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The Method of Equal Shares (ES) is a popular approval-based multi-winner voting rule, which was originally 
proposed by Peters and Skowron. It satisfies several well-known representation axioms, like extended justified 
representation (EJR) and priceability, and it can be computed in polynomial time. Further, it has already been 
employed in several real participatory budgeting elections. In this note, we prove that ES is an instance of the 
EJR-Exact family of voting rules that also satisfy EJR and were proposed by Aziz et al. 2018 before the work of 
Peters and Skowron.

1. Introduction

Approval-based multi-winner voting has received a significant 
amount of attention by the computational social choice community 
(see [19] for an overview of multi-winner voting challenges and [22] 
for a survey on approval-based multi-winner voting). A major concern 
here is to achieve (proportional) representation: in many scenarios, 
it is considered highly desirable that the selected committee faith-
fully represents the voters. The topic of achieving representation with 
approval-based multi-winner voting has been studied in many research 
papers, both theoretically [1,29,2,24,4,26,5,25,30,11,13,10] and em-
pirically [16,8,13,18,23,6].

A seminal work in the study of representation in approval-based 
multi-winner voting was that of Aziz et al. [1]. They proposed two ax-
ioms to capture the notion of representation, that they called justified rep-

resentation (JR), and extended justified representation (EJR). Informally, 
when there are 𝑛 voters that participate in an election to select a com-
mittee of 𝑘 candidates, JR requires that for any group of voters of size 
at least 𝑛 

𝑘
such that all the voters in the group approve a candidate in 

common, at least one of the voters in the group must approve one of the 
candidates in the elected committee. EJR requires that for any group of 
voters of size at least 𝓁 𝑛 

𝑘
, with 1 ≤ 𝓁 ≤ 𝑘, such that all the voters in the 

group approve 𝓁 candidates in common, at least one of the voters in 
the group must approve at least 𝓁 candidates in the elected committee. 
EJR is a strengthening of JR: any committee that satisfies EJR also sat-
isfies JR. A voting rule that always outputs committees that satisfy JR 
(respectively, EJR) is said to satisfy JR (respectively, EJR).

Aziz et al. proved that committees that satisfy JR or EJR always ex-
ist. In particular, they identified a voting rule satisfying each axiom. In 
the case of JR, they identified a rule called GreedyAV that satisfies JR 

E-mail address: luiss@it.uc3m.es.

and can be computed in polynomial time. Informally, GreedyAV is an 
iterative algorithm that, at each iteration, selects the most approved can-
didate among those voters who are still unrepresented in the committee. 
Unfortunately, this rule may output committees that do not satisfy EJR.

In the case of EJR, Aziz et al. proved that Proportional Approval 
Voting (PAV) [34], proposed by the Danish mathematician Thorvald 
N. Thiele, in the nineteenth century, satisfies EJR. Unfortunately, PAV 
is known to be NP-hard to compute [3,31]. In summary, by the time 
when [1] was first published, it was not known whether it was possible 
to compute committees that satisfy EJR in polynomial time.

This issue was closed by Aziz et al. [2] who identified two differ-
ent approaches to computing committees that satisfy EJR in polynomial 
time. The first one is a local search algorithm for PAV, fixing a minimum 
increase in the PAV score at each iteration to guarantee that the number 
of iterations of the local search algorithm grows polynomial in the worst 
case. The second approach is a family of voting rules called EJR-Exact 
(the operation of the EJR-Exact family of voting rules is reviewed in de-
tail later). All the voting rules in the EJR-Exact family satisfy EJR, and 
run in polynomial time as long as the algorithms that identify each rule 
within the family are polynomial.

Later, Peters and Skowron [26] proposed an appealing voting rule, 
originally called Rule X and later renamed as the Method of Equal Shares 
(ES), that, among other interesting properties,1 satisfies EJR and can 
be computed in polynomial time. ES has received a significant amount 
of attention by the computational social choice community (see for in-
stance [25,33,21,9,17,7,12,14,15,6]). Further, ES has also been used 

1 The Method of Equal Shares satisfies two other axioms proposed also in [26], 
called laminar proportionality and priceability.
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in real elections. In particular, a variant of ES for participatory bud-
geting has been used in participatory budgeting elections in Wieliczka 
(Poland), Aarau (Switzerland) and Świecie (Poland).2

In this note, we prove that the Method of Equal Shares is a partic-
ular instance of the EJR-Exact family of voting rules proposed by Aziz
et al. [2].

The rest of this note is organised as follows. In the next section, we 
introduce some notation and review the operation of ES. The following 
two sections are devoted to presenting the EJR-Exact family of voting 
rules and to prove that ES is an instance of the EJR-Exact family. We 
will finish this note with a short discussion.

2. Preliminaries

An approval-based multi-winner election can be represented with a 
tuple (𝑁,𝐶,, 𝑘), where 𝑁 = {1,… , 𝑛} is the set of voters, 𝐶 is the set 
of candidates,  = (𝐴1,… ,𝐴𝑛) is the ballot profile, and 𝑘, such that 1 ≤
𝑘 ≤ |𝐶|, is the target committee size. Approval voting means that voters 
do not order the candidates according to their preferences but select the 
candidates they approve. Thus, the ballot 𝐴𝑖 of a voter 𝑖 is a subset of 
the set of candidates 𝐶 . For each candidate 𝑐 in 𝐶 , let 𝑁𝑐 be the set of 
voters that approve 𝑐.

