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ABSTRACT

We propose a regularization framework inspired by thermodynamic work for guid-
ing pre-trained probability flow generative models (e.g., continuous normalizing
flows or diffusion models) by minimizing excess work, a concept rooted in statisti-
cal mechanics and with strong conceptual connections to optimal transport. Our
approach enables efficient guidance in sparse-data regimes common to scientific
applications, where only limited target samples or partial density constraints are
available. We introduce two strategies: Path Guidance, which facilitates sam-
pling of rare transition states by concentrating probability mass on user-defined
subsets, and Observable Guidance, which aligns generated distributions with ex-
perimental observables while preserving entropy. We demonstrate the framework’s
versatility on two coarse-grained protein models, highlighting its ability to sample
transition configurations and to correct systematic biases using experimental data.
The method bridges thermodynamic principles with modern generative architec-
tures, offering a principled, efficient, and physics-inspired alternative to standard
fine-tuning in data-scarce domains. Empirical results highlight improved sample ef-
ficiency and bias reduction, underscoring its applicability to molecular simulations
and beyond.

reference experimental dataguided

A BObservable Guidance Path Guidance

guidance samples

Figure 1: Schematic comparison of observable and path guidance. Both panels show the evolution of probability
density over time t (blue heat map) with marginal distributions p(xt=1) and p(xt=0) on the sides (blue: reference
model, red dashed: guided model). (A) Observable guidance perturbs the score function (red arrows) to match
experimental observables (yellow) with unknown data distribution p(xt=0) using minimal excess work. (B)
Path guidance steers sampling trajectories (black solid) toward specific regions defined by guidance samples
X g = {xi

0}Mi=1 (dotted grey).

1 INTRODUCTION

Probability flow generative models, such as normalizing flows (Papamakarios et al., 2021; Liu,
2022; Albergo et al., 2023; Lipman et al., 2023) and diffusion models (Song et al., 2020; Ho et al.,
2020), enable the modeling of complex, high-dimensional data distributions across a wide range of
applications. These models generate samples through the integration of differential equations evolving
a tractable distribution into an approximation of the data distribution. Although these models excel
at general distribution learning, many scientific applications require precise control over generated
samples to meet sparse observational constraints (e.g., limited transition state configurations or partial
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density constraints from experiments). Current guidance methods struggle in data-scarce regimes as
they typically rely on either specialized training or abundant reward signals. Existing approaches
often involve fine-tuning (Wallace et al., 2024; Black et al., 2023; Domingo-Enrich et al., 2024),
incorporating conditional information during training (Ho & Salimans, 2022; Nichol et al., 2021), or
training an additional noise-aware discriminative model (Song et al., 2020).

While effective, these methods may be impractical in sparse-data settings as the number of tuned
parameters can be large, even when using parameter-efficient adapters. This motivates a new approach
in which we apply minimal perturbations to the trained model, enabling controlled generation under
very sparse constraints. Inspired by statistical mechanics, we introduce an approach for regularizing
guidance of probability flow generative models based on the principle of minimum excess work
(MEW). In this context, “work” is a measure of the physical effort, e.g., energy, needed to transform
a system from one macrostate to another, where a macrostate is characterized by a probability
density function. MEW thereby acts as a natural, physics-inspired regularization scheme for guiding
generative models. We develop the theoretical framework for MEW-based regularization of generative
models, explicitly connecting it to optimal transport theory, and validate its effectiveness through
extensive benchmarks across multiple scales and systems. In addition to introducing the MEW
framework, we propose a simple yet effective form of path guidance tailored to sparse sampling
problems. We specialize MEW guidance to two common challenges in molecular simulation. First,
Observable Guidance: a bias-correction method that matches experimental observables while
preserving the entropy of the reference ensemble via a minimum-excess-work regularizer. We
validate this approach on a toy system and two coarse-grained protein Boltzmann emulators. With
this approach, we thus correct the systematic bias in the base model and are therefore able to improve
the prediction of unmeasured observables since they report on the same thermodynamics. Second,
Transition-State Sampling: a path-guidance-based sampling strategy that concentrates samples on
user-specified regions, e.g., the low-probability transition region between states, which we evaluate
on the coarse-grained Boltzmann emulator.1

2 BACKGROUND AND PRELIMINARIES

Diffusion models learn a stochastic process that maps a simple prior distribution p1 to an ap-
proximation p0 of the data distribution q0. This is typically done by reversing a known noising
process governed by an Ornstein–Uhlenbeck SDE, dxt = f(xt, t) dt + g(t) dwt with f(xt, t)
linear in xt. This process induces a family of marginals qt with simple forward transitions
qt(xt|x0) = N (xt;αtx0, σ

2
t I), where αt, σt are determined by the SDE coefficients. Given q1

and the score ∇xt log qt(xt), one can sample from q0 via the time-reversal (Anderson, 1982):

dxt = [f(xt, t)− g(t)2∇xt
log qt(xt)] dt+ g(t) dw̃t , x1 ∼ q1 , (1)

where w̃t is a reverse-time Wiener process, or via the probability flow ODE (Maoutsa et al., 2020;
Song et al., 2020):

dxt

dt
= f(xt, t)−

1

2
g(t)2∇xt

log qt(xt) , x1 ∼ q1 , (2)

both having the same time-marginals qt as the forward process. In practice, the score is approximated
by a score model sθ(xt, t), and a simple distribution p1 ≈ q1 is used as initial distribution at t = 1:

dxt = [f(xt, t)− g(t)2sθ(xt, t)] dt+ g(t) dw̃t x1 ∼ p1 (3)
dxt

dt
= f(xt, t)−

1

2
g(t)2sθ(xt, t) x1 ∼ p1 (4)

We will denote by {pt}t∈[0,1] the probability path induced by Eq. (3) or Eq. (4).

Equilibrium sampling of the Boltzmann distribution. A key challenge in statistical mechanics is
to generate independent samples from the Boltzmann distribution

x ∼ p(x) ∝ exp(−βU(x)), (5)

where β = (kBT )
−1 is the inverse temperature and U(x) is the potential energy of a configuration

x ∈ Ω ⊆ Rd. This distribution underlies estimation of macroscopic observables, such as Ep(x)[Oi(x)],

1Code is available at https://anonymous.4open.science/r/MEW-Guidance-F761
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which allow for a direct comparison to experimental data. However, sampling from p(x) is notoriously
difficult due to the rugged energy landscape U(x). Traditional methods such as Molecular Dynamics
(MD) or Markov Chain Monte Carlo (MCMC) suffer from slow mixing and generate highly correlated
samples that often fail to cross energy barriers between metastable states. This leads to biased
estimates and poor coverage of transition configurations, i.e., regions in state space that are severely
undersampled but mechanistically crucial. Recent work on Boltzmann Generators (Noé et al., 2019;
Klein et al., 2024b; Midgley et al., 2023; Köhler et al., 2020; Moqvist et al., 2025; Tan et al.,
2025) addresses these challenges by learning direct mappings from simple priors to Boltzmann-like
distributions. Yet, two issues remain: inaccuracies in the potential energy model can bias the learned
distribution (Kolloff et al., 2022; Klein et al., 2024a), and physically important but low-probability
states (e.g., transition states) remain exponentially rare. In this work, we address both problems
by guiding a generative model using sparse experimental or structural information, leveraging a
coarse-grained Boltzmann emulator inspired by Arts et al. (2023) and show how our method can be
integrated into a state-of-the-art Boltzmann emulator (Lewis et al., 2024) to sample protein ensembles
consistent with experimental data.

Maximum Entropy Reweighting is a broadly adopted technique to overcome force field inaccuracies
in potential energy models (Pitera & Chodera, 2012; Cavalli et al., 2013; Olsson et al., 2013; 2016;
Boomsma et al., 2014; White & Voth, 2014; Beauchamp et al., 2014; Hummer & Köfinger, 2015;
Bonomi et al., 2016). The result of this optimization is a tilted distribution which depends on a
set of Lagrange multipliers, {λi}, each corresponding to an experimental observable of interest.
The solution p′(x) ∝ p(x) exp

(
−
∑M

i=1 λiOi(x)
)

minimizes the KL divergence from the reference
distribution p(x), subject to the constraints Ep′(x)[Oi(x)] = oi. A detailed derivation is provided in
Appendix A.1 for the reader’s convenience. However, until now, this approach has been limited to
reweighting fixed sets of samples X = {xi}Mi=1 (e.g., an MD trajectory), thus motivating methods to
apply these principles in a generative setting.

Loss Guidance is the process of adjusting the diffusion process to satisfy a target condition y without
fine-tuning and has been explored in several prior works (Bansal et al., 2023; Chung et al., 2023;
Song et al., 2023). To sample from the conditional distribution p(x0|y) post hoc, we can use the
following identity: ∇xt log p(xt|y) = ∇xt log p(xt) +∇xt log p(y|xt). Obtaining ∇xt log p(y|xt)
typically requires training a separate model on the noisy states xt, as done in classifier guidance
(Song et al., 2020). Alternatively, the posterior mean x̂t(xt) := Ep(x0|xt) [x0] can be used as an
estimate of the clean data x0. Using Tweedie’s formula, the posterior mean can be expressed as
Ep(x0|xt) [x0] =

1
αt
(xt+σ

2
t∇xt

log p(xt)). This allows us to approximate the likelihood in data space
via log p(y|x̂t(xt)) ≃ ℓ(y, x̂t(xt)), where ℓ denotes a suitable differentiable loss function (e.g., cross-
entropy or log-likelihood under a differentiable model). The gradient ∇xt

log p(y|x̂t(xt)) can then be
computed by backpropagation. In practice, the mean is approximated using the score model sθ(xt, t),
allowing the score estimate to be updated as ∇xt

log p(xt|y) ≃ sθ(xt, t) + ηt∇xt
ℓ(x̂t(xt),y) with

ηt being a guiding strength function.

