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Abstract
We present a long-horizon, hierarchical deep research (DR) agent designed for
complex materials and device discovery problems that exceed the scope of existing
ML surrogates or closed-source commercial agents. Our framework instantiates a
locally deployable DR instance that integrates local retrieval-augmented generation
(RAG) with large language model (LLM) reasoners, enhanced by a Deep Tree of
Research (DToR) mechanism that adaptively expands and prunes research branches
to maximize coverage, depth, and coherence. We evaluate across 21 nanomateri-
als/device topics using an LLM-as-judge rubric with 5 web-enabled SOTA models
as jurors. In addition, we conduct dry-lab validations on five representative tasks,
where human experts use domain simulations (e.g., DFT) to verify whether DR-
agent proposals are actionable. Results show that our DR agent produces reports
with quality comparable to commercial systems (ChatGPT-o3/o4-mini-high, Gem-
ini Deep Research) at substantially lower cost, while enabling on-prem integration
with local data and tools.

1 Introduction

Figure 1: Overview of current AI systems in Chemistry and Mate-
rials in S (Scope)/D (Depth) landscape

Machine learning for nanomate-
rials and device discovery has
advanced from tractable single-
entity predictions to increas-
ingly complex, system-level chal-
lenges. At the molecular or crys-
tal level (S1), modern surrogates
routinely predict intrinsic proper-
ties [1]. Small assemblies (S2)—
interfaces, heterostructures, or
simple 2–3-component devices—introduce coupling effects yet remain manageable. Real-world
nano-devices, however, operate at system scope (S3): multi-layer perovskite stacks with interde-
pendent layers, core–shell–doped catalysts with engineered interfaces, or nano-architected battery
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electrodes where transport across length scales governs performance [2]. The ultimate challenge lies
in cross-domain integration (S4): platforms that span material families, recognition chemistries, and
transduction modalities—for example, engineering 2D-material field-effect transistor (FET) sensors
with aptamer functionalization for environmental detection [3, 4].
Meeting this escalation in scope requires a matching escalation in depth. We frame depth from
single-pass prediction/forward screening (D1), to multi-stage pipelines with structured outputs (D2),
to long-horizon synthesis with iterative planning (D3), and ultimately hierarchical, breadth–depth
exploration (D4). As shown in Fig. 1, while classical high-throughput density functional theory
(DFT)/molecular dynamics (MD) and data-driven screening deliver important wins at S1–S2 / D1–D2,
they routinely struggle at S3–S4 where interfacial chemistry, kinetic pathways, and manufacturing
constraints are dominated by cascading multiscale interactions [5–8] (see Appendix B).
To address this gap, we introduce a hierarchical deep-research (DR) agent purpose-built for long-
horizon scientific inquiry. Given a natural-language inquiry, the system instantiates a locally deploy-
able DR instance that iterates between local and web retrieval-augmented generation (RAG) and
large language model (LLM) reasoners (summarizers, reflectors). We further expand the DR instance
into a Deep Tree of Research (DToR) where each instance is treated as a node in a tree-structured
workflow. DToR adaptively expands/prunes branches to improve coverage, depth, and coherence.
The agent is self-directed/navigated (plans its own research path), runs locally for controllability and
privacy, and targets S3–S4 hypotheses. Our contributions are

1. Methodology: DToR—an open, on-prem framework that casts long-horizon inquiry as a
resource-bounded tree over research nodes (single-path DR instances), combining local-
first RAG, diversity-aware complementary queries, gap-driven expansion/pruning, and
provenance-centric synthesis. Runs with Ollama/LMStudio for controllability and privacy,
democratizing DR in facing scientific problems at scopes S3–S4.

2. Evaluation: LLM-as-jury across 21 topics, a locally served open-source 32B LLM on
consumer-grade devices driving DToR could achieve report quality comparable to leading
commercial systems (DR conducted by ChatGPT-o3/o4-mini-high) while avoiding closed
APIs, with consistent rankings from five web-enabled judges (rubric scoring and dueling).
As for dry-lab validation in 5 representative applications, physics-based simulations on
agent-proposed candidates match or surpass those from the best commercial baselines across
multiple task metrics, demonstrating actionable, physically grounded hypotheses.

Related work Recent work on structured reasoning for LLMs has moved beyond linear prompting
toward explicit search structures. Tree-of-Thoughts (ToT) casts inference as a branching search
over intermediate ‘thoughts’, enabling exploration and backtracking [9]. Graph-of-Thoughts (GoT)
generalizes the search space to arbitrary graphs to capture non-linear dependencies and coordination
across subproblems [10, 11]. In parallel, reason–act and self-improvement paradigms—ReAct,
Reflexion, and Self-Refine—provide strong baselines for multi-step decision-making and revision (
[12–14]). Foundational web-agent environments/benchmarks—BrowseComp, WebLINX, WebArena,
and BrowserGym—formalize browsing/navigation competencies and support reproducible evaluation
[15–18]. Work on retrieval is also moving toward more adaptive strategies: Self-RAG [19] learns
when to retrieve and how to critique generations; Corrective RAG (CRAG) [20] assesses retrieval
quality and escalates to web search when local evidence is weak; and GraphRAG [21] leverages
graph-structured knowledge to guide retrieval beyond flat vector search. Despite this progress, there
is no framework that unifies structured branching and adaptive retrieval in a way that scales under
practical compute and data limits for domain-specific research settings.

2 Method

Figure 2: The DToR Depth-Breadth Workflow

D4 requires structured and budget-aware plan-
ning beyond short-term queries. We introduce
DToR, a breadth-then-depth controller for DR
that starts from multiple parallel perspectives,
selectively expands or prunes based on explicit
gap checks, runs evidence-first research steps
(local RAG with adapted web search), and
produces source-grounded reports.
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Single DR Instance As shown in Fig. S1 (with comparison against common standard DR agent
[22]), each DR instance is an evidence-first loop that (1) generates a search query; (2) performs
local RAG; (3) summarizes local evidence; (4) generates a complementary query to induce topical
diversity; (5) conducts web research for both queries; (6) integrates/updates previous retrieved
segments in a running summary; (7) reflects to propose follow-up query. The process would loop
until a set maximum round before (8) finalizing. Three design choices distinguish this instance
from common local DR agents [22] which only conduct (1)-(5)-(6)-(7): local-first retrieval (before
web) to reduce drift, hallucination, and surface domain priors; diversity-aware query generation
(local summary derived complementary query) to guarantee comprehensiveness; and robust I/O
discipline to prevent controller stalls on local-hosted LLMs. Compared with classic ReAct/Reflexion-
style linear loops, this instance adds an explicit breadth mechanism and escalation policy akin to
adaptive/corrective-RAG, while remaining compatible with the drop-in alternative RAG methods.

DToR: from perspectives to gap-driven expansion Based on the single DR instance, we treat
each DR instance as a Research Node (RN) inside a branch-and-bound controller (Fig. 2, see Fig. S2
for full size schematic, Appendix C for pseudocode). Starting from a user query, a diversifier proposes
several orthogonal Perspectives (P1, P2...)—each seeds one branch with a budget: maximum depth,
nodes per branch, and total branches. For the active branch, the router (i) runs the next pending
RN (the single DR instance), producing a RN summary; (ii) invokes analyst based on remaining
depth/budget/current RN report quality to give a decision EXPAND, PRUNE; and, if EXPAND
with budget remaining, (iii) invokes knowledge gap explorer to materializes new RNs from this
RN targeted to those gaps (depth+1) and updates remaining budget. Branches that stagnate are
pruned; (iv) branches that reach depth or converge are synthesized into a perspective report. When
all branches reach synthesis, a final synthesizer reconciles cross-branch evidence, resolves conflicts,
and outputs a provenance-rich, consolidated report. Conceptually, this is a tree-of-search over (query,
evidence, summary) states rather than over purely symbolic “thoughts,” inheriting the benefits of
structured exploration/backtracking from tree/graph-based reasoning while remaining tailored to
information-seeking and citation fidelity under explicit resource budgets.

3 Experiments

Experimental setup We evaluate across 21 human-expert–crafted, independent topics spanning
multiple domains (e.g., sensors, batteries, catalysts, as detailed in Appendix D.1). For each topic,
we consider 27 agents drawn from 9 commercial solutions, and 18 local settings deployed locally
on consumer-level hardware (9 single DR-instance settings, and 9 DToR-mode settings, details in
Appendix D.2). Using an LLM-as-judge protocol (details in Appendix D.3), we generate 27 distinct
report variants per topic and have five web-enabled SOTA judges—Claude 4 Opus (thinking), Gemini
2.5 Pro, Grok-3 (thinking), ChatGPT-o3, and ChatGPT-o4-mini-high—score each report under a
fixed, double-blind rubric with five equally weighted dimensions: (1) relevance, (2) depth, (3) clarity,
(4) applicability, and (5) novelty. Judges assign 0–10 per dimension and provide a one-sentence
justification; numeric ratings are extracted programmatically. We repeat the evaluation three times
per topic–report–judge combination, yielding 21× 27× 5× 3 = 8, 505 rubric-based judgments.
In a second stage, we run A/B dueling preferences using the same setup. For each topic, we rank
27 reports within commercial and local pools by rubric average, select the top-3 from each pool,
and conduct all pairwise matchups (C(6,2)=15 pairs per topic). Duels are double-blind and order-
randomized (A vs. B) and use a concise “experienced materials scientist” prompt emphasizing
clarity, gap prioritization, and actionable next steps. Each duel is repeated three times, yielding
21 × 15 × 3 = 945A/B trials and 4, 725 individual judge decisions. We also conduct dry-lab
validations to test whether DR-agent proposals are actionable. From the 21 topics, we select five
representative tasks—per- and polyfluoroalkyl substances (PFAS) sensor probe, PFAS degradation
catalysts, battery binder selection, oxygen evolution catalyst stability, and CO2 sensor probe. For each,
we take the best local and best commercial agent and deliver reports anonymously to a human expert,
who extracts candidates and builds atomic-level simulation environments (details in Appendix E).

Experimental results
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Figure 3: (a) Overall five-dimension rubric scores across 27 agents
(21 topics; 5 judges; 3 trials). (b) Full-factorial ablation (Method ×
LLM × Local retrieval); heatmap shows overall means; side bars
show each factor impact. (c) Dry-lab validation on five tasks: radar
of 10 simulation metrics comparing best local vs. best commercial
DR Agents. (d) Local deployment cost: stacked energy (kWh) split
into LLM vs. RAG; inset = average runtime (hour).

Across the five LLM-as-judge
scoring dimensions (Fig. 3a),
the locally deployed agent
DToR_qwq32B_local5003

achieved an average score
of 7.83/10, ranking 3rd
of 27 agents—just below
ChatGPT-o3 (7.98/10) and
ChatGPT-o4-mini-high
(7.96/10)—and outperform-
ing other widely used com-
mercial DR systems, includ-
ing Gemini 2.5 Pro (7.78/10),
Claude Opus 4 (7.73/10),
Grok 3 (7.43/10), and Per-
plexity (7.40/10). With
resource-reduced settings,
DToR_qwq32B_local100
(7.44/10) ranked 7th and
a single DR instance,
DTor_qwq32B_local0
(7.21/10), ranked 10th. Upon
detailed look on each of the
five dimensions (Fig. S3), we
could observe that for the

most challenging dimensions of novelty and depth, though our local agent could not make to top-3,
the difference between DToR and single DR instance have shown our DToR strategy could manage
to narrow the gap. For instance, DToR enables qwq32B_local500 to increase from an average of
5.04/10 to 6.84/10 in depth, and from 8.11/10 to 8.61/10 in novelty.
Inter-rater consistency across the five LLM critics was high: average Pearson correlation p = 0.96
on raw scores and Spearman ρ = 0.95 on rank orders (Fig. S4). Reliability is further supported by
agent-specific and inter-trial consistency (Fig. S5, Fig. S6). From ablation study perspective (Fig. 3b),
enabling local RAG (6.49/10) and especially DToR mode (6.57/10) would increase the average score.
Pairwise dueling (Fig. S7) confirms this: DToR_qwq32B_local500 achieves a 74% mean win rate
across head-to-head comparisons on all 21 topics with great consistency (Fig. S8).
In dry-lab validation spanning 10 metrics over five application scenarios (Fig. 3c), the commercial
baseline leads on 6 out of 10 metrics when judged by per-metric averages, but aggregating across
metrics the local agent achieves a higher overall score (92.9 vs. 88.4). Although both approaches
still trail domain-expert benchmarks (e.g., beta-cyclodextrin [23] for selective PFAS binding), the
DToR workflow yields recommendations competitive with—and sometimes exceeding—commercial
systems. Fig. 3d shows an average of only 4.16 kWh per completed report. Without high subscription
fee (Fig. S10) for commercial solutions, this makes DToR practical for nanomaterials/device
researchers without large compute or API budgets, as small open-source models on consumer
hardware keep energy modest and runtime tunable.

4 Conclusion

We introduced DToR to enable a locally deployable DR agent with a resource-bounded tree con-
troller that unifies local-first RAG, diversity-aware query generation, and gap-driven branching into
provenance-rich, long-horizon information seeking. Across 21 topics and 27 agents, under 8,505
rubric judgments from 5 web-enabled judges, our best local model (DToR_qwq32B_local500) ranked
3rd (7.83/10) with a 74% mean duel win rate (4,725 dueling judgement) while using only 4.16
kWh/report. In dry-lab validation over five applications, its candidates also achieved close or better
quality compared with the best commercial solutions. This work underscores actionable competitive
guidance and positioning open, democratized, on-prem DR agents as a secure, controllable, and
scalable path to automated accelerated scientific discovery at the S3-S4 level.

3Here, DToR_qwq32B_local500 refers to using qwq32B model to drive DToR framework and enable 500
volumes (all) of local corpus for RAG when running DR instances. See details in Appendix B.
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Hierarchical Deep Research with Local–Web RAG:
Toward Automated System-Level Materials Discovery

Technical Appendices and Supplementary Material

A Supplementary Figures

Figure S1: Schematic of the local evidence-first single DR instance in comparison with common
web-first DR (Adapted from [22])

Figure S2: Schematic of the DToR workflow
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Figure S3: Overall rubric scores across 27 agents on different evaluation dimensions.

Figure S4: Rubric score agent agreement level over the five critic LLMs, computed by correlation
factors.
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Figure S5: Agent-Specific Critic Consistency Analysis. Pearson correlation coefficients measuring
linear agreement between critique LLMs across 5 evaluation dimensions (Relevance, Depth, Clarity,
Applicability, Novelty) for each research agent. Spearman rank correlation coefficients measuring
ordinal agreement between critics. Higher values indicate greater consensus among the 5 critique
LLMs (Claude, Gemini, Grok, O3, O4) about each agent’s relative performance strengths and
weaknesses. Data aggregated from 21 research topics × 3 trials per agent. Perfect correlation
(ρ = 1.00) indicates all critics completely agree on the ranking of an agent’s performance across the
5 dimensions.
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Figure S6: Trial-to-Trial Consistency Analysis Matrix. Four metrics assess reproducibility across
three independent trials: (A) Pearson correlation measures score agreement, (B) Spearman correlation
evaluates ranking consistency, (C) Kendall’s tau provides alternative rank concordance, and (D) Mean
absolute difference quantifies score deviations. Data aggregated across 21 topics, 27 agents, and 5
LLM critics. Higher correlations (>0.8) and lower deviations (<0.5) indicate excellent experimental
reproducibility.

12



Figure S7: Upper: Win Rate Violin Plot - Shows the distribution of win rates across different agents
and topics with detailed statistical information and performance variations. Bottom: Overall Winning
Matrix All Topics - Displays the comprehensive winning matrix with head-to-head performance
comparisons between all agents across all research topics.
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Figure S8: Consistency of in pair dueling. Left: Judger Consistency All Topics - Shows the
consistency of judgment patterns across different research topics and agents, indicating how reliable
the evaluation criteria are. Right: Trial Consistency All Topics - Displays the consistency of
performance across multiple trials for each agent-topic combination, revealing the stability and
reproducibility of results.

Figure S9: Violin plot visualizing the distribution of local DR agents runtime under different settings.
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Figure S10: Comparison of cost over commercial DR agent solution with our local solution based on
Chicago area electricity price.
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B Related Work in Physics ML Surrogates, Domain LLMs, and Agentic
Systems

Physics-aligned surrogates and classical ML. Physics-guided predictive surrogates now operate at
web-scale, with graph networks and equivariant models trained on massive curated corpora. For crys-
talline stability, GNoME trains large graph models and active-learning pipelines to propose millions
of candidate structures and flag hundreds of thousands as likely stable—establishing that data+scale
can systematically widen the known inorganic universe [6]. In catalysis, the Open Catalyst efforts
formalized realistic workloads: OC20 introduced 1.28M DFT relaxations and 265M single-point
evaluations for adsorbate–surface energetics and created standardized tasks (IS2RE/IS2RS/S2EF)
with stringent generalization splits; OC22 extended to oxide electrocatalysts relevant to OER with
more realistic catalysts and targets [7, 24]. New foundation-style datasets push further: OMat24
aggregates >110M DFT entries and releases strong baselines (e.g., Equiformer-V2) that achieve
near-chemical-accuracy on multiple targets [25]; OMol25 analogously scales molecular DFT data
to >100M calculations spanning tens of millions of unique molecules, enabling broad pretraining
for small-molecule physics [8]. Complementing datasets, universal model of atoms (UMA) explore
single architectures that transfer across chemistry and tasks, aiming for cross-domain generalization
with shared tokenization/featurization of atoms and local environments [26]. These surrogates excel
at S1–S2 targets (bulk stability, adsorption energies, local structural relaxations) but are largely
D1–D2 in operation: fixed-form predictors trained on equilibrium data, with limited capacity to
reason about kinetics, synthesis windows, or device-level constraints that emerge at S3–S4. The net
effect is that they remain superb “atoms-to-properties” engines, yet they do not autonomously help
solve the long-horizon, multi-paper evidence assembly and process-aware planning needed, from
atomic scale to device scale rationales [6–8, 24–26].

Domain LLMs (non-agent). Domain LLMs span three useful roles. (i) Materials-text models
(MatSciBERT/MatBERT/MaterialBERT) are trained on materials corpora to power entity/relation
extraction, document classification, and graph building; MatSciBERT outperforms SciBERT on
named entity recognition (NER) and relation tasks across curated benchmarks, while MatBERT
shows that domain-specific pretraining significantly lifts NER F1 and sample efficiency in materials
texts; MaterialBERT introduces a domain tokenizer/vocabulary tuned to materials literature [27–29].
(ii) Chemical/polymer LLMs target sequence-level prediction/generation: ChemBERTa established
transformer baselines and scaling trends for SMILES; ChemBERTa-2 pushed to 77M SMILES and
showed consistent gains (and that multi-task regression pretraining can beat (Masked Language
Modeling) MLM in transfer); ChemBERTa-3 contributes open, end-to-end training infrastructure
for chemical foundation models; MegaMolBART provides a large-scale generative sequence model
optimized for molecular design [30–33]. ChemGPT demonstrates generative scaling to >1B param-
eters with clear neural-scaling laws for chemical LLMs, clarifying how model/data scale trade off
in practice [34]. In polymers, TransPolymer introduces a chemically-aware tokenizer and MLM
pretraining that improves regression performances across ten benchmarks; polyBERT builds an end-
to-end, ultrafast pipeline and screens 100M hypothetical polymers; PolyNC fuses natural-language
and chemical-sequence inputs to improve unified polymer property prediction [35–37]. (iii) Genera-
tive/design LLMs for materials include ChatMOF, which conditions MOF proposals/properties from
text and structural descriptors; Crystal-LLM (autoregressive) generates crystal structures from com-
position; and MatterGen scales inorganic structure generation with validated discoveries and robust
property control [38–40]. Collectively these models deliver flexible text/code/structure interfaces and
strong S1–S2 performance—ideal for curation, candidate suggestion, or surrogate-assisted screen-
ing—but they are typically short-horizon (D1–D2): they answer prompts, not conduct hours-long,
tool-grounded, hierarchical inquiry across conflicting literature [27–40].