An approval-based multi-winner voting rule 𝑅 takes as input an elec-
tion (𝑁,𝐶,, 𝑘) and outputs a nonempty set of winners (the selected 
committee) 𝑊 ⊆𝐶 of size 𝑘.

2.1. The method of equal shares (ES)

ES [26] is an iterative algorithm that starts with an empty set of 
winners 𝑊 and adds a new candidate to 𝑊 at each iteration until a 
stop condition is met.

Initially, each voter possesses one vote, and voters can use fractions 
of their votes to back candidates. To add a candidate to the set of win-
ners, the voters that approve such a candidate must possess at least 𝑛 

𝑘
votes altogether, and this amount will be subtracted from the votes pos-
sessed by the voters who approve the candidate that is added to the set 
of winners at each iteration.

Denote by 𝜌𝑗 (𝑖) the fraction of a vote possessed by voter 𝑖 after 𝑗
candidates have been added to the set of winners. Thus, 𝜌0(𝑖) = 1 for 
each voter 𝑖.

Peters and Skowron explain in [26] that ES is designed so that the 
candidate selected at each iteration and the procedure chosen to remove 
fractions of votes are done to share the cost of selecting a candidate “as 
equally as possible among the voters who approve the candidate”.

To that extent, at iteration 𝑗+1, the candidate that is added to the set 
of winners is the candidate 𝑐 that minimizes the value 𝛾𝑗+1(𝑐), defined 
as:

𝛾𝑗+1(𝑐) = min
𝑥 

{
𝑥 ∶

∑
𝑖∶𝑐∈𝐴𝑖

min{𝑥, 𝜌𝑗 (𝑖)} =
𝑛 
𝑘

}
The value of 𝜌𝑗+1(𝑖) is equal to 𝜌𝑗 (𝑖) − min{𝛾𝑗+1(𝑐), 𝜌𝑗 (𝑖)} for each 

voter 𝑖 that approves candidate 𝑐 and is equal to 𝜌𝑗 (𝑖) otherwise. If, 
after a certain iteration, no candidate exists such that the sum of the 
fractions of the votes left by the voters that approve such candidate is at 
least 𝑛 

𝑘
, the algorithm stops and outputs the candidates that have been 

added to the set of winners so far.
It may happen that at the end of this algorithm, the number of candi-

dates in the set of winners is strictly smaller than 𝑘. Peters and Skowron
proved that regardless of how the set of winners obtained with the above 
algorithm is completed, the final set of winners will satisfy EJR. Peters
and Skowron suggested as a possible way to complete ES to run another 
rule known as seq-Phragmén [10,20] to complete the set of winners af-
ter the basic ES algorithm has finished. Other approaches for completing 

2 https://equalshares.net/ (visited on 13/6/2024).

committees have been studied in the literature [14]. In any case, the pro-
cedure used to complete the committee output by ES does not affect the 
result that we present in this note.

3. The EJR-exact family of voting rules

The operation of a significant number of voting rules existing in the 
literature consists of an iterative procedure in which, at each iteration, 
a candidate is added to the set of winners, and (fractions of) a subset 
of the votes are removed from the election. The candidate added to the 
committee is supposed to represent the voters whose votes or fractions 
of their votes are removed from the election. In what follows, we refer 
to this scheme as “add-candidates-and-remove-votes”. The definition of 
the Method of Equal Shares that we have given in the previous section 
follows the add-candidates-and-remove-votes scheme.

Examples of multi-winner voting rules that were proposed before 
the introduction of the EJR-Exact family, and that can be defined fol-
lowing the add-candidates-and-remove-votes scheme3 are: the Single 
Transferable Vote (STV) (for ranked ballots), Greedy Monroe, originally 
proposed by Skowron et al. [32] for ranked ballots and later adapted 
for approval ballots by Sánchez-Fernández et al. [29], and HareAV, 
GreedyAV, and the rule of Eneström-Phragmén for approval ballots. Ha-
reAV was proposed by Aziz et al. [1]. GreedyAV is a particular instance 
of the w-SeqPAV family of voting rules [1], and its name is also due 
to Aziz et al. [1]. Finally, the rule of Eneström-Phragmén was proposed 
in the nineteenth century by the Swedish mathematicians Lars Edvard 
Phragmén and/or Gustaf Eneström [10,20]. None of the approval-based 
multi-winner voting rules mentioned in this paragraph satisfies EJR.4

For the apportionment problem, the operation of quota methods [27] 
(like the largest remainders method) can also be defined following the 
add-candidates-and-remove-votes scheme.