Work and Optimal Transport. In statistical mechanics, thermodynamic work W is the energy
required to transform a system from a probabilistic state p to another p′. For a continuum system:

W =

∫∫
J(x, t) · F(x, t) dx dt, (6)

where J(x, t) = v(x, t)pt(x) is the probability flux and F(x, t) is the force applied to the system.
This generalizes the classical work expression W =

∫
F (x) dx. When the force and velocity

field coincide (i.e., the Jacobian of the push-forward map associated with the velocity field is a
diffeomorphism), they can be expressed as spatial gradients of a potential u(x, t) (Brenier, 1991).
Under these conditions, W becomes equivalent to the kinetic energy in the Benamou–Brenier
formulation of optimal transport (Benamou & Brenier, 2000), and provides an upper bound on the
squared 2-Wasserstein distance between the distributions:

W 2
2 (p, p

′) ≤
∫∫

∥v(x, t)∥2pt(x) dx dt =W (7)

where v and p satisfy ∂
∂tpt(x) = −∇x · [pt(x)v(x, t)]. Minimizing W yields the optimal transport

map that transforms p into p′ along the path requiring minimal energy. The idea of identifying
probability paths minimizing the kinetic energy, or more generally a Lagrangian, has recently been
applied to improve the efficiency of probability flow generative models (Tong et al., 2020; 2023; Klein
et al., 2023; Irwin et al., 2025; Shaul et al., 2023; Albergo et al., 2023; Neklyudov et al., 2023a;b).

3
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3 MINIMUM-EXCESS-WORK GUIDANCE

During the generative process, we transform a simple distribution p1 ∼ N (0, I) into a complex
data distribution p0 with support Ω ⊆ Rd by solving the reverse-time SDE (3) or the ODE (4). To
incorporate additional constraints and align the generative process with new information, we modify
the drift of Eqs. (3) and (4) by introducing an additive perturbation to the score model:

dxt =
(
f(xt, t)− g(t)2 [sθ(xt, t) + hϑ(xt, t)]

)
dt+ g(t) dw̃t x1 ∼ p1 , (8)

dxt

dt
= f(xt, t)−

1

2
g(t)2 [sθ(xt, t) + hϑ(xt, t)] x1 ∼ p1 , (9)

where hϑ : Rd × [0, 1] → Rd is a time-dependent vector field.

The aim of MEW guidance is to satisfy a guidance objective for the guided distribution p′0 ̸= p0,
while minimizing the excess work associated with hϑ(xt, t), required to modify the probability
density, p0. We define the excess work in the context of an unperturbed and perturbed system
described by the following ODEs over t ∈ [0, 1] with p1 = p′1:

dxt

dt
= v(xt, t) ,

dxt

dt
= v(xt, t) + u(xt, t) , (10)

with the respective time-marginal densities pt, p′t. Loosely following Eq. (7), we define the excess
work as ∆W :=

∫∫
∥u(x, t)∥2 p′t(x) dx dt , which for the ODEs (4) and (9) becomes:

∆W (ϑ) =

∫∫
g(t)4

4
∥hϑ(x, t)∥2 p′t(x) dx dt . (11)

To justify our choice of excess work as a regularizer, it is helpful to understand how perturbations
affect the generated distribution. In particular, we would like p′0 to remain close to the reference
base distribution p0. While stability bounds of this type have appeared in the literature on ODEs and
SDEs, we restate tailored versions here for completeness, with proofs in Appendices A.2 and A.3.
Proposition 3.1. Let pt and p′t be the distributions at time t obtained by solving the ODEs (4) and (9)
backwards in time from the same initial distribution p1 at t = 1. Assume that the vector fields are
measurable in time and Lt-Lipschitz in space with Lt integrable. Then:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

wW(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt , wW(t) := et+2

∫ t
0
Ls ds . (12)

Proposition 3.2. Let pt and p′t be the distributions at time t induced by the reverse-time SDEs (3)
and (8) starting from the same distribution p1 at t = 1. Assume that both SDEs admit strong solutions,
and that P′ ≪ P, where P,P′ are the path measures induced by the SDEs on C([0, 1],Rd). Then:

DKL(p
′
0∥p0) ≤

∫ 1

0

wKL(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt , wKL(t) :=

2

g(t)2
. (13)

Since both bounds—for the KL divergence and the Wasserstein distance—are time-reweighted
versions of the excess work ∆W (11), it serves as a natural choice of regularizer for guidance
objectives. We then optimize the parameters ϑ of the perturbation hϑ by minimizing the following:

L(ϑ) = L1(ϑ) + γ ∆W (ϑ) , (14)

where L1(ϑ) is a guidance objective, and γ controls the regularization strength.

We now explore how this minimum-excess-work principle is applied in the two settings: (1) guidance
based on expectations of observables; (2) targeted guidance towards a user-defined subspace.

Observable Guidance. In this section, we guide a diffusion model to align with data that reflects
an expectation, using the MEW approach. Using a set of Lagrange multipliers Λ = {λ1, ..., λM}
pre-estimated using, e.g., the algorithm outlined in Bottaro et al. (2020), we dynamically adjust the
score by estimating an augmentation factor hϑ that ensures

∣∣Ep′(x)[Oi(x)]− oi
∣∣ ≤ ϵ. Note that

traditional reweighting techniques typically apply bias post-hoc, whereas our method adapts the
generative process. We express the guidance factor as,

hϑ(xt, t) = −ηt(ϑ)
∑M

i=1
λi∇xt

Oi(x̂t(xt)) . (15)

4
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In the same way that a score model sθ(xt, t) approximates the gradient of the log probability, hϑ(xt, t)
is the gradient of the observable function with respect to the latent variable xt. The coefficients λi
steers the flow towards (or away from) directions favored by the experimental observable expectation,
thus “adjusting” the score of the original model. The expression in Eq. (15) thus reflects the
maximum entropy principle applied in a generative setting. Its amplitude is modulated by ηt(ϑ) =
ηinit exp(−κ(1− t)), and our optimization strategy consists of learning the parameters ϑ = {ηinit, κ}
of this scalar function. Note that we use the mean posterior estimation x̂t(xt) discussed in Section 2,
instead of using xt directly (Bansal et al., 2023; Chung et al., 2023). Our optimization objective
is two-fold: We want to reduce the discrepancies between the model predictions and experimental
data while minimizing the excess work exerted by the augmentation. The former is a supervised loss
defined as

L1(ϑ) =
1

M

∑M

i=1

(
oexp
i − Ex∼p′

0
[Oi(x)]

)2
, (16)

where oexp
i are the experimental values and Ex∼p′

0
[Oi(x)] denotes the expected values under the

adjusted distribution p′0. To balance accuracy with the principle of maximum entropy, we introduce
a regularization term based on minimizing the excess work ∆W . Substituting the specific form of
hϑ(xt, t) from Eq. (15) into Eq. (11), we obtain:

∆W (ϑ) =

∫ 1

0

g(t)4

4
|ηt(ϑ)|2 Ex∼p′

t

[∥∥∥∑M

i=1
λi∇xOi(x̂t(x))

∥∥∥2] dt. (17)

Path Guidance. In this setting, we assume access to a set of guiding samples X g = {xi}Mi=1, each
belonging to a target subset A ⊂ Ω of the sampling space. Assuming that A forms a coherent region
rather than being scattered across distinct modes, we modify the score of the diffusion model to
sample from a perturbed distribution x ∼ p′0 that increases the likelihood of x ∈ A. Since L1 need
not be differentiable, the objective can be formulated generally as:

L1(ϑ, φ) = 1− 1

N
Ex∼p′

0

[
1{x∈A}

]
. (18)

Guiding the diffusion process towards the subsetA can be done by taking advantage of the probability
flow ODE (4), which holds the desirable property of providing unique latent representations of each
data point, for any time step t. Starting from the guiding samples, we compute their trajectories by
integrating Eq. (4) forward in time, obtaining the latent representations X g

t = {xi
t}Mi=1 for time t.

The set {X g
t }1t=0 defines a trajectory of latent representations that the model must follow to ensure

its samples satisfy x′ ∈ A. Based on this trajectory, we can define the augmentation factor as:
hϑ,φ(xt, t) := ηt(ϑ)∇xt

logKht(φ)(xt,X g
t ) (19)

with Kht(φ)(xt,X g
t ) :=

∑
xi
t∈Xg

t
Kht(φ)(xt,x

i
t) where K can be any differentiable kernel with

time-dependent bandwidth ht(φ). By updating the score function using Eq. (19), we align the
sampling trajectory with that of the guiding points, while regularizing the guidance strength via
the same excess work penalty as in Eq. (17), now evaluated using the time-dependent KDE score
Ex∼p′

t

[
∥∇x logKht(φ)(x,X g

t )∥2
]
. In practice, both ηt(ϑ) and ht(φ) are implemented as sigmoid

functions with learnable parameters ϑ = (ϑinit, ϑg, ϑs) and φ = (φinit, φg, φs) (see Appendix B.4)
and optimized for Eq. (14) using Bayesian optimization with Gaussian Processes. The use of sigmoids
allows the guidance to be stronger early in the trajectory, when xt is close to the Gaussian prior and
the kernel signal is more stable, and weaker near t = 0, where the data distribution is more complex
and direct guidance is less reliable.

