⋃
a∈A

f(a)
(
f : X → PY,A ⊆ X

)
.

Example 5 (Sub-Distribution Monad S) The sub-distribution monad S is similar to
the distribution monad D but it allows for finitely supported measures that do not sum up
to 1, that means:

SX :=
{
ρ : X → [0, 1]

∣∣∣ ∑
x∈X

ρ(x) ≤ 1, ρ countably additive and has finite support
}
,

ηX(x) := δx, δx(y) =

{
1, x = y
0, x 6= y

f∗(ρ)(y) :=
∑
x∈X

ρ(x)f(x)(y)
(
f : X→SY, ρ ∈ SX

)
.

Example 6 Giry monad G on Meas, the category of measurable spaces and
maps. For a measurable space (X,ΣX) and dirac measure δx on X for x ∈ X:

G(X,ΣX) :=
{
ρ : X → [0, 1]

∣∣∣ ρ(X) = 1, ρ countably additive
}

(prob. measures on X),

η(X,ΣX)(x) := δx, δx(A) =

{
1, x ∈ A
0, x 6∈ A

f∗(ρ)(A) :=

∫
X

f(x)(A)dρ(x)
(
f : X→GY,A ⊆ Y measurable

)
.

δx is the probability distribution that assigns all probability mass to x.
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Example 7 Infinite Giry monad G∞ on Meas. For a measurable space (X,ΣX):

G∞(X,ΣX) :=
{
µ : ΣX → [−∞,∞] | µ(∅) = 0, µ countably additive

}
,

η(X,ΣX)(x) := δx, δx(A) =

{
1 x ∈ A

0 x /∈ A
,

f∗(µ)(A) :=

∫
X
f(x)(A) dµ(x)

(
f : X→SY, A ⊆ Y measurable

)
.

Here the integral is the Lebesgue–Stieltjes integral with respect to the extended signed measure
µ. Writing the Jordan decomposition µ = µ+ − µ− and using linearity of the integral, one
checks that the monad laws hold; thus S extends the Giry monad by allowing negative and
(possibly) infinite total mass.

Proposition 15 (and definition of the measure-space monad M) We can define a
measure monad M as a monad (T , η, µ)14 on the category Measr of measure spaces with
η, µ being the unit and multiplication of the Giry monad G on Meas. For ρ being probability
measures, we can define a probability-space monad O on the category Prob of probability
spaces. The same construction can be applied to obtain an infinite measure-space monad
M∞ on Measr.

M((X, ρ)) := (G(X), ρη),

ρη := B 7−→ ρ(η−1(B)), for B ⊆ G(X) measurable,
ηM := η, µM := µ.

Proof If ρ is a probability measure, we know that ρη(G(X)) = ρ(η−1(G(X))) = ρ(X) = 1,
countable additivity follows alike. Now we only need to check whether ηM, µM are measure
preserving, which follows for the unit by definition:

ηM : (X, ρ) −→
(
G(X), ρη

)
ρ
(
(ηM)−1(B)

)
= ρ

(
η−1(B)

)
= ρη(B).

Now, for the multiplication we have:

µM :
(
G2(X), ρ◦η−1◦η−1

G
)
−→

(
G(X), ρ◦η−1

)
since

M2(X) = M
((
G(X), ρη

))
=

(
G2(X), (ρη)η

)
,

and that means we can write for any measurable set A ⊆ G2(X):

(ρη)η(A) = ρη
(
η−1
G (A)

)
= ρ

(
η−1 ◦ η−1

G (A)
)
.

14. Here we use the traditional category theoretical definition of monad as (T , η, µ), where µ is monad
multiplication. This is however equivalent to the definition as Kleisli triple.
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Therefore we show the measure-preserving property as follows

ρ◦η◦η−1
G

(
µ−1(B)

)
= ρ◦η−1

(
η−1
G (µ−1(B))

)
= ρ◦η−1(B),

because we know the following fact from the monad laws:

A = η−1
G

(
µ−1(B)

)
⇐⇒ A = µ

(
ηG(A)

)
= B.

B.2. The 2Sg-Bl Algebra: A Comprehensive Overview
In this subsection, we provide a comprehensive overview of the different algebraic structures
that can serve as algebras on the truth space T Ω in our neurosymbolic framework, along
with their associated operations types and logical properties.

