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ABSTRACT

Many physical systems that are represented by partial differential equations
(PDEs) admit multiple valid solutions, such as eigenstates of differential opera-
tors, or wave modes, yet most neural PDE surrogates are deterministic and col-
lapse to averages. This multiplicity of solutions is especially predominant in var-
ious engineering and scientific domains ranging from acoustics and seismology
to quantum systems. With the ability to generate or complete sparse measure-
ments, diffusion-based approaches to solve PDEs by sampling physically valid
solutions are gaining traction as an alternative to traditional numerical solvers.
In this paper, we present a novel physics-informed conditional diffusion frame-
work for multi-modal PDEs, called PDEDIFF, that learns distributions over solu-
tion fields from sparse, irregular samples while enforcing governing equations and
boundary conditions through mesh-free residual penalties computed by automatic
differentiation. PDEDIFF is capable of effectively solving PDEs with multiple
valid solutions by learning P[Y |X], i.e., it learns a solution field Y for a corre-
sponding input spatial information X . Unlike Physics-Informed Neural Networks
(PINNs), which minimize residuals around expected values E[Y |X] and hence
tend to regress toward a conditional mean, PDEDIFF samples diverse physically
consistent solutions by integrating PDE residuals directly into the diffusion objec-
tive. Our results indicate that generative, physics-informed diffusion is a practical
tool for uncertainty-aware and multi-modal PDE modeling in low-to-moderate di-
mensions.

1 INTRODUCTION

Accurate modeling and solving of partial differential equations (PDEs) is fundamental to advanc-
ing scientific disciplines, areas ranging from acoustics and seismology to quantum systems and fluid
dynamics. Physics-Informed Neural Networks (PINNs) Raissi et al. (2019a) have emerged as a pow-
erful approach for embedding known physical laws into machine learning models. In recent years,
PINNs have excelled in incorporating domain-specific equations and information into the learning
process by adding residual terms, which include differential equation and boundary conditions, to a
regressor’s loss, allowing data-efficient training from limited observations. Despite their ability to
leverage domain knowledge and efficiently estimate conditional means (E[Y |X]), PINNs collapse
multi-modal target distributions to a single mean-field solution and hence blur distinct physically
admissible solutions or eigenstates and fail to capture these multiple scenarios.

Diffusion models, driven by advances in deep generative modeling, have achieved remarkable per-
formance in tasks requiring detailed sampling from complex probability distributions such as in Ho
et al. (2020b); Song et al. (2020). In this paper, we propose using this capability of reversing a noise
process to sample from solution fields.

Diffusion models have further advanced into multiple domains such as image synthesis Rombach
et al. (2022); Kawar et al. (2022); Kakinuma et al. (2025), healthcare Cao et al. (2024); Chung & Ye
(2022), and drug discovery Alakhdar et al. (2024); Corso et al. (2023). Conditional variants can, in
principle, capture the distribution over solution fields P[Y |X] rather than a single point estimate, of-
fering critical advantages in problems where multiple solutions naturally arise such as parameterized
PDEs or in eigen-PDEs. However, standard diffusion models typically do not incorporate physical
constraints explicitly, resulting in samples that may violate conservation laws, boundary conditions,
or any other operator constraints.
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In consideration of the above problems with diffusion models, there are some recent works, like
Bastek et al. (2025) and Shu et al. (2023), that include physics residual as penalties during training.
Yet they targeted cases where the PDE’s solution pairs can be sampled from a single mode distri-
bution. Also, the above methods retained a grid-based input for training and generation that only
support computation residuals using finite-difference stencils.

This ability to sample multiple modes is particularly advantageous in solving PDEs with multiple
solutions, such as Schrodinger equation in quantum mechanics with multiple eigenfunctions Lun-
deen et al. (2011) or multiple wave solutions in Helmholtz equation. Another important setting
where multiple solutions arise is in PDEs with unknown parameters or boundary/initial conditions.
These unknown parameters can either be missing from data recorded during experiments or often
be expensive to measure or reconstruct, thus requiring that solutions from multiple parameter set-
tings be identified that fit the observed measurements. For example, an experimental dataset may
contain records of acoustic waves using multiple sensors in a room, however the source locations
(initial conditions) or room configuration (boundary conditions) for each experiment may not be
fully recorded. In this case, solving the Helmholtz equation to sample multiple solutions that con-
form to the observed sensor readings, while accounting for the physics, would be of interest. In
contrast, standard approaches such as finite difference solvers or even PINNs may either guess a few
parameter values and present solutions for them, or learn a single mean estimated parameter value
across all experiments.

Motivated by these challenges, we introduce PDEDIFF, a mesh-free, physics-informed conditional
diffusion framework that learns distributions over solution fields from sparse, irregular samples
while steering generation toward physically valid solutions. The model conditions on coordinates
and uses automatic differentiation to evaluate PDE residuals and boundary or initial conditions di-
rectly at sampled points, therefore no fixed mesh or finite-difference stencils are required. PDED-
IFF’s interface is flexible and compatible with different PDEs and we only replace the residual and
boundary conditions. Therefore, this makes PDEDIFF a complement to classical solvers as these
methods are mesh-specific and equation-specific, whereas our method can be trained once and then
work as a generative surrogate that can produce physics aware solutions at new coordinates without
the need for re-meshing.

The key contributions of our work include the following:

• Generative solver for multi-modal PDEs: PDEDIFF learns distributions over solution fields
and samples distinct, physically admissible modes instead of regressing to an average.

• Physics-conditioned sampler: A coordinate-conditioned encoder–decoder (CCED) de-
noiser that embeds both spatial coordinates and diffusion time, trained with a dual loss
on data fidelity and residual physics.

• Mesh-free residual enforcement: Higher-order derivatives are computed via autograd, en-
abling irregular or sparse point clouds rather than fixed grids as used in previous work on
physics-informed diffusion models.

• Comprehensive evaluations: We benchmark our method on Infinite Potential Wells, Gross-
Pitaevskii Equation, and Helmholtz Equation, reporting the Wasserstein-1 distance and
modality recall against analytical ground truth. We have also experimented on simpler toy
problems with circles similar to the ones in Bastek et al. (2025). Our results indicate that
PDEDIFF outperforms PINNs on PDEs with multiple solutions.

2 RELATED WORK

2.1 DIFFUSION MODELS

With the development of diffusion models Song et al. (2020),Ho et al. (2020b), and Song et al.
(2021), their applications for solving PDEs are emerging. Most of them involve a conditioned
diffusion using score-based method to guide the solution based on sparse observations. Huang
et al. (2024b) proposed training procedure and sampling strategies that are conditioned on incoming
observations to recover accurate PDEs trajectories based on the score-based approach Song et al.
(2021). Qu et al. (2024) consider the inverse problem of data assimilation where they aim to re-
cover the complete weather state from observations of various modalities. Rühling Cachay et al.
(2023) proposed a fully data-driven framework using temporal interpolation as the forward process
and forecasting as the reverse diffusion process for spatial-temporal forecasting problems. However,
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relying solely on data-driven approaches may fail to capture the underlying physical laws, poten-
tially leading to samples that lack physical consistency or generalizability beyond the training data.
Another diffusion-based work Du et al. (2024) focus on chaotic systems, but their approach is also
completely data-driven and implicitly learns the physics distribution with high-fidelity samples.