Agentic systems for scientific inquiry. Agent frameworks aim to orchestrate end-to-end inquiry:
decompose goals, retrieve and reconcile evidence, use domain tools/simulators, and iteratively
critique/plan. Early exemplars used rule/graph planning and Bayesian loops within constrained
scopes—Chematica/SYNTHIA operationalized expert retrosynthesis rules and heuristic search;
CAMD framed autonomous design/make/test/learn for materials screening [5, 41]. LLM-based
agents extend this with language-native decomposition and tool-use: ChemCrow wires models to
chemistry tools (e.g., RDKit, databases) to complete realistic tasks; HoneyComb provides a flexible
materials-agent stack with retrieval/tooling and HPC hooks; SciAgents formalizes multi-agent graph
reasoning for scientific planning; “AI co-scientist” frameworks couple planning with web/code tools
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and emphasize evaluation and provenance [42–45]. Execution back-ends close the loop: A-Lab
demonstrates a self-driving lab discovering and characterizing new materials; IBM RXN/RoboRXN
links digital retrosynthesis with automated synthesis; NVIDIA ALCHEMI targets scaled infrastructure
(data, models, and accelerated simulation) for materials discovery [46–48]. Despite progress, most
agents today operate at D2–D3 depth and S1–S3 scope; they rarely sustain thousand-query retrieval
runs, explicit topic-tree governance, or tight coupling to cross-domain process constraints that S3–S4
device problems demand. This is precisely the niche for deep-research agents: to deliver hierarchical
planning, multi-stage local+web retrieval at scale, targeted tool/simulator calls, and systematic
self-critique with dense provenance until a decision-ready synthesis emerges [5, 41–48].

Gap to deep research at S3–S4/D4. Despite existing progress, the transition to S3–S4 nano-device
complexity poses a fundamental barrier. The combinatorial explosion across materials, interfaces,
processing parameters, and operational constraints creates hypothesis spaces where decisive insights
lie at the intersections of disparate literature, conflicting reports, and cross-domain phenomena.
Crucially, long-horizon, hierarchical evidence accumulation (D4) remains under-documented: many
agents cap at D2–D3, with limited iterative loops, shallow coordination, and no explicit topic-tree
control for breadth-then-depth synthesis. Commercial deep-research offerings introduced in 2025
enable multi-step inquiry but remain closed-source with limited controllability and local integration,
reinforcing the need for open, on-prem frameworks tailored to proprietary materials workflows.
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C Pseudocode

Algorithm 1: Vanilla Web-First DR Agent(Adapted from [22])
Require: Inputs: research_topic ∈ S; configuration C = { llm_provider∈ {lmstudio, ollama},

search_api∈ {tavily, perplexity, duckduckgo, searxng}, fetch_full_page∈ {0, 1},
strip_thinking_tokens∈ {0, 1}, use_tool_calling∈ {0, 1}, max_web_research_loops∈ N}.

Ensure: final running_summary (with deduplicated sources appended).
1: State: running_summary← ””; search_query← ””; web_research_results← [ ];

sources_gathered← [ ]; research_loop_count← 1.
2: function GENERATEQUERY(state, C)
3: Build system prompt from research_topic and current_date.
4: if C.use_tool_calling = 1 then
5: Ask LLM to return tool payload {query, rationale}.
6: else
7: Ask LLM in JSON mode to return {query, rationale}.
8: Parse JSON/tool output; let q be the extracted query.
9: if q is empty or parsing fails then

10: Strip ⟨think⟩ blocks if C.strip_thinking_tokens = 1.
11: Fallback to first nonempty line; if still empty, set q ←"Tell me more about

research_topic".
12: search_query← q; return q.
13: function WEBRESEARCH(state, C)
14: Select backend b← C.search_api.
15: Issue web search with q = search_query via b; obtain raw resultsR.
16: Format bullets S ← format_sources(R).
17: Build long string W ← deduplicate_and_format_sources(R,m,C.fetch_full_page),

where m is the max tokens per source (vanilla uses ≈ 1000).
18: Append S to sources_gathered; append W to web_research_results.
19: research_loop_count← research_loop_count + 1.
20: return W .
21: function SUMMARIZESOURCES(state, C)
22: Let E ← running_summary (possibly empty).
23: Let W ← last element of web_research_results.
24: if E ̸= ”” then ▷ Update existing
25: Build human message with ⟨Existing Summary⟩E⟨/⟩ and ⟨New Context⟩W ⟨/⟩.
26: Instruct: "Update the Existing Summary with the New Context on: research_topic."
27: else ▷ Create fresh
28: Build human message with ⟨Context⟩W ⟨/⟩.
29: Instruct: "Create a Summary using the Context on: research_topic."
30: Call LLM with temperature 0 to get S⋆.
31: if C.strip_thinking_tokens = 1 then strip ⟨think⟩ blocks in S⋆.
32: running_summary← S⋆; return S⋆.
33: function REFLECTONSUMMARY(state, C)
34: Provide running_summary and research_topic to LLM with a reflection prompt.
35: if C.use_tool_calling = 1 then
36: Request tool payload {follow_up_query, knowledge_gap}.
37: else
38: Request JSON {follow_up_query, knowledge_gap}.
39: Extract q′ ← follow_up_query; on failure, strip ⟨think⟩ then fallback to "Tell me more about

research_topic".
40: search_query← q′; return q′.
41: function FINALIZESUMMARY(state)
42: Initialize seen← ∅, unique_lines← [ ].
43: for all bullet_block ∈ sources_gathered do
44: for all line ∈ lines(bullet_block) do
45: if line is nonempty ∧ line /∈ seen then
46: add line to unique_lines; seen←seen∪{line}.
47: all_sources← join(unique_lines, “\n”).
48: running_summary← “## Summary” ∥ running_summary ∥ “\n\n ### Sources:\n” ∥ all_sources.
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49: return running_summary.

Main flow
50: search_query← GENERATEQUERY(state, C).
51: loop
52: _← WEBRESEARCH(state, C).
53: _← SUMMARIZESOURCES(state, C).
54: search_query← REFLECTONSUMMARY(state, C).
55: if research_loop_count > C.max_web_research_loops then break
56: final_summary← FINALIZESUMMARY(state).
57: return final_summary.
Algorithm 2: Local Evidence-First DR Agent
Require: Inputs: research_topic ∈ S; configuration C = { llm_provider∈ {lmstudio, ollama},

search_api∈ {tavily, perplexity, duckduckgo, searxng}, fetch_full_page∈ {0, 1},
strip_thinking_tokens∈ {0, 1}, use_local_rag∈ {0, 1}, vector_store_paths: List,
embedding_model∈ S, local_results_count∈ N, research_mode∈ {single,DToR},
max_web_research_loops∈ N}.

Ensure: final running_summary; in single mode it includes deduplicated sources (tagged by chan-
nel), in DToR mode it omits sources.

1: State: running_summary ← ””; summary_history ← [ ]; search_query ← ””;
complementary_search_query ← ””; local_research_results ← [ ]; local_rag_summary ←
””; web_research_results ← [ ]; complementary_web_research_results ← [ ];
local_sources_gathered← [ ]; sources_gathered← [ ]; complementary_sources_gathered← [ ];
research_loop_count← 1.

2: function GENERATEQUERY(state, C)
3: Build system prompt from research_topic and current_date.
4: Gate JSON mode by provider/model; attempt JSON parse of {query,rationale}.
5: if JSON parse fails then
6: if C.strip_thinking_tokens = 1 then strip ⟨think⟩
7: Set q ← first nonempty line of content, else q ← research_topic.
8: search_query← q; return q.
9: function LOCALRAGRESEARCH(state, C)

10: if C.use_local_rag = 0 then return {local_research_results : [ ], local_sources_gathered :
[ ]}

11: Expand C.vector_store_paths into discovered volumes; query Chroma stores with device-
aware embeddings.

12: Extract raw contents list R; format citations Sloc.
13: return {local_research_results : R, local_sources_gathered : [Sloc]}.
14: function SUMMARIZELOCALRAGRESULTS(state, C)
15: if local_research_results = ∅ then return {local_rag_summary : ””}
16: Join local results into one string; prompt concise (< 500 chars) summary with fixed lead-in.
17: return {local_rag_summary : ℓ}.
18: function GENERATECOMPLEMENTARYQUERY(state, C)
19: if C.use_local_rag = 0 or local_research_results = ∅ then
20: return {complementary_search_query : ””} ▷ skip when no local signal
21: Ask LLM (JSON) using local_rag_summary context; recursively search any JSON key

containing "query".
22: if extracted query empty ∨ identical to search_query then
23: apply backup prompt(s) and safe template fallbacks.
24: return {complementary_search_query : qc}.
25: function WEBRESEARCH(state, C)
26: Call configured backend with q = search_query.
27: Build W ← deduplicate_and_format_sources(·, max_tokens_per_source =

2500, C.fetch_full_page).
28: Append formatted bullets to sources_gathered and W to web_research_results.
29: research_loop_count← research_loop_count + 1; return W .
30: function COMPLEMENTARYWEBRESEARCH(state, C)
31: if complementary_search_query = ”” then
32: return {complementary_sources_gathered : [ ], complementary_web_research_results :

[ ]}
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33: Query backend with qc; build Wc as above (budget 2500 tokens per source).
34: return {complementary_sources_gathered : [Sc], complementary_web_research_results :

[Wc]}.
35: function SUMMARIZESOURCES(state, C)
36: Let E ← running_summary; assemble context string X by concatenating

(i) last of local_research_results if any as ⟨Local⟩ . . . ⟨/⟩,
(ii) last of web_research_results as ⟨Main⟩ . . . ⟨/⟩,
(iii) last of complementary_web_research_results as ⟨Complementary⟩ . . . ⟨/⟩.

37: if E ̸= ”” then prompt to update E with X;
38: elseprompt to create summary from X .
39: Get S⋆ (temperature 0.3); if C.strip_thinking_tokens = 1 then strip tokens.
40: Append {iteration = research_loop_count, summary = S⋆, query =

search_query, complementary_query = complementary_search_query} to
summary_history.

41: running_summary← S⋆; return S⋆.
42: function REFLECTONSUMMARY(state, C)
43: Request JSON with keys {follow_up_query, knowledge_gap}; use model-specific JSON

gating.
44: if parse fails then
45: if C.strip_thinking_tokens = 1 then strip ⟨think⟩
46: fallback to a safe heuristic query.
47: search_query← q′; return q′.
48: function ROUTERESEARCH(state, C)
49: if research_loop_count ≤ C.max_web_research_loops then return local_rag_research
50: else return finalize_summary
51: function FINALIZESUMMARY(state, C)
52: Build history text from summary_history if available, else use running_summary.
53: Ask LLM (temperature 0.3) for final mini-report.
54: if C.research_mode = DToR then return final running_summary ▷ sources handled at

DToR synthesis
55: else
56: Deduplicate lines from sources_gathered (main), complementary_sources_gathered (tag

as complementary), and local_sources_gathered (tag as local); join as ### Sources:
block.

57: Append sources block to final summary and return .

Main flow
58: INIT_SESSION; search_query← GENERATEQUERY(state, C).
59: LOCALRAGRESEARCH(state,C)→ SUMMARIZELOCALRAGRESULTS(state,C)→ GENER-

ATECOMPLEMENTARYQUERY(state,C).
60: WEBRESEARCH(state,C)→ COMPLEMENTARYWEBRESEARCH(state,C)→ SUMMARIZE-

SOURCES(state,C).
61: search_query← REFLECTONSUMMARY(state, C).
62: if ROUTERESEARCH(state,C) = local_rag_research then goto LocalRAGResearch else

FINALIZESUMMARY(state,C).
Algorithm 3: DToR Orchestrator Over Research Nodes (Breadth–Depth Controller)
Require: Inputs: research_topic ∈ S; configuration C = { llm_provider, search_api,

fetch_full_page, strip_thinking_tokens, use_local_rag, vector_store_paths, embed-
ding_model, max_branches∈ N, max_branch_depth∈ N, nodes_per_branch∈ N}.

Ensure: final_summary and (optionally) all_sources.
1: State (ToTState):

branches: Dict[branch_id→ ResearchBranch], where each
ResearchBranch = {perspective, depth, remaining_budget, research_nodes:

List<SummaryState>, branch_summary, is_complete};
active_branch_id; knowledge_gaps; all_sources; is_complete ∈ {0, 1}.

2: function DIVERSIFYINITIALQUERY(state, C) ▷ Breadth seeding
3: Generate up to C.max_branches orthogonal perspectives (titles, descriptions, seed queries).
4: For each perspective i: create a branch with one RN (SummaryState) seeded by its query;
5: set depth← 0, remaining_budget← C.nodes_per_branch.
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6: Choose initial active_branch_id.
7: function SELECTNEXTBRANCH(state)
8: if active branch has actionable work then return active_branch_id
9: elsereturn first incomplete branch id

10: function RUNRESEARCHNODE(state, C) ▷ Depth step = RN from Alg. 2
11: In the active branch, pick the next RN with processing_status = "pending".
12: Invoke Algorithm 2 on that RN (local evidence→ web→ summarize→ reflect).
13: Update the RN with its running_summary and mark completed; clear per-node sources in

DToR mode.
14: function DECISIONANALYST(state, C) ▷ EXPAND or PRUNE only
15: Read the latest completed RN in the active branch and its context (depth, remaining_budget).
16: Return decision ∈ {EXPAND,PRUNE} and (if EXPAND) a small list of knowledge_gaps

with web queries.
17: if depth ≥ C.max_branch_depth then
18: force decision← PRUNE; knowledge_gaps← [ ]
19: Mark the analyzed RN as processing_status = "analyzed".
20: function GENERATEFOLLOWUPQUERIES(state, C) ▷ Depth expansion
21: Let k ← min(|knowledge_gaps|, remaining_budget).
22: For the first k gaps: create new RN nodes with refined topics/queries (avoid compounded

prefixes).
23: remaining_budget← remaining_budget− k; depth← depth + 1.
24: function SYNTHESIZEBRANCH(state)
25: Compress all RN running_summary in the branch into branch_summary;
26: deduplicate and append sources into all_sources; persist branch report.
27: function SYNTHESIZEFINAL(state)
28: Integrate all branch_summary across branches into final_summary; mark is_complete← 1.
29: function ROUTENEXTACTION(state, C) ▷ Breadth–depth control
30: if not in DToR mode or state.is_complete then return END
31: if no branches then return DIVERSIFYINITIALQUERY
32: Let b← active branch.
33: if knowledge_gaps ̸= ∅ and b.remaining_budget > 0 then return GENERATEFOLLOWUP-

QUERIES
34: if exists pending RN in b then return RUNRESEARCHNODE
35: if exists completed but not analyzed RN in b then return DECISIONANALYST
36: if b.is_complete = 1 and b.branch_summary empty then return SYNTHESIZEBRANCH
37: if all branches complete and summarized then return SYNTHESIZEFINAL
38: return SELECTNEXTBRANCH

Main flow (controller loop)
39: DIVERSIFYINITIALQUERY(state,C); active_branch_id← SELECTNEXTBRANCH(state).
40: while not state.is_complete do
41: a← ROUTENEXTACTION(state, C).
42: if a = RUNRESEARCHNODE then RUNRESEARCHNODE(state,C)
43: if a = DECISIONANALYST then
44: (decision, knowledge_gaps)← DECISIONANALYST(state, C).
45: if decision = EXPAND and b.depth < C.max_branch_depth then GENERATEFOL-

LOWUPQUERIES(state,C)
46: else ▷ PRUNE ≡ stop expanding this branch
47: b.is_complete← 1
48: if a = GENERATEFOLLOWUPQUERIES then GENERATEFOLLOWUPQUERIES(state,C)
49: if a = SYNTHESIZEBRANCH then SYNTHESIZEBRANCH(state)
50: if a = SYNTHESIZEFINAL then SYNTHESIZEFINAL(state); break
51: if a = SELECTNEXTBRANCH then active_branch_id← SELECTNEXTBRANCH(state)
52: return final_summary (and all_sources).
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D Supplemental Results: Experimental Setup

D.1 Nanomaterials/Devices Topic Suite

PFAS FET Sensor Probe

Which two-dimensional (2D) nanomaterials or molecular probes—including novel,
underexplored candidates—offer the greatest potential to achieve highly
sensitive and selective detection of per- and polyfluoroalkyl substances
(PFAS), or more broadly chemical and biological analytes, when integrated
into a field-effect transistor (FET)–based sensor platform?

↪→
↪→
↪→
↪→

Battery Binder

Which advanced binder technologies are being developed to improve the
performance and longevity of lithium-ion batteries?↪→

Staphylococcus aureus FET Biosensor

How can emerging probe chemistries that are commercially available,
cost-effective, and exhibit minimal batch-to-batch variability be used to
develop a novel FET-based biosensor for detecting Staphylococcus aureus?

↪→
↪→

Resource Recovery Electrocatalysts

Which nanostructured electrocatalyst materials demonstrate the highest
selectivity and efficiency for electrochemical detection and recovery of
critical resources (e.g., Li+, PO4³−, NH4+) from complex wastewater
matrices, and what key performance metrics—such as selectivity,
sensitivity, recovery rate, energy consumption, and operational
stability—distinguish them?

↪→
↪→
↪→
↪→
↪→

OER Stability

Identify the top nanostructured electrocatalyst materials for driving the
oxygen evolution reaction (OER) in complex wastewater matrices—such as
high-chloride, high-organic-load, or multi-ion streams—, for each the
material class/composition, comprehensively consider key performance
metrics (overpotential at 10 mA cm−², Faradaic efficiency, stability),
and the surface-engineering strategies that confer corrosion resistance
and sustained activity in real effluent conditions.

↪→
↪→
↪→
↪→
↪→
↪→

Photothermal Wastewater Evaporation

What photothermal materials and system designs are most effective for
solar-driven water evaporation in complex wastewater matrices—such as
high-organic-load or multi-ion streams—and how do they compare in terms
of material composition, solar-to-vapor conversion efficiency under
one-sun illumination, evaporation rate, fouling resistance, and
integrated resource-recovery functionalities?

↪→
↪→
↪→
↪→
↪→
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Nutrient Sensor Interference

Which sensor probe materials/chemicals and designs offer the best performance
in minimizing interference factors—such as competing ions, dissolved
organic matter, pH fluctuations, and temperature variations—for accurate
and selective detection of nutrients (e.g., nitrate, phosphate, ammonium)
in complex water matrices, and what mitigation strategies do they employ?

↪→
↪→
↪→
↪→

CO2 Sensor Probe

Which two-dimensional materials—such as graphene derivatives, transition
metal dichalcogenides, or MXenes—offer the highest CO2 sensing
performance in complex gas or aqueous environments, and how do they
compare in terms of detection limit (ppm), selectivity against common
interferents (e.g., O2, H2O), response/recovery time, and long-term
stability, including any functionalization or structural modifications
that enhance these metrics? Think of novel candidates.

↪→
↪→
↪→
↪→
↪→
↪→

Printed FET Variability

Which printed-electronics fabrication parameters and post-processing
strategies—such as ink viscosity, printing speed and resolution,
substrate surface energy, annealing temperature profiles, and in-line
calibration methods—have been shown to minimize device-to-device
variability in FET sensor arrays, and what specific process windows
achieve low variation in threshold voltage and field-effect mobility?

↪→
↪→
↪→
↪→
↪→

2D Synaptic Transistors

Which two-dimensional material platforms (e.g., MoS2, WSe2, black phosphorus,
h-BN), device architectures (e.g., floating-gate, ionic-gated,
dual-gate), and fabrication protocols (e.g., channel thickness control,
dielectric engineering, contact metallurgy) have been shown to optimize
synaptic transistor performance—specifically in terms of energy per
event, weight-update linearity, retention time, and cycling endurance—for
neuromorphic sensing applications? Think of most practical and promising
candidates.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Microplastics 2D Sensors

Which two-dimensional material platforms (e.g., graphene derivatives,
transition metal dichalcogenides, MXenes), molecular recognition elements
(e.g., molecularly imprinted polymers, aptamers, peptide receptors), and
device integration strategies (e.g., FET, electrochemical impedance,
photonic transduction) have demonstrated the highest sensitivity,
selectivity against organic matter and ionic interferents, and rapid
response times for detecting micro- and nanoplastic particles in complex
water matrices? Think of novel candidates.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Antibiotics 2D Sensors

Which commercially available, cost-effective probe chemistries (e.g.,
thiolated DNA aptamers, antibody mimetics, conductive MIPs) combined with
two-dimensional nanomaterial transducer platforms (e.g., WS2 FETs,
graphene field-effect sensors, nanotube-extended gate FETs) deliver the
lowest detection limits, minimal batch variability, and robust
performance for sensing trace levels of pharmaceutical antibiotics in
diverse aqueous waterbody.