Table B.2 provides a comprehensive comparison of the fundamental operations across
different algebraic structures, showing how each algebra defines its basic operations.

Algebra Set ⊥ > ⊕ ⊗ → ¬ aggr∃

Boolean {0, 1} 0 1 max min IB ¬R sup
LTNp [0, 1] 0 1 SP TP ISP ¬C ‖·‖p
LTNq [0, 1] 0 1 SP TP ISP ¬C P∃q
Product [0, 1] 0 1 SP TP IP ¬R P∃
S-Prod. [0, 1] 0 1 SP TP ISP ¬C P∃
Priest {F,B, T} F T max min IKD ¬C sup

Table 3: Overview of some aggregated 2Sg-Bl with named operations

t-conorms and t-norms (⊕ and ⊗):

• SP (Probabilistic sum): xSP y = x+ y − xy

• TP (Product): xTP y = xy

Implications (→):

• IP (Product/Goguen): IP (x, y) =

{
1 if x ≤ y

y/x otherwise

• IB (Boolean): IB(x, y) =

{
0 if x = 1, y = 0

1 otherwise

• IS (General S-implication): IS(x, y) = ¬x⊕ y

• IKD (Kleene-Dienes/Material): IKD(x, y) = max(1− x, y)

• ISP (S-Product): ISP (x, y) = 1− x+ xy

17
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Negations (¬):

• ¬R (Residual): ¬Rx = x→ 0 (includes Heyting/intuitionistic negation)

• ¬C (Classical/1-Involutive): ¬Cx = 1− x

• ¬V (0-Involutive): ¬V x = 0− x = −x

Aggregations (aggr∃):

• P∃ (Infinitary Probabilistic Sum): P∃(x) = 1− exp
(
Ea∼µ

[
1− lnJF KνF [x 7→a]

])
• P∃q ((µ, q)-approximated P∃): P∃q(x) = 1− exp

(
Ea∼µ

[(
1− lnJF KνF [x7→a]

)q] 1
q
)

for 1/2 ≤ q ≤ 1, with P∃q → P∃ as q → 1. Here µ can be any measure and it depends
on the context, in LTNq it depends on the measure space of the sort of the quantified
variable at hand.

The quantification aggregations employ logarithmic and exponential transforms because
they provide the natural generalization of the product (or probabilistic sum) to infinitary
domains. While finite probabilistic sums can be computed directly using products, extend-
ing to infinite domains requires the use of expectations, and the logarithmic and exponential
transforms enable this generalization while preserving the essential structure of probabilistic
aggregation.

B.3. Definition of Categorical NeSy Frameworks
Definition 16 (Internal Aggregated 2Sg-Bl) An aggregated 2Sg-Bl internal to a carte-
sian category C on an object A in C consists of a lattice on A internal15 to C, mor-
phisms ⊕,⊗,→: A × A → A, ⊥,> : 1C → A and for any objects B and C maps
aggr∀B,C , aggr

∃
B,C : C(B × C,A) → C(B,A), such that the axioms of Def. 2 hold when

appropriately interpreted in C16.

Note that our categorical handling of aggregation differs from that in the set-theoretic
setting. A full analogy to the set-theoretic case would require aggregation morphisms AX →
X, which would need a cartesian closed category. This requirement seems too strong for
our purposes, since it is not met in many examples and only is required for interpreting
higher-order logics. However, given a cartesian closed category (like Set) with aggregation
aggr : AX → X, we can define aggregation in the sense of Def. 16 as mapping f : B×C → A

to B
Λ(f)→ AC aggr→ A. Here, Λ(f) is currying, defined as follows in Set: Λ(f)(x)(y) = f(x, y).

In the sequel, we will rely on this definition also for Set-based categories (constructs [1])
that are not cartesian closed, noting that the definition works even if AC is just a set and
not an object in the category. Hence, in examples, we will define aggregation as in Def. 2.

Definition 17 (NeSy framework) A NeSy framework (T ,Ω,R) consists of

15. For an explanation check https://ncatlab.org/nlab/show/internalization, since this is out of scope
for this paper.

16. 1C is a terminal object.
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1. a strong monad T with strength S on a cartesian category C,17

2. An object Ω ∈ ObC acting as truth basis,18

3. an aggregated 2Sg-Bl R internal to C on the truth space T Ω.

