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Abstract

Physics sensing plays a central role in many scientific and engineering domains,
which inherently involves two coupled tasks: reconstructing dense physical fields
from sparse observations and optimizing scattered sensor placements to observe
maximum information. While deep learning has made rapid advances in sparse-data
reconstruction, existing methods generally omit optimization of sensor placements,
leaving the mutual enhancement between reconstruction and placement on the
shelf. To change this suboptimal practice, we propose PhySense, a synergistic two-
stage framework that learns to jointly reconstruct physical fields and to optimize
sensor placements, both aiming for accurate physics sensing. The first stage
involves a flow-based generative model enhanced by cross-attention to adaptively
fuse sparse observations. Leveraging the reconstruction feedback, the second
stage performs sensor placement via projected gradient descent to satisfy spatial
constraints. We further prove that the learning objectives of the two stages are
consistent with classical variance-minimization principles, providing theoretical
guarantees. Extensive experiments across three challenging benchmarks, especially
a 3D geometry dataset, indicate PhySense achieves state-of-the-art physics sensing
accuracy and discovers informative sensor placements previously unconsidered.
Code is available at this repository: https://github.com/thuml/PhySense.

1 Introduction

Physics sensing remains a foundational task across several domains [45, 23, 47], including fluid
dynamics [32, 15, 50], meteorology [39, 5], and industrial applications [13, 3]. The task aims to
reconstruct the spatiotemporal information of a physical system from limited sparse observations
gathered by pre-placed sensors. In real-world scenarios, the number of sensors is usually limited due
to spatial constraints, power consumption, and environmental restrictions. As a result, allocating the
limited sensors to the most informative positions is crucial for high reconstruction accuracy. Poorly
placed sensors lead to spatial blind spots and information loss, resulting in insufficient observations,
while well-placed sensors enable the recovery of fine-scale physical patterns. Therefore, advancing
accurate physics sensing requires not only improving the capabilities of reconstruction models, but
also developing principled strategies to determine optimal sensor placements.

Recent advances in deep learning have demonstrated remarkable capabilities in sparse-data recon-
struction, owing to its ability to approximate highly nonlinear mappings [16, 44, 37] between scattered
observations and dense physical fields. Current reconstruction methods fall into two categories: deter-
ministic and generative. Deterministic methods such as VoronoiCNN [14] employ Voronoi-tessellated
grids for CNN-based reconstruction, while Senseiver [41] utilizes implicit neural representations [19]
to establish correlations between sparse measurements and query points. Moreover, due to the inher-
ently ill-posed nature [22] of the reconstruction task, where sparse observations provide insufficient
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Figure 1: Performance comparison under same reconstruction model but different sensor placements.
(a) Random placement yields poor results due to inadequate spatial coverage. (b) Our optimized
placement achieves accurate reconstruction by discovering informative regions, including side mirrors.

information for recovering dense fields, generative models [17, 42, 30, 29] have been increasingly
explored. For example, DiffusionPDE [18] and S3GM [28] model physical field distributions via
diffusion models, and integrate sensor observations during sampling through training-free guid-
ance [7, 49]. Despite their reconstruction accuracy, these methods share a fundamental limitation:
in their practical experiments, sensor placements are either randomly distributed or arbitrarily fixed
rather than being systematically optimized. Consequently, the synergistic potential of co-optimizing
reconstruction quality and placement strategy remains largely unexplored.

In practice, sensor placement determines the structure of the observation space and constrains what
the model can perceive, while the feedback from model’s reconstruction should guide where sensing is
most beneficial. Notably, as illustrated in Figure 1, even under the identical reconstruction model, the
performance varies dramatically with different sensor placements. Random sensor placement fails to
capture important spatial regions, resulting in degraded performance, whereas placements strategically
optimized through reconstruction feedback yield significantly enhanced reconstruction accuracy by
targeting informative regions, such as side mirrors of a car. These results suggest the existence of a
positive feedback loop between reconstruction quality and sensor placement optimization.

Building upon these insights, this paper presents PhySense, a synergistic two-stage framework that
combines physical field reconstruction with sensor placement optimization. In the first stage, we train
a base reconstruction model using flow matching [29] capable of generating dense fields from all
feasible sensor placements. In the second stage, leveraging the reconstruction feedback, sensors are
optimized using projected gradient descent to satisfy spatial geometries. Furthermore, we prove that
the learning objectives of the two stages are consistent with classical variance-minimization principles,
providing theoretical guarantees. We evaluate our method across three challenging benchmarks,
including turbulent flow simulations, reanalysis of global sea temperature, and industrial simulations
of aerodynamic surface pressure over a 3D car on an irregular geometry. In all cases, PhySense
consistently achieves state-of-the-art performance and discovers some informative sensor placements
previously unconsidered. Overall, our contributions can be summarized as follows:

• We introduce PhySense, a synergistic two-stage framework for accurate physics sensing,
which integrates a flow-based generative reconstruction model with a sensor placement
optimization strategy through projected gradient descent to respect spatial constraints.

• We prove the learning objectives of reconstruction model and sensor placement optimization
are consistent with classical variance-minimization targets, providing theoretical guarantees.

• PhySense achieves consistent state-of-the-art reconstruction accuracy with 49% relative gain
across three challenging benchmarks and discovers informative sensor placements.

2 Preliminaries

2.1 Deep Reconstruction Models

Recent deep learning methods have demonstrated promising performance in reconstructing dense
physical fields from sparse measurements. Existing reconstruction models can be broadly cate-
gorized into deterministic and generative approaches. Representative deterministic methods are
VoronoiCNN [14] and Senseiver [41]. VoronoiCNN constructs a Voronoi tessellation from scattered
sensor observations, and learns to map the resulting structured representation to the target physical
field. Senseiver encodes arbitrarily sized scattered inputs into a latent space using cross-attention and
adopts an implicit neural representation as its decoder. However, since sparse reconstruction is an
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inherently ill-posed problem, these deterministic methods lack the ability to characterize uncertainty
in the reconstructed fields. Deep generative models have also been applied to the sparse reconstruction
task. For example, S3GM [28] and DiffusionPDE [18] both tackle the reconstruction task by first
learning a generative model of the underlying dynamics and then guiding the sampling process using
sparse sensor observations. Crucially, these methods only utilize sparse observations during the
sampling process—not during training—thus requiring thousands of sampling steps to align with
sparse inputs, which compromises the efficiency of deep models. Despite promising reconstruction
accuracy, all their experiments are conducted under random or fixed sensor placements, which leads
to suboptimal reconstruction accuracy due to potentially non-informative sensor placements.

2.2 Sensor Placement Optimization

Optimal criterion Optimal sensor placement aims to maximize information extraction from
physical systems by strategically positioning sensors. This problem is rooted in optimal experimental
design (OED) theory [33, 36], which provides basic criteria for evaluating sensor placements. Three
most widely-used criteria are: (1) A-optimality, which minimizes the average variance of all data
estimates; (2) D-optimality, which maximizes the overall information content; and (3) E-optimality,
which focuses on the worst-case estimation error. More details about these criteria can be found in [32].
In this work, we primarily focus on A-optimality. While these criteria originated in classical OED,
they have been adapted to sensor placement optimization by incorporating spatial constraints [26].