↪→
↪→
↪→
↪→
↪→
↪→
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Li–Na Selective Membranes

What material or membrane exhibits the highest selectivity for Li+ over Na+

in aqueous systems, given their nearly identical hydrated ionic radii and
solvation environments? Beyond crown-ether–functionalized polymers, what
novel or unexpected materials—such as bioinspired ultrahigh-selectivity
membranes or covalent organic framework nanochannels—might provide
breakthrough Li+ discrimination over Na+? Find novel and promising
candidates.

↪→
↪→
↪→
↪→
↪→
↪→

PFAS Degradation

Which novel electrode materials can achieve efficient PFAS degradation under
ambient aqueous electrochemical conditions, delivering both high
mineralization and defluorination rates? What intrinsic properties—such
as PFAS adsorption affinity, reactive oxygen species generation capacity,
and C–F bond activation energy—should be optimized to guide their
discovery?

↪→
↪→
↪→
↪→
↪→

Li–Co–Ni Separation

Which membrane materials can effectively separate Li+, Co²+, and Ni²+ ions
from aqueous solutions by leveraging selective transport properties—such
as tailored pore sizes, specific surface functionalizations, and charge
affinities—and what membrane design principles optimize both selectivity
and permeability? Think of potential novel, effective, and practical
candidates.

↪→
↪→
↪→
↪→
↪→

LC-TEM MoS2 FET Sensing

How can in situ liquid cell TEM be employed to directly visualize the
real-time adsorption and structural changes of 2D MoS2 nanosheets used in
aqueous FET sensors during analyte binding? What fluid cell
configurations and electron dose parameters are necessary to preserve
native water–material interfaces while capturing high-resolution sensing
events without beam-induced artifacts?

↪→
↪→
↪→
↪→
↪→

CO2RR Catalyst Leaders

Given the current landscape of CO2 electroreduction, which state-of-the-art
catalyst platforms—such as oxide-derived copper, single-atom catalysts on
nitrogen-doped carbon supports, or metal–organic framework-derived
materials—demonstrate the highest activity and selectivity? Moreover,
what emerging catalytic systems or novel heterostructures beyond these
examples could feasibly outperform today’s leading electrocatalysts in
terms of faradaic efficiency and stability?

↪→
↪→
↪→
↪→
↪→
↪→

Unconventional PV Platforms

Perovskite–silicon tandem cells, organic photovoltaics, and quantum-dot solar
cells currently represent the forefront of next-generation solar
technologies. Beyond these established platforms, which unconventional
material classes or innovative device architectures—such as chalcogenide
perovskites, 2D semiconductor heterostructures, or ferroelectric
photovoltaic systems—offer the most unexpected promise for achieving
breakthroughs in efficiency, stability, and scalability?

↪→
↪→
↪→
↪→
↪→
↪→
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Ambient-Pressure Diamond Growth

How can ambient-pressure diamond synthesis using a Ga–Ni–Fe–Si liquid-metal
alloy at 1 atm and ~1025 °C be adapted to produce larger-area diamond
films or oriented single crystals, and what key mechanistic steps govern
nucleation and growth kinetics under these mild-pressure conditions?

↪→
↪→
↪→

Diamane Property Tuning

What chemical functionalizations or reaction pathways are most promising for
tuning the electronic bandgap and mechanical stability of diamane-like 2D
diamond films formed via sp²-to-sp³ conversion, and how might those
modifications influence their integration into nanoelectronic devices?

↪→
↪→
↪→

Anion-Receptor Ether Electrolytes

Search for novel fluorinated ether–based electrolyte candidates that
incorporate covalently bound anion-receptor motifs (e.g. boron- or
phosphorus-centered groups) to deliver oxidative stability beyond 5.6 V,
Li+ transference numbers above 0.8, and minimal interfacial impedance on
lithium-metal anodes.

↪→
↪→
↪→
↪→
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D.2 Details of DR Agent Experimental Settings

Open-source LLMs and local RAG corpus We implement the framework in LangGraph and
deploy three low-deployment-cost, open-source LLMs—DeepSeek-R1-14B, DeepSeek-R1-70B, and
QwQ-32B—served locally via Ollama. All agent prompts and tool I/O use a JSON/tool-calling
discipline for determinism and easy parsing, and the same research node (RN) described in Algorithm
2 is the unit of work in the controller (Algorithm 3 DToR). To provision representative, application-
driven knowledge for nanomaterials and devices, we build a standardized Chroma vector store
spanning 1,136,297 full-text papers organized around four pillars: sensors, batteries, catalysis, and
semiconductors. The corpus is queried first under a local-first RAG policy; complementary web
retrieval is invoked only when Algorithm 2 (local evidence-first)’s reflection detects unresolved
knowledge gaps. Consistent with our emphasis on report-level usefulness rather than information
retrieval (IR) benchmarking, the local-first RAG layer is treated as a routine, swappable component;
DToR only triggers complementary web evidence upon explicit knowledge gaps and resolves cross-
source conflicts by evidence majority → recency → domain authority. To make domain coverage
portable and auditable without exposing any local texts or indices, we provide exact domain-scoping
query templates corresponding to these four pillars (sensors, energy/environment covering batteries,
semiconductors, and catalysis) so others can target the same scope with their own holdings while
keeping the orchestration identical.

Corpus construction Raw full texts are normalized with a cleaning pipeline designed for scientific
documents at scale. The cleaner (i) preserves section structure and headers, (ii) retains LaTeX/MathJax
equations and common math environments via stable markers, (iii) standardizes tables into a compact
textual schema, (iv) normalizes URLs/DOIs and citation markers instead of stripping them, and (v)
removes XML/HTML artifacts and noisy back matter conservatively. For long inputs, we apply
sliding-window tokenization (default window 8192 tokens, stride 4096) or a section-aware variant
that respects detected boundaries, yielding JSONL suitable for downstream training or indexing.
As our focus is on the DToR orchestration, we adhere to widely used, off-the-shelf preparation and
vector-indexing practices; the corpus layer functions as a routine, swappable component rather than
a methodological contribution. To enable scope-equivalent replication across different holdings,
we release the exact domain-scoping query templates for sensors, energy/environment (including
batteries), semiconductors, and catalysis; users may instantiate a local store with their customary
institutional pipelines and preferred indexers.

Indexing and retrieval Cleaned texts are split with a recursive character splitter (default chunk
size 2500, overlap 500) and embedded using BAAI/bge-m3. Each chunk carries rich metadata
(paper id, DOI, chunk id/index, source path, shard id) to support provenance and de-duplication.
Embeddings are persisted in Chroma, enabling fast k-NN retrieval and incremental persistence during
large ingestions. For robustness across machines, the store is partitioned into 500 volumes (shards).
This organization serves two purposes: (1) controllable breadth—DToR can expand to additional
volumes when the analyst decides to broaden coverage—and (2) bounded depth/latency—branches
can be pruned once depth or evidence sufficiency is reached, without touching unrelated volumes. To
mitigate licensing and privacy risk, our local corpus is restricted to institutionally licensed or open
sources, and we release only the domain-scoping query templates—not texts or indices—so others
can replicate scope without redistributing copyrighted content or PII.

Policy integration In each research node, local retrieval is attempted first; summaries are synthe-
sized from local evidence. Only when reflection surfaces concrete gaps does the controller expand
(selecting additional volumes and spawning new RNs) or prune (stopping further growth of a branch).
This strategy couples breadth (multi-volume exploration across pillars) with depth (iterative drilling
within a volume) while keeping costs predictable on commodity hardware and avoiding external
dependencies during the main research loop.

Agent Configuration By default, we run all agents in a local-first configuration with cost-aware web
fallback. Concretely, both single-agent DR and DToR branches use a research depth of 3 iterations,
each RN queries the local Chroma first with top-k = 5, and only then invokes web search—by default
DuckDuckGo—to avoid API fees. In DToR mode, breadth–depth is bounded with max branches =
3, max branch depth = 3, nodes per branch = 100, and a global cap of 500 nodes per experiment,
ensuring predictable latency and compute. Models are served locally via Ollama; RAG is enabled by
default with BAAI/bge-m3 embeddings, and we preserve document fidelity via full-page fetch and
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safe output hygiene. All parameters remain user-tunable through the configuration/RunnableConfig
to trade off coverage, latency, and cost—for example, increasing depth or top-k for harder queries, or
switching web backends when budgets permit.
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D.3 Rubric Template for LLM-as-Judge Evaluation Experiment

LLM-as-Judge Rubric Prompt (applied to DR Report)

{Anonymous DR Report content}
Now please analyze and evaluate the Report above on five equally weighted dimensions:

1. Relevance to the stated objective,
2. Depth and rigor of validation and benchmarking protocols,
3. Clarity and reproducibility of methodology,
4. Practical applicability and implementation readiness,
5. Novelty and breadth of candidate coverage.

For each dimension, assign a score from 0–10 and supply a one-sentence justification. This
rubric places equal emphasis on procedural rigor and clear implementation steps alongside
overall alignment, ensuring that reports with well-defined benchmarks and actionable guidance
receive full credit.

Example raw response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe) —
Claude 4 Opus (thinking)

Based on my analysis of the research report on 2D nanomaterials and molecular
probes for FET-based PFAS detection, here are the evaluation scores across
the five equally weighted dimensions:

↪→
↪→

## **Dimension 1: Relevance to the Stated Objective**
**Score: 9/10**

The report directly addresses the core question about identifying 2D
nanomaterials and molecular probes with the greatest potential for highly
sensitive and selective PFAS detection in FET-based sensors. The
comprehensive analysis covers both established and novel candidates
including MXenes, graphene, TMDCs, aptamers, and molecularly imprinted
polymers, with specific focus on their integration into FET platforms for
PFAS detection.

↪→
↪→
↪→
↪→
↪→
↪→

## **Dimension 2: Depth and Rigor of Validation and Benchmarking Protocols**
**Score: 6/10**

While the report provides specific performance metrics such as sensitivity
ranges (100 fM to 10 pM) and specificity percentages (99% for PFOS), it
lacks detailed descriptions of the experimental protocols, standardized
testing conditions, and validation methodologies used to obtain these
benchmarks. The report acknowledges this gap by calling for "standardized
protocols for probe-material interface characterization" in its future
research recommendations.

↪→
↪→
↪→
↪→
↪→
↪→

## **Dimension 3: Clarity and Reproducibility of Methodology**
**Score: 7/10**

The report presents a well-structured synthesis approach with clear
categorization of materials, probes, and integration strategies, but
provides limited detail on the specific research methodologies used to
generate the findings from the five research branches (A-E). The
contradiction analysis and trade-off evaluations demonstrate systematic
thinking, though the underlying experimental procedures for material
characterization and performance testing are not explicitly described.

↪→
↪→
↪→
↪→
↪→
↪→

## **Dimension 4: Practical Applicability and Implementation Readiness**
**Score: 8/10**
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The report excels in addressing real-world implementation challenges,
specifically highlighting manufacturing scalability through roll-to-roll
processing, environmental stability concerns for MXenes, and the need for
protective coatings. The comprehensive candidate inventory with performance
metrics and the identification of hybrid systems like MXene/graphene
heterostructures provide actionable pathways for practical deployment.

↪→
↪→
↪→
↪→
↪→

## **Dimension 5: Novelty and Breadth of Candidate Coverage**
**Score: 8/10**

The report demonstrates excellent breadth by covering both conventional
materials (graphene, TMDCs) and emerging candidates (MXenes, fluorinated
phospholipid bilayers), while exploring novel integration approaches and
hybrid systems. The cross-disciplinary innovations section introduces
creative solutions like machine learning optimization and bioinspired
coatings, though some candidates like fluorinated phospholipid bilayers are
noted as requiring further validation.

↪→
↪→
↪→
↪→
↪→
↪→

## **Overall Assessment**

**Total Score: 38/50 (76%)**

The report provides a comprehensive and well-structured analysis that
effectively addresses the stated objective with strong practical focus and
broad candidate coverage, but would benefit from more detailed validation
protocols and methodological transparency to enhance reproducibility and
scientific rigor.

↪→
↪→
↪→
↪→

Example raw response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe) —
Gemini 2.5 Pro

Based on the provided research report, here is an analysis and evaluation across
the five requested dimensions:↪→

* **Relevance to the stated objective**
* **Score**: 10/10
* **Justification**: The report directly and comprehensively answers the

core research question by identifying and evaluating specific 2D
materials and molecular probes for FET-based PFAS detection.

↪→
↪→

* **Depth and rigor of validation and benchmarking protocols**
* **Score**: 7/10
* **Justification**: While the report synthesizes key quantitative

performance metrics, it correctly identifies the lack of standardized
testing protocols as a critical gap in the field.

↪→
↪→

* **Clarity and reproducibility of methodology**
* **Score**: 6/10
* **Justification**: The report clearly outlines high-level integration

strategies but lacks the detailed experimental parameters required for
direct methodological reproduction.

↪→
↪→

* **Practical applicability and implementation readiness**
* **Score**: 9/10
* **Justification**: The analysis heavily focuses on practical barriers to

commercialization, such as stability and scalability, and proposes a
clear roadmap for real-world implementation.

↪→
↪→

* **Novelty and Breadth of Candidate Coverage**
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* **Score**: 10/10
* **Justification**: The report covers a wide breadth of candidates,

including novel materials like MXenes and underexplored probes like
fluorinated phospholipid bilayers, while also considering innovative
hybrid systems.

↪→
↪→
↪→

Example raw response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe) — Grok
3 (thinking)

Below is the evaluation of the provided research report titled *"Integrated
Research Report: 2D Nanomaterials and Molecular Probes for FET-Based PFAS
Detection"* based on the five equally weighted dimensions specified in the
rubric. Each dimension is scored from 0 to 10, with a one-sentence
justification for each score.

↪→
↪→
↪→
↪→

---

### **Evaluation of the Research Report**

#### **1. Relevance to the Stated Objective**
- **Score**: 9
- **Justification**: The report directly addresses the detection of PFAS and

other analytes using FET-based sensors with 2D nanomaterials and molecular
probes, covering material selection, probe design, and integration
strategies; however, it could have explored the specific challenges of
detecting diverse PFAS compounds in greater depth.

↪→
↪→
↪→
↪→

#### **2. Depth and Rigor of Validation and Benchmarking Protocols**
- **Score**: 7
- **Justification**: The report provides specific performance metrics such as

sensitivity (100 fM–10 pM) and specificity (99%), but it lacks detailed
descriptions of validation methods or comparisons with existing
technologies, limiting the rigor of its claims.

↪→
↪→
↪→

#### **3. Clarity and Reproducibility of Methodology**
- **Score**: 8
- **Justification**: The methodology is clearly outlined for integration

strategies like layer-by-layer assembly and roll-to-roll manufacturing, but
it falls short on detailed, reproducible steps for material
functionalization or probe design.

↪→
↪→
↪→

#### **4. Practical Applicability and Implementation Readiness**
- **Score**: 7
- **Justification**: The report discusses scalability through techniques like

roll-to-roll manufacturing and identifies challenges, but it lacks
actionable details such as cost estimates or specific implementation steps,
keeping it somewhat theoretical.

↪→
↪→
↪→

#### **5. Novelty and Breadth of Candidate Coverage**
- **Score**: 10
- **Justification**: The report stands out for its comprehensive coverage of 2D

materials (e.g., MXenes, graphene, TMDCs, BN) and molecular probes (e.g.,
aptamers, MIPs, fluorinated phospholipid bilayers), including innovative
concepts like hybrid systems and machine learning optimization.

↪→
↪→
↪→

---

### **Summary of Scores**
- **Relevance to the Stated Objective**: 9
- **Depth and Rigor of Validation and Benchmarking Protocols**: 7
- **Clarity and Reproducibility of Methodology**: 8
- **Practical Applicability and Implementation Readiness**: 7
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- **Novelty and Breadth of Candidate Coverage**: 10

---

### **Overall Assessment**
The report is highly relevant to the objective of identifying 2D nanomaterials

and molecular probes for FET-based PFAS detection and excels in its
innovative and broad coverage of candidates. However, it would benefit from
stronger validation protocols, including detailed benchmarking, and more
specific guidance on practical implementation to enhance its real-world
applicability. These improvements would bolster its procedural rigor and
readiness while preserving its strengths in relevance and novelty.

↪→
↪→
↪→
↪→
↪→
↪→

Example raw response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe) —
ChatGPT o3

Overall, the report captures the current consensus that MXene- and
aptamer-functionalised FETs can drive PFAS detection into the femto- to
picomolar regime, mirroring recent experimental demonstrations of ultra-low
limits of detection and hybrid material strategies.
([pmc.ncbi.nlm.nih.gov][1], [mdpi.com][2]) However, it gives only a
qualitative treatment of validation and field-deployment protocols that
agencies such as the U.S. EPA and DoD now require, leaving practical
benchmarking details thin. ([epa.gov][3], [denix.osd.mil][4]) The table
below assigns balanced scores across the five requested dimensions.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

## Evaluation Table

| Dimension | Score (0-10) |
One-sentence justification
|

↪→
↪→
| --------------------------------------------------------- | ------------ |

--------------------------------------------------------------------------- ⌋
--------------------------------------------------------------------------- ⌋
--------------------------------------------------------------------------- ⌋
----------------------------------------------------------------------------
|

↪→
↪→
↪→
↪→
↪→
| **1. Relevance to Objective** | **9** | The

discussion centres on MXenes, graphene, TMDCs and probe chemistries
(aptamers, MIPs) that literature identifies as the most sensitive FET
transducers for PFAS and analogous trace contaminants, directly matching the
stated goal. ([pmc.ncbi.nlm.nih.gov][1], [mdpi.com][5],
[pmc.ncbi.nlm.nih.gov][6]) |

↪→
↪→
↪→
↪→
↪→
| **2. Depth & Rigor of Validation/Benchmarking** | **6** |

While impressive detection limits are quoted, the report lacks specific
inter-laboratory comparisons, LOD calculation methods, or reference to
emerging EPA/DoD validation workflows, so its rigor is only moderate.
([epa.gov][3], [denix.osd.mil][4])
|

↪→
↪→
↪→
↪→
↪→
| **3. Clarity & Reproducibility of Methodology** | **7** | A

clear LbL/R2R/CVD integration scheme is laid out, but omission of key
experimental parameters (e.g., gate bias, buffer composition, chip layout)
hampers full reproducibility expected in contemporary FET biosensor reports.
([exploration-journals.com][7], [pubs.rsc.org][8])
|

↪→
↪→
↪→
↪→
↪→
| **4. Practical Applicability & Implementation Readiness** | **6** | The

narrative recognises roll-to-roll graphene films and protective coatings to
curb MXene oxidation, yet stops short of cost modelling, encapsulation, or
shelf-life testing that determine commercial readiness.
([link.springer.com][9], [pubs.rsc.org][10], [sciencedirect.com][11])
|

↪→
↪→
↪→
↪→
↪→
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| **5. Novelty & Breadth of Candidate Coverage** | **8** |
Inclusion of under-explored fluorinated bilayers, machine-learning-optimised
aptamers, and MXene/graphene heterostructures shows commendable breadth
beyond mainstream materials and highlights emerging cross-disciplinary
avenues. ([nature.com][12], [sciencedirect.com][13], [mdpi.com][2])
|

↪→
↪→
↪→
↪→
↪→

### Key Take-aways

* **Strengths:** High topical relevance, comprehensive material/probe coverage,
and acknowledgment of scalability challenges.↪→

* **Gaps to Address:** Explicit validation protocols, detailed experimental
conditions, and economic/packaging analyses would improve rigor and
real-world impact.