4 EXPERIMENTS

We now demonstrate the application of minimum-excess-work guidance across several experimental
setups. We first evaluate path and observable guidance on two toy setups and will then proceed to
showcase our approach on a coarse-grained protein Boltzmann Emulator.

4.1 OBSERVABLE GUIDANCE

4.1.1 SYNTHETIC DATA

We chose a fully controlled synthetic system to test MEW guidance. We set up a biased 1D quadruple-
well diffusion model with an accessible ground-truth Boltzmann distribution (Prinz et al., 2011) using

5
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only the expectation of a known observable (a four-component GMM) and injecting the corresponding
Lagrange multiplier via Eq. (8) following Bottaro et al. (2020). This simple test system displays
two key properties in molecular dynamics: multi-modality and metastability, while keeping the
corresponding Boltzmann distribution is numerically accessible, allowing us to directly gauge our
methods’ ability to recover the unbiased distribution and to unambiguously test whether guidance
alone corrects distributional bias: we observe a ten-fold KL reduction (from 0.13 to 0.019±0.002)
while matching the observable and find MEW regularization is critical to prevent mode collapse and
preserve distributional fidelity. See Appendix Fig. 6 and Tab. 3 for overlays and metrics; ablation
experiments are reported in Appendix Fig. 14 and Tab. 4.

4.1.2 COARSE-GRAINED PROTEIN BOLTZMANN EMULATOR (CGBE): CHIGNOLIN

To evaluate our method on a real-world task, we apply observable guidance to guide a pre-trained
cgBE to sample conformations of chignolin, a ten-residue mini-protein that serves as a standard
benchmark in protein folding studies (Honda et al., 2004; Satoh et al., 2006; Lindorff-Larsen
et al., 2011). Our task is to correct systematic biases in the equilibrium sampling using only
experimental measurements while preserving physical validity. This is a challenging task given the
high-dimensional structured space and unknown ground truth distribution.

Experimental Setup. We use folding free energy ∆G = −kBT log( pfolded
punfolded

) as our observable, which
captures the relative stability of different protein conformations. The reference model pMD shows
significant bias in this metric (−1.27 kcal/mol vs. experimental value of −1.87 kcal/mol (Honda
et al., 2004)), making it a suitable test case. Model architecture and training details are provided in
Appendix B.3.

Table 1: Quantitative metrics evaluating the guid-
ance process: expected observables and KL diver-
gence.

Model M EpM(x)[O(x)]
(kcal/mol) KL(p′MD∥pM)

Experimental −1.87 —
Reference −1.27 0.329
Guided −1.82± 0.01 0.005± 0.002

Evaluation. Our guided model achieves substantial
improvements across several metrics (see Table 1)
while maintaining physical validity, which we veri-
fied through the analysis of bond lengths and torsion
angles (Figs. 7 to 9, in the Appendix). The guided
model’s folding free energy (−1.82± 0.01 kcal/mol)
closely matches the target experimental value (−1.87
kcal/mol), reducing mean squared error by an order
of magnitude from 0.6 to 0.05 kcal/mol. Additionally,
the KL divergence from the reference MD trajectory improves from 0.329 to 0.005± 0.002, demon-
strating better conservation of the properties of the reference distribution, including multi-modality
and entropy. Fig. 2 visualizes these improvements. Panels A and B demonstrate that guidance suc-
cessfully increases the population of folded states (d(Cα

1 ,C
α
9 ) < 7.5Å), consistent with experimental

observations. Panel C shows 50 superimposed generated structures, highlighting both the diversity
and physical validity of our samples.

4 5 6 7 8 9 20 3010

biased model (trained 
on MD data)

guided model

A

B

C

Figure 2: Observable Guidance of Chignolin. (A) Folding free energy comparison between reference model
(blue), experimental data (yellow), and guided model (red). (B) Free energy profiles as a function of N- to
C-terminal Cα distance. (C) Ensemble of 50 generated protein structures colored by their energy.
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4.1.3 BIOEMU: HOMEODOMAIN

Finally, we showcase our approach on the fast-folding homeodomain EnHD HTH fragment (44
residues) using the BioEmu cgBE Lewis et al. (2024), a canonical model extensively studied experi-
mentally (Religa et al., 2007; Religa, 2008) and computationally (Mayor et al., 2000; Lewis et al.,
2024).

Experimental Setup. We generate ensembles with BioEmu and compare expected 3JHN-HA couplings
to experiment. These couplings report on backbone dihedrals and thus thermodynamic populations.
In our experiments, we use the 10 most informative observables (details in Appendix B.3.3). We
quantified the agreement between experiments and computational predictions by the Q-factor Bax
(2003) and notice that the unguided model shows a clear discrepancy (Q = 0.147), motivating the
use of our approach. Training details are in Appendix B.3.3.

Figure 3: Observable guidance on EnHD. Top: 10
experimental 3J vs. unguided (light blue), MEW-guided
(red), and post-hoc reweighted predictions; inset: 10
sampled structures colored by RMSD. Bottom: repre-
sentative histogram of residue 38 illustrating the guided
population shift.

Evaluation. MEW markedly improves agree-
ment while preserving physical plausibility
(Fig. 3). Using only 10 experimental expecta-
tions, Q drops from 0.147 (unguided) to 0.037
(MEW); post-hoc reweighting achieves 0.031
but with moderate weight degeneracy (relative
ESS = 0.255). MEW avoids this importance-
weight collapse by updating the generator di-
rectly. After guidance, points cluster near the
identity within experimental uncertainty; the in-
set ensemble shows broad conformational cov-
erage without mode collapse, and a representa-
tive observable (residue 38) shifts toward the
experimental region without variance loss. Full
histograms and structural diagnostics are in
Figs. 12 and 13. Overall, MEW uses sparse
1D NMR readouts to make targeted, physically
consistent adjustments to BioEmu’s EnHD sam-
pling.

These results demonstrate that guidance in the
sparse-data regime with MEW regularization
allows us to effectively align high-dimensional
and highly structured generative models with
experimental constraints without compromising
local physical validity and maintaining global
distributional properties such as multi-modality.

4.2 PATH GUIDANCE

We now use the cgBE to evaluate path guidance with MEW regularization for up-sampling high-
energy transition configurations (states), which are critical for understanding the folding process of
proteins. Due to their high energy (Eq. (5)), these states account for only 1% of both the data and
model distribution, making their successful up-sampling a strong demonstration of our method’s
effectiveness. Consistent with Section 4.1, we also use the chignolin mini-protein, as its transition
regions are low-probability but coherent regions, as the transition path is approximately concentrated
near a dominant pathway. This geometry satisfies the precondition for effective path guidance as
aggregated kernels bring a consistent pull towards A, whereas proteins with highly multi-modal
transition states would yield competing signals and weaker guidance. To contextualize path guidance,
we first introduce an alternative baseline.

Baseline. As a natural alternative to path guidance, we adapt loss guidance to our setting by using
the log-likelihood of a KDE fitted on guiding points X g

0 = {xi
0}Mi=1. Specifically, we will change the

perturbation kernel from Eq. (19) to Kht(φ)(x̂t(xt),X g
0 ). While it appears similar to path guidance,

the key difference lies in the space the KDE is computed. In path guidance, the kernel is applied along
the trajectory {X g

t }t=1
t=0, resulting in a distinct KDE for each time step t. In contrast, loss guidance

computes the KDE in data space and estimates the likelihood with respect to the posterior mean
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Figure 4: Path Guidance vs. Loss-Guidance for sampling Transition States. (A) Sample quality and diversity,
measured by the Wasserstein Distance (WD) and Vendi score (VS), show that path guidance preserves diversity
and quality even at high guiding strengths, whereas loss guidance deteriorates. (B) Without MEW regularization
(γ = 0), sampled transition states tend to collapse and have no diversity (VS). Regularization also improves
sample quality (WD). (C) Guiding success rate, measured as the percentage of transition states sampled, for
different regularization strengths.

x̂t(xt), which requires backpropagating through the model at every sampling step. Implementation
details and ablation studies for two alternative baselines that do not augment the vector field are
provided in Appendix B.4 and Appendix D.3. To explore the dynamics of both methods, we design a
synthetic example to study the effect of different parameters (see Appendix D.1 for details).

Evaluation Criteria. We assess the methods using three key metrics. First, we measure guiding
success as the percentage of sampled transition configurations (see Appendix B.2 for details). Second,
we evaluate the diversity among transition states using the Vendi score (VS) (Friedman & Dieng,
2022) to verify that our method generates novel samples rather than merely resampling the guiding
data. Lastly, since we cannot evaluate the energy under the coarse-grained model, we instead ensure
physical validity of the generated samples under guidance by computing the Wasserstein distance
(WD) between the bond length distributions of generated and ground truth samples, which quantifies
how well our method preserves the local molecular structure.