Optimization algorithm Sensor placement optimization is a fundamentally hard problem due
to its inherent high-dimensional nature. For finite option problems, an exhaustive search over all
feasible placements may be tractable, but for more common high-dimensional problems, principled
approximations become necessary. The theories of compressed sensing [9] show that signals admitting
sparse representations in a known basis, such as the Fourier basis, can be accurately reconstructed
with a small number of sensor observations. However, in real-world applications, the assumption
of a suitable and known basis may not hold. Moreover, recent advances in machine learning have
enabled data-driven discovery of low-dimensional structures such as low-rank subspaces [11, 46, 27].
This shift from fixed to data-driven representation spaces has spurred the development of placement
optimization methods that leverage empirical priors or learned latent bases for efficient compression
and reconstruction [32, 40]. For example, the SSPOR algorithm [32] first learns a data-driven basis,
then applies QR factorization to select basis-specific sensor locations that maximize reconstruction
performance. While recent work has begun to explore statistical-based sensor placement, deep
learning-based approaches remain under explored. Besides, the further challenge lies in how to
effectively co-optimize the reconstruction and the placement for accurate physics sensing.

2.3 Flow-based Models

Flow matching [29, 30, 31, 1] is a framework for solving transport mapping problem: given two
distributions X0 ∼ π0 and X1 ∼ π1, the goal is to find a continuous mapping T , such that T (X0) ∼
π1. The method’s efficiency and capacity have made it particularly valuable in vision tasks [12].
Unlike diffusion models that require computationally intensive ODE [42] or SDE [17, 43, 24] solving,
flow matching introduces an ODE model that transfers π0 to π1 optimally via the straight line,
theoretically the shortest path between two points, dXt = vθ(Xt, t) dt, t ∈ [0, 1], where vθ(Xt, t)
is a learnable velocity field. To estimate v, flow matching solves a simple least squares regression
problem that fits vθ to (X1 − X0). The resulting dynamics generate samples via efficient push-
forward along the theoretically shortest path, Xt+dt = Xt + vθ(Xt, t)dt, where X0 ∼ π0. In this
paper, we consider to integrate this advanced technique for a more efficient reconstruction model.

3 Method

To enable accurate sensing of physical fields, we co-optimize reconstruction and placement through a
synergistic two-stage framework. Our approach begins by training a flow-based model capable of
reconstructing dense fields from scattered measurements across all feasible placements. Leveraging
the reconstruction feedback, PhySense seamlessly integrates reconstruction and placement processes,
forming a closed loop (Fig. 2 (a)), and formulates placement as a spatially constrained optimization
problem, efficiently solved via projected gradient descent. Moreover, the optimization objective
theoretically provides a bidirectional control with respect to the variance-minimization target.
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Figure 2: (a) PhySense works as a closed-loop physics sensing paradigm that iteratively co-optimizes
sensor placements and reconstruction quality under the reconstruction feedback. (b) Reconstruction
stage: A flow-based model with cross-attention mechanisms trained to process arbitrary sensor
placements (‘L99’ indicates information flow for subsequent generation and placement optimization).

Problem setup Let D ⊂ Rd be a bounded domain, where exists C physical fields of interest. We
consider M = {p1, . . . , pm} sensors distributed across D, where each sensor measures the target
quantities at its position. Our physics sensing task is to accurately reconstruct the entire physical field
X1 based on sparse sensor observations X1(p

∗) under the optimal sensor placement p∗.

3.1 Flow-based Reconstructor

Physics sensing, as an inverse problem to reconstruct dense physical fields from sparse observations,
naturally requires generative approaches capable of handling the inherent ill-posedness. In our
framework, we formulate the reconstruction task as an optimal transport flow problem between
the target physical field distribution π1 and a standard Gaussian source distribution π0, with sensor
placements and sparse observations serving as conditioning variables.

Notably, the reconstruction model is expected to provide instructive feedback for any current sensor
placement in the subsequent placement optimization stage. Therefore, we implement random sensor
placement sampling during the flow model training, which helps the model extract maximal useful
information from any feasible sensor placement. Therefore, our training flow loss is formalized as

L =

∫ 1

0

EX0,X1,p

[
∥(X1 −X0)− vθ(Xt, t,p,X1(p))∥2

]
dt, Xt = tX1 + (1− t)X0, (1)

where vθ represents our learned velocity model, and p denotes a sensor placement randomly sampled
from a uniform distribution on D. This model design must address two practical challenges: (1)
handling diverse physical domains spanning regular grids to irregular meshes, and (2) effectively
incorporating sparse observations for consistent reconstruction. For the first challenge, we leverage
the state-of-the-art DiT [35, 10] for regular grids and Transolver [48], the most advanced approach
for general geometry modeling, for irregular geometries, ensuring optimal parameterization of the
velocity field across various domains. The second challenge is resolved through a cross-attention
mechanism that dynamically associates scattered sensor measurements with their relevant spatial
influence regions during training. This not only provides some physical insights into sensor-field
interactions but also enhances generalization across varying number and placements of sensors.

Theoretically, we prove that our reconstructor can learn the conditional expectation of physical fields.
Theorem 3.1 (Flow-based reconstructor is an unbiased estimator of physical fields). Let the
training flow loss Eq. (1) be minimized over a class of velocity fields v. The optimal learned velocity,

v∗(x, t, p, X1(p)) = E[X1 −X0 | Xt, t, p, X1(p)]

equals the conditional mean of all feasible directions between the target data X1 and the initial
noise X0. Define the reconstructed data as the integral along the optimal flow, X̄1 := X0 +∫ 1

0
v∗(Xt, t,p,X1(p)

)
dt, then X̄1 is an unbiased estimator of the target physical fields given sensor

placement p and corresponding observation X1(p), i.e. E
[
X̄1 | p, X1(p)

]
= E[X1 | p,X1(p)].

3.2 Sensor Placement Optimization

Based on the well-trained reconstructor, we formalize placement optimization as a constrained
optimization problem efficiently solved through a newly proposed projected gradient descent strategy
to respect spatial constraints, yielding near A-optimal [33] placements with theoretical guarantees.
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Figure 3: Placement optimization stage:
Based on a well-trained reconstructor, sen-
sors are optimized by geometry-constrained
projected gradient descent to minimize the
flow loss with theoretical guarantees.

Projected gradient descent Optimizing sensor place-
ment presents unique challenges compared to standard
model parameter optimization, since solutions must
adhere to complex spatial constraints imposed by the
physical domain D. While gradient-based updates can
suggest improved placements, naive application often
violates geometric feasibility—particularly in irregular
geometries. Therefore, we employ projected gradi-
ent descent (Fig. 3), which iteratively (1) computes
accuracy-improving gradients and (2) projects the up-
dated placements back to the feasible space via nearest-
point mapping. This process can be formalized as

p(k+1) = ProjD

(
p(k) − η∇pLflow(p

(k))
)
, (2)

where p(k) denotes the sensor placement at the k-th
iteration, and ProjD(·) denotes the projection operator onto the feasible domain D. The strategy
maintains strict spatial constraints while systematically exploring superior placements, effectively
bridging unconstrained optimization with physical feasibility requirements.

Optimization objective The selection of optimization objective significantly impacts both compu-
tational cost and reconstruction accuracy. Although minimizing the reconstruction error ∥X̄1 −X1∥2
seems conceptually straightforward, its requirement for backpropagation among multiple flow-process
steps results in prohibitive computational and memory overhead. In contrast, the flow loss defined in
Eq. (1) maintains computational tractability through single flow-process step gradient calculation
and, due to the optimal transport path between X0 and X1, theoretically guarantees near A-optimal
sensor placements, a dual advantage that makes it our preferred choice.