Examples are given in Table 4 and their semantics are discussed in section C. Note that
further examples arise by varying the 2Sg-Bl R on [0, 1].

Table 4: NeSy Framework Examples (categorical)
Logic/Theory C T Ω T Ω R Sem.
Probabilistic Measr Measure-space M {0, 1} [0, 1] Product BL–Alg. §C.1
Infinitary LTNp Prob Probability-space O {0, 1} [0, 1] Product SBL-Alg. §C.2
STLr Measr ∞-measure-space M∞ {1} [−∞,∞] approx. R §C.3

Appendix C. Categorical Semantics
The categorical notion of interpretation differs from the set-theoretic definition (Defini-
tion 6) only in that sets are replaced by objects in the category C and functions are replaced
by morphisms in C. This generalization allows the framework to work in any category with
suitable structure, not just the category of sets and functions.

Definition 18 (Tarskian semantics J·K of formulas) Given a NeSy framework (T ,Ω,R)
and a NeSy interpretation I we can determine the interpretation morphisms:

Formulas: JF KI : VF → T Ω, Terms: JT KI : VT → I(sT ) :

Remark 19 We define VT :=
∏

x:t∈ΓT
I(t). Here ΓT is the context of T and sT is the

(unique) sort of the term T . Analogously VF :=
∏

x:t∈ΓF
I(t). Note that if T1 is a subterm

of T2, there is a projection πT1,T2 : VT2 → VT1, and analogously for formulas. T stands for
T1, . . . , Tn. Moreover, 〈JT Ki◦πi〉i = 〈JT1K◦π1, . . . , JTnK◦πn〉 and JT K = (JT1K, . . . , JTnK). The
categorical semantics ensures that all involved and resulting functions are morphisms in C,
i.e. are measurable in case that C = Meas, etc. With a purely set-theoretic semantics, we
would need to prove measurability (or other properties) separately for each NeSy framework.
That said, besides the general categorical case, 19 for better understandability, we also
translate the equations to their meaning in the category of sets. We work with variable
valuations ν ∈ VT (and ν ∈ VF ), noting that elements of

∏
x:t∈ΓT

I(t) map variables x : t
to values in I(t). We write JT KI,ν = JT KI(ν) and JF KI,ν = JF KI(ν). That said, we mostly
omit I and ν if clear from the context.
17. Note that Set is a cartesian closed category, and every monad on Set is strong.
18. Similar to the basis of a vector space.
19. Logician’s note: We don’t differentiate properly between additive and multiplicative connec-

tives/units/quantifiers for an easier presentation coherent with the NeSy literature. However, this could
easily be adapted to obtain something like Girad’s linear logic [5], following the Zeitgeist of his transcen-
dental syntax.
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Table 5: Inductive definition of the Tarskian semantics

Syntax Categorical Semantics J·KI Set Semantics J·KI,ν
Terms

Jx : sK idI(s) νs(x)JcK I(c) I(c)JT.propK I(prop) ◦ JT K I(prop)(JT K)Jf(T )K I(f) ◦ 〈JT Ki◦πi〉i I(f)
(JT K)

Atomic formulas

JP K ηΩ ◦ I(P ) ηΩ(I(P ))JNK I(N) I(N)JR(T )K ηΩ ◦ I(R) ◦ 〈JT Ki◦πi〉i ηΩ
(
I(R)(JT K))JM(T )K I(M) ◦ 〈JT Ki◦πi〉i I(M)
(JT K)

Compound formulas

J>K, J⊥K 1R, 0R 1R, 0RJ¬F K ¬R ◦ JF K ¬R(JF K)JF → GK →R ◦〈JF K◦πF , JGK◦πG〉 JF K →R JGKJF‖GK ⊕R◦〈JF K◦πF , JGK◦πG〉 JF K ⊕R JGKJF&GK ⊗R◦〈JF K◦πF , JGK◦πG〉 JF K ⊗R JGKJ∃x:sF K aggr∃VF\x:s,I(s)(JF K) aggr∃I(s)(λa.JF KνF [x7→a])J∀x:sF K aggr∀VF\x:s,I(s)(JF K) aggr∀I(s)(λa.JF KνF [x7→a])Jx := m(T )(F )K JF K∗◦S◦ 〈πVF\x:s , I(m) ◦ 〈JT Ki◦πi〉i〉 do a← I(m)(JT K); JF Kν[x 7→a]

C.1. Probabilistic Semantics
Definition 20 A probabilistic NeSy framework is a tuple (T ,Ω,R) with T =M the
Giry monad on the category Measr of measure spaces and Ω the truth basis, normally
Ω = {0, 1}, and R a suitable 2Sg-Bl, for example the Product BL-Algebra.