2.2 PHYSICS-INFORMED MODELS

PINNs Raissi et al. (2017) have appeared as a robust framework for solving both forward and inverse
problems governed by PDEs. The key idea behind PINNs is to incorporate the PDE directly into
the loss function of a neural network. This is achieved by penalizing the network’s predictions
when they deviate from the physical laws represented by the PDE. As a result, PINNs can learn
solutions even from sparse or noisy training data while ensuring that the learned function respects
the underlying physics. The line of work by Jin et al. (2022) uses feed-forward neural network to
learn the multiple eigenfunctions for the family of Schrödinger’s equations. They achieved multiple
solutions through penalizing with several physics-informed regularizers and iteratively training to
learn new eigenfunctions. However, this approach is only applicable to eigenproblems and would
not be generalized to other types of PDE. Recently, some attention-based methods such as Wu et al.
(2024) use physics-aware attention to learn a deterministic solver on dense meshes and irregular
geometries, but the learned attention patterns remain unconstrained and may violate fundamental
physical laws such as boundary conditions, and limiting their reliability.

Towards physics informed diffusion-based approaches, CocoGen Jacobsen et al. (2024) and Diffu-
sionPDE Huang et al. (2024a) inject the governing equations into the sampling process of score-
based generative models to enforce the consistency of the samples with the underlying PDE, but
physics guidance was only applied to the last N steps. They also focus on the reconstruction prob-
lem that conditioned on grids of sparse measurement. Shysheya et al. (2024) focused on forecasting
tasks with conditioning training and sampling via the score-based approach. Recent works by Bastek
et al. (2025) and Shu et al. (2023) use the Denoising Diffusion Probabilistic Model (DDPM) archi-
tecture combined with physics-informed loss during training. The physics-informed guidance in
Shu et al. (2023) is applied with some probability pt (a hyperparameter) as an additional input to
the UNET architecture in DDPM. Bastek et al. (2025) models the physics term as a virtual like-
lihood and combines this with the diffusion training loss. Above all, these works employed the
finite difference method to compute the physics-informed guidance. This limited the generalization
of the model as we need to construct the finite difference scheme for every new PDE, which can
become complicated and unstable for high-order derivatives. Also, computing a finite difference
required a fixed grid for consistency. Our work makes use of the automatic differentiation technique
to circumvent these issues.

3 BACKGROUND

3.1 PARTIAL DIFFERENTIAL EQUATION CONSTRAINTS

We consider the following general form for a system of PDEs defined on some domain Ω{
F(u(x)) = f(x), x ∈ Ω

B(u(x)) = b(x), x ∈ ∂Ω (1)

where F is the interior differential operator for instance, Laplacian or Hamiltonian, B encodes the
boundary condition, ∂Ω is the boundary of domain Ω, and u is the solution field that satisfies the
set of PDEs for all x ∈ Ω and boundary conditions x ∈ ∂Ω. f and b are functions independent
of u, usually representing external conditions applied to the system. In physics-informed learning
setup, along with the data loss, which is the l2 loss between the generated samples and ground truth
samples, we also aim to minimize a physics residualR. This physics residual is calculated by taking
l2 difference measuring the extent to which boundary and interior physics constraints are satisfied at
model prediction û as given in Raissi et al. (2019b).

R(û(x), x) = λintLΩ + λbcLbc (2)
= λint||F(û(x))− f(x)||2 + λbc||B(û(x))− b(x)||2 (3)

here û(x) is the solution predicted by a deep learning model, and Lbc is the physics residual of the
boundary conditions and LΩ is the physics residual of PDE constraints defined in the interior of
the domain Ω. λint and λbc are the weights that we want to consider for the respective residuals.
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Figure 1: PDEDIFF denoising step denoises random noise into solution field and eigenvalues by
conditioning on the spatial coordinates x. The goal of this coordinate conditioned encoder decoder
(CCED) architecture is to generate samples that follow the residual F and boundary conditions B

For problems dealing with multiple solutions either through eigen-states or parameterized PDEs, we
will be training the generative model to generate both the solution field and eigenvalues/parameters
for the differential operators; we revisit this in detail in Section 4.1.

Usually when closed form of a differential operator does not exist, researchers generally opt for a
finite difference approach to calculate the derivatives, but this method becomes very unstable for
higher order derivatives and that is why we will be using automatic differentiation to eliminate this
uncertainty in gradient calculation and making it more flexible than using a grid-based approach.

3.2 DENOISING DIFFUSION PROBABILISTIC MODEL

Diffusion models are a class of deep generative models inspired by non-equilibrium thermodynam-
ics. Ho et al. (2020b) models the forward process by iteratively adding noise to the data so that it
resembles a random distribution. Formally, Eq. 4 defines the forward diffusion process, here u0 is
the true data and noise sampled from a gaussian distribution is added over time steps t ∈ 1, . . . , T :

p(ut|ut−1) = N (ut;
√
1− βtut−1, βtI), (4)

here {βt}Tt=1 controls the variance schedule in the above equation and after large enough T steps, uT
will resemble a sample from a gaussian distribution. The objective of a diffusion model is to learn
a reverse (denoising) process that denoises a sample generated from N (0, I) into samples from the
data distribution pdata. Mathematically, the model and the reverse process parameterized by model
parameters θ is defined as:

qθ(ut−1|ut) = N (ut−1;µθ(ut, t),Σθ(ut, t)), (5)

This allows the generation of samples from complex data distributions. In the case of conditional
diffusion models, additional information (such as class labels or prompts) is used to condition the
denoising network. The model then approximates the full conditional density and generates outputs
sampled from the distribution of a desired output class or prompt.

4 METHOD

In this section, we will dive deep into PDEDIFF, a novel conditioned diffusion model framework that
learns a distribution corresponding to solution field and parameters in a PDE agnostic setting. We
will begin with formalizing the learning task (Sec. 4.1), and derive the physics-informed conditional
diffusion algorithm (Sec. 4.1). We will then describe the architecture and the training objective (Sec.
4.2 and Sec. 4.3) and then introduce the metrics used to benchmark the results (Sec. 4.4).

4.1 PROBLEM FORMULATION

Similar to a standard data-driven approach, we will provide the independent variables as input to the
diffusion model. The forward and reverse process of the diffusion model then outputs our dependent
variables. For our problem setting, we will be working with different PDEs such as Time Inde-
pendent Schrödinger’s Equation (TISE), and non-homogeneous Helmholtz equation. The input for
each of the corresponding PDE will be the spatial coordinates x and the output is the corresponding
solution field and the parameter that satisfies the PDE. In this paper, we will use u(x) to denote
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the solution field or eigenfunction and λ to denote the parameter of the differential operator or the
eigenvalue. Both terms will be used interchangeably as we discuss different PDEs.