Transition State Sampling. For the transition configuration sampling task, we adapt the kernel to
handle rigid-body transformations using the Kabsch algorithm (Kabsch, 1976) akin to that adopted in
Pasarkar et al. (2023). Since we found loss guidance to be difficult to optimize in this application,
we first performed a large grid search to identify optimal parameters for a fair comparison. This
analysis revealed that increasing the guidance strength deteriorates sample quality in loss guidance,
preventing it from achieving meaningful guiding success (Fig. 17B). The performance gap stems from
two key disadvantages of loss guidance. First, it requires using the posterior mean to compute the
augmentation factor, which, especially at large t, suffers from very high variance. Second, at small t,
while the predictions become more accurate, the KDE fails to capture the distribution of the guiding
points, as it is not well-suited for high data complexity. As a result, the loss signal can degrade
the sampled data, as evident from the increasing Wasserstein distance as the guiding strength ϑinit
increases (Fig. 4A). In contrast, path guidance circumvents this issue by applying stronger guidance
for larger t, where the latent is primarily noise, and decreasing it while sampling. Notably, in Fig. 4A,
we observe that both quality and diversity remain largely unaffected by the initial guiding strength
ϑinit. We further investigate the difference between path and loss guidance in Appendix D.2.

After observing that loss guidance could not be reliably optimized, we conducted a separate set of
experiments to evaluate path guidance within the MEW framework by optimizing the objective in
Eq. (14). Disabling regularization (γ = 0) results in the highest guidance success rates (Fig. 4C),
but produces highly degenerate samples and reduced structural diversity, as indicated by the large
variance in Wasserstein distance. In contrast, applying MEW regularization improves both sample
quality and diversity (Fig. 4B), while incurring only a modest reduction in guidance success. Overall,
our results demonstrate that path guidance offers a strong alternative to loss guidance, and that MEW
regularization is essential for robust and physically meaningful sampling in data-sparse regimes.
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5 RELATED WORKS

Stochastic Optimal Control. MEW also naturally connects to recent advances in stochastic optimal
control (SOC) applied to diffusion and flow-based generative models. In particular, to approaches
which consider steering generative trajectories by balancing a task-specific objective, such as aligning
with experimental observables or reward models with a regularization that penalizes deviation from a
pre-trained base model. In those works (Uehara et al., 2024; Domingo-Enrich et al., 2024; Han et al.,
2024; Tang, 2024), fine-tuning the diffusion model is framed as a SOC problem that minimizes control
effort while achieving alignment with downstream goals. Conceptually, the MEW principle plays
an analogous role to the control cost in SOC, regularizing path perturbations to preserve the prior’s
structure while achieving target objectives. This connection puts MEW within the broader trend
of leveraging control-theoretic principles, including KL and f-divergence regularization, to derive
principled, sample-efficient, and robust fine-tuning strategies for probabilistic generative models.

Transition ensemble sampling. Traditional methods like transition path sampling (Bolhuis et al.,
2000; Cabriolu et al., 2017) use Monte Carlo in trajectory space, while recent machine learning
approaches (Liu et al., 2025) employ neural networks but require extensive training data or predefined
collective variables. Instead of explicit path sampling, we guide the generative process using latent
representations of known transition states. While related to recent work using Boltzmann Generators
(Plainer et al., 2023), our approach directly modifies the score function during sampling rather than
performing MCMC moves between paths, enabling more efficient exploration of transition regions.

Reweighting with experimental data. Reweighting molecular dynamics simulations using experi-
mental data has a long history in computational chemistry and biophysics. Theoretical work (Roux &
Weare, 2013; Cavalli et al., 2013; Boomsma et al., 2014; Pitera & Chodera, 2012) adopted Jaynes
(1957) Maximum Entropy approach to the problem, following several early experimental studies
(Lindorff-Larsen et al., 2005; Dedmon et al., 2004; Cesari et al., 2018) based on replica-averaged
simulations, giving a theoretical foundation for these approaches. This work was later complemented
by probabilistic and Bayesian perspectives (Olsson et al., 2013; Bottaro et al., 2020; Bonomi et al.,
2016; 2018), some of which specifically focused on reweighing (Hummer & Köfinger, 2015; Olsson
et al., 2016; 2017; Kolloff & Olsson, 2023).

6 LIMITATIONS

Despite the strong empirical performance of MEW guidance across a range of scientific settings,
several limitations merit consideration. These primarily stem from the assumptions underpinning
the method’s application, e.g., that physical observables or representative samples can be leveraged
to correct expectation values or guide sampling in low-density regions. While this does not require
perfect model accuracy, it does require the model to be sufficiently expressive and responsive to
guidance. If key modes are absent, convergence to meaningful distributions may fail. Additionally, the
current framework assumes differentiable observables and guidance targets, restricting its applicability
in discrete or non-differentiable domains.

7 CONCLUSION

In this work, we introduced minimum-excess-work (MEW) guidance, a physics-inspired framework
for regularizing the guidance of pre-trained probability flow generative models by regularizing excess
work. Our analysis shows that this thermodynamically motivated regularization is closely connected
to upper bounds on the Wasserstein distance and the KL divergence between the reference and guided
distributions. We demonstrated the effectiveness of MEW regularization in two settings: Observable
Guidance and Path Guidance. These approaches enable alignment with sparse experimental
constraints and targeted sampling in low-density regions, while maintaining model flexibility. By
penalizing excess work, our method reduces bias and enhances the sampling of rare, physically
meaningful configurations, without degrading sample quality. Our results position MEW guidance
as a principled and effective tool for bias correction and informed exploration in data-scarce scientific
applications, such as the refinement of coarse-grained force fields against experimental data or the
generation of starting conditions for unbiased MD or transition path sampling.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release anonymised code2 with a detailed README and scripts to
reproduce all experiments under the settings reported in this work. The repository includes the
pretrained checkpoints used for sampling. For path guidance we additionally provide the guiding
samples, and for observable guidance, the summary statistics required to recreate the results. Imple-
mentation details, such as architectures, training schedules, and hyperparameter search procedures,
are documented in Appendix B, together with compute and runtime specifications. Although the
code for the synthetic examples is not included, we provide a complete description of their setup in
Appendix B to enable independent reimplementation.
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DISCLOSURE OF LLM USAGE

For this submission, large language models were used for polishing text (improving clarity, precision,
and flow) and for refinements of plots to improve visual quality and presentation.

A PROOFS

A.1 SHORT DERIVATION OF MAXIMUM ENTROPY REWEIGHTING OF MD TRAJECTORIES
USING OBSERVABLES

The maximum entropy approach (Jaynes, 1957) has been widely adopted (Hummer & Köfinger,
2015; Boomsma et al., 2014; Olsson et al., 2016; 2017; Bottaro et al., 2020) to derive reweighting
schemes to find a minimally biased probability distribution that satisfies experimental constraints.

Consider a reference probability distribution p(x), e.g., an empirical distribution estimated from MD
simulation data, and an unknown target distribution p′(x) that should match experimental measure-
ments. Following Jaynes’ maximum entropy principle, we seek to minimize the KL divergence from
p(x) to p′(x) subject to the constraint that the expectations of observables Oi(x) under p′(x) match
their experimental values oi. That is,

min
p′

∫
p′(x) log

p′(x)

p(x)
dx (20)

subject to:

Ep′(x)[Oi(x)] = oi for i = 1, . . . ,M (21)∫
p′(x) dx = 1 (22)

Using the method of Lagrange multipliers, we obtain the following objective:

S = −
∫
p′(x) log

p′(x)

p(x)
dx+

M∑
i=1

λi

(∫
p′(x)Oi(x) dx− oi

)
+ µ

(∫
p′(x) dx− 1

)
(23)

where {λi}Mi=1 are the Lagrange multipliers for the constraints on the M observables, and µ is the
multiplier for density normalization. Setting the functional derivative δS/δp′ to zero yields

− log
p′(x)

p(x)
− 1 +

M∑
i=1

λiOi(x) + µ = 0 . (24)

Finally, solving for p′(x) and determining µ through normalization gives

p′(x) ∝ p(x) exp

(
−

M∑
i=1

λiOi(x)

)
, (25)

where the λs are determined, e.g., following Bottaro et al. (2020), such that the constraints on the
expectations are satisfied. This reweighted distribution represents the maximum entropy solution that
satisfies the experimental constraints while minimizing the bias introduced relative to the reference
distribution p(x).

A.2 BOUNDING THE WASSERSTEIN DISTANCE

In this section, we derive an upper bound on the squared Wasserstein distance W 2
2 (p0, p

′
0), where the

distributions p0 and p′0 are obtained by evolving a common terminal distribution p1 = p′1 backward
in time according to the ODEs in Eqs. (4) and (9). We begin by proving a Grönwall-type lemma (see,
e.g., Bressan & Piccoli (2007, Lemma 2.1.2)) that will be useful to prove our result.
Lemma A.1. Let T > 0 and let f be an absolutely continuous function over [0, T ] satisfying the
differential inequality

d

dt
f(t) ≤ a(t)f(t) + b(t) for a.e. t ∈ [0, T ], (26)
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where a, b ∈ L1([0, T ]) are integrable functions. Then, for every t ∈ [0, T ],

f(t) ≤ exp

(∫ t

0

a(u) du

)
f(0) +

∫ t

0

exp

(∫ t

s

a(u) du

)
b(s) ds . (27)

Proof. Define the absolutely continuous function

ψ(t) := exp

(
−
∫ t

0

a(u) du

)
and note that ψ(t) > 0, ψ(0) = 1, and

d

dt
ψ(t) = −a(t)ψ(t) .