The following theoretical analysis elucidates what our placement optimization objective fundamen-
tally captures and how it relates to the well-established A-optimality framework.
Assumption 3.2 (Conditional Gaussian assumption). We assume the target distribution is condi-
tionally Gaussian, specifically, X1 | (p,X1(p)) ∼ N (0,Σp), where Σp is the covariance matrix
determined by the sensor placement p. Furthermore, X0 and X1 are mutually independent.
Definition 3.3 (Classical A-optimal placement). We define the conditional covariance matrix of X1

given placement p and corresponding observation X1(p) is Var(p) = E[(X1−EX1)(X1−EX1)
T |

p,X1(p)] = Σp. A sensor placement p is called A–optimal if it minimizes the trace of Σp,

pA-opt := arg min
p∈Dm

LA(p), with LA(p) := tr(Σp) ≡ E∥X1 − EX1∥2,

where Dm denotes all feasible placements for m sensors. From definition, an A–optimal placement
attains the minimal total conditional variance of the reconstructed field among feasible placements.
Definition 3.4 (Flow-loss-minimized sensor placement). Assume the velocity model v attains
its optimum v∗. Another optimal placement is defined if it minimizes the residual flow loss p∗ =

argminp∈Dm Lflow(p),whereLflow := EXt,t

[ ∥∥(X1−X0)−v∗
∥∥2], which measures the conditional

variance when the optimal transport flow path is used instead of the true data transition.
Theorem 3.5 (The objectives of two optimal placements are mutually controlled). Under As-
sumption 3.2, the objectives of two optimal placements can be simplified to

LA(p) =

d∑
i=1

λi(p), Lflow(p) =

d∑
i=1

π

2

√(
λi(p)

)
(3)

with eigenvalues {λi(p)}di=1 of Σp. Thus, two objectives control each other via following inequality:

2

π2
L2
flow(p) ≤ LA(p) ≤

4

π2
L2
flow(p). (4)

Proof sketch. The proof’s core lies in the non-trivial simplification of Lflow through careful analysis
of the structure of the conditional covariance matrix. Owing to the favorable properties of the optimal
transport path, the involved complex integrals can be calculated in a closed form, offering further
insight into the structure of the flow matching. More details can be found in Appendix A.2.
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Remark 3.6. Consequently, the two objectives admit a two-sided polynomial bound of degree 2,
which implies that minimizing Lflow inherently constrains LA to lie within a bounded neighborhood
of its optimum, and vice versa. This provides a theoretical guarantee for achieving near A-optimal
sensor placement under the efficiently implementable flow-loss-minimization objective.

Overall design In summary, PhySense seamlessly integrates two synergistic stages for accurate
physics sensing. (1) Reconstruction: a flow-based model learns to reconstruct dense physical fields
from arbitrary scattered inputs through optimal transport flow dynamics. During training, both
the number and placements of sensors are randomized to ensure generalizability. (2) Placement
optimization: under fixed-number sensors, placements are optimized on the residual flow loss via
projected gradient descent, constrained to feasible geometries (e.g., 3D surfaces). Theoretically, we
prove that the reconstruction model learns the conditional expectation of target physical fields, and
the flow-loss minimization objective polynomially controls the classical A-optimal criteria.

4 Experiments

We perform comprehensive experiments to evaluate PhySense, including turbulent flow simulation,
reanalysis of global sea temperature with land constraints and aerodynamic pressure on a 3D car.

Table 1: Summary of benchmarks in PhySense.
#Mesh records the size of discretized mesh points.

Benchmarks Geometry #Dim #Mesh

Turbulent Flow Regular Grid 2D 6144
Sea Temperature Land Constraints 2D 64800

Car Aerodynamics Unstructured Mesh 3D 95428

Benchmarks As presented in Table 1, our
experiments encompass both regular grids and
unstructured meshes in the 2D and 3D do-
mains. The benchmarks include: (1) Turbu-
lent Flow: numerical simulations of channel
flow turbulence following the setup in Sen-
seiver [41]; (2) Sea Temperature: 27-year
daily sea surface temperature at 1◦ resolution
with intricate land constraints from the GLORYS12 reanalysis dataset [21]; and (3) Car Aerodynam-
ics: high-fidelity OpenFOAM simulations [20] of surface pressure over a complex car geometry from
ShapeNet [6], where we reconstruct the irregular pressure fields from scattered sensor observations.

Baselines We evaluate PhySense via two approaches: (1) comparing the reconstruction model under
randomly sampled sensor placements, and (2) comparing sensor placements with frozen PhySense’s
reconstruction model. The reconstruction benchmarks include five representative baselines: classical
statistical-based method SSPOR [32], deterministic models VoronoiCNN [14] and Senseiver [41], and
generative approaches S3GM [28] and DiffusionPDE [18]. For placement evaluation, we compare
our optimized placement against random sampling and SSPOR’s optimized placement [32].

Implementations All methods of each benchmark maintain identical training configurations in-
cluding epochs, batch sizes, ADAM optimizer [25], and maximum learning rate, while preserving
other details as specified in their original papers. For the reconstruction model, we employ DiT [35]
for turbulent flow and sea temperature benchmarks, while using Transolver [48] as a Transformer
backbone to fit irregular mesh for car aerodynamics benchmark. The placement optimization stage
runs for 5 epochs with the frozen reconstruction model. Both two stages employ relative L2 as the
metrics for the reconstructed fields. Additional implementation details are provided in Appendix C.

4.1 Turbulent Flow

Setups The benchmark focuses on reconstructing turbulent flow within a channel using a 2-D
slice discretized on a 128 × 48 regular grid. This dataset is widely used, with classical models
such as Senseiver [41] and VoroniCNN [14] serving as benchmarks. We replicate Senseiver’s setup;
specifically, 25–300 sensors are randomly selected to train the reconstructor, with sensor positions
uniformly sampled across the entire domain. A setting with 30 sensors represents low coverage, while
200 sensors corresponds to high coverage. The model is trained using all available simulation data
and evaluated on its ability to reconstruct the corresponding fields under varying sensor placements.
Besides, due to the computational cost of DiffusionPDE and S3GM—each reconstruction involving
thousands of model evaluations—we restrict their evaluation to 500 randomly sampled cases.

Results As shown in Table 2, PhySense achieves state-of-the-art performance among all sensor
counts, surpassing the second-best method by a substantial margin. Despite starting from our strong
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Table 2: Performance comparison on the turbulent flow and sea surface temperature benchmarks. Rel-
ative L2 error is reported. PhySense-opt denotes the performance under optimized sensor placement,
while all other deep models, including PhySense, use randomly placed sensors. Besides, SSPOR is a
classical method that performs both placement optimization and reconstruction. # indicates the sensor
number. Promotion refers to the relative error reduction of PhySense-opt w.r.t. the best baseline.

Models Placement
Strategy

Turbulent Flow Sea Temperature

#200 #100 #50 #30 #100 #50 #25 #15

SSPOR [32] SSPOR 0.3018 0.4429 0.5921 0.6637 0.0756 0.0752 0.0789 0.0719

VoronoiCNN [14]

Random

0.3588 0.4870 0.6919 0.7992 0.1496 0.1537 0.2433 0.2817
Senseiver [41] 0.1842 0.2316 0.3740 0.5746 0.0715 0.0732 0.0769 0.0784
S3GM [28] 0.1856 0.2016 0.2681 0.6421 0.1115 0.1137 0.1581 0.1795
DiffusionPDE [18] 0.1993 0.3312 0.6604 0.9163 0.0664 0.0775 0.0859 0.1139

PhySense Random 0.1233 0.1527 0.2586 0.5176 0.0439 0.0452 0.0477 0.0520
PhySense-opt Optimized 0.1106 0.1257 0.1558 0.2157 0.0426 0.0430 0.0437 0.0439

Relative Promotion 39.96% 38.56% 41.89% 62.46% 35.84% 41.26% 43.17% 38.94%

b Case study: Turbulent Flow a Reconstruction error with sensor numbers Reconstruction
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Figure 4: (a) Reconstruction loss versus the number of sensors. Random sampling, classical SSPOR,
and our optimized method are compared using the same PhySense reconstruction base model. (b)
Visualization of reconstruction results, error maps, and sensor placements (denoted by ⋆). Our
optimized placement clearly outperforms the other two strategies on turbulent flow benchmark.

reconstruction model, the reconstruction accuracy is further significantly improved through sensor
placement optimization. The improvement is particularly notable under low coverage with 30 sensors
relative to the high coverage setup with 200 sensors. Remarkably, even with fewer sensors, the
optimized 30-sensor placement exceeds the performance of the unoptimized 50-sensor counterpart.