Our method is designed to learn distributions over feasible solutions fields and eigenvalues of the
PDE directly from data. For given spatial coordinates x ∈ Ω ⊂ Rd, the diffusion model is condi-
tioned on x to generate the dependent variables u(x) and λ. The goal of the model is to learn to
generate samples that follow the below PDE:

Hλu(x) = g(x) (6)

here Hλ is a linear or non-linear differential operator (usually of second-order or higher order)
dependent on parameter λ, and g : Ω → R is a known function, and u : Ω → R is the solution
field. The role of λ in different PDEs works as a system parameter, for instance, in the case of
eigen-PDEs such as the Schrodinger equation, λ represents the eigenvalue or the energy of the
corresponding wavefunction. In the case of the non-homogeneous Helmholtz equation, λ = k is
being used to denote the wavenumber that could correspond to different frequencies and waves that
have been collected from a physical setup. In general form of PDE, λ will represent the physical
system parameters such as conductivity, viscosity, Young’s Modulus and many more depending on
the physical system and the PDE describing the system. When PDEDIFF perform sampling, it
samples the solution field and this system parameter jointly. For simplicity, we only consider PDE
with Dirichlet boundary condition in our problem formulation, that is, B(u(x)) = 0. But the method
can be expand to more general setting of any multi-solution PDEs with non-zero boundary condition
(Sec. A.5.5).

Given a distribution p(x) where x ∈ Ω, we are interested in learning the multi-modal condi-
tional density function p(u(x), λ|x) from the sparse dataset {(x(n), u(n), λ(n))}Nn=1, whose sam-
ples follow the PDEs. For simplicity, we will use Ψ = (u, λ) to denote a data point, and
p(Ψ|x) to denote a probability distribution. The forward diffusion process is simulated by grad-
ually adding controlled Gaussian noise to Ψ, which can be model as a conditional distribution
p(Ψt+1(x)|Ψt(x), x) ∼ N (

√
1− βtΨt(x), βtI), where {βt}Tt=1 is a sequence of noise scheduler.

ΨT |x︸ ︷︷ ︸
Gaussian noise

← ΨT−1|x← · · · ← Ψt|x← · · · ← Ψ1|x← Ψ0|x︸ ︷︷ ︸
real data

This process eventually yields a structured latent representation at timestep T . We adapt the method
from Ho et al. (2020b); Song et al. (2020) to derive a simplified loss function for the denoising
process. Note that the reverse distribution q(Ψt(x)|Ψt+1(x), x) is intractable, we therefore use a
neural network NN(Ψt, x, t) to model the inverse diffusion steps qθ(Ψt−1|Ψt,Ψ0, x) that maximize
the log-likelihood of q(Ψ0|x):

log q(Ψ0|x) = log

∫
q(Ψ0:T |x)dΨ1:T (7)

This log-likelihood is not tractable due to unknown denoising process. Therefore, we will approxi-
mate it with evidence lower bound, which is easier to optimize:

log q(Ψ0|x) ≥ Ep(Ψ1:T |Ψ0,x)

[
log

q(Ψ0:T |x)
p(Ψ1:T |Ψ0, x)

]
(8)

Simplifying the evidence lower bound (further details in the Appendix A.1) gives us

log q(Ψ0|x) ≥ Ep(Ψ1|Ψ0,x)

[
log

q0(Ψ0|Ψ1, x)

p(Ψ1|Ψ0, x)

]
+

T∑
t=2

Ep(Ψt|Ψ0,x) [DKL(p(Ψt−1|Ψt,Ψ0, x)||qθ(Ψt−1|Ψt, x))]︸ ︷︷ ︸
=Ldata,t

(9)

In addition to maximizing the likelihood of q(Ψ0|x), we are also interested in incorporating the
physics guidance in training the diffusion model. Our goal is also to minimize the likelihood of
the residual q(R(Ψ0, x)|Ψ0, x) ∼ N (R(Ψ0, x), σ

2), where the variance σ2 approaches 0 as the
model learns Ψ0. In this paper, we consider PDEs of the form Hλu(x) = g(x). Below is how this
PDE-loss or Lresidual is defined:

log q(R(Ψ0, x)|Ψ0, x) ∝ ∥Hλû0 − g∥22 =: Lresidual(Ψ̂0) (10)
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Algorithm 1 PDEDIFF Training

1: Input: Training dataset Ψ0 = (u0(x), λ0)
2: Output: Trained denoising process CCEDθ
3: repeat
4: x ∼ Uniform(Ω)
5: Ψ0(x) ∼ q(Ψ0|x) (from training data)
6: t ∼ Uniform{1, . . . , T}
7: ϵ ∼ N (0, I)

8: ᾱt =
∏t
s=1(1− βt)

9: Ψt(x) =
√
ᾱtΨ0(x) +

√
1− ᾱt ϵ

10: Ψ̂0 = CCEDθ(Ψt(x), x, t)
11: Compute ∇θLtotal,t(Ψ̂0) (as in 11)
12: Update CCEDθ via GD
13: until converged

Algorithm 2 PDEDIFF Sampling

1: Input: Number of samples N , trained de-
noising process CCEDθ

2: Output: Set of samples {Ψ0}Ni=1
3: for i = 1 to N do
4: Sample xi ∼ Uniform(Ω)
5: for t = 1 to T do
6: Ψ̂0(xi) = CCEDθ(Ψt(xi), xi, t)
7: Sample Ψ0(xi) with DDIM Song

et al. (2020)
8: end for
9: end for

4.2 TRAINING AND SAMPLING ALGORITHMS

We follow a similar training objective and approach as given in Ho et al. (2020a); Bastek et al.
(2025), where we add a physics informed loss as a regularizer to the entire loss function. The
training algorithm in Bastek et al. (2025) uses a finite difference stencil method to calculate the
derivatives of the quantities required in the residual. We instead leverage the power of automatic
differentiation (autodiff) to calculate the gradients for the residual equations. This strategy provides
more flexibility to calculate higher order derivatives as compared to using finite difference stencils,
which become unstable when calculating higher order derivatives. Moreover, the finite difference
method can only be feasible where the data points are arranged in a regular grid and all the points
on the grid correspond to only a single solution, whereas PDEDIFF can train on data points that are
randomly sampled from a multi-modal distribution and each generated sample can correspond to
any of the feasible solutions.

We will now introduce the objective function of PDEDIFF that is a loss function composed of the
standard reconstruction error and physics informed constraints. The loss function is defined as:

Ltotal,t(Ψ̂0) = Et∼[1:T ],p(Ψ1:T |x)

[
cdataLdata,t(Ψ0, Ψ̂0) + cresLresidual,t(Ψ̂0)

]
(11)

where we use it to train a denoising process as in Algorithm 1.