Multiplying both sides of Eq. (26) by ψ(t) and integrating from 0 to t, we have∫ t

0

ψ(s)
d

ds
f(s) ds ≤

∫ t

0

ψ(s)a(s)f(s) ds+

∫ t

0

ψ(s)b(s) ds (28)

ψ(t)f(t)− ψ(0)f(0)−
∫ t

0

ψ′(s)f(s) ds ≤
∫ t

0

ψ(s)a(s)f(s) ds+

∫ t

0

ψ(s)b(s) ds (29)

ψ(t)f(t)− f(0) +

∫ t

0

a(s)ψ(s)f(s) ds ≤
∫ t

0

ψ(s)a(s)f(s) ds+

∫ t

0

ψ(s)b(s) ds (30)

ψ(t)f(t) ≤ f(0) +

∫ t

0

ψ(s)b(s) ds . (31)

We then divide both sides by ψ(t) again to conclude:

f(t) ≤ f(0)

ψ(t)
+

∫ t

0

ψ(s)

ψ(t)
b(s) ds (32)

= exp

(∫ t

0

a(u) du

)
f(0) +

∫ t

0

exp

(∫ t

s

a(u) du

)
b(s) ds (33)

Proposition A.2. Let T > 0, and let v,v′ : [0, T ] × Rd → Rd be measurable in time and Lt-
Lipschitz in space, with Lt integrable. Let p0 be a probability measure on Rd, and define pt, p′t as
the pushforwards of p0 under the flows of the ODEs dxt

dt = vt(xt) and dx′
t

dt = v′
t(x

′
t). Then for all

t ∈ [0, T ],

W 2
2 (pt, p

′
t) ≤

∫ t

0

exp

(
t− s+ 2

∫ t

s

Lu du

)
Ex∼p′

s

[
∥vs(x)− v′

s(x)∥2
]
ds . (34)

Proof. Let ϕt, ϕ′t be the flows of the ODEs, i.e., xt = ϕt(x0),
dϕt(x)

dt = vt(ϕt(x)), and similarly for
x′ and ϕ′t. Define the coupling:

π̃t := (ϕt, ϕ
′
t)∗p0 ∈ Γ(pt, p

′
t) , (35)

i.e., the pushforward of p0 through the map x 7→ (ϕt(x), ϕ
′
t(x)). By definition of 2-Wasserstein

distance, we can write:

W 2
2 (pt, p

′
t) ≤

∫
∥x− x′∥2 dπ̃t(x,x′) = E(xt,x′

t)∼π̃t

[
∥xt − x′

t∥2
]

(36)

Take any x0,x
′
0 ∈ Rd and let xt = ϕt(x0) and x′

t = ϕ′t(x
′
0). Then,

d

dt
∥xt − x′

t∥2 = 2(xt − x′
t) · (vt(xt)− v′

t(x
′
t)) (37)

= 2(xt − x′
t) · (vt(xt)− vt(x

′
t)) + 2(xt − x′

t) · (vt(x
′
t)− v′

t(x
′
t)) (38)
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We bound the first term using the Cauchy–Schwarz inequality and the Lt-Lipschitzness of vt:

2(xt − x′
t) · (vt(xt)− vt(x

′
t)) ≤ 2∥xt − x′

t∥ ∥vt(xt)− vt(x
′
t)∥ (39)

≤ 2Lt∥xt − x′
t∥2 . (40)

Using 0 ≤ ∥a− b∥2 = ∥a∥2 + ∥b∥2 − 2a · b for the second term we have:

2(xt − x′
t) · (vt(x

′
t)− v′

t(x
′
t)) ≤ ∥xt − x′

t∥2 + ∥vt(x
′
t)− v′

t(x
′
t)∥2 . (41)

Plugging these two bounds into Eq. (38), we get

d

dt
∥xt − x′

t∥2 = 2(xt − x′
t) · (vt(xt)− vt(x

′
t)) + 2(xt − x′

t) · (vt(x
′
t)− v′

t(x
′
t)) (42)

≤ 2Lt∥xt − x′
t∥2 + ∥xt − x′

t∥2 + ∥vt(x
′
t)− v′

t(x
′
t)∥2 (43)

= (2Lt + 1)∥xt − x′
t∥2 + ∥vt(x

′
t)− v′

t(x
′
t)∥2 . (44)

Finally, taking expectations on both sides w.r.t. (xt,x
′
t) ∼ π̃t, and exchanging expectation and

derivative under standard regularity assumptions, we get:

d

dt
E
[
∥xt − x′

t∥2
]
≤ (2Lt + 1) E

[
∥xt − x′

t∥2
]
+ E

[
∥vt(x

′
t)− v′

t(x
′
t)∥2

]
. (45)

This inequality can be expressed as

df(t)

dt
≤ (2Lt + 1)f(t) + b(t) , f(0) = 0 , (46)

with

f(t) := E(xt,x′
t)∼π̃t

[
∥xt − x′

t∥2
]

(47)

b(t) := Ex′
t∼p′

t

[
∥vt(x

′
t)− v′

t(x
′
t)∥2

]
. (48)

Applying Lemma A.1 with a(t) = (2Lt + 1), we get:

f(t) ≤
∫ t

0

exp

(∫ t

s

(2Lu + 1) du

)
b(s) ds (49)

=

∫ t

0

et−s exp

(
2

∫ t

s

Lu du

)
b(s) ds (50)

Since from Eq. (36) we know that W 2
2 (pt, p

′
t) ≤ f(t), the statement follows:

W 2
2 (pt, p

′
t) ≤

∫ t

0

et−s exp

(
2

∫ t

s

Lu du

)
Ex∼p′

s

[
∥vs(x)− v′

s(x)∥2
]
ds . (51)

Although the result in the time-reversed case is straightforward as it directly follows from a time
reparameterization, we state it and prove it for the sake of completeness.
Proposition A.3. Let v,v′ : [0, 1]×Rd → Rd be measurable in time and Lt-Lipschitz in space, with
Lt integrable. Let p0, p′0 be probability measures on Rd, and define pt, p′t as the pushforwards of p0
under the flows of the ODEs dxt

dt = vt(xt) and dx′
t

dt = v′
t(x

′
t). Assume p1 = p′1. Then,

W 2
2 (p0, p

′
0) ≤

∫ 1

0

exp

(
t+ 2

∫ t

0

Ls ds

)
Ex∼p′

t

[
∥vt(x)− v′

t(x)∥2
]
dt . (52)

Proof. Consider the time reversal transformation s = 1 − t. Define x̃s := x1−s and x̃′
s := x′

1−s,
where xt and x′

t satisfy the original ODEs with vector fields vt,v
′
t, with xt ∼ pt, x′

t ∼ p′t, and
p1 = p′1. Differentiating the reversed processes, we get:

dx̃s

ds
=

dx1−s

dt
· dt
ds

= −v1−s(x1−s) = −v1−s(x̃s) (53)
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and similarly for x̃′. Thus, the reversed processes satisfy:

dx̃s

ds
= ṽs(x̃s) ,

dx̃′
s

ds
= ṽ′

s(x̃
′
s) , (54)

where we defined the reversed velocity fields ṽs(x) := −v1−s(x) and ṽ′
s(x) := −v′

1−s(x). From
the definitions x̃s := x1−s and x̃′

s := x′
1−s it directly follows that p̃s = p1−s and p̃′s = p′1−s. At

s = 0, we have p̃0 = p1 = p′1 = p̃′0, so the reversed processes start from the same distribution.

Since vt and v′
t are Lt-Lipschitz in space with Lt integrable, ṽs and ṽ′

s are L1−s-Lipschitz. The
reversed ODEs start at s = 0 from the same distribution (p̃0 = p̃′0) and evolve to p̃1 = p0 and
p̃′1 = p′0 at s = 1. Applying Proposition A.2, we get:

W 2
2 (p̃1, p̃

′
1) ≤

∫ 1

0

exp

(
1− s+ 2

∫ 1

s

L1−u du

)
Ex∼p̃′

s

[
∥ṽs(x)− ṽ′

s(x)∥2
]
ds . (55)

Substituting p̃s = p1−s and p̃′s = p′1−s, using the definitions of ṽt, ṽ
′
t, and applying a change of

variables t = 1− s, we obtain the desired bound:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

exp

(
1− s+ 2

∫ 1

s

L1−u du

)
Ex∼p′

1−s

[
∥v1−s(x)− v′

1−s(x)∥2
]
ds (56)

=

∫ 1

0

exp

(
t+ 2

∫ 1

1−t

L1−u du

)
Ex∼p′

t

[
∥vt(x)− v′

t(x)∥2
]
dt (57)

=

∫ 1

0

exp

(
t+ 2

∫ t

0

Ls ds

)
Ex∼p′

t

[
∥vt(x)− v′

t(x)∥2
]
dt . (58)

In this work, we are specifically interested in the ODEs (4) and (9):
Proposition 3.1. Let pt and p′t be the distributions at time t obtained by solving the ODEs (4) and (9)
backwards in time from the same initial distribution p1 at t = 1. Assume that the vector fields are
measurable in time and Lt-Lipschitz in space with Lt integrable. Then:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

wW(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt , wW(t) := et+2

∫ t
0
Ls ds . (12)

Proof. The ODEs (4) and (9) have the following vector fields:

vt(x) = f(x, t)− 1

2
g(t)2s(x, t)

v′
t(x) = f(x, t)− 1

2
g(t)2 (s(x, t) + h(x, t)) .

The result directly follows by applying Proposition A.3:

W 2
2 (p0, p

′
0) ≤

∫ 1

0

exp

(
t+ 2

∫ t

0

Ls ds

)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt . (59)

A.3 BOUNDING THE KL DIVERGENCE

Proposition A.4. Let p, p′ : Rd× [0, 1] → R≥0 be two probability paths over time t ∈ [0, 1], induced
by two reverse-time SDEs:

dxt = µt(xt) dt+ gt dw̃t , dxt = µ′
t(xt) dt+ gt dw̃

′
t (60)

where w̃t, w̃
′
t are reverse-time Wiener processes, µ,µ′ : Rd × [0, 1] → Rd, and g : [0, 1] → R>0.