As shown in Fig. 4(a), our learned placement strategy consistently yields the lowest reconstruction
error compared to the other two strategies, especially in low coverage settings, demonstrating its
superior effectiveness. Fig. 4(b) further supports this observation: without any explicit spatial
constraints, the learned sensors are distributed in a way that avoids excessive concentration, thereby
reducing redundancy and enhancing information gain under the same number of sensors.

4.2 Sea Temperature

Setups This benchmark is derived from the GLORYS12 reanalysis dataset [21], focusing on the
sea surface temperature variable. The data are downsampled to a 1◦ × 1◦ resolution, resulting in
global ocean fields of size 360 × 180. During training, between 10 and 100 sensors are randomly
selected, with all sensors uniformly sampled from valid ocean regions, excluding land areas. The
reconstruction task aims to recover dense temperature fields from these sparse observations. Our
training set comprises 9,843 daily samples from 1993 to 2019, with data from 2020–2021 reserved
for testing. This setup allows us to evaluate two critical aspects of model capability: (1) adaptability
to varying sensor placements, and (2) generalization to temporal distribution shifts. Moreover, the
presence of complex land–sea boundaries introduces significant challenges for both reconstruction
and sensor placement optimization. We address this by providing a land mask as an additional input.

Results PhySense-opt consistently achieves state-of-the-art performance across all sensor numbers
(average improvement 40.0%), as shown in Table 2. Besides, SSPOR [32] performs reasonably well
on this benchmark, due to the relatively stable temporal variations of sea temperature over the 30-year
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Figure 5: Different placement strategies comparison and case study on the sea temperature benchmark.

period. This also explains its poor performance on the turbulent flow, highlighting the limitations of
traditional methods in capturing complex, non-stationary physical fields.

The optimized sensor placement improves performance by an additional 12.0% over the unoptimized
counterpart in the low coverage setting (25 and 15 sensors). As shown in Fig. 5(a), the placement
selected by SSPOR performs comparably to random selection, underscoring the importance of jointly
co-optimizing reconstruction modeling and sensor placement optimization. Remarkably, just 15
optimally placed sensors—covering only 0.023% of the spatial domain—are sufficient to achieve
reconstruction accuracy comparable with the best settings on this benchmark, which highlights the
feasibility of global ocean temperature field reconstruction with limited sensing resources.

Moreover, our placement strategy successfully avoids land regions and performs effective optimization
under intricate land-sea boundaries (Fig. 5(b)). Such counterintuitive optimized placement is difficult
to obtain through human-designed heuristics. The error map within the red box clearly indicates
optimized placement captures more information, which in turn improves the reconstruction accuracy.

4.3 Car Aerodynamics

Table 3: Main results on the car aerodynamics benchmark. Due
to resource constraints, only the best deterministic baseline and
generative baseline are selected. To support irregular meshes, the
backbone of DiffusionPDE [18] is replaced with Transolver [48].

Models
Car Aerodynamics

#200 #100 #50 # 30 #15

Senseiver [41] 0.1009 0.1012 0.1018 0.1022 0.1053
DiffusionPDE [18] 0.0967 0.0966 0.0987 0.1055 0.2095

PhySense 0.0375 0.0382 0.0395 0.0416 0.0465

PhySense-opt 0.0369 0.0370 0.0370 0.0372 0.0386
Promotion 61.84% 61.70% 62.51% 63.60% 63.34%

Setups This benchmark is the
first to address physics sensing
tasks on 3D irregular meshes.
We select a fine 3D car model
with 95,428 mesh points and
simulate its pressure field using
OpenFOAM (see Appendix C.1
for simulation details). The sim-
ulations span driving velocities
from 20 to 40 m/s and yaw an-
gles from -10 to 10 degrees. We
simulate 100 cases in total, split-
ting them into 75 for training and
25 for testing. The task involves
reconstructing the surface pressure field from 10 to 200 randomly sampled sensors placed exclusively
on the vehicle surface, since placing sensors in the surrounding but off-surface regions presents prac-
tical challenges. This setup imposes particularly challenging conditions for placement optimization
due to the complexity of the 3D surface and its geometric constraints.

Results As shown in Table 3, PhySense-opt consistently achieves state-of-the-art performance
across all sensor counts (average improvement 62.6%). Moreover, our placement strategy proves
effective, especially in low-coverage scenarios. With only 15 optimized sensors, we achieve a 17.0%
improvement (from 0.0465 to 0.0386), and the reconstruction accuracy matches that of using 100
randomly placed sensors. Moreover, Fig. 1 illustrates that, since the wind approaches from the front
of the driving vehicle, regions such as the front end and side mirrors experience significant pressure
gradients, likely caused by flow separation or viscous effects. Our optimized sensor placement
successfully captures these high-variation regions, validating the effectiveness of the projected
gradient descent optimization. Furthermore, our optimized sensor placement can be deployed in
real-world settings, such as wind tunnel experiments, to collect actual pressure data. This enables
correction of discrepancies in simulation results and even of underlying physical systems, reducing
the requirements for repeating costly real experiments and narrowing the sim-to-real gap.
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Figure 6: (a) The cross-attention map visualizations from the last layer of PhySense, where sensor
positions are pointed by red arrows. (b) Initial placement sensitivity analysis shows that varying
initial sensor placements converge to different but equally effective placements, achieving similar
reconstruction accuracy. (c) Efficiency comparison on turbulent flow: these diffusion-based methods
require 1,000 generation steps (100× slower than PhySense), but achieve even worse accuracy.

4.4 Model Analysis

Table 4: Ablation on sparse information incor-
poration via an interpolated field (Rep. Inter.).

Ablations
Turbulent Flow

#200 #100 #50 #30

Rep. Inter. 0.1571 0.2006 0.3584 0.7509
Ours 0.1233 0.1527 0.2586 0.5176

Ablations Beyond the main results, we explore
how to best incorporate sparse sensor information.
We compare our incorporation strategy with an alter-
native that concatenates an interpolated field—similar
to the approaches used in VoroniCNN [14]. As shown
in Table 4, this replacement leads to a significant per-
formance drop, especially under low spatial coverage
(e.g., 30 sensors), highlighting the advantage of our
method in capturing critical information from scattered sensor observations.

Cross attention visualization To demonstrate how PhySense dynamically associates sensor obser-
vations with their relevant spatial influence regions, we visualize the cross-attention maps from the
last cross attention block. As shown in Fig. 6(a), PhySense captures physically meaningful regions
of influence for each sensor on the complex mesh, indicating the underlying physical structure for
its high-fidelity reconstruction. Moreover, a highlighted pair in the second row shows two spatially
adjacent sensors exhibit diametrically opposed attention patterns due to local geometric variations.