Here Ldata is called the data loss which is the reconstruction error between the predicted output and
the ground truth values, and for our framework we have used a standard Mean Square Error (MSE)
loss. Lresidual is the residual loss, which penalizes the model when the generated samples do not
satisfy the underlying physics constraints, i.e., the solutions generated must follow the PDEs. The
terms cdata and cres are hyperparameters that we set during training to weight the importance of
the data loss and physics loss, respectively. Since, we provide the model with the initial spatial
and temporal information, we can leverage the use of autodiff to calculate high order derivatives for
calculating the residual. This approach also allows us to use randomly sampled data points instead of
going with a grid-based approach providing us with more flexibility with respect to the dataset used
and also for the sampling part for inference. For PDEDIFF sampling Algorithm 2, we utilize the
sampling method from Denoising Diffusion Implicit Model (DDIM) Song et al. (2020) to accelerate
the generation process. Also, in step 4 of Algorithm 2, we could replace uniform samples of xi with
any other grid or mesh coordinates for applicable uses.

4.3 ARCHITECTURE

PDEDIFF employs a coordinate conditioned encoder decoder (CCED) denoiser that converts a
noisy input into its corresponding denoised output by conditioning on the spatial coordinates (in-
dependent variable) and diffusion time-step. We pass the noisy input along with the spatial coordi-
nates x ∈ Ω ⊆ Rd and the diffusion time t into the denoiser where each layer is called a Conditional
Block, which consists of a set of linear and embedding layers. Figure 1 demonstrates how the denois-
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Setting Vanilla Physics-informed

PMSE WD PMSE WD

1D
(2 states)

P 0.822 0.539 1.052 0.344
D 0.932 0.157 0.935 0.157
N 0.809 0.544 0.960 0.446
Q 0.017 0.086 0.015 0.086

1D
(3 states)

P 0.371 0.737 0.460 0.442
D 0.438 0.114 0.437 0.114
N 0.333 0.776 0.445 0.470
Q 0.022 0.055 0.012 0.050

1D GP
(3 states)

P 1.550 2.036 1.291 2.418
D 0.868 1.430 0.867 1.431
N 0.069 1.180 0.069 1.190
Q 0.140 0.195 0.126 0.194

Table 1: Performance comparison between
PINN (P), DeepONet Lu et al. (2021) (D),
Physics-informed Neural Operator Li et al.
(2021) (N) and PDEDIFF (Q) across differ-
ent problem settings for 1D examples. PMSE
here is P-MSE and WD is the Wasserstein
metric. The lower values represent better
match between the ground truth and the sam-
pled wavefunctions. Details of the energy
states will be provided in Appendix A.5.1.
The first 2 rows correspond to 1D Infinite Po-
tential Well, and 1D GP corresponds to 1D
Gross-Pitaevskii Equation.

Setting Vanilla Physics-informed

PMSE WD PMSE WD

2D (3 states) P 1.253 0.378 1.239 0.340
D 7.327 0.411 7.326 0.410
N 1.254 0.297 1.398 0.502
Q 1.222 0.169 1.194 0.156

2D(4 states)
degenerate

P 1.250 0.482 1.243 0.477
D 7.661 0.485 7.659 0.485
N 1.332 0.299 0.933 0.513
Q 1.309 0.150 1.338 0.124

2D (4 states)
non-degenerate

P 1.133 0.597 1.123 0.623
D 22.34 0.513 22.34 0.513
N 1.198 0.344 1.257 0.587
Q 1.100 0.222 1.091 0.205

Helmholtz
Equation

P 0.800 0.107 0.746 0.108
D 21.35 0.168 21.35 0.168
N 0.753 0.111 1.000 0.106
Q 0.253 0.092 0.227 0.091

Table 2: Performance comparison between PINN
(P), DeepONet Lu et al. (2021) (D), Physics-
informed Neural Operator Li et al. (2021) (N) and
PDEDIFF (Q) across different problem settings.
PMSE here is P-MSE and WD is the Wasserstein
metric. The lower values represent better match
between the ground truth and the sampled wave-
functions. Details of the energy states for 2D
Schrodinger experiments will be provided in Ap-
pendix A.5.3, and of the frequency parameters for
the non-homogeneous Helmholtz equation will be
provided in Appendix A.5.4.

ing model converts random noise into the corresponding solutions functions and their corresponding
eigenvalues or parameters. The details can be found in Appendix A.3.

Further, we use ADAMW for training and we also experiment with different weights for the residual
loss (cres) (additional results on this is discussed in Appendix A.8). For baselines, we compare our
method with a vanilla conditional diffusion model (cres = 0) with no physics regularization, and
we also compare PDEDIFF with a physics-informed fully-connected neural network (PINN) Raissi
et al. (2019b), physics-informed neural operator (PINO) Li et al. (2021) and DeepONet Lu et al.
(2021). We use the same values of the physics-informed hyperparameter cres for all comparative
studies and ablation results. Since for the training algorithm we do not require to implement a
custom finite difference stencil and instead proceed with using autodiff, this makes our framework
compatible with mesh-free datasets.

4.4 QUANTIFICATION METRICS

Given some spatial input x ∈ Ω, PDEDIFF would generate Ψ0 = (u0, λ0) corresponding to this x.
The PDEs that it is trying to solve has multiple correct solutions, for e.g., the first 3 wavefunctions
and energy values for the Schrödinger’s Equation could correspond to the following possible solu-
tions (u(1)0 , λ

(1)
0 ), (u

(2)
0 , λ

(2)
0 ), (u

(3)
0 , λ

(3)
0 ). Since each of these is a correct solution to the PDE, we

need a metric that can effectively compare the generated samples with the true distribution or the
ground truth solutions.

P-MSE: This metric calculates the mean squared error of the samples generated with the ground-
truth eigenstates or solutions modes. Formally, the metric can be defined as below:
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P -MSE = Ex∼Ω

[∥∥∥(û0(x), λ̂0(x))− (
u(k(x)), λ(k(x))

)∥∥∥2
2

]
(12)

where k(x) = argmin
i∈{1,...,M}

||λ̂0(x)− λ(i)||2 (13)

Here, M is the number of feasible solution modes, (û0(x), λ̂0(x)) is the generated sample for a
particular x, and k(x) is the function that assigns a particular sample to its closest solution field by
comparing the parameter values and this state is then used to calculate the MSE.

Earth-Mover’s Distance (Wasserstein-1): For two probability measures p, q on a domain Ω ⊂ Rd
we use the 1-Wasserstein distance (WD), here Γ(p, q) denotes the set of couplings with marginals p
and q

W1(p, q) = inf
γ∈Γ(p,q)

∫
Ω×Ω

∥x− y∥ dγ(x,y), (14)

This metric is used to compare the distances between two probability distributions and in some
PDEs, wavefunctions have a special property, i.e., it also represents the probability densities of
a particle, i.e., |ψ|2 represents the probability density function of the particle. The ground truth
distribution is represented by a linear combination of the probability distribution of the individual
solution modes, and the generated distribution can be calculated by squaring the predicted ψ(x).

To compare the predicted probability distribution and the true distribution, we evaluate both the
functions on the same set of point cloud x. Then the distributions are normalized as below:

ppred(x) =
|ψpred(x)|2∑

x′∈X |ψpred(x′)|2
ptrue(x) =

N∑
i=1

πi
|ψ(i)(x)|2∑

x′∈X |ψ(i)(x′)|2
(15)

where
∑n
i=1 πi = 1 (linear combination coefficients) and after calculating the probability distribu-

tions, we use the optimal transport library Flamary et al. (2021).