Assume that p1 = p′1, that both SDEs admit strong solutions, and that P′ ≪ P, where P,P′ are the
path measures induced by the SDEs on C([0, 1],Rd). Then:

DKL(p
′
0∥p0) ≤

1

2

∫ 1

0

1

g2t
Ex∼p′

t

[
∥µ′

t(x)− µt(x)∥2
]
dt . (61)
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Proof. By applying the chain rule of the KL divergence (Léonard, 2014, Theorem 2.4) at t = 0 and
t = 1, we have:

DKL(P
′∥P) = DKL(p

′
0∥p0) + Ex∗

0∼p′
0

[
DKL(P

′
x0=x∗

0
∥Px0=x∗

0
)︸ ︷︷ ︸

≥0

]
(62)

DKL(P
′∥P) = DKL(p

′
1∥p1)︸ ︷︷ ︸

=0

+Ex∗
1∼p′

1

[
DKL(P

′
x1=x∗

1
∥Px1=x∗

1
)
]
. (63)

The subscripts on the path measures denote conditioning on the value of the process at a specific
time (by disintegration of path measures). We can therefore bound DKL(p

′
0∥p0) by a KL divergence

between path measures:

DKL(p
′
0∥p0) ≤ Ex∗

1∼p′
1

[
DKL(P

′
x1=x∗

1
∥Px1=x∗

1
)
]
. (64)

By Girsanov’s theorem (Øksendal, 2003),

DKL(P
′
x1=x∗

1
∥Px1=x∗

1
) =

1

2
EP′

x1=x∗
1

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]
. (65)

We can now write the iterated expectation as an expectation over the unconditional path measure P′:

Ex∗
1∼p′

1

[
DKL(P

′
x1=x∗

1
∥Px1=x∗

1
)
]
=

1

2
Ex∗

1∼p′
1

[
EP′

x1=x∗
1

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]]

(66)

=
1

2
EP′

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]
. (67)

Finally, we switch the expectation and integral (Fubini–Tonelli), and simplify the expectation over P′

into an expectation over the time marginal p′t since the argument of the integral only depends on t:

EP′

[∫ 1

0

1

g2t
∥µ′

t(xt)− µt(xt)∥2 dt
]
=

∫ 1

0

1

g2t
Ex∼p′

t

[
∥µ′

t(x)− µt(x)∥2
]
dt , (68)

which concludes the proof.

In this work, we are specifically interested in the reverse-time SDEs (3) and (8):

Proposition 3.2. Let pt and p′t be the distributions at time t induced by the reverse-time SDEs (3)
and (8) starting from the same distribution p1 at t = 1. Assume that both SDEs admit strong solutions,
and that P′ ≪ P, where P,P′ are the path measures induced by the SDEs on C([0, 1],Rd). Then:

DKL(p
′
0∥p0) ≤

∫ 1

0

wKL(t)
g(t)4

4
Ex∼p′

t

[
∥hϑ(x, t)∥2

]
dt , wKL(t) :=

2

g(t)2
. (13)

Proof. The result directly follows by applying Proposition A.4 to the drifts of the reverse-time
SDEs (3) and (8).

B EXPERIMENTAL DETAILS

B.1 COARSE-GRAINED BOLTZMANN EMULATOR MODEL ARCHITECTURE AND TRAINING
SETUP

The score function in this work is based on the CPaiNN architecture introduced in (Schreiner et al.,
2023) with nh = 64 hidden features and five message passing layers. The score is calculated in two
steps - embedding and processing by CPaiNN. In the embedding step, each node is embedded using
a lookup function. The pairwise distances between nodes and the diffusion time t is encoded with a
positional embedding as described in (Vaswani, 2017). The embedded t is concatenated to the node
features and the resulting vector is projected down to nh dimensions using an MLP. Additionally,
each node is assigned nh zero-vectors serving as initial equivariant features.
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The embedded graph is processed by the score model and the final equivariant features are read out
as the score.

The score model was trained in a DDPM setup as described in (Schreiner et al., 2023) using an
exponential moving average (Tarvainen & Valpola, 2017) with a decay value of 0.99, batch size of
128, and the Adam optimizer with a learning rate of 0.001, β1 = .9, β2 = .999.

B.2 ANALYSIS OF CLN025 MD TRAJECTORY

To evaluate our methods, we calculate pair-wise Cα distances of the ten-residue miniprotein and
project those features onto the two slowest time-lagged independent components (Pérez-Hernández
et al., 2013) with a lag time τ = 10 ns. We then clustered the MD trajectory into n = 128 states
using KMeans. The discretized trajectory was then used for estimating a Markov State Model (MSM)
(Prinz et al., 2011; Bowman et al., 2014; Kolloff & Olsson, 2024) using a lag time of τ = 10 ns
(Hoffmann et al., 2021). For detailed discussions on the background and use of these methods, we
refer the reader to (Bowman et al., 2009; Pande et al., 2010; Prinz et al., 2011; Husic & Pande, 2018).

B.2.1 COMMITTOR PROBABILITIES AND TRANSITION STATES.

Figure 5: Committor Probability Voronoi Diagram. Each region
is colored by its committor probability, where values near 1 corre-
spond to folded states and values near 0 correspond to unfolded
states. Regions near 0.5 represent transition states.

In order to identify the transition states,
we computed the committor probabil-
ities (Metzner et al., 2009), defining
transition states as those with values
near 0.5. If we consider a reactive
process of a system on a space Ω go-
ing from a state A ⊂ Ω to another
state B ⊂ Ω, s. t. A ∩ B = ∅, the
committor qi describes the probability
of reaching state B before A starting
from i.(E. & Vanden-Eijnden, 2006)
Considering the protein folding pro-
cess, A is the unfolded state and B is
the folded state, qi = P (folded first |
starting at state i). Most importantly
in our context, are states with com-
mittor values near 0.5, indicating an
equal likelihood of folding or unfold-
ing, which are identified as transition
states (Fig. 5). These states often repre-
sent critical bottlenecks in the folding
process or in chemical reactions and
are thus of significant biophysical and chemical interest.

B.3 OBSERVABLE GUIDANCE

We evaluated our method on two systems: a synthetic one-dimensional model and the chignolin
protein system. For both systems, guidance parameters were optimized using Bayesian optimization
with Gaussian Processes (GPs) implemented via scikit-optimize (Head et al., 2021). The scaling
function took the form ηt(ϑ) = ηinit exp(−κ(1− t)), with system-specific search spaces for ηinit and
κ. All optimizations used 64 function evaluations with a convergence threshold of 1e-5, retaining
the 5 best parameter sets. The scaling hyperparameter γ, which balances observable matching and
minimum excess work, was consistently set to 1e-3 after hyperparameter search.

B.3.1 SYNTHETIC SETUP AND ADDITIONAL RESULTS

Task and data. We train a diffusion model on samples from a biased 1D quadruple-well potential
(Prinz et al., 2011), allowing for direct, distribution-level validation of a system that displays multi-
modality and metastability yet has a numerically accessible unbiased Boltzmann distribution.
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Table 2: Gaussian Mixture Model Component Parameters

Component Mean (µ) Variance (σ2) Weight (w)

1 0.30 0.01 0.35
2 -0.24 0.01 0.22
3 0.69 0.01 0.27
4 -0.71 0.01 0.16

Neural Network Architecture and Training. Two multilayer perceptron (MLP) networks were
trained on the Prinz potential system (Prinz et al., 2011) with kB = 1.38 · 10−23 and T = 300 K:
one on the unbiased potential and another incorporating a linear bias of -4. Both networks were
trained for 15,000 epochs using a batch size of 256 and the Adam optimizer with a learning rate of
1e-3. The networks shared identical architectures, with input dimension corresponding to single-atom
(natoms = 1) one-dimensional data, a time embedding dimension of 3, hidden dimension of 64, and
output dimension of 1. The training process employed a linear beta scheduler with parameters a = 0.1
and b = 20.0. This scheduler controlled the noise scale during training, allowing for progressive
refinement of the learned distributions.

Observable Function Parameterization. For the synthetic system, the observable function was imple-
mented as a Gaussian Mixture Model (GMM) with four components, parameterized as shown in
Table 2. The Lagrange multiplier was calculated to be -0.66 following (Bottaro et al., 2020). The
parameter search space was defined as ηinit ∈ [1.0, 20.0] and κ ∈ [1.0, 20.0].

Evaluation metrics. We report (i) EpM(x)[O(x)] to assess constraint satisfaction and (ii)
KL(pGT ∥ pM) to assess distributional fidelity relative to the ground truth (GT). We compare a
biased reference model, the guided model, and GT.

Main result. As shown in Fig. 6, guidance corrects the biased density toward GT. Quantitatively
(Table 3), KL is reduced by ∼ 10× (from 0.13 to 0.019±0.002) and the observable expectation
moves from −13.6 to 11.95±0.22, closely matching GT 12.01.

Ablation on MEW regularization. We compare training with (γ > 0) and without (γ = 0) MEW.
Both variants match the observable expectation, but without MEW we observe mode collapse with
mass concentrated in a narrow region and elevated KL, indicating poor distributional fidelity. MEW
preserves the broader reference shape and stabilizes training (visuals in Fig. 14; summary metrics in
Table 4).