Efficiency analysis The efficiency comparison on turbulent flow benchmark in Fig. 6(c) shows that
our method achieves significantly lower reconstruction errors across all step counts. Notably, while
DiffusionPDE and S3GM require over 50 steps to achieve the error below 0.5, our method consistently
maintains a relative L2 error below 0.2 even with as few as 2 steps. This efficiency advantage stems
from fundamental differences in sparse information incorporation strategies. DiffusionPDE and
S3GM indirectly modify the data generation gradient based on sparse observations which require
numerous iterative refinements to achieve proper guidance, while our approach directly conditions the
model adaptively on sparse inputs during training. This architectural difference enables immediate
and effective utilization of observational information from the very first inference step. As a result,
we achieve better performance with only 1% model evaluations required by these baseline methods.

Initial placement sensitivity During the sensor placement stage, different placement initializations
lead to varying final sensor distributions. Meanwhile, as shown in Fig. 6(b), after placement optimiza-
tion, the reconstruction performance remains consistently high-quality and comparable across these
variants, indicating that our placement optimization process is not sensitive to different initializations.

Table 5: Ablation on progressive sensor place-
ment optimization via a pure noise input.

Ablations
Turbulent Flow

#200 #100 #50 #30

noise-inut 0.1118 0.1293 0.1630 0.2286
mix-input (origin) 0.1106 0.1257 0.1558 0.2157
Promotion 1.07% 2.78% 4.42% 5.65%

Progressive sensor placement optimization A key
advantage of our flow-based reconstructor is its in-
herent support for progressive sensor placement op-
timization. Unlike non-generative models, which
operate on static inputs (e.g., pure noise or zeros), our
model processes a noise-data mixture Xt throughout
the flow. This design inherently embeds a spectrum
of reconstruction difficulties, corresponding to differ-
ent noise levels, thereby amortizing the optimization
process across the entire flow. Consequently, it provides more informative, tractable feedback for
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Table 6: Performance comparison with four additional placement baselines on the turbulent flow
benchmark, measured by relative L2 error. Results obtained with limited sensors (e.g., 30) are
highlighted in blue , and the top-performing methods with comparable results are shown in bold.

Placement Strategies
Senseiver PhySense

#200 #100 #50 #30 #200 #100 #50 #30

Random Sample 0.1842 0.2316 0.3740 0.5746 0.1233 0.1527 0.2586 0.5176
Grid Sample 0.1615 0.2273 0.3845 0.5869 0.1235 0.1521 0.2436 0.4930
Min-Max Sample 0.1549 0.2091 0.3795 0.5747 0.1196 0.1533 0.3157 0.5022

Our PGD on reconstruction model 0.1388 0.1750 0.3025 0.4570 0.1106 0.1257 0.1558 0.2157
Optimized Sensors from PhySense 0.1533 0.1833 0.3035 0.4601 0.1106 0.1257 0.1558 0.2157

sensor placement. An ablation study shown in Table 5 confirms that replacing the noise-data mix
input with pure noise input in the feedback loop leads to notable performance degradation, which is
more pronounced with fewer sensors, underscoring the unique benefit of this flow-process feedback.

Placement generalization We compare our placement strategy with four more placement baselines
across Senseiver and PhySense under different sensor numbers on turbulent flow dataset.
(i) Grid: We first place sensors on a uniform grid using the largest square number within the budget,
and then randomly allocate the remainder. This strategy guarantees spatial coverage but remains ag-
nostic to the physical dynamics. Practically, its performance is similar to random placement, aligning
with classical sampling theory [4] that questions the efficacy of grid sampling for complex systems.
(ii) Min-Max: A heuristic method that promotes spread-out sensor placements by iteratively placing
the next sensor at the point that maximizes the minimum distance to existing sensors. However, this
approach does not yield significant improvements over random placement in our experiments.
(iii) Our Projected Gradient Descent: An upper-bound method using any reconstruction model (Sen-
seiver or PhySense) and performs our projected gradient descent to optimize sensor placements.
(iv) Optimized Sensor from PhySense: To evaluate the generality of the learned placements by Phy-
Sense, we feed the placement into the Senseiver. The performance closely matches that of Our
PGD and significantly outperforms all other baselines, particularly when the number of sensors is
limited (e.g., 30), a challenging scenario to place sensors. This suggests that our learned placements
effectively capture physically informative structures that generalize beyond specific reconstructors.

Information Distribution

Variance Distribution 

a

b

Figure 7: Visualization of infor-
mation and variance distribution
on turbulent flow benchmark.

Optimized sensor distribution visualization To explore the
distribution of optimized sensors, we visualize their relationship
with information distribution (measured by the model’s spatial
gradient magnitude) and variance distribution (point-wise vari-
ance of the physical field) on turbulent flow benchmark. Inter-
estingly, most of the optimized sensors lie within high-variance
regions. More importantly, each sensor is located near a high-
information point, and their spatial distributions exhibit similar
patterns. This suggests that the optimizer is not merely clustering
in high-variance areas but is strategically identifying spatially sep-
arated, high-sensitivity locations which capture the field’s global
dynamics. This aligns with the sensing principle that maximal
information gain requires sampling diverse, non-redundant points
rather than densely covering localized variance hotspots.

5 Conclusion

To co-optimize physics field reconstruction and sensor placement for accurate physics sensing, this
paper presents PhySense as a synergistic two-stage framework. The first stage develops a base model
through flow matching that reconstructs dense physical fields from all feasible sensor placements. The
second stage strategically optimizes sensor positions through projected gradient descent to respect
geometry constraints. Furthermore, our theoretical analysis reveals a deep connection between the
framework’s objectives and the classical A-optimal principle, i.e., variance minimization. Extensive
experiments demonstrate state-of-the-art performance across benchmarks, particularly on a complex
3D irregular dataset, while discovering informative sensor placements previously unconsidered.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper presents a synergistic two-stage framework for accurate physics
sensing. The theoretical results are derived based on the proofs in Appendix A and the
effectiveness of proposed framework is supported by results in all Tables and Figures.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss it in Appendix E and leave it for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The only assumption is clearly stated in the main text, and all proofs can be
found in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have clearly stated the implementation details in the first paragraph of
every experiment section and further detail them in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the experiments are based on the open-sourced repository. The data is
public. Code is available at this repository: https://github.com/thuml/PhySense.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include all implementation details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include this information in Section 4.4 and Appendix D.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include this information in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have strictly followed the NeurIPS Code of Ethics throughout this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have included this information in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we have faithfully cited the corresponding paper and open-sourced code
according to their licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our experiments are about physics sensing, and LLMs are not included in our
core method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs of Theorems in the Method Section

A.1 Proof of Theorem 3.1

Proof. By the pointwise optimality of the squared loss in the training flow loss (1),

v∗(x, t,p,X1(p)
)

= E
[
X1 −X0

∣∣ Xt = x, t, p, X1(p)
]
.

Taking the conditional expectation of X̄1 gives

E
[
X̄1 | p, X1(p)

]
= E

[
X0 +

∫ 1

0

v∗(Xt, t,p,X1(p)
)
dt

∣∣∣ p, X1(p)
]

= E[X0 | p, X1(p)]︸ ︷︷ ︸
(A)

+ E
[∫ 1

0

v∗(Xt, t,p,X1(p)
)
dt

∣∣∣ p, X1(p)
]

︸ ︷︷ ︸
(B)

.

Step 1: Move the expectation inside the integral (Fubini’s theorem):

(B) =

∫ 1

0

E
[
v∗(Xt, t,p,X1(p)

) ∣∣∣ p, X1(p)
]
dt.