An interesting feature of voting rules whose operation follows the 
add-candidates-and-remove-votes scheme is that they are polynomial 
time computable as long as the computations required at each iteration 
can be done in polynomial time. In fact, all the rules mentioned in the 
previous paragraph are polynomial time computable, and some of them 
are greedy approximation algorithms for voting rules that require solv-
ing NP-hard problems as part of their computation. Thus, the goal of 
EJR-Exact, proposed by Aziz et al. [2], was to identify a set of suffi-
cient conditions such that any voting rule whose operation follows the 
add-candidates-and-remove-votes scheme and satisfies such conditions 
would satisfy EJR, in the hope that some (or many) of these rules could 
be polynomial time computable.

Under the operation of EJR-Exact rules, initially, each voter pos-
sesses one vote (we use here the same notation as for ES before), and 
voters can use fractions of their votes to back candidates. At each iter-
ation, a candidate is added to the set of winners and fractions of the 
votes possessed by the voters are removed from the election. For each 
𝑗 ∈ {0,… , 𝑘} and each voter 𝑖 ∈𝑁 , we denote by 𝜌𝑗(𝑖) the fraction of 
vote that voter 𝑖 retains after the 𝑗th iteration (again, we use here the 
same notation that we have used for ES). 𝜌0(𝑖) is equal to 1 for each 
voter 𝑖, and 1≥ 𝜌𝑗 (𝑖) ≥ 0 for each voter 𝑖 and each iteration 𝑗.

It is convenient to review the definition of the EJR + axiom at this 
point due to Brill and Peters [13]. The EJR + axiom was defined after 
the EJR-Exact family, but its definition is related to some concepts that 
we need to introduce.5

3 Some of the voting rules mentioned here admit alternative definitions of 
their operation that do not require the use of the add-candidates-and-remove-
votes scheme.

4 Aziz et al. [1] conjectured that HareAV satisfied EJR if ties were broken 
to favour committees that satisfy EJR. However, Sánchez-Fernández et al. [28]
proved that this conjecture is wrong.

5 The proof that every voting rule in the EJR-Exact family satisfies EJR given 
in [2] allows also to say that every voting rule in the EJR-Exact family satisfies 
EJR + .

https://equalshares.net/
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Definition 1. Consider an approval-based multi-winner election (𝑁,𝐶, 
, 𝑘). A subset 𝑊 of 𝐶 such that |𝑊 | ≤ 𝑘 satisfies EJR + if there is no 
candidate 𝑐 ∈ 𝐶 ⧵𝑊 , group of voters 𝑁 ′ ⊆𝑁 , and 𝓁 ∈ ℕ, with |𝑁 ′| ≥
𝓁 𝑛 

𝑘
, such that

𝑐 ∈
⋂

𝑖∈𝑁 ′ 𝐴𝑖 and |𝐴𝑖 ∩𝑊 | < 𝓁 for all 𝑖 ∈𝑁 ′.

Given an approval-based multi-winner election and a set of candi-
dates 𝑊 , we can compute for each candidate 𝑐 ∈ 𝐶 ⧵𝑊 the maximum 
value of 𝓁 such that there exists a group of voters 𝑁 ′ of size at least 
𝓁 𝑛 

𝑘
such that 𝑐 and 𝑁 ′ witness a violation of EJR + . We call this value 

the EJR + demand6 of candidate 𝑐. Further, if for a given candidate 𝑐
no group of voters 𝑁 ′ exists such that 𝑐 and 𝑁 ′ would witness a viola-
tion of EJR + , we say that the EJR + demand of candidate 𝑐 is 0. Clearly, 
if the EJR + demand of each candidate in 𝐶 ⧵ 𝑊 is 0, then 𝑊 satis-
fies EJR + (and EJR). Intuitively, the EJR + demand of a candidate is a 
measure of the size of the group of unsatisfied voters that approve this 
candidate. These ideas are formalised in the following definition.

Definition 2. The EJR + demand d(𝑐,𝑊 ) of a candidate 𝑐 ∈ 𝐶 ⧵𝑊 with 
respect to a set of candidates 𝑊 ⊆𝐶 such that |𝑊 | ≤ 𝑘, is the maximum 
non-negative integer such that a group of voters 𝑁 ′ exists satisfying (i) 
𝑐 belongs to 𝐴𝑖 for each voter 𝑖 in 𝑁 ′; (ii) |𝑁 ′| 𝑘

𝑛 ≥ d(𝑐,𝑊 ); and (iii) |𝐴𝑖 ∩ 𝑊 | < d(𝑐,𝑊 ) for each voter 𝑖 in 𝑁 ′. If conditions (i), (ii), and 
(iii) are not satisfied for any 𝑁 ′ and any positive value of d(𝑐,𝑊 ), then 
d(𝑐,𝑊 ) = 0.

Definition 3. The entitlement 𝑒𝑛(𝑖,𝑊 ) of a voter 𝑖 with respect to a set 
of candidates 𝑊 ⊆𝐶 is

𝑒𝑛(𝑖,𝑊 ) = max 
𝑐∈𝐴𝑖⧵𝑊

d(𝑐,𝑊 )

The entitlement of a voter is the largest EJR + violation of which the 
voter is part.