↪→
↪→

By closing these gaps, the report could rise to a top-tier reference for
PFAS-oriented FET sensor development.↪→

[1]: https://pmc.ncbi.nlm.nih.gov/articles/PMC12109899/?utm_source=chatgpt.com
"Aptamer-Based Planar Electric Double-Layer Field-Effect Transistor"↪→

[2]: https://www.mdpi.com/2079-6374/14/10/497?utm_source=chatgpt.com "Recent
Advancements in MXene-Based Biosensors for Health and ..."↪→

[3]: https://www.epa.gov/water-research/pfas-analytical-methods-development-and ⌋
-sampling-research?utm_source=chatgpt.com "PFAS Analytical Methods
Development and Sampling Research"

↪→
↪→
[4]: https://www.denix.osd.mil/edqw/denix-files/sites/43/2023/02/Module-6-Data- ⌋

Validation-Guidelines-1633-PFAS-Final-1.pdf?utm_source=chatgpt.com "[PDF]
Module 6 Data Validation Guidelines - 1633 PFAS Final - DOD DENIX"

↪→
↪→
[5]: https://www.mdpi.com/2227-9040/12/7/116?utm_source=chatgpt.com "First

Direct Gravimetric Detection of Perfluorooctane Sulfonic Acid ..."↪→
[6]: https://pmc.ncbi.nlm.nih.gov/articles/PMC7944395/?utm_source=chatgpt.com

"MXene–Graphene Field-Effect Transistor Sensing of Influenza Virus ..."↪→
[7]: https://www.exploration-journals.com/article/aptamer-functionalized-field- ⌋

effect-transistor-biosensors-for-disease-diagnosis-and-environmental-monito ⌋
ring/?utm_source=chatgpt.com "Aptamer-functionalized field-effect transistor
biosensors for disease ..."

↪→
↪→
↪→
[8]: https://pubs.rsc.org/en/content/articlehtml/2022/ma/d1ma00929j?utm_source= ⌋

chatgpt.com "Microfluidic sensors based on two-dimensional materials for
..."

↪→
↪→
[9]: https://link.springer.com/article/10.1007/s40820-024-01534-x?utm_source=ch ⌋

atgpt.com "Flexible Graphene Field-Effect Transistors and Their Application
in ..."

↪→
↪→
[10]: https://pubs.rsc.org/en/content/articlehtml/2024/tc/d4tc00884g?utm_source ⌋

=chatgpt.com "Shielding 2D MXenes against oxidative degradation - RSC
Publishing"

↪→
↪→
[11]: https://www.sciencedirect.com/science/article/abs/pii/S1385894724055864?u ⌋

tm_source=chatgpt.com "A review of how to improve Ti3C2Tx MXene stability -
ScienceDirect"

↪→
↪→
[12]: https://www.nature.com/articles/s41467-021-22555-9?utm_source=chatgpt.com

"Machine learning guided aptamer refinement and discovery - Nature"↪→
[13]: https://www.sciencedirect.com/science/article/abs/pii/S0360319921047455?u ⌋

tm_source=chatgpt.com "Heterostructured two dimensional materials of MXene
and graphene ..."

↪→
↪→

Example raw response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe) —
ChatGPT o4 mini high

Here are the scores and one-sentence justifications for each dimension:

## 1. Relevance to the Stated Objective

**Score: 9/10**
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The report aligns strongly with the goal of identifying 2D materials and
molecular probes for PFAS detection in FET sensors, covering both
sensitivity and selectivity considerations, with only minor omissions around
alternative non-FET platforms.

↪→
↪→
↪→

## 2. Depth and Rigor of Validation and Benchmarking Protocols

**Score: 6/10**
While key performance metrics (e.g., detection limits, specificity) are cited,

the report lacks detailed descriptions of experimental controls, statistical
analyses, and comparative benchmarks across different sensing platforms.

↪→
↪→

## 3. Clarity and Reproducibility of Methodology

**Score: 7/10**
Integration strategies and trade-offs are clearly delineated, but the absence of

step-by-step protocols (e.g., exact functionalization procedures, probe
immobilization conditions) limits precise reproduction.

↪→
↪→

## 4. Practical Applicability and Implementation Readiness

**Score: 8/10**
The discussion of scalability (R2R, LbL, CVD) and durability solutions offers

actionable guidance for commercialization, though cost-analysis and
regulatory considerations could be more fully addressed.

↪→
↪→

## 5. Novelty and Breadth of Candidate Coverage

**Score: 8/10**
The inventory spans established (graphene, TMDCs) and emerging (fluorinated

bilayers, MXENE hybrids) candidates, but could further explore under-studied
2D systems (e.g., phosphorene, borophene) and alternative probe chemistries.

↪→
↪→

Table 1: Example raw response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe; Trial #1)
— cross-model score matrix (0–10).
Model Relevance Depth Clarity Applicability Novelty Overall (mean)
Claude 4 Opus (thinking) 9 6 7 8 8 7.6
Gemini 2.5 Pro 10 7 6 9 10 8.4
Grok 3 (thinking) 9 7 8 7 10 8.2
ChatGPT o3 9 6 7 6 8 7.2
ChatGPT o4 mini high 9 6 7 8 8 7.6
Average across models 9.2 6.4 7.0 7.6 8.8 7.8

A/B Dueling Prompt ( DR Report A vs. DR Report B )

Report A: {Anonymous DR Report content}
Report B: {Anonymous DR Report content}
As an experienced materials scientist who bridges the gap between research and pilot lines,
please review these two reports. I need your professional judgment: which one offers the clearer
high-level strategic roadmap for our team’s R&D over the next six months? We are especially
interested in the report that presents a well-structured narrative, systematically identifies and
prioritizes knowledge gaps, and synthesizes actionable next steps—beyond performance met-
rics. Please give me your recommendation in a brief, plain-language note—straight to the
point—ending with a clear verdict on which report to back and the single most decisive reason
why.
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A/B Duel — Metadata

agent_a: DToR_qwq32B_local500_RD3_RAG5
agent_b: ChatGPT_o3_DR
trial: trial_1

Raw dueling response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe)— Claude
4 Opus (thinking)

**Professional Assessment: Report A vs Report B**

After reviewing both reports as a materials scientist with pilot-line
experience, **Report A is the clear choice** for your R&D roadmap.↪→

**Why Report A wins:**

Report A provides a structured, decision-ready framework that directly addresses
your team's needs. It synthesizes findings across five research branches,
explicitly identifies contradictions (like MXene sensitivity vs. stability),
and most importantly, provides **resolution strategies** for each challenge.
The report prioritizes MXene-aptamer systems while acknowledging their
limitations and offering concrete solutions like hybrid coatings and R2R
manufacturing approaches.

↪→
↪→
↪→
↪→
↪→
↪→

Report A also includes a practical "Candidate Inventory" table that ranks
materials by performance metrics and a clear action plan focusing on three
critical barriers: stability testing, standardized protocols, and
cross-disciplinary collaboration.

↪→
↪→
↪→

**Why Report B falls short:**

Report B is comprehensive but reads more like a literature review than a
strategic roadmap. While it contains valuable technical depth, it lacks
prioritization and actionable synthesis. The extensive material descriptions
don't clearly guide decision-making, and the conclusions are more
observational than directive.

↪→
↪→
↪→
↪→

**The decisive factor:** Report A explicitly addresses the "how to move forward"
question with ranked recommendations and specific next steps, while Report B
provides extensive "what exists" information without clear strategic
direction.

↪→
↪→
↪→

**Verdict: Back Report A** - it's the roadmap your R&D team can immediately act
upon.↪→

Raw dueling response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe)— Gemini
2.5 Pro

To the R&D Lead,

After reviewing both documents, my recommendation is to use **Report A** as the
strategic roadmap for your team's R&D efforts over the next six months.↪→

While Report B is an excellent and exhaustive technical review, Report A is
structured as an executive-level strategic plan. It moves beyond a simple
survey of materials and performance metrics to actively synthesize the
information into a coherent strategy. It identifies the most critical
trade-offs (e.g., Sensitivity vs. Stability), frames them as solvable
problems in its "Contradiction Analysis," and provides a clear, prioritized
conclusion with actionable next steps for your team.

↪→
↪→
↪→
↪→
↪→
↪→

My verdict is to back **Report A**.
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The single most decisive reason is: **Report A is a decision-making tool, not
just a literature review; its structure forces a strategic focus on
resolving key conflicts, which is exactly what a short-term R&D plan
requires.**

↪→
↪→
↪→

Raw dueling response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe)— Grok
3 (thinking)

After reviewing both reports as a materials scientist with experience in scaling
R&D from lab to pilot, Report A stands out for its concise, integrated
structure that weaves together multi-branch insights into a cohesive
narrative. It systematically flags key gaps (e.g., stability in humid
environments, scalability via manufacturing methods) and prioritizes them
through contradiction resolutions and a focused conclusion, while distilling
actionable steps like stability testing, protocol standardization, and
collaborative innovations to guide near-term R&D.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Report B, while thorough and data-rich, reads more like a broad literature
review with less emphasis on gap prioritization and explicit roadmapping,
making it better for background reference than strategic planning.

↪→
↪→

**Verdict: Back Report A.** The single most decisive reason is its synthesis of
actionable next steps into a clear, prioritized R&D framework that directly
addresses real-world deployment barriers beyond just metrics.

↪→
↪→

Raw dueling response — ChatGPT o4 mini high

After reviewing both documents, Report A delivers a concise, goal-oriented
roadmap that explicitly prioritizes knowledge gaps (e.g. MXene stability,
scalable integration, standardized testing) and pairs each with actionable
next steps (hybrid coatings development, R2R pilot runs, cross-disciplinary
protocol design). In contrast, Report B, while rich in technical depth,
reads more like an encyclopedic survey than a six-month R&D playbook.

↪→
↪→
↪→
↪→
↪→

Verdict: Back Report A—because it alone translates material insights into a
structured, gap-driven action plan suitable for immediate project planning.↪→

Raw dueling response (DToR_qwq32B_local500; Topic: PFAS FET sensor probe)— Chat-
GPT o3

Both reports demonstrate deep technical insight, but they serve different
purposes.↪→

• Report A reads like an executive playbook. It starts with a concise problem
statement, then walks us through material/probe choices, trade-offs,
contradictions, and cross-disciplinary innovations in a clearly labeled,
logical sequence. Crucially, it flags three “blocking” knowledge gaps (MXene
stability, manufacturing scale-up, and standardized testing) and ties each
gap to concrete, near-term actions (e.g., hybrid coatings, roll-to-roll
trials, protocol drafting). The Candidate Inventory table distills options
at a glance and can be plugged directly into a six-month work-plan.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

• Report B is an encyclopedic review. It is rich in context and citations, but
the narrative meanders, mixes PFAS with many other analytes, and buries
action items inside long technical passages. The sheer length makes it
harder to extract priorities or sequence tasks.

↪→
↪→
↪→

Verdict: Back Report A—because it delivers a structured, priority-driven roadmap
we can act on immediately.↪→
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E First-Principles Simulation

E.1 DFT simulation settings

Static Simulation
To simulate the binding interactions of diverse combinations under periodic boundary conditions, we
employed ab initio calculations employing parameters optimized for precision and computational
efficiency. The plane-wave energy cutoff was set to 400 eV, and spin-polarized density functional
theory DFT with the Perdew-Burke-Ernzerhof (PBE) functional was utilized to describe exchange-
correlation interactions. The Brillouin zone integration employed a Gamma centered 1 × 1 × 1
k-point grid and van der Waals corrections were incorporated using the DFT-D3 method to capture
dispersion effects. Ionic relaxations were conducted with a convergence criterion of 0.02 eV/Å for
the forces, and the electronic structure iterations were set to converge to an energy difference of
10−4 eV. Implicit solvent field is added for static simulations by setting the dielectric constant at
78.4 if applicable (namely excluding the ab initio molecular dynamics (AIMD) with explicit solvent
molecules, and the CO2 sensor probe binding scenarios). The modeling of the slabs is directly
conducted by human expert based on anonymously reading the DR report. To ensure fair comparison,
we asked the expert to create same number of candidates from each report (e.g. 4 from DR report A,
and 4 from DR report B), and also pick one domain commonly chosen benchmark material/chemical
for each of the 5 applications. To prevent interactions between periodic images, we also include
>20 Å vacuum gap along the z-, ensuring a reliable comparison between adsorbed and separated
configurations.

Binding Energy Convention.
Following a standard DFT convention (Phys. Rev. B, 2008, 77, 12) for adsorption on typical studied
2D material systems like graphene, we report the binding energy ∆Ebind of an adsorbate at a given
coverage as

∆Ebind = (Eclean_slab + Eadsorbate)− Eadsorbed (1)

where Eadsorbed is the total energy of the fully relaxed adsorbate–slab complex (for certain applica-
tions, bottom atoms of bulk crystals are frozen and surface area are free to mimic realistic surface
interactions), Eclean_slab is the energy of the corresponding pristine clean slab supercell, and Eadsorbed
is the energy of the isolated adsorbate in the same supercell. All terms are computed with identical
exchange–correlation functional, plane-wave cutoff, and k-point mesh. Unless stated specifically
(like for battery binder normalized to be contact areal) We report ∆Ebind for only one adsorbate in the
slab super cell for qualitative comparison. This definition mirrors the adsorption-energy convention
widely used for molecules on typical substrates like graphene or MXene (we adopt the term “binding
energy” throughout). By this convention, a more positive ∆Ebind indicates an exothermic, favorable
adsorption (energy released upon binding).

Ab Initio Molecular Dynamics (AIMD) Simulation
To improve the physical realism of our calculations and especially considering solvent effect for
surface events, we embedded explicit water molecules in the supercell according to conformations
identified in preceding static simulations (Mol. Syst. Des. Eng. 2025, 10, 345–356; Sci. Adv.
2025, 11, eadr9038) using an end-state protocol. Specifically, the optimized adsorbed configuration
corresponding to Eadsorbed was used as the initial snapshot for the solvated adsorbed state, with
explicit water molecules added thereafter. For the pulled state, the adsorbate was translated by at least
15 Å away from the relaxed slab (e.g., graphene)—without additional geometry optimization—and
then solvated under identical conditions. These two equilibrated states form the basis for directly
comparing adsorption energetics in explicit solvent, consistent with end-state comparisons commonly
applied in MD umbrella-sampling studies (J. Phys. Chem. C 2023, 127, 5920–5930; ChemPhysChem
2018, 19, 690–702), and in line with benchmark explicit-solvent AIMD treatments of metal/water
interfacial solvation (J. Chem. Phys. 2020, 152, 144703) and first-principles determinations of
interfacial hydration free energies for adsorbates on Pt (J. Chem. Phys. 2021, 154, 094107).
The water density was maintained at 1 g cm−3 (for battery binder, solvent composition is different as
describe in corresponding section). Our goal was to compare the evolution of the system’s potential
(electronic) energy upon equilibration (Electrocatalysis 2017, 8, 577–586; Commun. Chem. 2022, 5,
76; J. Chem. Phys. 2020, 152, 144703; J. Chem. Phys. 2021, 155, 134703).
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To ensure that the solvent adopted physically meaningful configurations, each system was first equili-
brated for 2 ps at 300 K with a 0.5 fs time step. Temperature was regulated via a Langevin thermostat
to suppress extraneous inertial effects while preserving canonical sampling. After equilibrium, we
further performed an 3 ps production run, from which we extracted time-averaged electronic potential
energies.
We therefore report an explicit-solvent end-state potential-energy gap, denoted ∆EES

pot (AIMD),
defined as the difference between the time-averaged electronic potential energies of the solvated
adsorbed and pulled basins in identical cells:

∆EES
pot ≡ ⟨Epot⟩pulled − ⟨Epot⟩ads. (2)

Unless otherwise noted, all comparisons use the same supercell, water count, ion composition,
thermostatting, and slab-electrostatics settings. Hence, the more positive ∆EES

pot (AIMD), the more
energetically favorable the adsorbed state—i.e., a potential-energy analogue of the binding energy—
whereas a negative ∆EES

pot indicates that explicit solvation stabilizes the pulled state and adsorption is
disfavored.
Scope and limitations of ∆EES

pot:
∆EES

pot is not a rigorously converged adsorption free energy. By construction it (i) neglects configura-
tional and translational entropy; (ii) folds solvent reorganization and water (or other solvent)–surface
exchange energetics into the potential-energy baseline; and (iii) depends on finite-time sampling of
each basin rather than a reversible pathway or an alchemical thermodynamic cycle. Consequently, its
absolute magnitudes can reflect not only adsorbate–surface interactions but also large-scale differ-
ences in hydrogen-bond networks and long-range electrostatics associated with hundreds of explicit
waters. Nonetheless, because all systems are treated consistently within the same AIMD framework,
∆EES

pot serves as a heuristic yet informative comparative descriptor for explicit-solvent binding trends
across molecules and candidate surfaces, revealing solvent-mediated, surface-dependent effects that
are not captured in vacuum or implicit-solvent calculations. Formal free-energy methods (umbrella
sampling/PMF, metadynamics, and double-decoupling/TI with standard-state and slab-electrostatics
corrections) are acknowledged as the rigorous routes to ∆G, as exemplified for interfacial adsorbates
at water–Pt interfaces (J. Chem. Phys. 2021, 154, 094107).
Computational feasibility rationale:
Rigorous free-energy calculations become computationally prohibitive for our systems, which rou-
tinely exceed 500 atoms and include numerous transition-metal centers in addition to light elements;
fully converged interfacial free-energy landscapes are beyond feasible AIMD timescales under such
conditions. Extensive explicit-solvent AIMD benchmarks of metal/water interfaces have likewise
highlighted the costliness of such simulations (J. Chem. Phys. 2020, 152, 144703). In this context, the
explicit-solvent end-state potential-energy gap provides a practical dynamic compromise: it captures
key solvent-mediated effects absent from static DFT binding energies while remaining tractable for
large, chemically realistic slabs. Thus, although approximate, ∆EES

pot offers higher fidelity and greater
interpretive value than purely static vacuum or implicit-solvent descriptions for the screening-level
comparisons emphasized in this work.
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E.2 PFAS FET Sensor Probe

For the first application: PFAS FET Sensor Probe. The query as shown in D.1 is:

PFAS FET Sensor Probe

Which two-dimensional (2D) nanomaterials or molecular probes—including novel,
underexplored candidates—offer the greatest potential to achieve highly
sensitive and selective detection of per- and polyfluoroalkyl substances
(PFAS), or more broadly chemical and biological analytes, when integrated
into a field-effect transistor (FET)–based sensor platform?

↪→
↪→
↪→
↪→

The best commercial solution is: ChatGPT_o3_DR.
The best local solution is: DToR_qwq32B_local500.
The expert based on the two reports, provided 3 commercial DR report derived candidates (A1-A3),
and 3 local DR report derived candidates (B1-B3), visualized in DL_1 1:

A1 — 2D rGO + β-Cyclodextrin (β-CD)

Hexagonal P1 slab with a = b = 36.90 Å, γ = 120°, c = 45.00 Å (in-plane area ≈ 1179.19
Å2). Atom counts (C/H/O = 483/102/94) indicate a 2D graphene-derived sheet with oxygenated
defects (epoxy/hydroxyl) on one face and a carbohydrate torus consistent with β-CD mounted
above it. The populated thickness is ≈ 15.02 Å (vacuum ≈ 29.98 Å); the 2D carbon plane sits
near z ≈ 7.5 Å. The β-CD presents a toroidal pocket with a projected mouth ∼15.3 Å diameter,
oriented normal to the basal plane for PFOS capture. Oxygen sites on rGO act as plausible
anchoring points while the underlying 2D lattice remains largely sp2 and planar.