5 EXPERIMENT RESULTS

In this section, we present our experiment setup and results for several PDE problems with multiple
solutions such as Time Independent Schrödinger Equation in 1D and 2D infinite potential well,
non-homogeneous Helmholtz Equation, Gross–Pitaevskii Equation. More experiment results can be
found in Sec. A.5 on some other equations like Burgers’ Equation and toy examples on circle.

5.1 1D SCHRÖDINGER: PARTICLE IN A BOX

We consider the time-independent Schrödinger equation for a quantum particle in a one-dimensional
infinite potential well:(

− ℏ2

2m
∂2x + V (x)− E

)
︸ ︷︷ ︸

HE

ψ(x) = 0, V (x) =

{
0, xL < x < xR
∞, otherwise

where V (x) denotes the infinite potential well, or in other words, the space of a 1D box that contains
the particle where it moves freely inside but trapped between the wall (xL, xR) defined as above.
Note that ∂2x are the second-order derivatives of ψ with respect to x and could be calculate using
automatic differentiation to compute the physics informed loss during training. Given this PDE, we
are trying to recover the solution field ψ(x) and corresponding energy or parameter E. Results are
presented in Table 1 and Figure 2.

5.2 1D SCHRÖDINGER: GROSS-PITAEVSKII EQUATION

We consider also one-dimensional time-independent Gross-Pitaevskii equation, a form of non-linear
Schrodinger equation. In specific, the Halmiltonian operatorH is non-linear and written as follow:(

h2∂2x
2m

+ V (x) + U0|ψ(x)|2 − E
)

︸ ︷︷ ︸
HE

ψ(x) = 0

8
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(a) Ground Truth (b) PDEDIFF (Physics-informed) (c) PINN

Figure 2: Comparing generated samples by PDEDIFF and PINN for 1D Schrödinger equation

(a) Ground Truth (b) PDEDIFF (Physics-informed) (c) PDEDIFF (no physics)

Figure 3: Comparing generated samples by PDEDIFF for 1D Gross-Pitaevskii equation

where U0 is interaction force, V (x) = 1
2mx

2 is the harmonic trapping potential. Not many non-
linear Schodinger equations have closed-form solution, such as the one presented here. We obtain
training samples and ground truth by solving the time-independent Gross-Pitaevskii equation nu-
merically as in Chiofalo et al. (2000). Results are presented in Table 1, Figure 3 and 4.

(a) PDEDIFF with cres = 0.001 (b) PINN with cres = 0.001 (c) PINO with cres = 0.001

Figure 4: Generated samples by physics-informed PDEDIFF, PINN and PINO with cres = 0.001
values for 1D Gross-Pitaevskii equation. Although PINO achieves a very low PMSE metric, it
collapses to a single mode and results in a high WD metric.

5.3 2D SCHRÖDINGER: PARTICLE IN A BOX

We again consider the TISE for a quantum particle in a two-dimensional infinite potential well:(
− ℏ2

2m
(∂2x + ∂2y) + V (x)− E

)
︸ ︷︷ ︸

HE

ψ(x) = 0, V (x) =

{
0, xL < x < xR, yL < y < yR
∞, otherwise

where x = (x, y) denotes the spatial coordinates and V (x) denotes the 2D infinite potential well. ∂2x
and ∂2y are the second-order partial derivatives of ψ with respect to x and y. The particle is confined
inside the box B = [xL, xR]× [yL, yR] ⊂ R2 with Dirichlet boundary conditions, i.e., ψ(x) = 0 for
any x ∈ ∂B, where ∂B denotes the boundary of B. The results are presented in Tab. 2.

9
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5.4 HELMHOLTZ EQUATION

Another case study is the Helmholtz equation that arises from applications in heat conduction or
acoustics. The Helmholtz equation is a non-homogeneous elliptic PDE express as follow:

∇2ψ(x) + k2ψ(x)︸ ︷︷ ︸
Hkψ

= f(x)

where integer or real valued parameter k is known as frequency or wave number, f is a source
function that describe the emission source of the wave ψ(x), with x ∈ Ω. Our goal is to recover
the high resolution propagation of the wave through the environment ψ(x) and its frequency k.
Training data is simulated by solving the second-order finite-difference linear system Hkψ = f
with low fidelity. The results are presented in Table 2.

6 DISCUSSION

We observed that PDEDIFF consistently achieves low MSE and WD metric, with physics-informed
PDEDIFF achieving the best result in almost all cases (Tab. 1, 2) This demonstrates that PDEDIFF
is capable of modeling, generating multimodal distributions and achieves higher numerical accuracy
compared to the ground truth. As shown in Fig. 2, PDEDIFF effectively captures the multiple modes
present in the training data, while standard feedforward neural networks tend to regress to the mean,
failing to represent the distinct modes and instead producing oversmoothed approximations.

In the case of 1D Schrödinger equation, PDEDIFF has lower errors in both MSE and Wasserstein
distance. Incorporating physics-informed guidance further improves performance. Nevertheless,
Schrödinger equations have trivial solution where ψ(x) = 0, E = 0. This causes problems as with
our physics guidance, since the physics loss is also minimized (equal to 0) if the model infers the
trivial solution, as observed in our ablation study in A.8, 12 and 13. For the 1D Gross-Pitaevskii
equation, PINO achieves a low P-MSE metric but this is due to convergence to a single mode, as
observed in Fig. 4 and the high WD metric in Tab. 2, while PDEDIFF is able to obtain both low
P-MSE and WD metric. We also demonstrate the capabilities of PDEDIFF on 2D Schrödinger
equation. In the problem setting of 3 waves, the model is able to learn the different eigenstates
and produce samples that are much closer to the true distribution and have a lower MSE loss. In
the case where there are 4 waves, the model was trained on both setting wherestates where there
are degenerate eigenstates, i.e., 2 eigenstates had the same energy but different wavefunctions, and
non-degenerate eigenstates. PDEDIFF is yet able to distinguish the degenerate energy states and
generate samples that have a lower Wasserstein metric.

In inhomogeneous Helmholtz Equation, we tested our framework with 2 parameters. In this setting,
we observed that the model picks up the low frequency wave better and it sometimes missed the
peak in high frequency wave. Nevertheless, after training for 5000 epochs, PDEDIFF achieves the
lowest metric comparing to other baselines, which also trained with the same amount of training
points and number of epochs (Tab. 2).

7 CONCLUSION

We introduced PDEDIFF, a physics-informed conditional diffusion framework that samples entire
ensembles of solution fields and eigenvalues for multiple solution PDEs. In contrast, PINNs regress
to a conditional mean or collapse to one of the modes. We have also demonstrated that our approach
is more flexible than other approaches to incorporating physics in diffusion models in terms of
the data samples being mesh-free and also for calculating the physics residuals using automatic
differentiation. Also, unlike previous work, we provide the first evidence that physics informed
diffusion models can provide better results than physics informed neural networks for PDEs with
multiple solutions, and thus are more faithful to the physical law that they must follow. Our work
shows a potential towards learning and generating new data for multi-modal PDEs.