By the definitions of EJR + demand and entitlement it is easy to see 
that both notions decrease monotonically when we add candidates to 
𝑊 , that is, d(𝑐,𝑊 ∪ {𝑐′}) ≤ d(𝑐,𝑊 ) and 𝑒𝑛(𝑖,𝑊 ∪ {𝑐′}) ≤ 𝑒𝑛(𝑖,𝑊 ) for 
any candidates 𝑐, 𝑐′ ∈ 𝐶 ⧵𝑊 and any voter 𝑖.

If, at a particular iteration, we add a candidate 𝑐 to the set of winners 
and the entitlement of a specific voter 𝑖 in 𝑁𝑐 after adding this candidate 
is greater than the number of candidates in the set of winners that this 
voter approves, then we may need to add later to the set of winners 
other additional candidates that this voter approves. To that end, we 
must save a fraction of this voter’s vote to back other candidates that 
should be added later to the winning committee.

For each 𝑗 ∈ {0,… , 𝑘 − 1}, each candidate 𝑐 in 𝐶 ⧵ 𝑊 , and each 
voter 𝑖 in 𝑁𝑐 such that 𝑒𝑛(𝑖,𝑊 ∪ {𝑐}) > |𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|, we define the 
buffer 𝑔𝑗+1

𝑖
(𝑐) of voter 𝑖 if candidate 𝑐 is added to the set of winners at 

iteration 𝑗 + 1 as

𝑔
𝑗+1
𝑖

(𝑐) = 1 −
|𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|
𝑒𝑛(𝑖,𝑊 ∪ {𝑐}) 

.

If 𝑒𝑛(𝑖,𝑊 ∪ {𝑐}) ≤ |𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|, then 𝑔𝑗+1
𝑖

(𝑐) = 0.
Intuitively, to avoid that voter 𝑖 witness an EJR + violation we may 

need to add some candidates to 𝑊 . The total number of candidates in 
𝑊 that voter 𝑖 must approve is bounded by 𝑒𝑛(𝑖,𝑊 ∪{𝑐}), but it can be 
smaller. Further, suppose voter 𝑖 must approve 𝑥 ≤ 𝑒𝑛(𝑖,𝑊 ∪{𝑐}) candi-
dates in 𝑊 to avoid witnessing an EJR + violation. In that case, each of 
these 𝑥 candidates must be approved by at least 𝑥 𝑛 

𝑘
unsatisfied voters, 

according to Definition 1. The definition of 𝑔𝑗+1
𝑖

(𝑐) allows to guaran-

6 Aziz et al. [2] refer to this notion as the plausibility of a candidate.

tee that voter 𝑖 could pay at least 
𝑛 
𝑘

𝑥
𝑛 
𝑘

= 1 
𝑥

for each of the additional 
candidates, because

𝑔
𝑗+1
𝑖

(𝑐) − (𝑥− |𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|) 1 
𝑥
=

1 −
|𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|
𝑒𝑛(𝑖,𝑊 ∪ {𝑐}) 

− (𝑥− |𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|) 1 
𝑥
=

−
|𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|
𝑒𝑛(𝑖,𝑊 ∪ {𝑐}) 

+
|𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|

𝑥 
=

|𝐴𝑖 ∩ (𝑊 ∪ {𝑐})|( 1 
𝑥
− 1 

𝑒𝑛(𝑖,𝑊 ∪ {𝑐})
) ≥ 0

Definition 4. After iteration 𝑗 ∈ {0,… , 𝑘− 1}, we say that a candidate 
is

• weak if 
∑

𝑖∈𝑁𝑐
𝜌𝑗 (𝑖) <

𝑛 
𝑘

,

• risky if 𝑛 
𝑘
≤
∑

𝑖∈𝑁𝑐
𝜌𝑗 (𝑖) <

𝑛 
𝑘
+
∑

𝑖∈𝑁𝑐
𝑔
𝑗+1
𝑖

(𝑐), and

• safe if 
∑

𝑖∈𝑁𝑐
𝜌𝑗 (𝑖) ≥

𝑛 
𝑘
+
∑

𝑖∈𝑁𝑐
𝑔
𝑗+1
𝑖

(𝑐).

A distinguishing characteristic of voting rules that belong to the EJR-
Exact family is that they never add risky candidates to the set of winners 
because their addition may cause EJR violations. However, other rules 
that follow the add-candidates-and-remove-votes scheme and do not be-
long to the EJR-Exact family often add risky candidates to the set of 
winners.

We say that an iteration is safe if the following conditions hold for 
such iteration (𝑐 is the candidate added to the set of winners in such 
iteration):

1.
∑

𝑖∈𝑁 𝜌𝑗 (𝑖) −
∑

𝑖∈𝑁 𝜌𝑗+1(𝑖) =
𝑛 
𝑘

,

2. 𝜌𝑗+1(𝑖) ≥ 𝑔
𝑗+1
𝑖

(𝑐), for each voter 𝑖 in 𝑁𝑐 , and
3. 𝜌𝑗+1(𝑖) = 𝜌𝑗 (𝑖), for each voter 𝑖 that does not approve 𝑐.

Observe that the conditions above can only be fulfilled if the selected 
candidate is safe.

Definition 5. A rule belongs to the EJR-Exact family if it repeatedly 
performs safe iterations until all remaining candidates are weak.