Step 2: Substitute the definition of v∗ and apply the law of total expectation:

E
[
v∗(Xt, t,p,X1(p)

) ∣∣∣ p, X1(p)
]
= E

[
E
[
X1 −X0

∣∣ Xt, t,p,X1(p)
] ∣∣∣ p, X1(p)

]
= E

[
X1 −X0 | p, X1(p)

]
.

The right-hand side no longer depends on t, hence

(B) =

∫ 1

0

E
[
X1 −X0 | p, X1(p)

]
dt = E

[
X1 −X0 | p, X1(p)

]
.

Step 3: Combine (A) and (B):

(A) + (B) = E
[
X0 | p, X1(p)

]
+ E

[
X1 −X0 | p, X1(p)

]
= E

[
X1 | p, X1(p)

]
,

Therefore, flow-based reconstructor is an unbiased estimator of physial fields.

A.2 Proof of Theorem 3.5

Part 1. First, we will prove LA(p) = E
[
∥X1−EX1∥2

]
=

∑d
i=1 λi(p) with eigenvalues {λi(p)}di=1

of Σp.

Because X1 | (p,X1(p)) ∼ N (0,Σp), we have

LA(p) = E
[
∥X1 − EX1∥2

]
= tr

(
Var(X1)

)
= tr

(
Σp

)
.

Let the orthogonal decomposition of the placement–dependent covariance matrix be

Σp = UΛUT, Λ = diag
(
λ1(p), . . . , λd(p)

)
,

where U is an orthogonal matrix, i.e. UUT = I . where U is an orthogonal matrix, i.e. UUT = I . All
eigenvalues λi(p) are non-negative because the covariance matrix Σp is positive semidefinite. Since
the trace is invariant under orthogonal similarity transformations, we obtain

LA(p) = tr
(
Σp

)
= tr(Λ) =

d∑
i=1

λi(p). (A.0)
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Part 2. Second, we will show,

Lflow(p) =

∫ 1

0

E
[∥∥(X1 −X0)− v∗(Xt, t,p,X1(p))

∥∥2] dt
def
=

∫ 1

0

tr
(
Var

(
X1 −X0

∣∣ Xt, t,p,X1(p)
))

=

d∑
i=1

π

2

√
λi(p),

Step 1: Calculate the conditional variance Var
(
X1 −X0 | Xt, t,p,X1(p)

)
We denote that,

Z =

(
X0

X1

)
, ΣZ = diag

(
I,Σp

)
, Y = X1 −X0, Xt = (1− t)X0 + tX1 (0 ≤ t ≤ 1).

Since X0 and X1 are independent, Z conditioned on (p, X1(p)) remains Gaussian,

Z
∣∣ (p, X1(p)

)
∼ N

(
0,ΣZ

)
.

Writing Y and Xt as linear maps of Z,

Y = V Z, V =
(
−I, I

)
, Xt = CZ, C =

(
(1− t)I, tI

)
,

thus the pair (Y,Xt) is jointly Gaussian. The standard conditional–covariance formula yields

Var
(
Y | Xt, t,p,X1(p)

)
= V ΣZV

T − V ΣZC
T
(
CΣZC

T
)−1

CΣZV
T (A.1)

with
V ΣZV

T = I +Σp,

CΣZC
T = (1− t)2I + t2Σp,

V ΣZC
T = −

(
1− t

)
I + tΣp.

Substituting into (A.1) gives

Var
(
Y | Xt, t,p,X1(p)

)
= I+Σp−

(
tΣp−(1−t)I

)(
(1−t)2I+t2Σp

)−1(
tΣp−(1−t)I

)
(A.2)

Step 2: Diagonalisation and scalar reduction

Recall from (A.2) the matrix form of the conditional variance Var
(
Y | Xt, t,p,X1(p)

)
and denote

it by Γt(Σp). Because Σp = UΛUT for a orthogonal matrix U and a diagonal matrix Λ =
diag(λ1, . . . , λd), all terms in (A.2) commute with U ; consequently

Γt(Σp) = U Γt(Λ)U
T.

Thus,
tr(Γt(Σp)) = tr(Γt(Λ)).

Consequently, the flow–matching objective can be written entirely in terms of the diagonal matrix Λ:

Lflow(p) =

∫ 1

0

tr
(
Var

(
X1 −X0

∣∣ Xt, t,p,X1(p)
))

dt

=

∫ 1

0

tr
(
Γt(Σp)

)
dt

=

∫ 1

0

tr
(
Γt(Λ)

)
dt

=

d∑
i=1

∫ 1

0

Γt

(
λi(p)

)
dt,
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where the last equality uses that Γt(Λ) = diag
(
Γt(λ1), . . . ,Γt(λd)

)
is diagonal, so its trace equals

the sum of its diagonal entries.

According to the expression of Γt,

Lflow(p) =

d∑
i=1

∫ 1

0

λi

t2λi + (1− t)2
dt, λi ≥ 0 (A.3)

Step 3: Calculate the integral above over t ∼ U [0, 1].
For λ > 0 and consider

I(λ) :=

∫ 1

0

λ

t2λ+ (1− t)2
dt.

Set A := λ+ 1. Completing the square in the denominator gives

λt2 + (1− t)2 = (λ+ 1)t2 − 2t+ 1 = A
(
t− 1

A

)2

+
λ

A
.

First substitution. We introduce

u =

√
A

λ

(
t− 1

A

)
, dt =

√
λ

A
du,

so that

t = 0 =⇒ u0 = − 1√
λA

, t = 1 =⇒ u1 =

√
λ√
A
.

Substituting, we obtain

I(λ) =

√
λ

A

∫ u1

u0

du

u2 +A−1
=

√
λA

∫ u1

u0

du

Au2 + 1
.

Second substitution. Absorb the constant A−1 by setting

v =
√
Au, du =

dv√
A
,

which converts the integrand to the standard form (v2 + 1)−1. The limits become

v0 =
√
Au0 = − 1√

λ
, v1 =

√
Au1 =

√
λ.

Collecting the Jacobian factors yields

I(λ) =
√
λA

1√
A

∫ v1

v0

dv

v2 + 1
=

√
λ

∫ √
λ

−1/
√
λ

dv

v2 + 1
,

The integrand is elementary, giving

I(λ) =
√
λ
[
arctanu

]u=√
λ

u=−1/
√
λ

=
√
λ
(
arctan

√
λ− arctan− 1√

λ

)
=

√
λ
(
arctan

√
λ+ arctan 1√

λ

)
.

For any x > 0 the identity arctanx+ arctan 1
x = π/2 holds. Then substituting x =

√
λ yields,

I(λ) =
π

2

√
λ.

For λ = 0, the identity also holds obviously.
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Applying this to every λi in (A.3) gives

Lflow(p) =

d∑
i=1

π

2

√
λi(p) ,

which is the target of Part 2.

Part 3. We prove 2
π2L2

flow(p) ≤ LA(p) ≤ 4
π2L2

flow(p).

By the arithmetic–geometric mean inequality, we have,

d∑
i=1

λi ≤
( d∑
i=1

√
λi(p)

)2

≤ 2

d∑
i=1

λi =⇒ 1

2

( d∑
i=1

√
λi(p)

)2

≤ LA ≤
( d∑
i=1

√
λi(p)

)2

.