Looking ahead, our framework can potentially be used to explore methods to discover unseen solu-
tion fields and eigenvalues that are not observed in data. Similar to recent works, such as Jin et al.
(2022), extending PDEDIFF to learning solution fields in a data-free environment is an interesting
direction. Scaling this framework to noisy and high-dimensional experimental datasets would en-
able developing real-time digital simulations of problems that could be studied in much detail and
also accelerate the growth of drug discoveries and sustainable quantum technologies.
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A APPENDIX

A.1 DERIVATIONS OF SIMPLIFIED TRAINING LOSS

Continuing from Sec 4.1 of the main paper, we had briefly discussed the problem formulation of
PDEDIFF. The inverse diffusion step for qθ(Ψt−1|Ψt,Ψ0, x) that maximizes the log-likelihood of
q(Ψ0|x) is defined in Eq. 7 of the paper as:

log q(Ψ0|x) = log

∫
q(Ψ0:T |x)dΨ1:T (16)

Below are the steps for deriving and simplifying the lower evidence bound for our conditioned
DDPM. Note that log of an expectation over a distribution might be intractable, so we consider
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optimizing the evidence lower bound like previous work Ho et al. (2020b); Song et al. (2020).

log q(Ψ0|x) = log

∫
q(Ψ0:T |x)dΨ1:T

= log

∫
q(Ψ0:T |x)

p(Ψ1:T |Ψ0, x)
p(Ψ1:T |Ψ0, x)dΨ1:T

= logEp(Ψ1:T |Ψ0,x)

[
q(Ψ0:T |x)

p(Ψ1:T |Ψ0, x)

]
≥ Ep(Ψ1:T |Ψ0,x)

[
log

q(Ψ0:T |x)
p(Ψ1:T |Ψ0, x)

]
= Ep(Ψ1:T |Ψ0,x)

[
log

q(ΨT |Ψ0, x)
∏T
t=1 q(Ψt−1|Ψt, x)∏T

t=1 p(Ψt|Ψt−1,Ψ0, x)

]

= Ep(Ψ1:T |Ψ0,x)

[
log

q(ΨT |x)q0(Ψ0|Ψ1, x)
∏T−1
t=1 qθ(Ψt|Ψt+1, x)∏T

t= p(Ψt|Ψt−1,Ψ0, x)

]

= Ep(Ψ1:T |Ψ0,x)

[
log

q(ΨT |x)q0(Ψ0|Ψ1, x)
∏T
t=2 qθ(Ψt−1|Ψt, x)∏T

t=1 p(Ψt|Ψt−1,Ψ0, x)

]

Observed that products inside the log term could be rewritten as

log q(Ψ0|x) ≥ Ep(Ψ1:T |Ψ0,x)

[
log

q(ΨT |x)q0(Ψ0|Ψ1, x)

p(Ψ1|Ψ0, x)
+

T∑
t=2

log
qθ(Ψt−1|Ψt, x)
p(Ψt|Ψt−1,Ψ0, x)

]

= Ep(Ψ1:T |Ψ0,x)

[
log

q(ΨT |x)p0(Ψ0|Ψ1, x)

p(Ψ1|Ψ0, x)

]
+

T∑
t=2

Ep(Ψ1:T |Ψ0,x)

[
log

qθ(Ψt−1|Ψt, x)
p(Ψt|Ψt−1,Ψ0, x)

]

= Ep(Ψ1|Ψ0,x)

[
log

q0(Ψ0|Ψ1, x)

p(Ψ1|Ψ0, x)

]
+

T∑
t=2

Ep(Ψt−1,Ψt|Ψ0,x)

[
log

qθ(Ψt−1|Ψt)
p(Ψt|Ψt−1,Ψ0, x)

]
= Ep(Ψ1|Ψ0,x)

[
log

q0(Ψ0|Ψ1, x)

p(Ψ1|Ψ0, x)

]
+

T∑
t=2

Ep(Ψt|Ψ0,x) [DKL(p(Ψt−1|Ψt,Ψ0, x)||qθ(Ψt−1|Ψt, x))]︸ ︷︷ ︸
=Ldata,t

A.2 DETAILS OF THE STEPS FOR TRAINING AND SAMPLING ALGORITHM

We are also providing details of the training and sampling algorithm here for completeness. The
forward diffusion process is simulated by gradually adding controlled Gaussian noise to Ψ, which
can be model as a conditional distribution p(Ψt+1(x)|Ψt(x), x) ∼ N (

√
1− βtΨt(x), βtI), where

{βt}Tt=1 is a sequence of noise scheduler.

A.2.1 LATENT STEPS FOR TRAINING

We can use reparametrization trick to write p(Ψt+1(x)|Ψt(x), x) as

Ψt+1(x) =
√

1− βtΨt(x) +
√
βtϵt, ϵt ∼ N (0, I)

We can unroll Ψt+1 based on Ψt−1

Ψt+1(x) =
√

1− βt(
√
1− βt−1Ψt−1(x) +

√
βt−1ϵt−1) +

√
βtϵt, ϵt−1 ∼ N (0, I)

=
√

1− βt
√
1− βt−1Ψt−1(x) +

√
1− βt

√
βt−1ϵt−1 +

√
βtϵt

=
√
1− βt

√
1− βt−1Ψt−1(x) +

√
1− (1− βt)(1− βt−1)ϵ

14
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where ϵ ∼ N (0, I); and the third equal sign holds since sum of two Gaussian distribution is also a
Gaussian distribution.

Unroll with respect to t, we have Ψt+1 in term of Ψ0

Ψt+1(x) =
√

1− βt
√
1− βt−1Ψt−1(x) +

√
1− (1− βt)(1− βt−1)ϵ

=

t+1∏
s=1

√
1− βsΨ0(x) +

√√√√1−
t+1∏
s=1

(1− βs)ϵ

So for brevity of notation, we denote

ᾱt+1 =

t+1∏
s=1

(1− βs) (17)

as used in Algorithm 1 of the main paper.

A.2.2 DDIM SAMPLING

We adapt the sampling technique from Song et al. (2020) for more efficient sampling. Details are
provided here for completeness.

In step 6 of Algorithm 2, we obtain

Ψ̂0(xi) = CCEDθ(Ψt(xi), xi, t) (18)

We can update denoise step Ψt−1(xi) using the predicted Ψ̂0(xi) and Ψt(xi)

Ψt−1(xi) =
√
ᾱt−1Ψ̂0(xi) +

√
1− ᾱt−1

1− ᾱt

(
Ψt(xi)−

√
ᾱtΨ̂0(xi)

)
(19)

with ᾱt defined as in A.2.1.

A.3 ARCHITECTURE IMPLEMENTATION

In Sec. 4.3 of the main paper, we had briefly discussed that PDEDIFF employs a coordinate-
conditioned encoder decoder (CCED) denoiser that converts a noisy input into its corresponding
denoised output by conditioning on the spatial coordinates.

The first step in the CCED forward pass is the encoder, where the noisy input, x and t are passed
through this encoder layer that has multiple sets of the Conditional Block and between each of these
blocks, the activation function used is softplus or tanh based on the problem setting and the residual
equations involved. This encoder converts all this data into a low-dimensional latent representation.