Aziz et al. [2] proved that, if, at a particular iteration, there are no 
safe candidates left in 𝐶 ⧵𝑊 , then all the remaining candidates in 𝐶 ⧵𝑊
are weak, and any committee that contains 𝑊 satisfies EJR.

4. Main result

In the proof that ES is an instance of the EJR-Exact family, we will 
use the following proposition7 which was proved by Aziz et al. [2].

Proposition 1. Consider any voting rule that is an iterative algorithm where, 
at each iteration, a candidate is added to the set of winners and fractions of 
the votes are removed from the election. Suppose the first 𝑗 iterations of such 
a voting rule for a given election are safe. Then, for each voter 𝑖 ∈𝑁 with 
𝑒𝑛(𝑖,𝑊 ) > |𝐴𝑖 ∩𝑊 | we have

𝜌𝑗 (𝑖) ≥ 1 −
|𝐴𝑖 ∩𝑊 |
𝑒𝑛(𝑖,𝑊 ) 

Theorem 1. The rule of Equal Shares is an instance of the EJR-Exact family 
of voting rules.

Proof. We prove that ES belongs to the EJR-Exact family by induction. 
For 𝑗 = 0,… , 𝑘− 1, we prove that under the assumption that the first 𝑗

7 Proposition 1 is stated as Lemma 2 in [2].
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iterations are safe (𝑗 = 0 corresponds to the point before the first itera-
tion of ES starts, and therefore, for 𝑗 = 0 no assumption is made), then 
iteration 𝑗 + 1 is also safe or no safe candidates remain after the first 𝑗
iterations.

First, we observe that, by the definition of ES, conditions 1 and 3 for 
safe iterations are always satisfied, so to prove that an iteration of ES is 
safe, we only need to prove that condition 2 holds.

Suppose first that the EJR + demand of all the remaining candidates 
in 𝐶 ⧵ 𝑊 is 0. This implies that 𝑒𝑛(𝑖,𝑊 ∪ {𝑐}) = 0 for each voter 𝑖, 
and each candidate 𝑐 in 𝐶 ⧵𝑊 , and therefore that also 𝑔𝑗+1

𝑖
(𝑐) = 0 for 

each voter 𝑖, and each candidate 𝑐 in 𝐶 ⧵𝑊 . Therefore, if there is some 
candidate 𝑐 in 𝐶 ⧵𝑊 such that 

∑
𝑖∈𝑁𝑐

𝜌𝑗 (𝑖) ≥
𝑛 
𝑘

, then iteration 𝑗 + 1 is 
safe because condition 2 does not apply, and otherwise all the remaining 
candidates are weak.

Suppose now that after the first 𝑗 iterations, some candidate exists in 
𝐶 ⧵𝑊 with EJR + demand of at least 1. Consider a candidate 𝑐 in 𝐶 ⧵𝑊
with maximum EJR + demand value 𝓁 ≥ 1. By the definition of EJR + 
demand, this implies that there exists a set of voters 𝑁 ′ ⊆𝑁𝑐 such that |𝑁 ′| ≥ 𝓁 ⋅ 𝑛 

𝑘
, and |𝐴𝑖 ∩𝑊 | < 𝓁 for each 𝑖 ∈𝑁 ′. By Proposition 1,

𝜌𝑗 (𝑖) ≥ 1 −
|𝐴𝑖 ∩𝑊 |
en(𝑖,𝑊 ) 

= 1 −
|𝐴𝑖 ∩𝑊 |

𝓁
≥

1 
𝓁
, for each voter 𝑖 in 𝑁 ′.

Thus,∑
𝑖∈𝑁𝑐

𝜌𝑗 (𝑖) ≥
∑
𝑖∈𝑁 ′

𝜌𝑗 (𝑖) ≥ 𝓁 ⋅
𝑛 
𝑘

1 
𝓁
= 𝑛 

𝑘
,and 𝛾𝑗+1(𝑐) ≤

1 
𝓁
.

Let 𝑐′ be the candidate added by ES at iteration 𝑗 + 1. Since ES se-
lects the candidate with minimum 𝛾𝑗+1(𝑐′), this implies that 𝛾𝑗+1(𝑐′) ≤
𝛾𝑗+1(𝑐) ≤

1 
𝓁

.
This implies that iteration 𝑗 + 1 is safe because

𝜌𝑗+1(𝑖) = 𝜌𝑗 (𝑖) − 𝛾𝑗+1(𝑐′) ≥ 1 −
|𝐴𝑖 ∩𝑊 |
𝑒𝑛(𝑖,𝑊 ) 

− 1 
𝓁

≥ 1 −
|𝐴𝑖 ∩𝑊 | 

𝑒𝑛(𝑖,𝑊 ∪ {𝑐′})
− 1 

𝑒𝑛(𝑖,𝑊 ∪ {𝑐′})
= 1 −

|𝐴𝑖 ∩ (𝑊 ∪ {𝑐′})|
𝑒𝑛(𝑖,𝑊 ∪ {𝑐′}) 