Therefore,
2

π2
L2
flow(p) ≤ LA(p) ≤ 4

π2
L2
flow(p) ,

which completes Part 3 and hence the proof of Theorem 3.5.
Remark A.1. Furthermore, under Assumption 3.2, this mutual control relationship naturally extends
to both D-optimality and E-optimality objectives. Specifically, their formulations simplify to

LD(p) := det(Σp) =

d∏
i=1

λi(p), LE(p) := λmax(Σp). (3)

It is evident that both LD and LE can be polynomially bounded above and below by LA due to
standard spectral inequalities. Consequently, through the control of LA, the flow-loss objective also
polynomially controls LD and LE in both directions. Therefore, the flow-loss objective serves as
a spectrum-aware surrogate that can also guide D-optimal and E-optimal sensor placement with
bounded distortion.

B Full Results of Sensor Placement Optimization

Due to the space limitation of the main text, we present the full results of sensor placement results on
turbulent flow and sea temperature here, as a supplement to Fig. 4 and Fig. 5.

Given the same high-capacity reconstruction model, our optimized placement consistently achieves
superior performance compared to SSPOR and random baselines, confirming the effectiveness of
our joint strategy. Interestingly, SSPOR does not always outperform random sampling; for example,
on the sea temperature dataset, it often performs slightly worse. This underscores the importance of
co-optimizing sensor placement alongside the reconstruction process.

Table 7: Performance under different placement strategies on turbulent flow and sea temperature.

Models Placement
Strategy

Turbulent Flow Sea Temperature

#200 #100 #50 #30 #100 #50 #25 #15

PhySense Random 0.1233 0.1527 0.2586 0.5176 0.0439 0.0452 0.0477 0.0520
PhySense SSPOR 0.1143 0.1348 0.1815 0.3397 0.0452 0.0463 0.0454 0.0543
PhySense Optimized 0.1106 0.1257 0.1558 0.2157 0.0426 0.0430 0.0437 0.0439

Relative Promotion 3.23% 6.75% 14.16% 36.52% 2.96% 4.87% 3.74% 15.58%

C Implementation Details

In this section, we provide the implementation details of our experiments, including benchmarks,
metrics, and implementations. All the experiments are conducted based on PyTorch 2.1.0 [34] and
on a A100 GPU server with 144 CPU cores.
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C.1 Benchmarks

While the turbulent flow and sea temperature benchmarks are described in detail in the main text,
here we focus on elaborating the key details of our generated car aerodynamic benchmark.

b Slice of the refined mesha Computation domain

Figure 8: (a) Computational Domain of the CFD simulation. (b) Refinement regions around the
surface.

We use a watertight 3D car mesh taken from the ShapeNet V1 [6] dataset, which contains around 50k
triangular facets. The aerodynamic pressure of the car surface is simulated using OpenFOAM [20].
As shown in Fig. 8(a), we create a virtual wind tunnel to simulate the airflow around a car. The
width, length and height of the wind tunnel are set to 16 meters, 30 meters and 8 meters respectively.
The computational mesh around the car surface is refined to a smaller mesh size for more accurate
aerodynamics modeling, which is illustrated in Fig. 8(b).

We specify different inlet velocities and yaw angles for different simulation cases. The velocity ranges
from 20 m/s to 40 m/s, while the yaw angles range from -10 degrees to 10 degrees. We utilize
Reynolds-Averaged Simulation (RAS) with the k-omega SST turbulence model in OpenFOAM.
600 simulation iterations are conducted for each case to ensure convergence. A no-slip boundary
condition of the velocity field is defined on the car surface. We simulate 100 cases in total, splitting
them into 75 for training and 25 for testing.

C.2 Metrics

To evaluate the accuracy of the reconstructed physical field, we employ the widely used relative L2
metric, defined as

Relative L2 =
∥u− û∥2
∥u∥2

,

where u denotes the reference (ground-truth) field and û represents the model reconstruction.

C.3 Implementations

We consider the following baselines on the turbulent flow and sea temperature benchmarks:

• Reconstruction models: SSPOR, VoronoiCNN, Senseiver, S3GM, and DiffusionPDE.

• Sensor placement strategies: random sampling and the SSPOR’s sensor selection method.

Due to the geometric complexity of the car’s 3D surface, we compare it against the top two performing
reconstruction baselines—Senseiver and DiffusionPDE—for this task. The common setups for all
models are shown in the Table 8.

Table 8: Common setups for all models in three benchmarks. Other setups follow their original setup.
Benchmarks Turbulent Flow Sea Temperature Car Aerodynamics

Epochs 800 300 300
Batch Size 60 40 1
Learning Rate 10−3 2× 10−4 10−3

Optimizer ADAM

SSPOR [32] We utilize the official implementation of SSPOR, the PySensor package [8] to evaluate
the reconstruction and sensor selection performance of SSPOR. SSPOR employs POD [2] to express
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high-dimensional data as a linear combination of several orthonormal eigenmodes obtained from the
singular value decomposition (SVD). Specifically, we employ the pysensors.SSPOR class with an
SVD basis to obtain the targeted number of sensors from the training data. The selected sensors are
then used to reconstruct dense fields from sparse observations either with SSPOR or our method.

VoronoiCNN [14] VoronoiCNN integrates Voronoi tessellation with convolutional neural networks
(CNNs). However, the official implementation uses a simplistic CNN that struggles with complex and
dynamic fields. We replace it with a more powerful U-Net [38] architecture, using 64 base feature
channels, with 4 downsampling and upsampling layers and skip connections to enhance information
flow. Due to its inability to handle irregular car aerodynamic meshes, experiments are conducted only
on turbulent flow and sea temperature datasets under a unified setup.

Senseiver [41] We utilize the official implementation of Senseiver. Senseiver is built upon an
implicit neural representation (INR) architecture, which optimizes reconstructions at individual
spatial locations rather than over the entire physical field. Specifically, during training, 2048 points
are randomly sampled from each field to supervise the model. This inherent sampling randomness
further impacts the stability of Senseiver and contributes to its slower convergence. To better
assess its full potential, we did not strictly enforce the same training epoch limit used for other
baselines. Instead, we allowed Senseiver to train until the default early stopping criterion in its official
implementation was triggered. Across the three distinct benchmarks we use, the hyperparameters of
Senseiver architecture are carefully tuned based on the official implementation scripts.

S3GM [28] In our experiments, we follow the official implementation and conduct training and
inference. Its backbone is the full U-Net architecture equipped with attention mechanisms and
timestep embeddings. We find that when the number of iterative optimization steps is less than 100,
S3GM fails to produce clear generation results. Moreover, the generation results can be significantly
affected by the random sampling strategy of the sensors, with some cases exhibiting abnormally high
relative errors, even greater than 10. Therefore, we increase the number of iterative optimization
steps to 1,000 to obtain comparable experimental results.

DiffusionPDE [18] We borrow the model architectures of the original implementation of Diffu-
sionPDE for the turbulent flow and sea temperature benchmarks, and employ a Transolver [48] as
the backbone for the unstructured car aerodynamics benchmark. For inference, we also follow the
original implementation configurations, using a total of 2,000 steps for better performance. The
guidance weights we search in each benchmark are shown in Table 9.

Table 9: Guidance weight of the observation loss for DiffusionPDE. Our final selection is bolded
Benchmarks Turbulent Flow Sea Temperature Car Aerodynamics

Guidance Weight {1000, 2500, 5000} {1000, 2500, 5000} {1000, 2500, 5000}

PhySense For the reconstruction model, we use DiT as base models for turbulent flow and sea
temperature benchmarks, and switch to Transolver for car aerodynamics benchmark. The detailed
model configurations are summarized in Table 10.