The next step is the bottleneck layer that also consists of the Conditional Block and captures the en-
coding within this low dimensional latent space to capture critical information required for denoising
the input.

After the bottleneck layer, the latent information passes through the decoder, similar to the encoder,
transforms the latent information into the original domain to give us the predicted noise. Every layer
of this decoder also has a skip connection from the encoder layer to effectively relay the encodings
to improve efficiency and accuracy.

We implement PDEDIFF in PyTorch 2.5.1 with CUDA 12.0 on an NVIDIA A100
GPU. All random seeds were fixed using torch.manual seed, np.random.seed, and
torch.cuda.manual seed.

We use a lightweight CCED to predict (ψ̂, Ê) given noisy input z, the diffusion timestep t ∈
{0, . . . , T−1}, and the spatial coordinate x:

Diffusion Hyperparameters:

• Steps: T = 100.
• Noise schedule: cosine, βt∈ [10−5, 10−2]

15
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• Objective: DDPM Lsimple on x0 plus physics residual weight cres

• Optimizer: AdamW, lr = 5×10−4

• Training: 1000 updates, batch 32
• Sampling: deterministic DDIM “single-step”

The implementation of our code can be found at: code

A.4 METRICS FOR TOY EXAMPLES

We discussed the P-MSE and Wasserstein metric for Schrodinger equations. For toy examples
where we consider settings involve circles, the metrics are defined slightly different from that of
the ones described in Section 4.4 of the main paper since we do not have explicit eigenvalues for
circle setups, and distributions on circles are not similar to those belongs to wavefunctions. We used
mean squared error (MSE) to and Wasserstein distance on uniform distribution of circles (setting
dependent) to evaluate the generated samples against ground truth values.

A.4.1 MEAN SQUARED ERROR

This metric calculates the mean squared error of the samples generated with the ground truth circles
coordinates. We compute the squared distance to all possible y-coordinates for an spatial x and
simply choose the minimum. Formally, the metric can be defined as below:

MSE = Ex∼Ω

[
min
yi∈Y

∥ŷ − yi∥22

]
where Y is set of possible solution of y-coordinates

A.4.2 WASSERSTEIN DISTANCE ON UNIFORM DISTRIBUTIONS

For two probability measures p, q on a domain Ω ⊂ Rd Denotes Γ(p, q) the set of couplings with
marginals p and q

W1(p, q) = inf
γ∈Γ(p,q)

∫
Ω×Ω

∥x− y∥ dγ(x,y), (20)

where Γ(p, q) denotes the set of couplings with marginals p and q.

Let {xi}ni=1 ⊂ R denote sampled x-coordinates and let {ŷi}ni=1 be the predicted y-values from a
model. We define a uniform distribution on (xi, ŷi) pairs. We define the predicted distribution to be

ppred((xi, ŷi)) =
1

n
δ(xi,ŷi)

Unit circle. We define the distribution for ground truth pairs (xi, yi) for each xi uniformly sampled
from [−1, 1] as follow

ptrue((xi, yi)) =
1

2n
δ(xi,yi), where δ(xi,yi) =

{
1, if x2i + y2i = 1

0, otherwise

Disjoint circles We define the distribution for ground truth pairs (xi, yi) for each xi uniformly
sampled from [−1, 3] as follow

ptrue((xi, yi)) =

2∑
k=1

πk
1

2n
δ(xi,yi)

where

δ(xi,yi) =

{
1, if x2i + y2i = 1, xi < 1 or (xi − 2)2 + (yi − 2)2 = 1, xi ≥ 1

0, otherwise

16
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and πk is the weight if (xi, yi) belongs to circle k (k = 1 for circle centers at (0, 0) and k = 2 for
circle centers at (2, 2))

Concentric circles We define the distribution for ground truth pairs (xi, yi) for each xi uniformly
sampled from [−1, 1] as follow

ptrue((xi, yi)) =

2∑
k=1

πk
1

2kn
δ(xi,yi)

where

δ(xi,yi) =

{
1, if (xi, yi) ∈ C
0, otherwise

with

C = C1 ∪ C2
with C1 = {(xi, yi) : x2i + y2i = 9, and xi ̸∈ [−1, 1]}

C2 = {(xi, yi) : x2i + y2i = 1 or x2i + y2i = 9, and xi ∈ [−1, 1]}

and πk is the weight if (xi, yi) belongs to Ck.

A.5 EXPERIMENT SETUP

In this section, we continue from Section 5 of the main paper and discuss the results of PDEDIFF in
the problem settings defined earlier. We first discuss more details of the problem settings, i.e. how
did we generate data for training and hyperparameters used in each physics setting.

A.5.1 1DSCHRODINGER: INFINITE POTENTIAL WELL/ PARTICLE IN A BOX

We consider the time-independent Schrödinger equation for a particle in a one-dimensional infinite
potential well:

Eψ(x) =

(
− ℏ2

2m
∂2x + V (x)

)
︸ ︷︷ ︸

H

ψ(x)

where V (x) denotes the infinite potential well, or in other words, the space of a 1D box that contains
the particle where it moves freely inside but trapped between the wall (xL, xR). The potential well
can be defined as

V (x) =

{
0, xL < x < xR
∞, otherwise

In this setting, the particle is confined within (xL, xR), with Dirichlet boundary conditions ψ(xL) =
ψ(xR) = 0.

Solving for ψ(x), we can do it analytically as outside of xL, xR, ψ(x) = 0, so the wavefunction
takes the form:

ψ(x) =

√
2

L
sin

(nπx
L

)
where n are positive integer values.

Dataset Generation: The dataset for 1D infinite potential well was generated by uniformly sampling
spatial coordinates between [0, Lx]. After sampling the spatial coordinates, we analytically calculate
the wavefunction and the energy values. For our experiments, we simplify the constant values as
ℏ = 1,m = 1, and the size of the well is taken as Lx = 3. We generate 100 data points for each of
the first few eigenstates for training, i.e. we choose n = 1, 2, 3 for the 1D TISE 3 waves setting, and
n = 1, 2 for the 1D TISE 2 waves setting.

17
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Figure 5: PDEDIFF denoising steps with cres = 0.001 (left to right: denoise step t =
100, 70, 40, 10, 0). The left-most subplot shows noisy samples from Gaussian and each of the steps
to the right shows the denoising process. The right-most subplot show the generated samples Ψ0.

A.5.2 1D GROSS-PITAEVSKII EQUATION

We consider also one-dimensional time-independent Gross-Pitaevskii equation, a form of non-linear
Schrodinger equation. In specific, the Halmiltonian operatorH is non-linear and written as follow:

Eψ(x) =

(
h2∂2x
2m

+ V (x) + U0|ψ(x)|2
)

︸ ︷︷ ︸
H

ψ(x)

where U0 is interaction force, V (x) = 1
2mx

2 is the harmonic trapping potential.

Not many non-linear Schodinger equations have closed-form solution, such as the one presented
here. We obtain training samples and ground truth by solving the time-independent Gross-Pitaevskii
equation via an explicit imaginary-time algorithm as in Chiofalo et al. (2000).