= 𝑔
𝑗+1
𝑖

(𝑐′)

for each voter 𝑖 in 𝑁𝑐′ such that 𝑒𝑛(𝑖,𝑊 ∪{𝑐′}) > |𝐴𝑖 ∩ (𝑊 ∪{𝑐′})|. We 
again used Proposition 1 in the first inequality. The second inequality 
holds by the monotonicity of entitlement and because 𝑒𝑛(𝑖,𝑊 ∪ {𝑐′}) ≤
𝓁. □

5. Discussion

In this note, we have proved that the Method of Equal Shares is an in-
stance of the EJR-Exact family of voting rules. This result illustrates that 
the conditions imposed by EJR-Exact are quite general. We do not dare 
to conjecture that such conditions are an axiomatic characterisation for 
voting rules that satisfy EJR and follow the add-candidates-and-remove-
votes scheme, but we certainly do not know any rule whose operation 
follows the add-candidates-and-remove-votes scheme and satisfies EJR, 
but it is not an instance of the EJR-Exact family.

Other voting rules proposed in the literature that are also instances of 
the EJR-Exact family include the rule Simple EJR, proposed by Sánchez-
Fernández et al. [28], that selects at each iteration the candidate with a 
higher EJR + demand. This rule was later and independently rediscov-
ered and renamed as the Greedy Justified Candidate Rule by Brill and
Peters [13].

Declaration of generative AI and AI-assisted technologies in the 
writing process

While preparing this work, the author used Grammarly® to improve 
the writing. After using this tool, the author(s) reviewed and edited the 
content as needed and take(s) full responsibility for the publication’s 
content.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

Helpful comments and suggestions made by the reviewers are grate-
fully acknowledged. This work has been partially funded by the “Gener-
ation of Reliable Synthetic Health Data for Federated Learning in Secure 
Data Spaces” Research Project (PID2022-141045OB-C43 (AEI/ERDF, 
EU)) funded by MICIU/AEI/10.13039/501100011033 and by “ERDF A 
way of making Europe” by the “European Union”.

Data availability

No data was used for the research described in the article.

References

[1] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, T. Walsh, Justified representa-
tion in approval-based committee voting, Soc. Choice Welf. 48 (2017) 461–485.

[2] H. Aziz, E. Elkind, S. Huang, M. Lackner, L. Sánchez-Fernández, P. Skowron, On the 
complexity of extended and proportional justified representation, in: Proceedings of 
the 32nd Conference on Artificial Intelligence (AAAI-2018), 2018, pp. 902–909.

[3] H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie, N. Mattei, T. Walsh, Com-
putational aspects of multi-winner approval voting, in: Proceedings of the 2015 
International Conference on Autonomous Agents and Multiagent Systems, 2015, 
pp. 107–115.

[4] H. Aziz, B.E. Lee, The expanding approvals rule: improving proportional represen-
tation and monotonicity, Soc. Choice Welf. 54 (2020) 1–45.

[5] H. Aziz, B.E. Lee, Proportionally representative participatory budgeting with ordinal 
preferences, in: Proceedings of the 35th Conference on Artificial Intelligence (AAAI-
2021), 2021, pp. 5110–5118.

[6] N. Boehmer, M. Brill, A. Cevallos, J. Gehrlein, L. Sánchez-Fernández, U. Schmidt-
Kraepelin, Approval-based committee voting in practice: a case study of (over-) 
representation in the Polkadot blockchain, in: Proceedings of the AAAI Conference 
on Artificial Intelligence, 2024, pp. 9519–9527.

[7] N. Boehmer, P. Faliszewski, Ł. Janeczko, A. Kaczmarczyk, Robustness of participa-
tory budgeting outcomes: complexity and experiments, in: International Symposium 
on Algorithmic Game Theory, Springer, 2023, pp. 161–178.

[8] R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, An experimental view 
on committees providing justified representation, in: Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-2019), 2019, pp. 109–115.

[9] M. Brill, S. Forster, M. Lackner, J. Maly, J. Peters, Proportionality in approval-based 
participatory budgeting, in: Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2023, pp. 5524–5531.

[10] M. Brill, R. Freeman, S. Janson, M. Lackner, Phragmén’s voting methods and justified 
representation, Math. Program. 203 (2024) 47–76.

[11] M. Brill, J. Israel, E. Micha, J. Peters, Individual representation in approval-based 
committee voting, in: Proceedings of the 36th Conference on Artificial Intelligence 
(AAAI-2022), 2022, pp. 4892–4899.

[12] M. Brill, E. Markakis, G. Papasotiropoulos, J. Peters, Proportionality guarantees in 
elections with interdependent issues, in: Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelligence, 2023, pp. 2537–2545.

[13] M. Brill, J. Peters, Robust and verifiable proportionality axioms for multiwinner vot-
ing, in: Proceedings of the 2023 ACM Conference on Economics and Computation 
(ACM-EC-2023), 2023, p. 301.

[14] M. Brill, J. Peters, Completing priceable committees: utilitarian and representation 
guarantees for proportional multiwinner voting, in: Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2024, pp. 9528–9536.

[15] N. Chandak, S. Goel, D. Peters, Proportional aggregation of preferences for sequential 
decision making, in: Proceedings of the AAAI Conference on Artificial Intelligence, 
2024, pp. 9573–9581.