A2 — 2D MoS2/2D hBN heterojunction + methacrylic-acid (MIP-like) cavity, pyrene-linked

Hexagonal P1 with a = b = 28.44 Å, γ = 120°, c = 46.13 Å (area ≈ 700.47 Å2). Composition
shows a 2D MoS2/2D hBN heterojunction stack capped by an aromatic (pyrene-type) tether
and a methacrylic-acid cluster forming a β-CD–like cavity on one side (organics C/H/O sit
above the dielectric). The populated thickness is ≈ 18.68 Å (vacuum ≈ 27.45 Å). The cavity’s
projected mouth is ∼13.6 Å in diameter, positioned above hBN so PFOS can approach without
perturbing the MoS2 channel. The pyrene linker bridges π–π to the 2D cap while keeping the
cavity axis roughly perpendicular to the surface, preserving electronic decoupling from the
channel.

A3 — 2D Fluorographene (CF) slab

Hexagonal P1 with a = b = 36.90 Å, γ = 120°, c = 45.00 Å (area ≈ 1179.19 Å2). Stoichiometry
C450F450 yields a single-layer 2D CF sheet with chair-like alternating C–F buckling; the “solid”
thickness is ≈ 3.26 Å and vacuum ≈ 41.74 Å. The surface is uniform and free of additional
adsorbates, providing a continuous fluorinated interface. Fluorine is arranged on both sides of
the 2D carbon lattice, giving a symmetric fluorophilic environment. The wide lateral extent
minimizes edge effects, making it suitable for baseline PFOS adsorption comparisons.

B1 — 2D Ti3C2O2 MXene + methacrylic-acid (MIP-like) cavity

Hexagonal P1 with a = b = 30.67 Å, γ = 120°, c = 46.70 Å (area ≈ 814.63 Å2). The slab is an
O-terminated 2D Ti3C2 MXene bearing, on one side, a methacrylic-acid cluster organized
as a β-CD–like cavity (additional C/H/O located at higher z). Populated thickness ≈ 16.14
Å (vacuum ≈ 30.56 Å). The cavity mouth projects ∼13.5 Å in diameter, perched above the
O-terminated surface while the bottom MXene layer serves as a rigid support. The one-sided
functionalization creates an asymmetric interface—electronegative terminations and the cavity’s
polar rim cooperate to stabilize PFOS headgroup interactions.
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B2 — 2D Graphene + methacrylic-acid (MIP-like) cavity

Hexagonal P1 with a = b = 36.90 Å, γ = 120°, c = 45.00 Å (area ≈ 1179.19 Å2). A 15×15 2D
graphene sheet supports, on one face, a methacrylic-acid cluster arranged into a β-CD–like
cavity (C/H/O entirely above the carbon plane). The populated thickness is ≈ 9.58 Å with ≈
35.42 Å vacuum. The cavity presents a projected ∼13.6 Å diameter single-sided pocket aligned
normal to the basal plane for PFOS engagement. The 2D sp2 lattice remains flat and conductive,
making this a clean platform for decoupling recognition from transduction.

B3 — 2D Graphene + fluorinated phospholipid monolayer

Hexagonal P1 with a = b = 36.90 Å, γ = 120°, c = 45.00 Å (area ≈ 1179.19 Å2). Elemental
makeup (C/F/H/O with trace N and P) is consistent with phosphatidylcholine headgroups near
the 2D graphene plane and perfluorinated tails extending outward to form a dense brush. The
populated thickness is ≈ 14.84 Å (vacuum ≈ 30.16 Å), with F spanning roughly z ≈ 9.21–22.34
Å above the basal plane. The assembly yields a hydrophilic-to-fluorophilic gradient, presenting
a fluorinated outer surface for PFOS tail affinity. Lipid tails show a collective tilt relative to the
surface normal, producing a compact, low-defect fluorinated interface on one side while the
opposite side remains bare graphene.

Selectivity Scoring for PFAS Sensor Performance The practical deployment of PFAS sensors
demands not only strong binding to target per- and polyfluoroalkyl substances but also selective
discrimination against common environmental interferents. To quantitatively evaluate this selectivity,
we developed a unified scoring framework applicable to both static DFT calculations and explicit-
solvent AIMD simulations, enabling direct comparison between computational methodologies while
maintaining thermodynamic rigor.
Selectivity Metric Derivation: The fundamental selectivity metric ∆∆E quantifies the differential
binding preference between PFAS compounds and interferent molecules:

∆∆E = ∆EPFAS −∆EInterf (3)

where ∆EPFAS represents the average binding energy across four representative PFAS compounds
(PFOA, PFOS, PFNA, and PFHxS), and ∆EInterf denotes the average binding energy for interferent
species (humic acid and SDS), as illustrated in Figure DL_1 2. A larger positive ∆∆E value indicates
superior selectivity, signifying stronger preferential binding to PFAS over interferents.
For static DFT calculations, ∆E values correspond to the conventional binding energies ∆Ebind
computed under implicit solvent conditions (Figure DL_1 3). In explicit-solvent AIMD simulations,
these are replaced by the time-averaged end-state potential energy gaps ∆EES

pot, which capture solvent
reorganization effects and hydrogen-bonding network rearrangements absent from static calculations
(Figures DL_1 4 and DL_1 5).
Linear Selectivity Scoring Framework: To enable meaningful comparison across candidate systems
and computational methods, we normalize the selectivity metrics to a common scoring scale:

Score = 100× (1 + β(∆∆E −∆∆Eβ-CD)) (4)

where ∆∆Eβ-CD represents the selectivity of β-cyclodextrin, our domain benchmark reference with
established PFAS binding capability [23]. The sensitivity parameter β = 0.2 was selected to provide
appropriate score discrimination while maintaining numerical stability across both DFT and AIMD
datasets. This linear transformation preserves the physical meaning of energy differences while
establishing β-CD as the baseline reference (Score = 100).
Comparative Analysis of Selectivity Under Different Solvation Models: The application of
this unified scoring framework reveals striking differences between implicit and explicit solvation
treatments. In static DFT calculations with implicit solvent, system A1 achieves the highest selectivity
score of 102.4, outstandingly exceeding the β-CD baseline (Figure DL_1 6). The B-series candidates
also prove competitive as B2 and B3 also showed slightly passing 100 score.
However, the inclusion of explicit water molecules and dynamic sampling in AIMD simulations
dramatically alters the selectivity landscape (Figure DL_1 7). Most notably, all candidate systems
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score below the β-CD baseline in explicit solvent, with B1 achieving the highest relative performance
at 95.7. This systematic reduction in scores reflects the critical role of solvent-mediated effects:
competitive water adsorption at binding sites, strong hydration of anionic PFAS headgroups, and the
entropic penalties associated with constraining flexible molecules in adsorbed configurations.
The reversal of relative rankings between static DFT and AIMD calculations—particularly the
superior performance of B-series candidates under explicit solvation—underscores the importance of
including solvent dynamics in sensor design evaluation. While static calculations provide valuable
initial screening, the explicit-solvent AIMD results more accurately capture the complex interplay
between adsorbate–surface interactions and solvent reorganization that governs selectivity under
realistic aqueous conditions.
Implications for Sensor Design: The divergence between implicit and explicit solvent results carries
significant implications for PFAS sensor development. Systems optimized solely based on static DFT
calculations may exhibit diminished selectivity in aqueous environments due to unforeseen solvent
competition effects. Conversely, candidates that appear suboptimal in vacuum or implicit solvent
calculations may benefit from favorable solvent-mediated interactions that enhance their practical
selectivity. This highlights the necessity of multi-scale computational approaches that progress from
efficient static screening to rigorous explicit-solvent validation for promising candidates.
The linear selectivity scoring framework presented here provides a quantitative, thermodynamically
grounded metric for evaluating sensor performance across computational methodologies. By main-
taining consistent notation and normalization across static and dynamic simulations, this approach
enables systematic comparison of candidate materials while preserving the physical interpretability
of the underlying energy differences.
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Figure DL_1 1: Structural configurations of candidates proposed by DR agents for selective PFAS
binding, with β-cyclodextrin [23] included as the domain benchmark reference.

Figure DL_1 2: Representative PFAS compounds (PFOA, PFOS, PFNA, PFHxS) and interferent
molecules (SDS and humic acid) employed in selectivity assessment, with corresponding optimized
binding configurations. Two candidates’ relaxed structures are shown.
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Figure DL_1 3: Radar plot comparing binding energies (∆Ebind) across all candidate systems and
benchmark β-CD obtained from static DFT calculations with implicit solvent.

Figure DL_1 4: Representative AIMD trajectory showing relative energy evolution under explicit
solvent conditions. The green dashed line denotes the 2 ps equilibration period. Right panels display
system configurations at highlighted time points along the production trajectory.
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Figure DL_1 5: Radar plot comparing explicit-solvent end-state potential energy gaps (∆EES
pot)

averaged over the 3 ps production period for all candidate systems and benchmark β-CD from AIMD
simulations.
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Figure DL_1 6: Selectivity scores for all candidate systems from static DFT calculations, normalized
to β-CD baseline (100). Scores are calculated using the linear selectivity metric with sensitivity
parameter β = 0.2, where ∆∆E = ∆EPFAS −∆EInterf represents the difference between average
PFAS and interferent binding energies.

Figure DL_1 7: Selectivity scores for all candidate systems from explicit-solvent AIMD simulations,
normalized to β-CD baseline (100). The scoring methodology remains identical to static DFT, except
∆E values are replaced by ∆EES

pot, the time-averaged potential energy gaps from the 3 ps production
period.
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E.3 PFAS Degradation

For the second application: PFAS Degradation. The query as shown in D.1 is:

PFAS Degradation

Which novel electrode materials can achieve efficient PFAS degradation under
ambient aqueous electrochemical conditions, delivering both high
mineralization and defluorination rates? What intrinsic properties—such as
PFAS adsorption affinity, reactive oxygen species generation capacity, and
C–F bond activation energy—should be optimized to guide their discovery?

↪→
↪→
↪→
↪→

The best commercial solution is: Gemini_2.5_Pro_DR.

The best local solution is: DToR_qwq32B_local500.

The expert based on the two reports, provided 5 commercial DR report derived candidates (A1-A5),
and 5 local DR report derived candidates (B1-B5), visualized in DL_2 1:

Ti4O7 — Pristine Magnéli (001) bench slab

Triclinic P1 slab with a = 22.376 Å, b = 27.651 Å, γ = 75.306°, c = 42.208 Å (in-plane area ≈
598.50 Å2). Atom counts (Ti/O = 256/448; 704 total) match a Ti4O7 (001) termination. The
populated thickness spans ≈ 12.13 Å (z ≈ 3.41–15.53 Å), leaving ≈ 30.08 Å vacuum; the slab
mid-plane lies near z ≈ 9.47 Å. Surfaces are stoichiometric and flat, preserving Magnéli shear-
plane connectivity and metallic conduction pathways—our baseline conductive-oxide reference
for PFAS tests. Build/relax notes: 4 atomic layers; bottom two constrained. (Adsorbates for
subsequent runs were seeded≈ 3 Å above the most protruding Ti site, tail parallel to the surface.)

A1 — Ti4O7 (001) with through-pore + rim O-vacancies

Triclinic P1 cell with a = 22.376 Å, b = 27.651 Å, γ = 75.306°, c = 42.208 Å (in-plane area ≈
598.50 Å2). Atom counts (Ti/O = 249/437; 686 total) reflect removal of a top-side cluster and
additional rim O-vacancies relative to the bench (∆ = −7 Ti, −11 O). The populated thickness
is ≈ 13.44 Å (z ≈ 3.00–16.45 Å), leaving ≈ 28.77 Å vacuum; the slab mid-plane sits near
z ≈ 9.73 Å. A circular through-pore was introduced by deleting atoms within a ∼5 Å-radius
cylinder from the upper layers, yielding an effective mouth ∼1.0 nm diameter; the rim exposes
under-coordinated Ti with a locally reduced O environment, while the surrounding lattice retains
Magnéli shear-plane connectivity. Relaxation protocol used: bottom half constrained; top region
(and any adsorbates) relaxed so the pore edge dominates binding/activation. Connection to the
Ti4O7 bench: same lattice, cell vectors, and basal (001) termination as the pristine Ti4O7 bench
slab; bottom region unchanged. All edits are localized to the top surface (pore machining + rim
O-vacancies). Away from the pore, Ti/O stoichiometry per layer and shear-plane topology match
the bench reference.

A2 — Pd-overlayer/Ti4O7 (001) composite (amorphous Pd on the bench slab)

Triclinic P1 cell with a = 22.376 Å, b = 27.651 Å, γ = 75.306°, c = 42.21 Å (in-plane area ≈
598.50 Å2). Atom counts (Ti/O/Pd = 256/448/94; 798 total) indicate a stoichiometric Ti4O7

substrate capped by a Pd overlayer. The populated thickness spans ≈ 16.45 Å (z ≈ 3.14–19.59
Å), leaving ≈ 25.76 Å vacuum; mid-plane at z ≈ 11.37 Å. Pd atoms populate the top terrace
broadly (no single island), forming a disordered sheet with Pd heights ∼16.12–19.59 Å (mean ≈
17.71 Å), i.e., ∼3.1 Å above the top oxide layer (zox,max ≈ 16.49 Å). Connection to the Ti4O7

bench: identical lattice and Ti/O stoichiometry to the pristine Magnéli (001) slab; modifications
are limited to a Pd overlayer on the top surface (bottom half retained as in the bench), with no
pores or O-vacancies introduced.
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A3 — Pd55 cluster on Ti4O7 (001) (icosahedral-like nanoparticle on the bench slab)

Triclinic P1 cell with a = 22.376 Å, b = 27.651 Å, γ = 75.306°, c = 42.21 Å (in-plane area ≈
598.50 Å2). Atom counts (Ti/O/Pd = 256/448/55; 759 total) show a Ti4O7 substrate supporting a
compact Pd nanoparticle. The populated thickness spans ≈ 22.65 Å (z ≈ 3.23–25.87 Å), leaving
≈ 19.56 Å vacuum; mid-plane at z ≈ 14.55 Å. The Pd cluster (initially icosahedral; allowed
to relax) (n = 55) is localized on the top terrace with a projected footprint ∼9.2 × 9.6 Å (max
in-plane radius ≈ 5.33 Å; projected diameter ≈ 10.65 Å) and vertical extent placing the apex
∼9.7 Å above the top oxide layer (zox,max ≈ 16.15 Å). Connection to the Ti4O7 bench: same
lattice and stoichiometric oxide as the pristine (001) slab; the only alteration is a single Pd55

nanoparticle anchored on the top surface (no pore machining or O-vacancies), with the bottom
region kept as in the bench reference.

A4 — F-doped rutile SnO2 (110) slab (FTO, O→F substitution near surface)

Orthogonal P1 cell with a = 26.8022 Å, b = 25.4880 Å, γ = 90.0°, c = 42.1012 Å; in-plane area
≈ 683.13 Å2. The metrics correspond to a 4×8 SnO2(110) supercell (a ≈ 4×a(rutile)

√
2, b ≈

8×c(rutile)). Atom counts (Sn/O/F = 256/497/15; 768 total) indicate ∼2.9% O→F substitution on
the anion sublattice (15/512), i.e., a lightly F-doped “FTO” slab. The populated thickness spans
≈ 14.28 Å (z ≈ 4.32–18.60 Å), leaving ≈ 27.83 Å vacuum; Sn layers occupy z ≈ 4.38–15.29 Å,
while F sites are confined to a narrow band near the top (z ≈ 16.33–17.17 Å; mean ≈ 16.75 Å),
just beneath the outermost O ridges (Omax ≈ 18.60 Å). This places F primarily in near-surface
O positions on (110), preserving the characteristic bridging-O/in-plane-O relief of rutile and
providing a slightly more electron-rich, less hydroxylated top termination expected for FTO.

A5 — B-doped four-layer graphene

Hexagonal P1; a = b = 19.68 Å, γ = 120°, c ≈ 36.0 Å. Four graphene sheets stacked with the
standard interlayer spacing d(002) ≈ 3.35 ± 0.05 Å (three gaps→∼10.05 Å slab thickness).
Substitutional B is confined to the top layer (≈10 at% within that plane; ≈2–3 at% overall),
preserving an sp2 framework. The remaining ∼26 Å is vacuum along c to suppress image
interactions. During relaxation, we fixed the bottom two layers; relax the top two (and any
adsorbates).

B1 — F-grafted four-layer graphene (consensus spacing; A5-consistent)

Hexagonal P1; keep A5’s in-plane metrics (a = b, γ = 120°) unchanged and c ≈ 36.0 Å.
Stack four graphene sheets with the standard interlayer spacing d(002) = 3.35 ± 0.05
Å (three gaps → ∼10.05 Å slab thickness), with the remaining ∼26 Å as vacuum along c
to decouple periodic images. Chemistry/dopant pattern exactly as in A5 (no changes to
which layer(s) are doped/functionalized); the carbon network remains predominantly sp2. Same
Relaxation protocol as A5: fix the bottom two layers; relax the top two (and any adsorbates).
Connection to A5: identical spacing convention and vacuum budget as A5 to ensure cross-
comparable adsorption energies and electrostatics across the graphene series, while leaving only
the dopant/functional differences to drive behavior.
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B2 — 2D Ti3C2 MXene (O/OH-terminated)

Hexagonal P1 slab with a = b = 24.536 Å, γ = 120°, c = 36.700 Å (in-plane area ≈ 521.36
Å2). Atom counts (Ti/C/O/H = 192/128/128/114; 562 total) correspond to 64 f.u. of Ti3C2

with full two-sided terminations (128/site total): ≈89% –OH (114 H) and ≈11% =O (14 O),
distributed symmetrically per face (57 –OH + 7 =O each side). The vacuum layer is around
27.21 Å. The sheet preserves the characteristic 2D MXene core (Ti–C–Ti trilayers) with mixed
O/OH terminations pointing outward, yielding a hydrophilic, electronically conductive surface
appropriate for adsorption tests (e.g., PFAS headgroup coordination via –OH domains).

B3 — 2D MnO2-like (birnessite-style) nanosheet with sparse one-sided –OH

Orthogonal P1 cell with a = b = 29.3628 Å, γ = 90.0°, c = 33.595 Å (in-plane area ≈ 862.17 Å2).
Atom counts (Mn/O/H = 216/411/18; 645 total) are consistent with a near-stoichiometric MnO2

layer carrying light hydroxylation (H:Mn ≈ 0.083). The populated thickness is ≈ 9.32 Å (z ≈
0.82–10.14 Å), leaving ≈ 24.28 Å vacuum. Element-resolved spans: Mn ≈ 1.52–9.59 Å; O ≈
0.82–9.61 Å; H confined to ≈ 7.12–10.14 Å on the outer face, indicating one-sided –OH/water
terminations on a 2D octahedral sheet. Relaxation note: we kept the lower half constrained and
relaxed the top half/adsorbates; head-group binding is expected at surface –OH/O sites with the
basal Mn–O framework remaining robust.

B4 — 2D MnO2-like (birnessite-style) nanosheet, smaller supercell; one-sided –OH

Orthogonal P1 cell with a = b = 22.000 Å, γ = 90.0°, c = 33.610 Å (in-plane area = 484.00
Å2). Composition (Mn/O/H = 150/285/12; 447 total) again reflects a MnO2 sheet with light
hydroxylation (H:Mn ≈ 0.08). The populated thickness is ≈ 9.40 Å (z ≈ 1.77–11.17 Å), leaving
≈ 24.21 Å vacuum. Element-resolved spans: Mn ≈ 2.12–10.48 Å; O ≈ 1.77–10.99 Å; H ≈
8.43–11.17 Å, i.e., –OH/water groups localized on the top face of the 2D sheet. Relaxation
matches B3 (bottom region constrained, top free) to keep comparisons clean across the MnO2

series.

B5 — Graphene-capped 2D MXene (derived from B2)

Derived directly from B2 (same cell vectors and terminations), a single-layer graphene sheet is
added parallel to the top face of the MXene and centered to span the full in-plane cell. The initial
MXene↔graphene separation is set to ∼3.35 Å (graphite d(002)), with no covalent links—pure
van der Waals contact. Graphene is pristine sp2 and allowed to relax laterally/vertically; the
MXene beneath follows B2’s relaxation protocol (bottom constrained, top free). The c-axis
vacuum is kept as in B2 to avoid inter-image coupling. Connection to B2: identical substrate;
the only modification is the graphene capping layer.