Conclusion. This synthetic experiment demonstrates that observable guidance recovers the correct
distribution using only expectation values, while MEW regularization prevents degenerate solutions
and stabilizes training.

B.3.2 CGBE: CHIGNOLIN

For the chignolin protein system, we defined the observable function using the interatomic distance
between the first and last Cα atoms (Cα

1 and Cα
10). The folding free energy was calculated as:

∆G = −kBT log

(
pf

1− pf

)
(69)

where pf represents the fraction of folded samples, defined using a distance cutoff of 7.5 Å. The
Lagrange multiplier was determined to be -0.5 (Bottaro et al., 2020). The parameter search space was
set to ηinit ∈ [10−2, 1.0] and κ ∈ [1.0, 10.0]. The optimization process used 256 samples per epoch,
with final evaluation conducted on 256× 256 samples to ensure robust statistical assessment.

B.3.3 BIOEMU: HOMEODOMAIN

For the homeodomain experiments, we used experimental 3J-couplings:

3JHN–HA(ϕ) = A cos2
(
ϕ− ϕ0

)
+B cos

(
ϕ− ϕ0

)
+ C, ϕ0 = 60◦ (70)
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using the standard parameterization of Vuister & Bax: A = 6.98, B = −1.38, C = 1.72. Due
to high observable covariance, we selected a subset (10/43) of the most informative observables
for guidance. This was done via covariance analysis, which identifies redundant measurements
that provide overlapping structural information and reveals the effective dimensionality of the
conformational space sampled by the observables (see Fig. 10). To identify these observables, we
performed PCA on the covariance matrix and identified observables that contribute significantly to
multiple principal components (threshold: |loading| > 0.25, see Fig. 11). Determining the Lagrangen
mutlipliers was done using Bottaro & Lindorff-Larsen (2018), and the effective sample size was found
to be 0.255. BioEmu’s internal representation consists of a position matrix r and a rotation matrix
Q Lewis et al. (2024). Our augmenter module operates directly on the (r,Q) tuple representation
of positions and residue orientations. From these coarse-grained coordinates, we reconstruct the
backbone geometry, which allows us to compute experimental observables such as the dihedral angle
ϕ required for 3JHN–HA-couplings. The augmenter then evaluates the weighted experimental loss
and provides its gradients with respect to both r and Q. For positions, this yields standard Euclidean
forces. For orientations, gradients are first mapped to the Lie algebra so(3), ensuring that all updates
remain consistent with the SO(3) manifold structure. During denoising, the augmenter is evaluated
not on the noisy state (rt,Qt) but on Tweedie posterior mean estimates of the clean structure. For
positions, the Tweedie relation

r̂0 =
rt + σ2

t s
(r)
t

αt
(71)

links the network’s position score s(r)t to an estimate of the clean coordinates r̂0. For orientations, we
apply an analogous manifold-aware update in SO(3),

Q̂0 = Qt exp
(
Ω̂
(

σ2
t

αt
ωt

))
, (72)

where ωt denotes the predicted rotational score in axis–angle representation and Ω̂(·) maps it to a
skew-symmetric matrix. This update guarantees that Q̂0 ∈ SO(3) without requiring an ambient
projection. In this way, observable guidance enters the diffusion model consistently for both positions
and orientations, while preserving Euclidean and manifold constraints. For training, we used 3,500
samples to evaluate the observable expectations using a batch size of 700. Evaluation was done using
4,900 samples. γ was set to 1e-3 and the parameter search space was set to ηinit ∈ [10−2, 1.0] and
κ ∈ [3.0, 10.0].

B.3.4 COMPUTE RESOURCES AND RUNTIME DETAILS

Figure 6: Comparison of Probability Distributions Before and
After Observable Guidance for a 1D Energy Potential. The top
plot shows the probability distributions for three models: the biased
reference model (blue), the ground truth model (yellow), and the
guided model (red). Guidance helps to align the reference model
with that of the ground truth model using only the expectation of an
observable function (bottom) while minimizing excess work.

Observable guidance experiments
were conducted using HPC com-
pute infrastructure equipped with
NVIDIA A100 GPUs (80GB mem-
ory). Training and evaluation scripts
were run on single-GPU nodes.

For the synthetic system (Section 6
and Table 3), each experiment took
approximately 4 min to run, consum-
ing 6 GB GPU memory. The chigno-
lin experiments (e.g., Figure 17) re-
quired up to 30 min of compute time
per run, and 30 GB of GPU mem-
ory due to the larger input size and
batch requirements. Ablation studies
(Figure 14) were conducted with the
same hardware and each variant was
run across 50 (synthetic case) and
10 (chignolin case) seeds, requiring
1–3 hours per configuration. In total,
the reported experiments required ap-
proximately 10 GPU hours. Prelimi-
nary runs and failed hyperparameter sweeps amounted to an estimated additional 100 GPU hours, not
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included in the main results. All experiments were executed in a reproducible virtual environment
with pinned dependencies (provided in the supplemental code release).

B.4 PATH GUIDANCE

Similar to observable guidance, path and loss guidance were evaluated on two systems: a synthetic
two-dimensional setup and the chignolin mini-protein. We experimented with various functional
forms for the guiding strength and time-dependent bandwidth and found that sigmoid-like step
functions performed well across both tasks:

ηt(ϑ) = ϑinit (1− σ(ϑg(t− ϑs))) (73)
ht(φ) = φinit + σ(φg(t− φs)) (74)

To optimize the parameter sets ϑ and φ we applied Bayesian optimization with Gaussian Processes
(GPs), using the scikit-optimize library. We employed the gp_hedge acquisition function,
which dynamically combines strategies such as Expected Improvement (EI), Probability of Improve-
ment (PI), and Lower Confidence Bound (LCB) based on their empirical performance. After initial
exploration, we restricted the search space to a sensible domain to improve optimization efficiency
and support a broader sweep of experimental configurations.

B.4.1 SYNTHETIC SYSTEM

We evaluated our method on a simple three-moon example, where the two-dimensional dataset
consists of three noisy half-moon arcs generated by sampling from shifted semicircles with optional
convexity and added Gaussian noise (see Fig. 15). While two of the arcs are well-represented in the
training data, only 2.5% of the samples belong to the third arc, creating a challenging low-data region.
We adopt the Conditional Flow Matching (CFM) framework (Lipman et al., 2022), from which the
score function can be derived for augmentation. To approximate the resulting vector field, we train a
four-layer MLP on 10,000 samples for 3,000 steps using a learning rate of 10−4 and a batch size of
256. Training hyperparameters were selected via a small grid search on an NVIDIA A100 GPU. For
optimizing the guidance schedules in Eq. (73), we run 25 Bayesian optimization steps. To classify
whether a sample falls within the target moon, we train a two-layer MLP classifier using a learning
rate of 10−3, 1,000 training steps, and a batch size of 256. For path and loss guidance, we evaluated
γ values between 0 and 1, finding 0.03 working best for path guidance and 0.1 for loss guidance. For
sampling we use 20 guiding points generating 1000 samples in one batch.

B.4.2 CHIGNOLIN SYSTEM

The Boltzmann Emulator used for sampling the chignolin system is described in Appendix B.1.
Since loss guidance could not be reliably optimized via Bayesian optimization, we performed an
extensive grid search over hyperparameters, including various functional forms for the schedules in
Eq. (73). This grid search was run for 24 hours on a single NVIDIA H100 GPU and served primarily
to investigate the failure modes of loss guidance. The corresponding results are shown in Fig. 17B.
To improve stability, we explored gradient clipping and found it essential for loss guidance. For
MEW-guided optimization, we focused exclusively on path guidance. We tested γ values between 0
and 1 and found values γ ≤ 0.5 to be effective. Each run consisted of 50 Bayesian optimization steps,
with one function evaluation taking approximately 2.5 minutes. As a result, a full optimization run for
a fixed γ required about two hours on a single NVIDIA H100 GPU (80GB). After each iteration, we
computed committor probabilities of the sampled protein conformations using the method described
in Appendix B.2 to estimate the proportion of transition-state configurations. For each of the 50
guiding points available, we generated 10 samples, leading to a sample batch size of 500.

C RESULTS: OBSERVABLE GUIDANCE

All error bars for observable guidance were calculated as the standard deviation between n runs
(n = 50 for the 1D energy potential experiments and n = 10 for the chignolin experiments.
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Figure 7: tICA Projection of Original and Observable-Guided Model. State space distribution projected
onto the first and second tICs for the original (A) and guided (B) BG. The plots are colored by their respective
energies.
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Figure 8: Comparison of sequential Cα–Cα distances between the observable-guided diffusion model (OG-
DDPM, green) and the original diffusion model (DDPM, orange). The plots show the distance distributions
for all adjacent Cα pairs (0–2 through 8–9 using zero indexing) in the protein backbone, showing that the guided
model maintains proper protein geometry while achieving the desired constraints.
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Figure 9: Distribution of backbone torsion angles (ϕ1 through ϕ7) comparing the MD simulation (solid
lines) with the observable-guided model (dashed lines). The close agreement between the distributions
indicates that the guided model preserves the native conformational preferences of the protein while satisfying
the experimental constraints. Each torsion angle is shown in a different color. The differences between the two
densities stems from the guidance procedure. Importantly, the the torsion angles themselves remain the same.
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Figure 10: Eigenspectrum of Observable Covariance Matrix. The spectrum shows a high correlation between
the observables, indicating that most carry redundant information.