[16] E. Elkind, P. Faliszewski, J.F. Laslier, P. Skowron, A. Slinko, N. Talmon, What do 
multiwinner voting rules do? An experiment over the two-dimensional Euclidean 
domain, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[17] R. Fairstein, G. Benadè, K. Gal, Participatory budgeting designs for the real world, in: 
Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 5633–5640.

[18] P. Faliszewski, M. Lackner, K. Sornat, S. Szufa, An experimental comparison of mul-
tiwinner voting rules on approval elections, in: Proceedings of the Thirty-Second 
International Joint Conference on Artificial Intelligence, 2023, pp. 2675–2683.

[19] P. Faliszewski, P. Skowron, A. Slinko, N. Talmon, Multiwinner voting: a new chal-
lenge for social choice theory, in: U. Endriss (Ed.), Trends in Computational Social 
Choice. AI Access, 2017, pp. 27–47.

http://refhub.elsevier.com/S0020-0190(25)00020-1/bibAD510EF5B72E31BFFCA59AF85418A21Cs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibAD510EF5B72E31BFFCA59AF85418A21Cs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibCD1D0A1E5C18942B1F7A96B77F9C60BBs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibCD1D0A1E5C18942B1F7A96B77F9C60BBs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibCD1D0A1E5C18942B1F7A96B77F9C60BBs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib8F58FDC4C46F1A3D6DBE4DB224F14895s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib8F58FDC4C46F1A3D6DBE4DB224F14895s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib8F58FDC4C46F1A3D6DBE4DB224F14895s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib8F58FDC4C46F1A3D6DBE4DB224F14895s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib878AE4F34B88682B5D44647280E29A39s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib878AE4F34B88682B5D44647280E29A39s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib4840890C9BA25AAD1055E424872E3928s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib4840890C9BA25AAD1055E424872E3928s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib4840890C9BA25AAD1055E424872E3928s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib70A51665B887E18F61BA73499B5BF1C2s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib70A51665B887E18F61BA73499B5BF1C2s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib70A51665B887E18F61BA73499B5BF1C2s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib70A51665B887E18F61BA73499B5BF1C2s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6B544ED95F65FE824115B972EE1C8EAAs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6B544ED95F65FE824115B972EE1C8EAAs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6B544ED95F65FE824115B972EE1C8EAAs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib31F017EF5A66BBCD96C077E1B1875CB9s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib31F017EF5A66BBCD96C077E1B1875CB9s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib31F017EF5A66BBCD96C077E1B1875CB9s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6EFE4DC00BAEBCA038960885235DD590s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6EFE4DC00BAEBCA038960885235DD590s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6EFE4DC00BAEBCA038960885235DD590s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib77CDA3E47F454EB4A2654C41B56116A2s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib77CDA3E47F454EB4A2654C41B56116A2s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib85DB7F7B343D091C6562904A432FECA3s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib85DB7F7B343D091C6562904A432FECA3s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib85DB7F7B343D091C6562904A432FECA3s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibBF9C38233967D4C3E83B862DDC03328Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibBF9C38233967D4C3E83B862DDC03328Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibBF9C38233967D4C3E83B862DDC03328Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib49D7AA4F352BD84133D9977D1DC79580s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib49D7AA4F352BD84133D9977D1DC79580s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib49D7AA4F352BD84133D9977D1DC79580s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib600CAE7BC52766157B0233FE041E0BA8s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib600CAE7BC52766157B0233FE041E0BA8s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib600CAE7BC52766157B0233FE041E0BA8s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib90CF341759CC74CB3FAD3C188A2A45CAs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib90CF341759CC74CB3FAD3C188A2A45CAs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib90CF341759CC74CB3FAD3C188A2A45CAs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6746BD80006B43E18AEA5739EC32E90Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6746BD80006B43E18AEA5739EC32E90Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib6746BD80006B43E18AEA5739EC32E90Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibBF18F0C178E8BFEDC54B1CC018D6488As1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibBF18F0C178E8BFEDC54B1CC018D6488As1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib408350C976443F50D760719956829B7Bs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib408350C976443F50D760719956829B7Bs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib408350C976443F50D760719956829B7Bs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib8E3DF4CE33765C2D4DA8F36F2FC32405s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib8E3DF4CE33765C2D4DA8F36F2FC32405s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib8E3DF4CE33765C2D4DA8F36F2FC32405s1


Information Processing Letters 190 (2025) 106576

5

L. Sánchez-Fernández 

[20] S. Janson, Phragmén’s and Thiele’s election methods, Technical Report, arXiv:1611.
08826 [math.HO], 2016.

[21] S. Kraiczy, E. Elkind, An adaptive and verifiably proportional method for partic-
ipatory budgeting, in: International Conference on Web and Internet Economics, 
Springer, 2023, pp. 438–455.

[22] M. Lackner, P. Skowron, Multi-Winner Voting with Approval Preferences, Springer, 
2023.