Multi-Metric Evaluation of PFAS Degradation Catalysts
Effective catalytic degradation of PFAS compounds requires both strong surface adsorption to concen-
trate the pollutants and sufficient activation of the exceptionally stable C–F bonds. To comprehensively
evaluate candidate catalysts for PFAS degradation, we employed a three-pronged computational
assessment framework encompassing static binding energies, explicit-solvent dynamics, and C–F
bond dissociation energetics, with Ti4O7 serving as the domain benchmark reference [49].
Integrated Performance Metrics
The degradation performance evaluation integrates three complementary metrics that capture distinct
aspects of the catalytic process. First, the binding energy ∆Ebind from static DFT calculations
quantifies the thermodynamic driving force for PFAS adsorption onto catalyst surfaces (Figure DL_2
3). Strong binding ensures sufficient surface coverage and residence time for subsequent degradation
reactions. Second, the explicit-solvent potential energy gap ∆EES

pot from AIMD simulations reveals
how aqueous solvation affects the adsorption thermodynamics (Figures DL_2 7 and DL_2 8),
accounting for competitive water adsorption and hydrogen-bonding network reorganization that static
calculations cannot capture. Third, the C–F bond dissociation energy quantifies the activation barrier
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for the rate-limiting defluorination step, computed by displacing fluorine atoms from adsorbed PFAS
configurations to isolated positions within the supercell (Figure DL_2 4).
Scoring Framework for Degradation Performance
To enable quantitative comparison across these diverse metrics, we applied a unified linear scoring
framework:

Score = 100×
(
1 + β(∆Ē −∆ĒTi4O7

)
)

(5)

where ∆Ē represents the mean energy value averaged over four representative PFAS compounds
(PFOA, PFOS, PFNA, PFHxS), and β = 0.2 serves as the sensitivity parameter. For binding metrics
(both static DFT and AIMD), more negative ∆Ē values indicate stronger adsorption and thus higher
scores. Conversely, for C–F dissociation, lower energy barriers (less positive values) yield higher
scores, reflecting more facile bond activation.
The distribution of C–F dissociation energies across different PFAS compounds and candidate surfaces
exhibits substantial variability (Figure DL_2 5), with mean values ranging from approximately 2
to 6 eV (Figure DL_2 6). This variation underscores the importance of averaging over multiple
PFAS species to obtain representative performance metrics, as individual compounds may exhibit
preferential interactions with specific surface sites or crystallographic facets.
Performance Analysis Across Computational Methods
Application of this scoring framework reveals distinct performance patterns across the three evaluation
metrics. In static DFT calculations, several candidates demonstrate superior PFAS binding relative to
the Ti4O7 benchmark (Figure DL_2 9), with A-series materials generally exhibiting stronger adsorp-
tion energies. However, the inclusion of explicit solvent effects in AIMD simulations significantly
alters these rankings (Figure DL_2 11), with most candidates showing reduced binding scores due
to solvent-mediated destabilization effects. This divergence highlights the critical importance of
accounting for aqueous solvation in evaluating catalyst performance under realistic conditions.
The C–F bond activation scores (Figure DL_2 10) provide complementary insights into degradation
potential. Notably, candidates that excel in binding may not necessarily facilitate efficient C–F
bond cleavage, as these properties depend on distinct electronic and geometric factors. The ideal
degradation catalyst must balance strong PFAS adsorption with effective bond activation—a trade-off
that our multi-metric scoring framework quantitatively captures.
Implications for Catalyst Design
The comprehensive evaluation framework presented here reveals that no single candidate uniformly
excels across all performance metrics. Strong surface binding, while essential for PFAS capture, does
not guarantee facile C–F bond activation. Similarly, materials optimized for bond dissociation may
suffer from weak adsorption, particularly under aqueous conditions where solvent competition is
significant. This multi-dimensional performance landscape emphasizes the need for balanced catalyst
design that considers both thermodynamic (binding) and kinetic (bond activation) factors, evaluated
under both implicit and explicit solvation conditions to ensure robust performance predictions for
practical applications.
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Figure DL_2 1: Structural configurations of candidate catalysts proposed by DR agents for PFAS
degradation, with Ti4O7 [49] included as the domain benchmark reference.

Figure DL_2 2: Representative PFAS compounds (PFOA, PFOS, PFNA, PFHxS) employed in degra-
dation assessment, with corresponding optimized adsorption configurations on selected candidate
surfaces.
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Figure DL_2 3: Radar plot comparing PFAS binding energies (∆Ebind) across all candidate catalysts
and benchmark Ti4O7 obtained from static DFT calculations with implicit solvent.

Figure DL_2 4: Illustration of C–F bond dissociation simulation protocol. Left: Initial configuration
with PFOS adsorbed on A3 surface. Right: Final configuration with fluorine atom displaced to corner
position (5 Å from each boundary) of the supercell.
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Figure DL_2 5: Violin plots showing distributions of C–F bond dissociation energies for different
PFAS compounds (PFOA, PFOS, PFNA, PFHxS) across all candidate catalysts, with mean values
indicated by horizontal bars.
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Figure DL_2 6: Radar plot comparing mean C–F bond dissociation energies across all candidate
catalysts and benchmark Ti4O7. Lower dissociation energies indicate more favorable C–F bond
activation for degradation.

Figure DL_2 7: Representative AIMD trajectory showing system energy evolution under explicit
solvent conditions. The green dashed line denotes the 2 ps equilibration period. Right panels display
system configurations at highlighted time points along the 3 ps production trajectory.
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Figure DL_2 8: Radar plot comparing explicit-solvent end-state potential energy gaps (∆EES
pot)

averaged over the 3 ps production period for all candidate catalysts and benchmark Ti4O7 from
AIMD simulations.

Figure DL_2 9: PFAS binding scores for all candidate catalysts from static DFT calculations,
normalized to Ti4O7 baseline (100). Scores are calculated using the linear metric with sensitivity
parameter β = 0.2, where ∆Ē = ∆EPFAS represents the mean binding energy averaged over four
PFAS compounds.
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Figure DL_2 10: C–F bond activation scores for all candidate catalysts from static DFT calculations,
normalized to Ti4O7 baseline (100). Scores are calculated using the linear metric with sensitivity
parameter β = 0.2, where ∆Ē = EF-dis represents the mean C–F dissociation energy averaged
over four PFAS compounds. Higher scores indicate lower dissociation barriers and more favorable
degradation potential.

Figure DL_2 11: PFAS binding scores for all candidate catalysts from explicit-solvent AIMD
simulations, normalized to Ti4O7 baseline (100). The scoring methodology remains identical to static
DFT, with ∆Ē representing the mean ∆EES

pot values averaged over four PFAS compounds from the 3
ps production period.
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E.4 Battery Binder

For the third application: Battery Binder. The query as shown in D.1 is:

Battery Binder

Which advanced binder technologies are being developed to improve the
performance and longevity of lithium-ion batteries?↪→

The best commercial solution is: ChatGPT_o4_mini_high_DR.
The best local solution is: DToR_qwq32B_local500.
The expert based on the two reports, provided 4 commercial DR report derived candidates (A1-A4),
and 4 local DR report derived candidates (B1-B4), visualized in DL_3 1:
“‘latex

NCM811 cathode description

In order to create a test bench for lithium ion battery binder, we modeled a (104)-terminated slab
of layered LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode in a periodic cell with a = 27.67 Å, b =
25.55 Å, c = 49.47 Å and α = β = 90°, γ = 72.51° (P1). The atomic slab spans ≈12.1 Å along
the surface normal, leaving ≈37.4 Å of vacuum to suppress spurious interactions; the model
contains 732 atoms (Li174 Ni129 Co21 Mn21 O387). For structural relaxations, we used a large
in-plane surface cell (tripled along b) and constrained the bottom ≈1/3 of atoms to mimic bulk
termination.

PVDF benchmark binder

For the benchmark binder, we built an all-trans PVDF 10-mer (–CH2–CF2–)10, end-capped with
H/F, pre-relaxed in vacuo, and then laid it flat on the pre-relaxed NCM811 (104) slab, constructed
and constrained following our surface-build script. In the configuration, the chain backbone
lies approximately parallel to the surface (∼30° off the b-axis), with a closest polymer–surface
contact of∼2.0 Å, an in-plane backbone span of≈23 Å, and a projected convex-hull footprint of
≈125 Å2; the polymer fragment contributes C20H21F21, bringing the full model to 794 atoms.

A1 — PVPA (after binder adsorbed)

A poly(vinyl-phosphonic acid) 10-mer (C20H32O30P10) was adsorbed on the NCM811 (104)
slab, using the same surface-build constraints as our base slab. The slab portion is 12.58 Å thick,
leaving 36.88 Å of vacuum; the full system contains 824 atoms (slab = 732; polymer = 92). The
PVPA backbone lies nearly parallel to the surface (≈34° off the b-axis), spans 20.59 Å in-plane,
and covers a projected convex-hull footprint of 115.09 Å2. Phosphonate O atoms approach
surface cations with a shortest O-Li contact of 2 Å, alongside O-O hydrogen-bond contacts to
surface oxygen of 2.5–2.9 Å.

A2 — Alg-Ca (after binder adsorbed)

A Ca2+-cross-linked alginate 5-mer (G–M blocks; carboxylates protonated except those co-
ordinating Ca2+) was laid approximately parallel to the NCM811(104) surface with the bot-
tom oxide layers fixed. The combined model has 834 atoms (slab = 732; binder = 102, ≈
C30H40O31Ca). The slab portion is 12.20 Å thick with 37.27 Å vacuum. The polymer back-
bone aligns quasi-parallel to the surface (24.62° off b), spans 17.71 Å in-plane, and presents a
convex-hull footprint of 92.64 Å2. Interfacial contacts are dominated by non-specific physisorp-
tion (nearest heavy-atom approach 3.23 Å; Obinder-Oslab 3.31–4.17 Å), while Ca2+ remains
intrachain-coordinated (closest Ca–Oslab 7.13 Å).
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A3 — Sulfonyl-polyimide (S-PI) (after binder adsorbed)

A tri-repeat S-PI fragment (C42H14N6O20S3, 85 atoms) was constructed following the
imide-dianhydride/diamino-sulfone motif and combined with the standard NCM811(104) slab
(total 817 atoms; slab = 732, binder = 85). The polymer lies parallel to the surface, oriented
37.49◦ off the b-axis (principal in-plane span 25.71 Å) with a projected convex-hull footprint
of 152.10 Å2. This configuration represents the separated reference: the nearest polymer heavy
atom is 17.42 Å above the top oxide layer (no interfacial contacts; shortest Obinder· · ·Oslab =
19.17 Å; Obinder· · ·Ni/Co/Mn = 19.75 Å).

A4 — PTFE (–CF2–CF2–)10 (after binder adsorbed)

A perfluoroethylene decamer (C20F42, 62 atoms) is laid flat on the NCM811(104) surface to
provide a non-reactive binder baseline; the combined model has 794 atoms (slab = 732; polymer
= 62). The slab portion is 12.20 Å thick with 37.27 Å vacuum. The chain axis lies 39.61° off
b within the ab plane, with a principal in-plane span of 25.14 Å and a projected convex-hull
footprint of 80.55 Å2. Interfacial contacts are dispersive: the nearest heavy-atom approach is
2.49 Å (F-Li); the shortest F-O_slab and F-Ni contacts are 2.84 Å and 3.43 Å, respectively, while
C-O_slab ≥ 3.63 Å and no metal–fluorine contact falls below 2.49 Å. These metrics set a PTFE
benchmark for subsequent ∆E_ads/A comparisons.

B1 — Schiff-base polymer (imine-linked poly(aldehyde-amine)) (after binder adsorbed)

An imine-linked poly(aldehyde-amine) fragment (C40H28N4, 72 atoms) is adsorbed on the
NCM811(104) slab; the combined model contains 804 atoms (slab = 732; binder = 72). The
oxide portion is 13.07 Å thick with 36.39 Å vacuum. The polymer lies quasi-parallel to the
surface, oriented 36.97° off b within the ab plane; its principal in-plane span is 34.60 Å, and the
projected convex-hull footprint is 168.51 Å2. Interfacial contacts show a nearest heavy-atom
approach of 2.57 Å (C-Li); the imine N approaches surface oxygen at 2.35 Å, while separations
to cation sites remain larger (N-Li 3.68 Å; N-Ni 4.29 Å; N-Co 4.57 Å; N-Mn 4.76 Å).

B2 — lignin + CNT (after binder adsorbed)

A β-O-4 lignin dimer was positioned at the NCM811(104) interface and co-laid with an armchair
(6,6) carbon nanotube segment (8 axial repeats; 192 C) oriented roughly parallel to the terrace;
the tube’s in-plane principal axis is rotated 36.86° off b and spans 24.91 Å. The composite
binder portion contains C234H80O46. The oxide portion spans 11.05 Å in thickness along the
surface normal with 38.42 Å of vacuum retained. Lignin’s phenolic/ether oxygens face the
cation-terminated ridges, with the closest O-(Ni/Co/Mn) approach of 3.32 Å, consistent with
physisorptive H-bond/ion-dipole contacts rather than direct chelation; the CNT lies flat to provide
an extended π-contact, with a near-surface carbon convex-hull footprint of 84.71 Å2. Together,
this layout tests cooperative anchoring: localized polar adhesion from lignin complemented by
broad dispersive contact from the nanotube across the NCM811 terrace.

56



B3 — Lignin–CMC hybrid (β-O-4 lignin dimer + CMC monomer, Na+ exchanged) (after
binder adsorbed)

The composite contains 876 atoms (slab = 732; binder = 144 with C50H69O24Na1) and uses
the same NCM811(104) platform and assembly recipe (lignin dimer H-bonded to a CMC unit,
carboxylate presented to the terrace). The organic complex lies quasi-parallel to the surface,
its principal in-plane axis oriented 38.18° off b, with a 35.09 Å backbone span and a projected
convex-hull footprint of 235.11 Å2. The oxide portion is 11.09 Å thick with 38.38 Å of vacuum
along c. Interfacial approach distances indicate mixed ionic/coordination contacts: nearest
heavy-atom approach 2.25 Å (O_binder-Li), with O_binder-Ni = 2.99 Å, O_binder-Co = 4.09
Å, and O_binder-Mn = 4.29 Å; the exchanged Na+ sits remote from the terrace (Na-O_slab =
6.80 Å). During relaxations, the bottom one-third of oxide atoms are held fixed to emulate a
semi-infinite substrate.

B4 — ZIF-8 face (Zn4(2-mim)8 cluster) (after binder adsorbed)

We approximate the MOF by a single sodalite-cage face—four Zn nodes bridged by eight 2-
methylimidazolates—so the interface samples the correct local Zn–N4/µ2-imidazolate chemistry
without imposing the artificial pore matching and long-range lattice constraints of a periodic
ZIF on a finite oxide slab. The internal Zn–N network is kept near its intrinsic geometry via
mild constraints, while only the interfacial coordinate is relaxed; one Zn is oriented toward a
surface oxygen with an initial Zn-O set to ∼2.10 Å to seed chemisorption and allow secondary
N-Li/C-O_slab contacts to adjust around it. This charge-neutral ring thus captures the short-range
bonding physics that governs adhesion at comparable cost to polymer fragments, enabling fair
ranking by area-normalized adsorption energy ∆E_ads/A across all candidates.

Battery Binder Adhesion Performance
The mechanical integrity of lithium-ion battery cathodes critically depends on binder adhesion
strength, particularly under the chemically aggressive conditions of liquid electrolyte environments.
To evaluate candidate binder materials proposed by the DR agents (Figure DL_3 1), we employed the
same computational framework described for PFAS sensors, with binding energies normalized by the
interfacial contact area A to account for varying polymer–cathode interaction footprints. The contact
area was determined through convex hull analysis of atoms within 3.5 Å of the NCM811 surface,
enabling direct comparison of adhesion strength per unit interfacial area.
Static DFT calculations reveal favorable adhesion for all candidates, with areal-normalized binding
energies ranging from 0.015 to 0.111 eV/Å2 (Figure DL_3 2). These values, equivalent to 0.24–1.78
J/m2, align well with established benchmarks for dry interface adhesion, such as graphene on SiO2

(∼0.45 J/m2) and metal–oxide contacts (∼2 J/m2). Candidates B4 and B1 demonstrate the strongest
adhesion, while the benchmark PVDF falls in the mid-range, suggesting potential improvements over
current commercial binders.
However, the introduction of explicit battery electrolyte (EC:EMC:LiPF6 = 9:9:2:2 at 1.25 g/cm3)
through AIMD simulations dramatically alters the adhesion landscape (Figures DL_3 3 and DL_3 4).
Following the same protocol of 2 ps equilibration and 3 ps production runs, most candidates exhibit
negative ∆EES

pot/A values, indicating that the separated, electrolyte-wetted interface becomes energet-
ically favorable over the bound state. This solvent-induced adhesion reversal reflects competitive
adsorption of electrolyte molecules at the binder–cathode interface, disrupting direct polymer–surface
interactions.
Notably, two exceptions emerge from this trend: candidate A3 (sulfonyl-polyimide) and B2 (lignin
with CNT) maintain positive ∆EES

pot/A values even in explicit electrolyte, suggesting robust wet
adhesion. This resilience likely arises from multidentate polar anchoring groups and extended π-
conjugated contacts that effectively displace the first electrolyte layer. The performance scoring
normalized to PVDF baseline (Figures DL_3 5 and DL_3 6) quantitatively captures this wet-interface
reordering, where candidates optimized for dry adhesion may fail under operational electrolyte
conditions while others demonstrate unexpected electrolyte compatibility. These findings underscore
the critical importance of explicit-solvent validation in battery binder design, as interfacial energetics
in liquid electrolyte environments cannot be reliably predicted from vacuum or implicit-solvent
calculations alone.
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Figure DL_3 1: Structural configurations of battery binder candidates proposed by DR agents, with
PVDF [50] included as the domain benchmark reference. Optimized adsorption configurations on the
NCM811 cathode surface are shown for each candidate system.

Figure DL_3 2: Comparison of areal-normalized binding energies (∆Ebind/A) from static DFT cal-
culations. Values are expressed in eV/Å2, where A represents the interfacial contact area determined
by convex hull analysis of atoms within 3.5 Å of the NCM811 surface.
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Figure DL_3 3: Representative AIMD trajectory showing system energy evolution in explicit battery
electrolyte (EC:EMC:LiPF6 = 9:9:2:2). The green dashed line denotes the 2 ps equilibration period.
Right panels display system configurations at highlighted time points along the 3 ps production
trajectory.

Figure DL_3 4: Areal-normalized explicit-solvent end-state potential energy gaps (∆EES
pot/A) from

AIMD simulations. Negative values indicate unfavorable adhesion in the presence of electrolyte
(Pulled state in explicit solvation stablizes the pulled state), reflecting competitive solvent adsorption
at the binder–cathode interface.
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Figure DL_3 5: Adhesion performance scores for all binder candidates from static DFT calculations,
normalized to PVDF baseline (100). Scores are calculated using the linear scaling metric with
sensitivity parameter β = 10.17, applied to areal-normalized binding energies.

Figure DL_3 6: Adhesion performance scores for all binder candidates from explicit-electrolyte
AIMD simulations, normalized to PVDF baseline (100). The scoring methodology remains identical
to static DFT, with ∆Ebind/A replaced by time-averaged ∆EES

pot/A from the 3 ps production period.

60



E.5 OER Stability

For the fourth application: OER Stability. The query as shown in D.1 is:

OER Stability

Identify the top nanostructured electrocatalyst materials for driving the oxygen
evolution reaction (OER) in complex wastewater matrices—such as
high-chloride, high-organic-load, or multi-ion streams—, for each the
material class/composition, comprehensively consider key performance metrics
(overpotential at 10 mA cm−², Faradaic efficiency, stability), and the
surface-engineering strategies that confer corrosion resistance and
sustained activity in real effluent conditions.

↪→
↪→
↪→
↪→
↪→
↪→

The best commercial solution is: Perplexity_DR.

The best local solution is: DToR_qwq32B_local500.