The interpretation of a function f of arity n is a (measure preserving) Markov kernel, which
is a measurable map X

q−→ M(Y ) where M denotes the measure monad on the category
Measr of measure spaces.

Our definition of a probabilistic semantics largely follows that in the original ULLER
paper [15]. A central design decision of ULLER is the use of first-order interpretations
and the use of probability distributions to interpret computational function symbols. This
means that ULLER (and therefore also mULLER) is (like Logic Tensor Networks) not built
on weighted model counting, i.e. on probability distributions over the set of interpretations.
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That said, it is still possible to capture certain aspects of weighted model counting in
ULLER and mULLER, as we will see in section C.4 below.

Connectives in the probabilistic semantics of ULLER are interpreted assuming indepen-
dence of probabilities for atomic formulas. Hence, our distributional semantics can be seen
as a special case of a fuzzy semantics, where the t-norm is the probabilistic product and the
t-conorm is the probabilistic sum. This means that we can use the same equations as in the
fuzzy semantics (and as in LTNs), but with a different motivation. Moreover, this explains
why there is no essential difference between these probabilistic and fuzzy semantics.

Let us derive from our general semantic in definition 8 the interpretation of monadic
formulas in probabilistic semantics. For the probabilistic NeSy framework, we define the
aggregation morphisms aggr∀B,C , aggr

∃
B,C required by Def. 16 as follows: for any measure

spaces B and C,

aggr∀B,C(f) := exp ◦ Ec∼µC [ln ◦f(·, c)]
aggr∃B,C(f) := (1− exp) ◦ Ec∼µC [1− ln ◦f(·, c)]

where f : B×C → [0, 1] and µC is the measure on C. In the following examples, we provide
implicit definitions of these aggregation operations through their concrete realizations. In
set-theoretic notation, the semantics of computational formulas can be written as, where
ρm(·|T ) := I(m)(JT K):

Jx := m(T )(F )K = do a← I(m)(JT K); JF Kν[x7→a]

=

∫
a∈I(sm)

JF KνF [x 7→a] dI(m)(JT K)(a)
=

∫
a∈I(sm)

JF KνF [x 7→a] dρm(a|T )

= Ea∼ρm(·|T )

[JF Kν[x 7→a]

]
=

∑
a∈I(sm)

JF KνF [x 7→a] · ρm(a|T ) (if I(sm) is finite)

We evaluate in the Product Algebra to obtain, where µs is the measure given by the measure
space of I(s)

Jx := m(T )(F )K := Ea∼ρm(·|T )

[JF Kν[x 7→a]

]
(14)

J∃x:s F K := 1− exp
(
Ea∼µs

[
1− lnJF KνF [x 7→a]

])
(15)

J∀x:s F K = expEa∼µs

[
lnJF Kν[x 7→a]

] (finite, µs avrg. count. meas.)
=

∏
a∈I(s)

JF Kν[x 7→a] (16)

JF‖GK := JF K + JGK− JF K · JGK, JF&GK := JF K · JGK, (17)

JF → GK := max
(
1, JGK/JF K), J¬F K := 1− JF K (18)J⊥K := 0, J>K := 1. (19)
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C.2. Infinitary LTNp Semantics
Definition 21 A LTN-like NeSy framework is a tuple (T ,Ω,R) with T = O the
probability monad on the category Prob of probability spaces and Ω the truth basis, normally
Ω = {0, 1}, and R a suitable 2Sg-Bl, for example the Product Real Algebra from Product
Real Logic as in [3].

Setting Stable product real logic of Logic Tensor Networks [3] uses p-means for finite
quantification. The hyperparameter p is usually increased during training, because this
moves from mean (tolerant to outliers) towards the maximum20 (logically stricter). How-
ever, since domains are generally infinite, we also need to aggregate infinite many truth–
scores (xi)i∈I ⊆ [0, 1]. The power–mean extends from the finite case to an integral form
that is well defined whenever the data are Lp-integrable. Let (X,A, ρ) be a probability
space and f : X → [0, 1] ⊆ R a measurable map with

∫
X
f dρ ≤ 1. Because 0 ≤ f ≤ 1,

one automatically has f ∈ Lp(ρ) for every real p, so p‑means are always defined. This
bounded–by–one assumption reflects the fact that in our logical reading a truth‑score never
exceeds 1.