[23] K. Mehra, N. Kishore Sreenivas, K. Larson, Deliberation and voting in approval-
based multi-winner elections, in: International Conference on Autonomous Agents 
and Multiagent Systems, Springer, 2023, pp. 77–93.

[24] D. Peters, Proportionality and strategyproofness in multiwinner elections, in: Pro-
ceedings of the 17th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS-2018), 2018, pp. 1549–1557.

[25] D. Peters, G. Pierczyński, P. Skowron, Proportional participatory budgeting with ad-
ditive utilities, in: Proceedings of the 34th Annual Conference on Neural Information 
Processing Systems (NeurIPS-2021), 2021, pp. 12726–12737.

[26] D. Peters, P. Skowron, Proportionality and the limits of welfarism, in: Proceedings of 
the 2020 ACM Conference on Economics and Computation (ACM-EC-2020), 2020, 
pp. 793–794.

[27] F. Pukelsheim, Proportional Representation, Springer, 2017.
[28] L. Sánchez-Fernández, E. Elkind, M. Lackner, Committees providing EJR can be com-

puted efficiently, Technical Report, arXiv:1704.00356 [cs.GT], 2017.
[29] L. Sánchez-Fernández, E. Elkind, M. Lackner, N. Fernández, J.A. Fisteus, P. Basanta 

Val, P. Skowron, Proportional justified representation, in: Proceedings of the 31st 
Conference on Artificial Intelligence (AAAI-2017), 2017, pp. 670–676.

[30] P. Skowron, Proportionality degree of multiwinner rules, in: Proceedings of the 
2021 ACM Conference on Economics and Computation (ACM-EC-2021), 2021, 
pp. 820–840.

[31] P. Skowron, P. Faliszewski, J. Lang, Finding a collective set of items: from pro-
portional multirepresentation to group recommendation, Artif. Intell. 241 (2016) 
191–216.

[32] P. Skowron, P. Faliszewski, A. Slinko, Achieving fully proportional representation: 
approximability results, Artif. Intell. 222 (2015) 67–103.

[33] P. Skowron, A. Górecki, Proportional public decisions, in: Proceedings of the AAAI 
Conference on Artificial Intelligence, 2022, pp. 5191–5198.

[34] T.N. Thiele, Om flerfoldsvalg, in: Oversigt over det Kongelige Danske Videnskabernes 
Selskabs Forhandlinger, 1895, pp. 415–441.

http://refhub.elsevier.com/S0020-0190(25)00020-1/bibC4261B7ABCCEA6477157209C28936769s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibC4261B7ABCCEA6477157209C28936769s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibC9267D5EDB0F6C0087A6C683554F15D5s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibC9267D5EDB0F6C0087A6C683554F15D5s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibC9267D5EDB0F6C0087A6C683554F15D5s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibF3D761E579C46706043BE55033D7C65Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibF3D761E579C46706043BE55033D7C65Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib23AC69750D8922174DD379B9199A8C61s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib23AC69750D8922174DD379B9199A8C61s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib23AC69750D8922174DD379B9199A8C61s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibDC84C2D0DBAACB04FD5E6D6331D267F4s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibDC84C2D0DBAACB04FD5E6D6331D267F4s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibDC84C2D0DBAACB04FD5E6D6331D267F4s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibF4993C30ECF2EDFD0627FCF3CA3EC018s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibF4993C30ECF2EDFD0627FCF3CA3EC018s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibF4993C30ECF2EDFD0627FCF3CA3EC018s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib094A30B966F17147636209C15B44D225s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib094A30B966F17147636209C15B44D225s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib094A30B966F17147636209C15B44D225s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibAF1D068015ADDCB0D8CF22BC54103A16s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibF831EAA09FEC9DACBEADBBAEFFA0E2DFs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibF831EAA09FEC9DACBEADBBAEFFA0E2DFs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibDA019FE53016210A66D47D66BC91FAEBs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibDA019FE53016210A66D47D66BC91FAEBs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bibDA019FE53016210A66D47D66BC91FAEBs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib879E371135DA3F48401CD19FBC4C1B6Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib879E371135DA3F48401CD19FBC4C1B6Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib879E371135DA3F48401CD19FBC4C1B6Ds1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib00F626B8DE75D3EF3BF7AF5C11820EF5s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib00F626B8DE75D3EF3BF7AF5C11820EF5s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib00F626B8DE75D3EF3BF7AF5C11820EF5s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib74F189D8DD88EA389EA8BBD03818E850s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib74F189D8DD88EA389EA8BBD03818E850s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib981ECC55EE1DF81639485A7B3865A8FFs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib981ECC55EE1DF81639485A7B3865A8FFs1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib7AEF0A5DCA218DAA9964A93B19DBC3D9s1
http://refhub.elsevier.com/S0020-0190(25)00020-1/bib7AEF0A5DCA218DAA9964A93B19DBC3D9s1

	A note on the method of equal shares
	1 Introduction
	2 Preliminaries
	2.1 The method of equal shares (ES)

	3 The EJR-exact family of voting rules
	4 Main result
	5 Discussion
	Declaration of generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