The expert based on the two reports, provided 4 commercial DR report derived candidates (A1-A4),
and 4 local DR report derived candidates (B1-B4), visualized in DL_4 1:

Benchmark 110 IrO2

For benchmark material, we created most commonly seen, a stoichiometric rutile IrO2 (110) slab
built as a 6 × 3 in-plane supercell along × [11̄0], with cell parameters a = 19.06 Å, b = 19.11 Å,
c = 45.18 Å, α = β = γ = 90° (P1), from which the underlying bulk metrics map to a ≈ 4.51
Å and c ≈ 3.18 Å. The slab comprises five O–Ir–O trilayers (thickness ≈ 15.18 Å) separated
by ≈ 30.0 Å of vacuum along c, yielding symmetric, O-terminated (bridging-O) surfaces
that expose the conventional row motif used for OER modeling (adjacent Ircus/Obr sites). The
model is strictly stoichiometric (Ir:O = 1:2; 180 Ir and 360 O) and thus suitable as a clean,
non-polar benchmark surface for computational electrocatalysis studies.

A1 — Ni–Fe layered double hydroxide (LDH) slab (basal)

A hexagonal brucite-derived Ni–Fe hydroxide (001) slab was constructed as a 6 × 6 in-plane
supercell (basal lattice a0 ≈3.126 Å), with cell metrics a = b = 18.7560 Å, c = 62.3777 Å, α =
β = 90°, γ = 120° (P1). The model contains three brucite-like [M(OH)_6] octahedral sheets
stacked along c (36 cation sites per sheet), with a Ni:Fe = 81:27 distribution (25% Fe on the
cation sublattice; 9 Fe per sheet), and overall stoichiometry Ni_81Fe27O216H216 (540 atoms).
Both basal surfaces are symmetrically hydroxyl-terminated (H atoms constitute the outermost
layers), yielding a stoichiometric, non-polar slab of thickness ≈ 19.67 Å, separated by ≈ 42.71
Å of vacuum within the c dimension; the inter-sheet metal-plane separations are 7.87 and 7.81
Å, consistent with LDH-like basal spacing. This geometry provides equivalent top/bottom (001)
terminations exposing M–OH motifs suitable for benchmarking OER intermediates on LDH
surfaces.

A2 — phosphate-intercalated Ni–Fe LDH (001)

Kept identical to A1 in lattice and slab construction (6 × 6 hexagonal basal supercell; a = b =
18.756 Å, γ = 120°, c = 62.3777 Å; P1) with symmetric hydroxyl-terminated basal surfaces,
A2 is derived from A1 by inserting protonated phosphate molecules (H_3PO_4) into the
interlayer galleries—18 PO_4 units per supercell (9 per gallery), giving an overall composition
Ni_81Fe27O288H270P18 (684 atoms, Ni:Fe = 3:1). The intercalation shifts the metal-plane
separations from ∼7.87/7.81 Å (A1) to 8.89/8.90 Å, increasing the slab thickness to 22.22 Å
and leaving ∼40.16 Å of vacuum along c; the phosphorus centroids sit near the mid-planes of
each gallery.
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A3 — Ni single atoms on Sb-doped SnO_2(110)

A rutile SnO2(110) slab was built as a 4 × 8 in-plane supercell along [11̄0] × (cell a = 26.8022
Å, b = 25.4960 Å, c = 57.0945 Å; α = β = γ = 90°; P1), comprising four O–Sn–O trilayers
(slab thickness ≈ 12.72 Å) and ≈ 44.37 Å of vacuum. Eight Sb atoms substitute Sn in the
subsurface cation plane (second layer from the top)—12.5 % within that plane, 3.2 % overall
(Sn_244Sb8). The top (110) surface carries four isolated Ni adatoms arranged in a 2 × 2 array
(coverage ≈ 0.585 Ni nm−2), each adopting a square-pyramidal NiO_5 environment with
four equatorial Ni–O = 1.922 Å and one apical Ni–O = 2.033 Å; the bottom surface is left
clean and O-terminated. The full supercell stoichiometry is Sn_244Sb8Ni4O508 (764 atoms).

A4 — Ce-doped, oxygen-deficient spinel NiCo_2O_4 slab (asymmetric OH termination)

Modeled in P1 with an oblique in-plane cell (a = 19.807 Å, b = 30.866 Å, γ = 108.715°; c =
41.150 Å), giving an in-plane area of 579.05 Å2 (5.79 nm2); the atomic slab spans 14.87 Å along
c and is separated by 26.28 Å of vacuum. The supercell composition is Co_188Ce8Ni92O376H96

(760 atoms), i.e., Ni:Co ≈ 1:2.04 with Ce at 2.8 at.% of the cation sublattice. Relative to the
ideal AB2O4 stoichiometry for 288 cations, the model contains 8 lattice-oxygen vacancies (x ≈
0.021 in NiCo_2O_4− x), corresponding—if evenly split between the two faces—to ≈ 0.69
vac nm−2 per surface. Ce dopants occupy two equivalent subsurface cation planes (four Ce
per plane), located ∼4.31 Å below the top and ∼5.32 Å above the bottom surface, preserving
an overall centrosymmetric placement. The top surface is Co-rich and partially hydroxylated
(within the outermost 2 Å: 8 Co, 20 O, 28 H→≈ 1.38 Co nm−2 and ≈ 5.5 OH nm−2), while
the bottom surface is more strongly hydroxyl-passivated (64 H on that side overall, ≈ 11.1
OH nm−2). No Ni appears within the outermost 2 Å of the top surface (Ni resides in subsurface
layers), yielding a Co–O(H) termination appropriate for probing OER pathways on spinel-type
oxides.

B1 — graphene-capped Ni–Fe LDH (001)

Retaining the A1 lattice and slab construction (6 × 6 hexagonal basal supercell; a = b = 18.756
Å, γ = 120°, c = 70.6707 Å; P1), this model is derived from A1 by placing a single-layer
graphene overlayer (128 C) above the top basal surface while keeping the LDH stoichiometry
Ni_81Fe27O216H216 unchanged. The LDH comprises three brucite-like [M(OH)_6] sheets
(Ni:Fe = 3:1) with metal-plane separations of 7.87 and 7.81 Å; both basal faces are hydroxyl-
terminated, but only the top face is covered by graphene. The LDH portion spans 19.67 Å
along c; including graphene, the occupied thickness is 24.67 Å, leaving 46.00 Å of vacuum.
The graphene sheet is essentially planar (out-of-plane corrugation ≤ 0.001 Å) and sits 5.00 Å
above the outermost hydroxyl-H layer (5.97 Å above the topmost O layer), consistent with a
physisorbed, non-perturbative interface that preserves the LDH surface structure; the bottom
layers are identical to A1 and remain exposed/hydroxylated for benchmarking.

B2 — graphene-capped hematite (α-Fe_2O_3) (0001) with an aperture

A hexagonal α-Fe2O3(0001) slab was modeled in P1 with a = b = 20.152 Å, γ = 120°; c = 60.339
Å (in-plane area 351.70 Å2 = 3.517 nm2), giving an atomistic thickness of 32.20 Å separated by
28.14 Å of vacuum. The slab is stoichiometric Fe_2O_3 in the interior (Fe_384O576) with both
faces hydroxyl-terminated (H_92 total) to render a non-polar model. A single sp2-carbon
overlayer (C_115) caps only the top face and includes a circular ∼6 Å “window” (aperture)
that leaves a patch of exposed surface Fe sites beneath the opening; elsewhere the carbon
sheet remains graphene-like, with its centroid ∼2.84 Å above the outermost O plane (≈ 2.04
Å above terminal H) and a small out-of-plane corrugation (∆z ≈ 0.91 Å). The bottom face
remains hydroxylated and exposed for benchmarking.
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B3 — BaCo_0.6Fe0.4O3 perovskite (001), BO2∥BaO asymmetric slab

In line with Branch B’s chloride-resilience goal, a stoichiometric Ba(B)O3 slab with mixed
B-site cations (Ba180Co108Fe72O540; 900 atoms) was modeled in P1 with a = b = 23.820 Å, c =
49.850 Å, α = β = γ = 90° (in-plane area 567.39 Å2 = 5.674 nm2). The atomic slab spans 19.31
Å along c and is separated by 30.54 Å of vacuum. Terminations are asymmetric: the top face is
a BO_2 layer that is Co-rich (Co:Fe = 27:9 ≈ 3:1), while the bottom face is BaO-terminated;
within ±2 Å of the surfaces this corresponds to ∼6.35 B nm−2 (with ∼12.69 O nm−2) at the
top and ∼6.35 Ba nm−2 at the bottom. This construction furnishes a corrosion-tolerant, bare
BO_2 active surface over a BaO support, consistent with the initial design brief to benchmark
robust oxide surfaces against chloride attack.

B4 — coral-mimetic Ni–Fe LDH (001)

Keeping the MXene/LDH base identical to A1/B1 (6 × 6 hex basal supercell; a = b = 18.756
Å, γ = 120°, c = 62.3777 Å; P1), the “coral” morphology was introduced by excising a sin-
gle cylindrical pore (∼8 Å diameter) through the top two hydroxide layers and hydroxyl-
passivating all newly exposed edges, as specified in the design note; both basal faces remain
hydroxyl-terminated, with the bottom face unchanged from A1/B1. The resulting model is
Ni_69Fe25O192H216 (502 atoms), occupying 26.58 Å along c with 35.79 Å vacuum (in-plane
area 304.66 Å2), yielding a non-polar, porous benchmark that preserves the original basal registry
while exposing M–OH rim sites within the aperture.

Metal Site Choices Considering the complexity of each slab created based on DR report, we decide
to select from each slab only representative sites for further study:

IrO_2

On IrO2(110) we target the canonical fivefold Ir terrace site (Ir5c) on the top surface cation row.
Its local geometry is square-pyramidal, with four coplanar surface O neighbors at 2.00 Å and a
single subsurface apical O at 1.97 Å; the missing apical ligand points toward vacuum. Situated
in the outermost O–Ir–O trilayer, this terrace Ir is the standard benchmark adsorption site on
rutile-type oxides and is chosen to probe intrinsic, defect-free reactivity under well-defined
coordination.

A1

On A1 we probe two "regular" terrace cations on the top basal (001) surface—one Fe and
one Ni located in the central, step-free region. Both exhibit near-ideal octahedral M(OH)_6
coordination with a 3-up/3-down O arrangement; their mean M–O distances are 2.09 Å (Fe) and
2.07 Å (Ni), and the in-plane metal–metal spacing reflects the basal lattice at ∼3.13 Å. The Fe
site sits in a Ni-rich cation shell (isolated Fe amid Ni), whereas the Ni site has a typical mixed
neighborhood (∼4 Ni, 2 Fe), consistent with the ∼3:1 Ni:Fe layer composition. These terrace
positions were chosen as representative, bulk-like references—well coordinated and far from
edges or defects—providing robust baselines for adsorption benchmarking on LDH surfaces.
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A2

In A2 we focus on two regular first-layer cations on the top basal (001) surface—one Fe and one
Ni—above the phosphate-filled interlayer. Both sites are octahedral with 3 O above / 3 O below;
the Fe exhibits Fe–O ≈ 2.06/2.01 Å (above/below) and the Ni Ni–O ≈ 2.10/2.07 Å. Relative to
the subsurface phosphate, the Fe sits nearly on-axis over a PO4 unit (∆z ≈ 4.30 Å, lateral offset
≈ 0.71 Å), whereas the Ni is laterally off-axis from the nearest PO4 (∆z ≈ 4.54 Å, lateral ≈
2.95 Å). These two surface metals are chosen as representative, symmetry-inequivalent terrace
sites that sample distinct interlayer electrostatic environments (aligned vs off-axis to PO4)
while avoiding edges/defects—providing a solid, structure-based rationale for benchmarking
metal-identity and phosphate-proximity effects.

A3

For A3, on the top SnO2(110) terrace, the representative site comprises a single Ni atom anchored
above a bridging-O row, adopting a square-pyramidal NiO5 geometry with four surface Obr

ligands in the equatorial plane (Ni–O ≈ 1.92 Å) and one apical O beneath (Ni–O ≈ 2.03 Å); the
Ni sits∼0.19 Å below the Obr plane and∼2.03 Å above the apical O. The two nearest subsurface
Sn cations on adjacent cation rows are each connected to the adatom via a Sn–Obr–Ni bridge
(Sn–O ≈ 2.07 Å; Ni–Sn ≈ 3.12 Å). Situated on the upper, flat terrace away from step edges,
this motif matches your original "Ni single-atom adjacent to Sn via bridging O" note and is
selected as a representative active site because it captures the canonical Obr–Mcus environment
of rutile(110) while providing quantitatively well-defined, low-coverage coordination ideal for
benchmarking OER intermediates.

A4

For A4, we have choosed a total of 6 Co/Ni atoms. On the top Co–O(H)-terminated face of
the Ce-doped, oxygen-deficient NiCo2O4 slab, we consider two Ce-proximal motifs and one
Ce-remote control set. Ce-proximal: (i) a two-fold-coordinated Co sitting at the rim of a surface
O-vacancy directly above the subsurface Ce layer, and (ii) a three-fold Co one O row back on
the same terrace; alongside these, a three-fold Ni in the same Co-rich layer but still within the
Ce-perturbed field captures the B-site identity contrast. Ce-remote (terrace center, far from
dopants/vacancies): (iii) a two-/three-fold Co pair representative of the intact hydroxylated
terrace, and (iv) a two-fold Ni surrounded by a largely unreconstructed O sublattice. Together
these five local environments span coordination (2 vs. 3), cation identity (Co vs. Ni), and
dopant/vacancy proximity (near-Ce vs. terrace-center) consistent with the A4 design (Ce in
subsurface planes + engineered surface O-vacancies with hydroxyl passivation). This refelects
the selection logic: Ce-adjacent rims/near-rim terrace sites plus Ce-remote terrace controls with
2- and 3-coordinate Co/Ni.

B1

On B1 (graphene-capped NiFe-LDH (001)), the representative first-layer surface Fe and Ni
are the outermost cations in the top brucite-like sheet directly beneath the graphene overlayer.
Each sits in a regular M(OH)_6 octahedron with nearly isotropic M–O bonds (Fe: 2.09 Å
apical/2.09 Å apical; equatorial 2.09 ± 0.00 Å; Ni: 2.08 Å apical/2.08 Å apical; equatorial 2.07
± 0.00 Å; octahedral distortion ≈ 0.11 %), positioned 1.03 Å below the topmost O plane and
2.00 Å below terminal OH, with the graphene sheet 7.00 Å above the metal plane (5.97 Å above
the surface O layer). The chosen Fe lies near the in-plane center (> 8.09 Å from periodic edges)
and the Ni is also well inside the terrace (≈ 5.45 Å from edges), i.e., regular terrace sites rather
than step/edge motifs—matching the "regular first-layer" description in the earlier manual note.
These sites were selected to provide clean, defensible benchmarks for OER under Branch-B1’s
design goal (probing LDH activity beneath a protective graphene barrier): they are far from
defects and intercalants, exhibit bulk-like octahedral geometry, and experience only physisorbed
graphene influence, thus isolating intrinsic Fe/Ni–OH reactivity at the top basal surface.
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B2

on B2, On the top (0001) face beneath the graphene aperture, four representative surface Fe
sites were selected: two rim Fe located along the edge of the ∼6 Å window where the sp2

rim approaches the oxide, each making Fe–C contact (shortest Fe–C ≈ 2.17 Å), with under-
coordination (Fe–O CN ≈ 3) and a slight outward relaxation (≈ 1.33 Å above the terminal
O plane); and two center-of-window Fe positioned near the middle of the opening, far from
the carbon edge (nearest C ≥ 5.24 Å), retaining octahedral-like coordination (Fe–O CN ≈ 6)
and sitting ≈ 1.19 Å below the top O/H plane. These two site families—carbon-contacted
rim vs carbon-free aperture interior—follow the original design intent and provide a physically
motivated contrast to quantify how the graphene shell perturbs intrinsic hematite reactivity.

B3

On the BO2-terminated top surface of B3 we sample four terrace cations: (i) one Fe and (ii)
one Co sitting at the rim of a deliberate surface O-vacancy, each three-coordinated to lattice
O (vacancy-edge sites, no apical O) with shortened in-plane M–O distances of ∼1.90–1.97 Å;
and, as references, (iii) one Fe and (iv) one Co on the same terrace but far from any defect
(≥10.00 Å lateral separation), retaining the regular square-pyramidal BO_5 environment (four
equatorial M–O ≈ 1.95–2.02 Å, one apical ≈ 2.05–2.10 Å). This choice—consistent with the
original notes—targets the most contrastive local motifs (vacancy-edge undercoordination vs
pristine terrace; Fe vs Co identity) while keeping all sites in the outermost BO_2 plane above
the BaO underlayer.

B4

In B4’s coral-type aperture, we target four representative rim sites: a Fe and a Ni in the top metal
plane at the pore edge, and the corresponding second-plane Fe and Ni located directly beneath
the rim (as in the earlier manual note). The two top-layer cations sit 1.88 Å (Fe) and 1.55 Å
(Ni) below the outermost O plane and lie within 0.10–0.23 Å of the top-plane centroid; their
in-plane separation is 3.21 Å. At the rim, Fe remains near-octahedral (6 O≤ 2.30 Å; ⟨dM–O⟩ =
2.13 Å), whereas Ni is under-coordinated (4 O ≤ 2.30 Å; ⟨dM–O⟩ = 2.12 Å). The second-layer
pair occupies the ring immediately below the aperture edge, 13.53–13.43 Å beneath the top
O plane and within 0.09–0.02 Å of the second-plane centroid; both are under-coordinated
(4 O ≤ 2.30 Å; ⟨dM–O⟩ = 2.12 Å (Ni), 2.06 Å (Fe)), with an in-plane separation of 3.21 Å.
These sites were chosen to systematically span cation identity (Fe vs Ni), depth (surface vs
subsurface), and coordination state at the pore edge, i.e., the structural factors most likely to
govern *OH/*O/*OOH binding and chloride tolerance in the coral design.

OER Catalyst Stability Assessment
Discussion of OER stability. While recent advances in transition metal layered double hydroxides
(LDH) and related materials have achieved excellent oxygen evolution reaction (OER) activity
approaching theoretical limits, catalyst stability remains the critical bottleneck preventing commercial
deployment of water splitting technologies. Operating potentials exceeding 1.5 V vs. RHE in alkaline
conditions create thermodynamically favorable pathways for both metal dissolution and lattice oxygen
loss, leading to rapid catalyst degradation. To address this fundamental challenge, we evaluated
candidate catalysts proposed by the DR agents (Figure DL_4 1) using two complementary stability
descriptors following established protocols from our previous work [51]: dissolution potential (Udiss)
and oxygen vacancy formation energy (VO).
Stability Descriptors and Physical Interpretation
The dissolution potential Udiss quantifies the thermodynamic driving force for metal atom leaching
from the catalyst surface, calculated as:

Udiss(M@slab) = U◦
diss,bulk(M

z+/M) +
Eslab-vac(M) + µbulk(M)− Eslab

ne
(6)
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where Eslab and Eslab-vac(M) represent the DFT energies of the intact and metal-vacancy surfaces,
respectively (Figure DL_4 2), µbulk(M) is the bulk metal chemical potential, U◦

diss,bulk is the standard
reduction potential, and n is the number of electrons transferred. Higher Udiss values indicate
greater resistance to metal dissolution, with positive values suggesting thermodynamic stability under
standard conditions.
The oxygen vacancy formation energy VO captures the structural integrity of the oxide lattice during
OER cycling. We following the following protocol for picking lattice oxygen atom to remove, oxygen
atoms are identified within 3.0 Å of active metal sites and removed based on coordination number,
with under-coordinated oxygen atoms preferentially selected (Figure DL_4 2). Higher VO values
indicate stronger metal–oxygen bonds and reduced susceptibility to lattice oxygen participation in
the OER mechanism, which can lead to irreversible structural degradation.
Comparative Stability Analysis
Evaluation across representative surface sites (Figure DL_4 3) reveals significant variation in stability
metrics among candidate catalysts. The dissolution potentials span from approximately −0.4 V
to +1.2 V vs. SHE (Figure DL_4 4). Oxygen vacancy formation energies similarly exhibit broad
distribution. In general, higher Vo suggesting enhanced lattice stability potentially arising from
stronger metal–oxygen covalency or favorable coordination environments that stabilize the oxide
framework.
Correlation Between Stability Metrics
A positive correlation emerges between Udiss and VO across all 27 evaluated metal sites (Figure DL_4
6), indicating that resistance to metal dissolution and oxygen vacancy formation are intrinsically
linked. This correlation suggests a unified electronic origin for both stability mechanisms: catalysts
with stronger metal–oxygen bonds resist both metal leaching and oxygen loss. The observed
relationship validates the use of either metric as a reasonable proxy for overall stability, though
evaluating both provides more comprehensive assessment.
Normalized Stability Scoring
To enable quantitative comparison, we similarly applied the linear scoring framework with IrO2

as the baseline reference (Score = 100), using sensitivity parameter β = 0.2 consistent with other
applications. The Udiss-based scores (Figure DL_4 7). The VO-based scores (Figure DL_4 8) show
similar trends but not quite exactly the same rankings, highlighting the value of assessing both
metrics.
The divergence between Udiss and VO rankings for specific candidates reflects different stability-
limiting mechanisms: some materials may excel at preventing metal dissolution while remaining
vulnerable to oxygen loss, or vice versa. This complementary information guides rational catalyst
design—for instance, candidates with high Udiss but moderate VO might benefit from strategies to
strengthen metal–oxygen bonds, while those with the opposite profile could require enhanced metal
site anchoring.
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Figure DL_4 1: Structural configurations of OER catalyst candidates proposed by DR agents, with
IrO2 (110) included as the domain benchmark reference for stability assessment.