C.1 ABLATION STUDIES

D RESULTS: PATH GUIDANCE

D.1 SYNTHETIC SYSTEM

Before applying our method to the Boltzmann Generator on the chignolin system, we first evaluated it
on a simple three-moon example (Fig. 15; see Appendix B.4.1 for implementation details). This setup
offers a useful testbed, as the low-data region is connected to a high-density area while remaining
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Figure 11: Principal Components Loading Analysis for Observable Covariance. The four biggest PCs are
shown with a cut-off at 25 % to separate significant contributions to the observables.

Table 3: Metrics for O(x) and KL divergence across models (synthetic).

Model M EpM(x)[O(x)] KL(pGT∥pM)

Ground Truth 12.01 —
Reference −13.6 0.13
Guided 11.95± 0.22 0.019± 0.002

well-separated from the other half-moon. The objective of guidance in this case is to enable transitions
into the low-density region without deviating off the underlying data manifold connecting the moons.

We observe that with ODE sampling, points frequently fall off the manifold, and only careful tuning
of the guiding strength minimizes this issue. In contrast, SDE guiding is more robust, as noise helps
correct guidance errors. Overall, after minimal optimization of ηt and ht, both Path Guidance and
Loss Guidance perform well on this toy example. However, in both methods, careful calibration of
the guiding strength at low t is essential, as errors at this stage cannot be corrected later. Hence, we
found the sigmoid function to be effective in these scenarios, as it naturally converges to 0 for t→ 1.

Table 4: Metrics for O(x) and KL divergence with and without MEW regularization.

Model M EpM(x)[O(x)] KL[pGT(x)∥pM(x)]

w/o MEW 0.131 0.754± 1.533
w/ MEW 0.131 0.029± 0.007
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Backbone psi angle distributions per residue: Unguided (dashed) vs Guided (solid)

Figure 12: ϕ backbone distribution before and after guidance. The close agreement between the distributions
indicates that the guided model preserves the native conformational preferences of the protein while satisfying
the experimental constraints. The differences between the two densities stems from the guidance procedure.
Importantly, the the torsion angles themselves remain the same.

In contrast to the Chingolin experiment, we find that loss guidance performs equally well in this
synthetic setting, likely due to the simplicity of the data distribution, where the (KDE) in data space
sufficiently captures the underlying probability distribution. We also investigate the effect of MEW
regularization and observe that omitting the regularization reduces the diversity of the generated
samples. Without MEW, the samples tend to be overly guided towards the guiding points on most
probable regions, failing to capture the full variance of the underlying distribution Fig. 16.
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Figure 13: Distribution of Observables Used in Guidance. The plots show the distribution of the observables
as a function of state space. Blue indicates predictions from the original BioEmu model and red are the MEW-
regularized predictions.

with MEW regularization without MEW regularization

Figure 14: Ablation study on MEW regularization in the 1D four-well potential. Left: With MEW
regularization, the guided distribution (red) closely matches both the reference (blue) and ground truth (yellow)
distributions. Right: without regularization, guidance leads to mode collapse and overconcentration, resulting
in low observable prediction error but poor distributional fidelity. Insets show the expected observable values
Ep(x)[O(x)].

D.2 ABLATION STUDIES ON LOSS GUIDANCE

Since reliable sampling with loss guidance could not be achieved, we conducted a more thorough
investigation to enable a fair comparison. Instead of relying on Bayesian optimization, we performed
an extensive grid search over the guiding parameters (see Appendix B.4.2 for details), with partic-
ular focus on smaller guiding strengths to mitigate the effects of unstable or misaligned gradients.
Compared to path guidance, the grid search results show substantially lower guiding success, with a
maximum transition-state sampling rate of only 0.15%. While this does represent an improvement
over unguided sampling (1%), most configurations with non-negligible guidance success resulted in
degenerate samples (Fig. 17B). Our analysis suggests that while loss guidance can partially align
the model with the target angle distribution, it struggles to follow the desired sampling trajectory
throughout the generative process. As a result, strong corrections near the data distribution are
required, increasing the risk of sample degeneration (Fig. 17A).

D.3 BASELINE EXPERIMENTS

In this section, we describe the other two baselines, mentioned in Appendix D.2, which do not
augment the vector field. Instead, they utilize the latent representations of the guiding points X g

t to
initialize the sampling process for generating new points with similar latent characteristics. While
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Path Guided Model (SDE)

D

Loss Guided Model (SDE)

Figure 15: Sampling the synthetic system. Compari-
son of unguided, path-guided, and loss-guided models
using both SDE and ODE samplers.
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Figure 16: Guidance with and without MEW reg-
ularization. MEW guidance ensures that we do not
collapse onto the guiding points.
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Figure 17: Path Guidance vs. Loss-Guidance for sampling Transition States. (A) Evolution of the mean
torsion angle (which determines the state of the protein) during the diffusion process. (B) Success rates across
different parameter settings.

these methods are appealing in their simplicity, they lack direct control over the sampling process
itself.

Latent-KDE (L-KDE). We can fit a KDE in the latent space on X g
1 , sample from it, and integrate the

probability flow ODE backwards in time. Fitting the KDE at the prior can be advantageous because
the Euclidean distance, on which most kernels are based, is better suited for Gaussian-distributed
data compared to its use in data space. We refer to this method as Latent-KDE (L-KDE).

Stochastic-Reverse (SR). Alternatively, we can select a specific time step t such that the desired
properties are preserved and initialize the backward SDE (Eq. (1)) with latents from X g

t . The
stochasticity of the SDE will ensure we generate new divers samples with x′ ∈ A.

We conduct sampling experiments using the aforementioned baseline methods to verify whether
the results align with our intuition. Specifically, for the L-KDE baseline, we evaluate a Gaussian
kernel with noise levels (standard deviations) of {0.01, 0.05, 0.1}. For the SR baseline, we consider
intermediate times {0.1, 0.5, 0.9}. For simplicity, we only examine the scenario where there is a
single guiding point (i.e., X g

1 and X g
t are singleton sets). Each experiment is repeated with five

different seeds.
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In the following figures (Figures Fig. 18 – Fig. 23), we provide various metrics, histograms, and
energy surfaces that summarize the trends observed in these baseline guidance scenarios. Overall, the
results strongly suggest that guidance biases the sampling procedure toward the reference guiding
points, which aligns with our intuition.
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Figure 18: Trade-off between sample variance and
guidance success rate (L-KDE). As the KDE noise
scale increases for the L-KDE baseline, the percent-
age of transition states among the generated samples
decreases (blue), while the vendi score among the gen-
erated states increases (red).
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Figure 19: Trade-off between sample variance and
guidance success rate (SR). As the selected time step
t increases for the SR baseline, the percentage of tran-
sition states among the generated samples decreases
(blue), while the vendi score among the generated
states tends to increase (red).
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Figure 20: Energy surface plots. First row: L-KDE baseline for various levels of noise scale. The smaller the
perturbation, the more concentrated the samples around the transition states region. Second row: SR baseline
for various values of intermediate time. The smaller the stochasticity level, the more concentrated the samples
around the transition states region. Compare with Fig. 5 and Fig. 2 A and B.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0.36 0.38 0.40
Distance [A]

0

50

100

150

200

250
Bond 1

Simulation
Samples

0.36 0.38 0.40
Distance [A]

0

50

100

150

Bond 2
Simulation
Samples

0.38 0.40
Distance [A]

0

50

100

150

Bond 3
Simulation
Samples

0.36 0.38 0.40
Distance [A]

0

50

100

150
Bond 4

Simulation
Samples

0.36 0.38 0.40
Distance [A]

0

50

100

150

200
Bond 5

Simulation
Samples

0.38 0.40
Distance [A]

0

50

100

150
Bond 6

Simulation
Samples

0.36 0.38 0.40
Distance [A]

0

50

100

150

200

Bond 7
Simulation
Samples

0.36 0.38 0.40
Distance [A]

0

50

100

150

Bond 8
Simulation
Samples

0.36 0.38 0.40
Distance [A]

0

50

100

150
Bond 9

Simulation
Samples

(a) L-KDE noise=0.01
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(b) L-KDE noise=0.1

Figure 21: Comparison of bond distance distributions for L-KDE and the reference. The L-KDE baseline
(blue) is superposed on the corresponding histogram of the unconditional (red) distribution (the CLN025 MD
simulation). We see that for small perturbations, the generated samples seem to conform to particular details
of the guiding samples. As the noise increases, the guidance impact diminishes. This is quantified in a more
principled way in Fig. 23.
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(a) SR intermediate time=0.1

150 100 50 0 50 100 150
Torsion Angle [deg]

0.00

0.01

0.02

0.03

0.04

D
en

si
ty

Torsion 1
Torsion 2
Torsion 3
Torsion 4
Torsion 5
Torsion 6
Torsion 7

(b) SR intermediate time=0.9

Figure 22: Torsion angle histograms for the SR baseline at different noise levels. Solid lines show SR
samples at t = 0.1 (Left) and t = 0.9 (Right), superimposed on the corresponding unconditional distributions
(dashed lines). At high stochasticity (t = 0.9), the torsion angle distribution becomes nearly indistinguishable
from the unconditional one.
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(a) Wasserstein distance vs noise scale for L-KDE
baseline
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(b) Wasserstein distance vs intermediate time for SR
baseline

Figure 23: Wasserstein distance between baselines and reference bond distance distributions. We measure
the distance between the bond distance distributions of baseline methods and the CLN025 MD simulation (see
Fig. 21). As the stochasticity level increases for both baselines, the generated distributions converge toward the
unconditional reference, indicating a reduced influence of the guidance signal.
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