The infinitary LTNp semantics is a modification of the probabilistic semantics, which is
motivated by replacing the quantifiers in equation (15) and (16). We generalize this: by
working in the category Prob, for any sort s we have to provide a probability measure ρs
on I(s). This enables us to obtain a p-means for infinite21 domains:

Mp(a1, . . . , an) :=
( 1

n

n∑
i=1

a p
i

)1/p
, Mp(f ; ρs) :=

(∫
x∈X

f(x)p dρs(x)
)1/p

, (20)

and these extend to M0(a1, . . . , an) :=
(∏n

i=1 ai

) 1
n and M0(f ; ρs) := exp

(∫
ln f dρs

)
. For

p→∞ we recover the supremum. Take X = {1, . . . , N} with counting measure 1/N , then
Mp(f ; ρs) reduces to Mp(a1, . . . , an) or choose weights wi summing up to 1 for i = 1, . . . , N
to obtain the weighted p-mean. The aggregated 2Sg-Bl is similar to the probabilistic one,
except for the Reichenbach implication as implication and the following aggregation func-
tions. For a hyperparameter 1 ≤ p < ∞ of LTNp, let aggr∃I(s)(f) := Mp(f ; ρs) and
aggr∀I(s)(f) := 1−Mp(λx.f(1− x); ρs). As a result, equation (20) now becomes:

J∃x:s F K = (∫
a∈I(s)

(JF Kν[x 7→a]

)p
dρs(a)

)1/p
.

As in [3], this is for 1 ≤ p < ∞, where for p → ∞ we recover the supremum. However,
we also propose a different pair of quantifiers with 1/2 ≤ q ≤ 1, where for q → 1 the
universal quantifier converges to the product, while the existential quantifier converges to

20. This holds for existential quantification. Universal quantification ∀ is defined through ¬∃x:s¬, and
converges to the minimum.

21. This defends the idea of LTN against the criticism of [12], that the domains are finite and therefore no
probability distribution is approximated.
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the probabilistic sum:

J∀x:s F K := exp
((∫

a∈I(s)

(
lnJF Kν[x 7→a]

)q
dρs(a)

)1/q)
, J∃x:s F K := J¬∀x:s ¬F K.

It is worth noting that our probability measure ρs depend on the sort s of the variable x
in the quantifier, since it is given by the probability measure of the probability space of
I(s). This stands in contrast to [12], where the probability measure depends directly on
the variable x.

C.3. Infinitary STL Semantics
Signal Temporal Logic (STL) is a temporal logic for expressing properties of signals. STL
is particularly useful for modeling and analyzing the temporal aspects of real-time systems,
such as the timing and sequencing of events.

In the semantics of STL, we do not have any implication connective, nor neutral el-
ements. We still need to interpret the syntactic implication connective as some form of
semantical implication and the syntactic ⊥ and > as −∞ and∞, the latter as in [12]. Also
keep in mind, that this does not touch the truth designations of −∞ as absolute falsity and
∞ as absolute truth.

What also can not be ignored is that STL does not directly use a 2Sg-Bl, but only approx-
imates one. It works within the normal extended real numbers algebra (R̃,max,min,+, ∗)
and then goes on to approximate the min and max operations. The are many different ways
to do this, but one of the most recent ones is to use the Ar and Or operators as defined in
[17]. Additionally, STL is not concerned with the operations ⊗ and ⊕ of the 2Sg-Bl, these
are not used in the semantics of STL, and are just kept to be the standard operations +, ∗
of the extended real numbers algebra.