Figure DL_4 2: Schematic illustration of vacancy creation on the IrO2 rutile (110) surface. Left:
Metal vacancy (VM) created by removing a surface metal atom for dissolution potential (Udiss)
calculation. Right: Oxygen vacancy (VO) created by removing a surface oxygen atom for vacancy
formation energy calculation.
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Figure DL_4 3: Matrix representation of selected metal sites for stability assessment across A-
series (A1–A4) and B-series (B1–B4) catalyst candidates. Representative surface metal atoms are
highlighted for dissolution and vacancy formation calculations.
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Figure DL_4 4: Dissolution potentials (Udiss) for all candidate catalysts at representative surface
sites. Higher values indicate greater resistance to metal dissolution. Dashed horizontal lines denote
standard bulk dissolution potentials for reference metals (Fe: −0.44 V, Co: −0.277 V, Ni: −0.257 V,
Ir: +1.16 V vs. SHE).

Figure DL_4 5: Oxygen vacancy formation energies (VO) for all candidate catalysts at representative
surface sites. Higher formation energies indicate greater structural stability and resistance to oxygen
loss during OER operation.

69



Figure DL_4 6: Correlation between dissolution potential (Udiss) and oxygen vacancy formation
energy (VO) across all 26 evaluated metal sites. The positive correlation indicates that catalysts
resistant to metal dissolution also tend to resist oxygen vacancy formation.

Figure DL_4 7: Stability scores based on dissolution potential (Udiss), normalized to IrO2 baseline
(100). Scores are calculated using the linear metric with sensitivity parameter β = 0.2, where higher
Udiss values yield higher scores.
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Figure DL_4 8: Stability scores based on oxygen vacancy formation energy (VO), normalized to IrO2

baseline (100). The scoring methodology employs the same linear scaling (β = 0.2), with higher VO
values indicating superior stability.
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E.6 CO2 Sensor Probe

For the fifth application: CO2 Sensor Probe. The query as shown in D.1 is:

CO2 Sensor Probe

Which two-dimensional materials—such as graphene derivatives, transition metal
dichalcogenides, or MXenes—offer the highest CO2 sensing performance in
complex gas or aqueous environments, and how do they compare in terms of
detection limit (ppm), selectivity against common interferents (e.g., O2,
H2O), response/recovery time, and long-term stability, including any
functionalization or structural modifications that enhance these metrics?
Think of novel candidates.

↪→
↪→
↪→
↪→
↪→
↪→

The best commercial solution is: GlideLogic_DR.
The best local solution is: DToR_qwq32B_local500.
The expert based on the two reports, provided 4 commercial DR report derived candidates (A1-A4),
and 4 local DR report derived candidates (B1-B4), visualized in DL_5 1:

g-C3N4 description

For CO2 binding, the benchmark substrate is a monolayer graphitic carbon nitride (g-C3N4) built
as a 7×7 in-plane supercell of the primitive sheet (49 formula units; C147N196) in a hexagonal
cell with a = b = 33.50 Å, γ = 120°, and c = 35.0 Å. All atoms lie in a single atomic plane at z ≈
5.0 Å, leaving∼30 Å of vacuum to the next periodic image along c, i.e., no interlayer interactions.
The in-plane network is a fully conjugated sp2 C–N lattice: each C is three-coordinate, N sites
are predominantly two- to three-coordinate (⟨CN⟩ ≈ 2.25), and nearest-neighbor C–N distances
cluster at 1.37 ± 0.06 Å. No heteroatoms, defects, terminations, or adsorbates are present (P1 by
construction). This clean, stoichiometric, and strictly planar C3N4 slab (areal density ≈ 5.05
formula units nm−2) serves as our reference surface for CO2 binding.

A1 (rGO–PEI)

Hexagonal P1 slab with a = b = 36.90 Å, γ = 120.00°, c = 45.00 Å (α = β = 90.00°). The
model contains 605 atoms (C461H80O54N10). Atomic z positions span 4.63–16.63 Å, giving
a slab thickness of 12.01 Å and 32.99 Å of vacuum along c. The in-plane area is 11.79 nm2,
yielding areal number densities of C 39.09 nm−2, H 6.78 nm−2, O 4.58 nm−2, and N 0.85 nm−2.
Carbon heights resolve a dominant rGO basal plane centered at z ≈ 7.39 ± 0.64 Å (441 C) and a
minor upper carbon domain at 12.09–15.35 Å (20 C). All N atoms reside in the upper domain
(11.23–16.53 Å; ⟨z⟩ = 13.03 Å), consistent with an amine-rich polyethylenimine (PEI) branch
moiety tethered above the rGO sheet; O atoms are concentrated below 10.65 Å, consistent with
residual rGO oxygen functionalities. This rGO–PEI slab, isolated by ample vacuum, provides a
structurally well-defined platform for site-specific CO2 binding calculations.

A2 (phosphorene | Al2O3 cap with drilled through-pore)

Orthorhombic P1 cell (a = 26.36 Å, b = 27.26 Å, c = 27.08 Å; α = β = γ = 90.00°) comprising a
phosphorene sublayer (P192) beneath an alumina cap (Al146O220). Atomic z spans 3.95–17.44
Å, giving a slab thickness of 13.49 Å and 13.59 Å of vacuum. Phosphorene occupies z =
3.95–8.12 Å (thickness 4.17 Å; top P plane at 8.12 Å), while the cap exhibits O/Al = 1.51
(≈Al2O3) with the Al framework at z = 8.83–15.83 Å (7.00 Å) and the O network extending
8.05–17.44 Å (9.39 Å), slightly overlapping the top P plane (∆z = 0.07 Å) to form an interfacial
contact. The in-plane area is 718.57 Å2 (7.19 nm2). A single through-pore pierces the cap near
(fx, fy) = (0.51, 0.50): the top aperture has radius 6.27 Å (∅ 12.54 Å), narrows to a bottleneck
radius 5.11 Å (∅ 10.22 Å; section 82.02 Å2, 11.42
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A3 (MoS2 monolayer with vacancies)

P1 cell with a = 27.58 Å, b = 22.29 Å, c = 28.13 Å (α = β = γ = 90.00°). The slab contains 200
atoms (Mo64S136; S/Mo = 2.13) and occupies z = 4.83–8.50 Å (thickness 3.67 Å) with 24.46 Å
of vacuum along c. The in-plane area is 6.15 nm2, giving areal number densities of Mo 10.41
nm−2 and S 22.13 nm−2. Layering is a single S–Mo–S tri-layer: the Mo plane is centered at z =
6.56 Å (spread 0.31 Å), bracketed by S planes at z = 5.01 Å and 8.12 Å, yielding an average
S–S separation of 3.11 Å and Mo–S vertical offsets of 1.54 Å (bottom) and 1.57 Å (top). No
heteroatoms, functional groups, or adsorbates are present. Five Mo atoms are removed to create
Mo vacancies. This monolayer MoS2 slab provides a simple, well-isolated reference for CO2

adsorption benchmarks.

A4 (Ti3C2Tx, mixed terminations)

Hexagonal P1 slab with a = b = 30.67 Å, γ = 120.00°, c = 51.70 Å (α = β = 90.00°); in-plane
area 8.15 nm2. The model contains Ti300C200O175F25H25, i.e., 100 Ti3C2 formula units with
200 surface sites. Terminations are asymmetric: the top face comprises 50.00

B1 (rGO–NH2; same rGO basal slab as A1)

This model reuses the rGO lattice from A1 without change (a = b = 36.90 Å, γ = 120.00°, c =
45.00 Å; in-plane area 11.79 nm2), retaining the 441-C rippled basal plane centered at z = 7.29
± 0.67 Å. The slab contains 585 atoms (C441H70O54N20) with heights spanning 4.36–11.16 Å
(thickness 6.80 Å) and 38.20 Å of vacuum. Oxygen functionalities lie over 4.36–10.64 Å, while
primary amines are grafted exclusively on the upper face (N 8.37–10.38 Å, ⟨z⟩ = 9.40 ± 0.63
Å; H up to 11.16 Å), giving an –NH2 areal density of 1.70 nm−2. Areal number densities are
C 37.40 nm−2, O 4.58 nm−2, N 1.70 nm−2, and H 5.94 nm−2. With lattice vectors and basal
carbon topology identical to A1, this slab isolates the effect of replacing the PEI overlayer with
discrete –NH2 terminations for CO2 binding studies.

B2 (Ti3C2F2, fully F-terminated; same construction protocol as A4)

Hexagonal P1 slab with a = b = 30.67 Å, γ = 120.00°, c = 51.70 Å (α = β = 90.00°); in-plane
area 8.15 nm2. The CIF contains Ti300C200F200 (100 Ti3C2 formula units; 200 surface sites),
i.e., both faces are 100.00

B3 (graphene | Ti3C2O2 heterojunction; same MXene cell as As A4/B2)

Hexagonal P1 slab with a = b = 30.67 Å, γ = 120.00°, c = 51.70 Å (in-plane area 8.15 nm2).
The MXene sub-slab matches the A4/B2 Ti3C2 lattice and is fully *O-terminated on both faces
(Ti300C200O200; 100 *O per face, 12.28 sites nm−2). A single-layer graphene sheet (C338) is
appended on the bottom side, giving a total composition Ti300C538O200. Atomic heights span
z = 7.31–19.41 Å (thickness 12.10 Å) with 39.60 Å of vacuum along c. The graphene forms a
narrow plane at z = 7.79 ± 0.31 Å (7.31–8.45 Å), the bottom *O plane is at z = 12.40 Å and the
top *O plane at z = 19.41 Å; the graphene–MXene van der Waals gap is 4.61 Å (center-to-plane;
minimum 3.95 Å to *O), and the graphene–bottom Ti plane separation is 6.78 Å. The result is a
well-isolated graphene|Ti3C2O2 heterojunction with symmetric *O terminations and a dense
graphene areal carbon density of 41.49 nm−2.
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B4 (Cu-inserted MoS2; same MoS2 host as A3)

Orthorhombic P1 cell with a = 27.58 Å, b = 22.29 Å, c = 28.13 Å (α = β = γ = 90.00°; in-plane
area 6.15 nm2). The slab contains Mo64Cu5S136 and occupies z = 4.80–8.32 Å (thickness 3.51
Å) with 24.61 Å of vacuum. The host S–Mo–S tri-layer is preserved (⟨z⟩: S(bottom) = 5.03 Å,
Mo = 6.59 Å, S(top) = 8.15 Å; S–S spacing 3.12 Å; Mo–S offsets 1.55/1.56 Å), as in A3. At A3’s
Mo vacancies, five Cu centers lie within the chalcogen sandwich at z = 6.55–6.89 Å (⟨z⟩ = 6.70
Å), i.e., ∼0.11 Å above the Mo plane and biased toward the top S layer; the areal Cu density is
0.81 nm−2. Local coordination around Cu is consistent with insertion at chalcogen-vacancy–like
sites: each Cu shows ∼4–5 short Cu–S contacts at 2.28–2.38 Å (mean of first shell ≈ 2.31 Å)
with the next S neighbors near 2.95–3.06 Å, and ∼2–3 Cu–Mo contacts at 2.78–3.26 Å. This
configuration provides a well-defined model to probe how subsurface/embedded Cu at vacancy
motifs modulates CO2 binding relative to the pristine A3 monolayer.

CO2 Sensor Performance Evaluation
The development of sensitive and selective CO2 sensors addresses critical needs in environmental
monitoring, industrial process control, and indoor air quality management. To evaluate the CO2

sensing capabilities of candidates proposed by the DR agents (Figure DL_5 1), we quantified binding
energies using a systematic grid-based sampling approach that captures the heterogeneity of surface
adsorption sites, with g-C3N4 serving as the established benchmark reference [52].
The comprehensive sampling methodology employed a 5×5 grid across each surface unit cell,
positioning CO2 molecules at 25 distinct initial configurations to explore the complete adsorption
landscape (Figure DL_5 2). At each grid point, CO2 molecules were placed 1.8 Å above the
highest surface atom within a 3.0 Å search radius, with initial linear configurations parallel to the
surface. This systematic approach ensures unbiased sampling of potential binding sites, including
atop atoms, bridge sites, hollow sites, and defect locations, providing statistically robust binding
energy distributions rather than single-point estimates.
The resulting binding energy distributions reveal significant variability both within and between
candidate systems (Figure DL_5 3). The violin plots demonstrate that surface heterogeneity plays
a crucial role in CO2 adsorption, with some candidates exhibiting narrow distributions indicating
uniform binding sites, while others show broad distributions suggesting diverse adsorption envi-
ronments. Mean binding energies range from approximately 0.15 to 0.90 eV across the evaluated
systems, with A-series candidates generally demonstrating stronger CO2 interactions compared to
B-series materials.
Performance scoring using the linear transformation framework with sensitivity parameter β = 0.2
(Figure DL_5 4) quantifies the relative sensing capabilities normalized to the g-C3N4 baseline. The
distribution of scores reveals that commercial DR agent successfully identified materials spanning a
range of binding strengths, from weak physisorption suitable for rapid-response sensors to stronger
chemisorption appropriate for CO2 capture applications.
The systematic evaluation highlights the importance of comprehensive surface sampling in sensor
material assessment. Candidates with both high mean binding energies and narrow distributions,
such as B4, represent ideal sensor materials offering consistent response across the entire surface.
Conversely, materials with broad binding energy distributions may exhibit non-uniform sensor
responses, potentially complicating calibration and reducing reliability. These findings underscore
that effective CO2 sensor design requires not only optimizing average binding strength but also
minimizing surface heterogeneity to ensure reproducible sensing performance.
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Figure DL_5 1: Structural configurations of CO2 sensor candidates proposed by DR agents, with
g-C3N4 [52] included as the domain benchmark reference.
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Figure DL_5 2: Top-view representation of the 5×5 grid sampling approach for CO2 adsorption
sites. Relaxed configurations show CO2 molecules at 25 distinct initial positions on candidate A2,
demonstrating comprehensive exploration of the binding landscape.
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Figure DL_5 3: Distribution of CO2 binding energies across all candidate systems visualized as
violin plots. Mean (solid line) and median (dashed line) values are shown for each candidate, derived
from 25 configurations per surface using the 5×5 grid sampling methodology.

Figure DL_5 4: CO2 sensing performance scores for all candidate systems from static DFT calcula-
tions, normalized to g-C3N4 baseline (100). Scores are calculated using the linear transformation
with sensitivity parameter β = 0.2, where higher binding energies yield higher scores.
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F Power Consumption Estimation

Power estimation and LLM/RAG time decomposition. We convert runtime to energy using a
calibrated two–level power model on our workstation (4×NVIDIA RTX A5500, Ubuntu). System
power was monitored continuously during experiments using nvidia-smi for GPU power draw and
powertop for system–level consumption. We acknowledge that our power measurement methodology
is relatively basic; however, the core contribution of this work lies in demonstrating the feasibility of
edge–device deployment, which already showcases significant democratization and decentralization
advantages over commercial subscription–based solutions. The quantitative power estimates provided
here serve primarily as reference points for relative comparisons rather than definitive consumption
benchmarks. Across runs we observed a typical baseline draw during retrieval/IO of Pbase ≈
76± 3 W (CPU, memory, disks, and idle GPUs). When the LLM generates tokens the GPU adds a
model–dependent draw reported by nvidia-smi:

∆PGPU(ds14B) = 282± 4 W, ∆PGPU(ds70B) = 310± 5 W, ∆PGPU(qwq32B) = 301± 4 W.

Hence PLLM(model) = Pbase + ∆PGPU(model) is 358 W (ds14B), 386 W (ds70B), and 377 W
(qwq32B). During RAG (vector search over the local store, parsing, and file IO) the GPU utilization
remained near–idle, so we bill RAG at PRAG = Pbase ≈ 76 W.4

Empirical split of runtime into LLM vs. RAG. Let t̄tot(s,m, k) be the mean wall–clock time
for strategy s ∈ {Single,DToR , model m ∈ {ds14B, qwq32B, ds70B}, and local–RAG size k ∈
{0, 100, 500}. For k = 0 (no local vector store) we roughly estimated that all time is attributable to
LLM generation:

tLLM(s,m, 0) = t̄tot(s,m, 0), tRAG(s,m, 0) = 0.

For k > 0 we roughly split t̄tot(s,m, k) into LLM and RAG by scaling the k = 0 LLM time to
reflect the additional LLM passes used in local–knowledge summarization and complementary–query
generation. The scale factors were estimated from repeated single–node micro–benchmarks (profiling
isolated summarization and query–generation calls with coarse-grained timing) and calibrated against
observed aggregate runtime patterns across full runs. Given measurement noise and workload
variability, we report representative values that differed by strategy:

Single: αSingle
ds14B ≈ 1.05, αSingle

qwq32B ≈ 1.07, αSingle
ds70B ≈ 1.09;

DToR: αDToR
ds14B ≈ 1.10, αDToR

qwq32B ≈ 1.20, αDToR
ds70B ≈ 1.35.

We then compute

tLLM(s,m, k) = αs
m t̄tot(s,m, 0), tRAG(s,m, k) = t̄tot(s,m, k)−tLLM(s,m, k) (clipped at ≥ 0).

Two empirical patterns are worth noting. (i) In Single mode the increase in tLLM from k = 0 to k > 0
is modest (ranging from +5% to +9% across models), and tRAG exhibits a smaller difference than
theoretically expected between k = 100 and k = 500 within measurement tolerance. (ii) In DToR
mode, multi–hour runs accumulate more local–knowledge summarization and complementary–query
steps; correspondingly tLLM shows larger scaling (1.10/1.20/1.35 as above), and tRAG increases with
k due to heavier vector–store traffic and post–processing over longer context. When attribution is
ambiguous we conservatively charge time to the LLM bucket.

Energy calculation. Per–report energy is the sum of LLM and RAG contributions:

ELLM(s,m, k) =
PLLM(m) tLLM(s,m, k)

1000
, ERAG(s,m, k) =

PRAG tRAG(s,m, k)

1000
, Etot = ELLM+ERAG (kWh).

All results in Fig. 3d use Pbase = 76 W, ∆PGPU = {282, 301, 310}W (ds14B, qwq32B, ds70B),
and the strategy–specific α values above. For example, substituting the measured {tLLM, tRAG}
of DToR_qwq32B_local500 yields Etot = 4.16 kWh per completed report; configuration–wise
LLM/RAG splits are provided alongside runtime heatmaps in the Appendix.

4Short web fetches last seconds relative to multi–hour runs and are neglected.
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