Table 10: PhySense model configurations for different benchmarks. “–” in the patch size column
indicates that Transolver does not apply the patchify operation.
Benchmark Patch Size dim Depth Heads dim_head mlp_dim Others

Turbulent Flow (2, 2) 374 8 8 32 374 –
Sea Temperature (3, 3) 374 12 8 32 374 –
Car Aerodynamics – 374 12 8 32 374 slice_num=32

For sensor placement optimization, we adopt the Adam optimizer to perform gradient-based updates,
followed by a projection step implemented via nearest-neighbor search to satisfy the spatial constraints.
All models are trained for 5 epochs with a cosine learning rate decay scheduler. The learning rate
is closely tied to the spatial scale of the physical domain and is carefully tuned for each setting, as
summarized in Table 11.
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Table 11: Learning rate of sensor placement optimization on three benchmarks.
Benchmarks Turbulent Flow Sea Temperature Car Aerodynamics

Learning rate 0.25 1 0.0025

D Additional Analysis

D.1 Comparsion with AdaLN-Zero

Here, we compare our sparse sensor incorporation strategy on turbulent flow with a widely used
conditioning approach in diffusion models, namely the AdaLN-Zero block in DiT [35]. As shown in
Table 12, replacing our design with AdaLN-Zero leads to a substantial degradation in performance,
with reconstruction errors approaching 1. This is because sensor placement inherently captures
localized information, whereas AdaLN-Zero aggregates all sensor data into a single global variable,
which is insufficient for preserving the spatial specificity required in reconstruction tasks.

Table 12: Ablation on sparse information incorporation via AdaLN-Zero block, i.e., Rep. AdaLN-Zero
Sensor Number #200 #100 #50 #30

Rep. AdaLN-Zero 0.9179 0.9486 0.9695 >1
Ours 0.1233 0.1527 0.2586 0.5176

D.2 Hyperparameter Sensitivity

As we adopt projected gradient descent to optimize sensor placement, the learning rate η in Eq. (2)
becomes a critical factor, especially when operating under complex geometric and high-dimensional
surface constraints. We investigate the learning rate sensitivity on the car aerodynamics benchmark.
As shown in Table13, the optimization process is relatively insensitive to learning rate variations
when the number of sensors exceeds 30. In contrast, the 15-sensor setting—covering only 0.016% of
the spatial domain—exhibits noticeable sensitivity, indicating the increased difficulty of optimization
under extreme sparsity. We ultimately select η = 0.0025 as the final choice.

Table 13: Impact of learning rate on sensor placement optimization in the car aerodynamics bench-
mark. We ultimately select η = 0.0025 as the final choice, which is bolded.
Learning rate 0.005 0.0025 0.001 0.0005

30 sensors 0.0379 0.0372 0.0369 0.0372
15 sensors 0.0423 0.0386 0.0389 0.0400

D.3 Statistical Analysis

Table 14: Evaluation results of the PhySense reconstruction model under random sensor placements
with varying sensor counts (10–200) on car aerodynamics benchmark. For each setting, the recon-
struction is repeated three times, and the mean and variance of the relative L2 loss are reported.
Sensor Number #200 #100 #50 #30 #15

Sampling 1 0.0376 0.0386 0.0396 0.0414 0.0458
Sampling 2 0.0379 0.0378 0.0387 0.0414 0.0436
Sampling 3 0.0370 0.0382 0.0401 0.0419 0.0501

Mean 0.0375 0.0382 0.0395 0.0416 0.0465
Standard derivation 0.0004 0.0003 0.0006 0.0002 0.0027

In this section, we analyze the statistical significance of our experimental results. Our pipeline
consists of two stages: training the reconstruction model and optimizing the sensor placement. Due
to the high computational cost of training the base reconstruction model, we train it only once. The
sensitivity of sensor placement initialization has been discussed in Section 4.4. Our findings show that
while different initializations result in different placements, each optimized placement is effective.
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Table 15: Evaluation results of the PhySense reconstruction model under optimized sensor place-
ments with varying sensor counts (10–200) on car aerodynamics benchmark. For each setting, the
reconstruction is repeated three times, and the mean and variance of the relative L2 loss are reported.
Sensor Number #200 #100 #50 #30 #15

Sampling 1 0.0369 0.0371 0.0369 0.0370 0.0378
Sampling 2 0.0367 0.0372 0.0369 0.0374 0.0389
Sampling 3 0.0370 0.0368 0.0373 0.0373 0.0390

Mean 0.0369 0.0370 0.0370 0.0372 0.0386
Standard derivation 0.0001 0.0002 0.0002 0.0002 0.0005

Furthermore, since our task is a reconstruction problem, and our reconstruction model essentially
learns a conditional distribution, we report in the table above the mean and standard deviation of
reconstruction loss under multiple samplings on the car aerodynamics benchmark, across varying
numbers of sensors. As shown in Table 14 and 15, when the number of sensors exceeds 15, the
standard deviation becomes relatively small, indicating stable performance. Moreover, regardless
of the sensor count, once the placement is optimized, the reconstruction results exhibit consistent
stability across multiple runs.

D.4 Additional Metric for Gradients

Table 16: Comparison on sea temperature benchmark. Relative L2 error of gradient fields is reported.
Sea Temperature (relative L2 of gradient field) #100 #50 #25 #15

Senseiver + random sensor placement 0.5456 0.5470 0.5501 0.5515
PhySense + random sensor placement 0.4877 0.4884 0.4890 0.4892
Relative promotion 11.87% 11.98% 12.51% 12.74%

In this section, we additionally evaluate the relative L2 error of the gradient fields on the sea
temperature to better reflect whether the model captures meaningful physical fidelity. As shown in the
Table 16, PhySense achieves significantly lower gradient error compared to the second-best model,
Senseiver, demonstrating its superior spatial physical fidelity.

D.5 Uncertainty quantification

Sample 1

Sample Mean

Sample 2

Sample Variance

Sample 3

Error of Sample Mean

Figure 9: Visualization of uncertainty quantification for the flow-based reconstruction model on the
turbulent flow benchmark. The sample variance is notably smaller than the physical field and error.

Flow-based reconstruction models explicitly learn the full conditional data distribution, which
inherently facilitates uncertainty quantification. To complete this, we reconstruct each input three
times, each with a distinct random noise initialization. Subsequently, we compute the pixel-wise
sample mean and sample variance across these reconstructions. As illustrated in Fig. 9, the magnitude
of the variance is orders of magnitude smaller than that of the sample mean and the reconstruction
error. This indicates high confidence in our model, as it consistently produces similar reconstructions
irrespective of the initial noise vector.
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E Limitations and Future Work

While our current formulation assumes point-wise sensor observations, this may not fully capture the
behavior of certain real-world sensors that integrate information over small spatial neighborhoods. For
example, radar and precipitation sensors typically respond to local regions rather than single points.
Incorporating regional observation into both the reconstruction model and the sensor placement
optimization could further improve the effectiveness of our approach. As a future direction, we aim
to extend both our model and theoretical framework from point-wise observations to region-based
sensing, which better reflects the behavior of many real-world sensors.

F Boarder Impacts

We introduce PhySense, a synergistic two-stage framework for accurate physics sensing with theorec-
tical guarantees. Extensive experiments validate its superior reconstruction accuracy and informative
sensor placements. Beyond performance gains, our work offers a new perspective on the sensor
placement problem from a deep learning standpoint. Thus, PhySense may inspire some future
research in relevant domains. Moreover, our optimized placement could potentially inform how
sensors are placed in more applications, enhancing their reconstruction accuracy.

Since our work is purely focused on algorithmic design for accurate physics sensing, there are no
potential negative social impacts or ethical risks.
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