For these reasons, in order to faithfully model STL, in a way that makes it comparable
to other semantics, we would need to extend our syntax and semantics, and specifically, we
would need to allow to approximate 2Sg-Bls. This however, is out of scope for this paper,
and will be discussed in a future work, and yet we still give a first sketch:

Jx := m(T )(F )K := Ea∼µm(·|T )

[JF Kν[x 7→a]

]
(21)J∃x:s F K := Or

a∈I(s)
(JF Kν[x 7→a]

)
, J∀x:s F K := Ar

a∈I(s)
(JF Kν[x 7→a]

)
, (22)

JF‖GK := Or(JF K, JGK), JF&GK := Ar(JF K, JGK) (23)

JF → GK := J¬F‖GK = O(−JF K, JGK), J¬F K := −JF K (24)J⊥K := −∞, J>K :=∞. (25)

The STL robustness metrics are defined as in [12] and originally in [17]:

Ar
a∈M (a) =


∑

a amine
ãerã∑

a erã
if amin < 0∑

a ae−rã∑
a e−rã if amin > 0

0 if amin = 0
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where r ∈ R+ (constant), amin = mina∈M (a), and ã = a−amin
amin

. Ar is an approximation of
the min operation, and for r →∞ it converges to it. Therefore, its notation is similar to the
notation of the min operation, with Ar

b∈N (f(b)) := Ar(im(f)) := Ar
a∈im(f)(a). The operator

Or
a∈M is defined as −Ar

a∈M (−a).22 For infinite domains, the minimum is replaced by the
infimum infa∈M (a), and the summations

∑
a∈M are replaced by integrals

∫
a∈M dµs(a), where

µs is the measure given by the measure space of I(s).

C.4. Weighted Model Counting and Weighted Model Integration
ULLER can model certain aspects of weighted model counting (WMC) in a probabilistic
semantics. However, instead of summing up literal or model weights, one needs to sum up
weights of variable valuations. In the case of ULLER [15], we have the following definition.
Given an interpretation I and a formula F that is classical (i.e. without computational
symbols) with context ΓF := {x1 : s1, . . . , xn : sn}, the domains of the variables are given
by I(s1), . . . , I(sn)23. This yields the weighted model count (WMC) as follows:

WMC(F,w) =
∑

a∈I(s1)×···×I(sn)

w(a)JF Kν[x1 7→a1, ..., xn 7→an]

=
∑

a1∈I(s1)

· · ·
∑

an∈I(sn)

w(a1, . . . , an) JF Kν[x1 7→a1, ..., xn 7→an]

If the weight function factorises—i.e. the random variables x1, . . . , xn are assumed inde-
pendent24 —then for every assignment (a1, . . . , an) ∈ I(s1)× · · · × I(sn):

w(a1, . . . , an) =

n∏
i=1

ρfi(ai).

Consequently, the weighted model count becomes

WMC(F, f1, . . . , fn) =
∑

a1∈I(s1)

· · ·
∑

an∈I(sn)

( n∏
i=1

ρfi(ai)

) JF Kν[x1 7→a1,...,xn 7→an].

This WMC can be expressed in the language of NeSy systems as follows ([15], p. 234):

x1 := f1(), . . . , xn := fn()(F )

In the linearly dependent case, rewrite it via the chain rule,

w(a1, . . . , an) =
n∏

i=1

ρfi
(
ai | a1, . . . , ai−1

)
,

22. See [17] for details.
23. In the original ULLER paper these were written as Ω1 := I(s1), . . . ,Ωn := I(sn).
24. As in [15] (p. 16).
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to make the conditional dependencies explicit. In this case, the WMC becomes

∑
a1∈I(s1)

· · ·
∑

an∈I(sn)

( n∏
i=1

ρfi
(
ai | a1, . . . , ai−1

)) JF Kν[x1 7→a1,...,xn 7→an].

In the continuous case we obtain weighted model integration25 (WMI) as follows:

∫
a1∈I(s1)

· · ·
∫
an∈I(sn)

JF Kν[x1 7→a1,...,xn 7→an]dρfn
(
an | a1, . . . , an−1

)
· · · dρf1

(
a1
)

Finally, we can also express even more general dependencies than linear ones. Given any
Bayesian network with a set of variables x1, . . . , xn, we can express this in ULLER as follows:

∑
a1∈I(s1)

· · ·
∑

an∈I(sn)

( n∏
i=1

ρfi
(
ai | parents(ai)

)) JF Kν[x1 7→a1,...,xn 7→an].

and in ULLER, this is expressed as (assuming that the xi are topologically ordered, i.e. xi
can only a parent of xj if i < j):

x1 := f1(), f2(parents(x2)), . . . , xn := fn(parents(xn))(F ).

25. Compare with [10].
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