Setup: In this setting, the particle is free to move within (xL, xR) ⊂ R, with Dirichlet boundary
conditions ψ(xL) = ψ(xR) = 0. We generate 100 data points for each wavefunction and their
corresponding energy using the algorithm in Chiofalo et al. (2000) for training and generate 200
points to evaluate our framework against the ground truth.

A.5.3 2DSCHRODINGER: SQUARE INFINITE POTENTIAL WELL

We next consider the time-independent Schrödinger equation for a particle in a two-dimensional
square infinite potential well:

Eψ(x) =

(
− ℏ2

2m
(∂2x + ∂2y) + V (x)

)
︸ ︷︷ ︸

H

ψ(x)

where V (x) denotes the infinite potential well, or in other words, the space of a 2D box that contains
the particle where it moves freely inside but trapped between the walls B = [xL, xR] × [yL, yR] ⊂
R2. The potential well can be defined as:

V (x) =

{
0, xL < x < xR, yL < y < yR
∞, otherwise

In this setting, the particle is confined within B,with Dirichlet boundary conditions, i.e., ψ(x) = 0
for any x ∈ ∂B, where ∂B denotes the boundary of the box B.

Solving for ψ(x), we can do it analytically as outside of B, ψ(x) = 0, so the wavefunction takes the
form:

ψ(x) =
2

L
sin

(nxπx
L

)
sin

(nyπy
L

)
where nx, ny are positive integer values.

Set up: The dataset for 2D infinite potential well was generated by uniformly sampling spatial co-
ordinates between x = [0, Lx], y = [0, Ly]. After sampling the spatial coordinates, we analytically
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calculate the wavefunction and the energy values. For our experiments, we simplify the constant
values as ℏ = 1,m = 1, and the size of the well is taken as Lx = Ly = 3. For each eigen-
state, we sample 200 data points for all the states in total. For 3 wave setting, we choose the states
(nx, ny) as (1, 1), (2, 1), (2, 2), and for the 4 wave settings, we experiment on degenerate states
(1, 1), (1, 2), (2, 1), (2, 2), i.e. some wavefunctions has the same energy, and nondegenerate states
(1, 1), (2, 1), (3, 1), (4, 1), i.e. every wavefunctions has distinct energy.

A.5.4 HELMHOLTZ EQUATION

The Helmholtz equation is a non-homogeneous elliptic PDE that usually arises from applications in
heat conduction, ultrasound or acoustics Basu & Rani (2021). It can be express as follow:

∇2ψ(x) + k2ψ(x)︸ ︷︷ ︸
Hkψ

= f(x)

where the integer or real valued parameter k is known as frequency or wave number, and the source
function f describes the emission source of the wave ψ(x), with x = (x1, x2) ∈ Ω ⊆ R2. In our
experiment, we use the following source function

f(x) = (1 + 8π2) cos(π2x1)cos(π
2x2)

Our goal is to recover the high resolution propagation of the wave through the environment ψ(x)
and its frequency k. Training data is simulated by solving the second-order finite-difference linear
systemHψ = f with low fidelity on a 16× 16 grid. The results are presented in Tab. 2 and 11.

Setup: We sample 128 data points for each wave mode from a 16× 16 grid and their corresponding
frequency k ∈ {π, 4π}. The ground truth solution grids for training and evaluating our framework
against the ground truth are obtained using the linear algebra solver on the discrete differential oper-
ator by second-order finite differences. Since only ground truth on fixed grid can be obtain through
numerical method, we sample from fixed grid points for evaluation as in figure 6c, comparing against
the ground truth in figure 6a and the prediction via PINN in figure 6b. In practical use cases, we can
sample from any possible partial coordinate to complete the solution space via sampling from the
learned PDEDIFF model, and hence can obtain multiple higher resolution solution fields on 32×32
grid with this method such as in figure 6d. The accuracy of the generated sample can be observed
from slices of the 2D solution as in figures 6e-f for better visualization.

A.5.5 BURGERS’ EQUATION

We consider the 1D viscous Burgers’ equation, a nonlinear PDE widely used as a simplified model
of Navier-Stokes equations. In a more practical setting, we consider measurements of fluid dynamics
with various viscosity. Assume that measurements of the fluid flow and viscosity are difficult and
only low-fidelity, sparse measurements are obtained, and some governed physics are known in the
form of the viscous Burger’s equation Takamoto et al. (2023)

∂tu(t, x) +
1

2
∂xu

2(t, x) = ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 2]

u(0, x) = u0(x), x ∈ (0, 1)

where u(t, x) denotes the flow velocity and ν is the viscosity controlling smoothness of the solution
and a periodic boundary condition.

Setup: We utilize the 1D Burgers’ Equation dataset from PDEBench Takamoto et al. (2023). To
simulate a scenario where governed physics are known but measurements are sparse, we isolate a
fixed initial condition trajectory and observe its evolution under varying physical parameters. We
extract solution fields for ν ∈ {0.001, 0.4} and subsample from the original high-resolution data.
For training, we generate a dataset by uniformly sampling 100 spatial coordinate points for each
(viscosity, time) pair, resulting in a sparse representation of the fluid flow across the spatiotemporal
domain.

A.5.6 TOY EXAMPLES

In this section, we discuss in more details for the experiment setup for the toy examples with circles.
Given some x coordinates that are uniformly sampled from a given range (such as [−1, 1] for unit
circle). We want to generate the corresponding y coordinates that satisfy physics guidance.
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(a) Ground truth for Helmholtz equation

(b) PINN prediction for Helmholtz equation

(c) PDEDIFF prediction for Helmholtz equation

(d) PDEDIFF generation for Helmholtz equation with cres = 0.001

(e) PDEDIFF generation with cres = 0.001,
k = π

(f) PDEDIFF generation with cres = 0.001,
k = 4π

Figure 6: Ground truth, prediction by PINN and generated samples by physics-informed PDEDIFF

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Setting Burgers Equation

P Q

0 0.0516± 0.0024 0.0149± 0.0025

0.001 0.0685± 0.0119 0.0148± 0.0023

0.005 0.0956± 0.0019 0.0199± 0.0026

0.01 0.1043± 0.0045 0.0233± 0.0039

0.05 0.1200± 0.0009 0.0375± 0.0084

0.1 0.1220± 0.0007 0.0406± 0.0079

0.5 0.1283± 0.0004 0.0496± 0.0102

1 0.1301± 0.0028 0.0540± 0.0106

10 0.1264± 0.0137 0.0710± 0.0101

100 0.1063± 0.0494 0.0782± 0.0122

Table 3: Preliminary performance comparison between PINN (P) and PDEDIFF (Q) for Burger’s
Equation for a particular trajectory with 2 different viscocities over the entire space and time values
on P-MSE metric. The lower values represent better match between the ground truth and the sampled
datapoints.

Unit circle. This problem could be formulated as a simple problem
√
1− x2 = ±y, in which the

”eigen-values” ±1 is not explicitly exposed to the model. We instead required the model to learn
this and output y|x from provided training pairs (x, y) and the physical constraints x2 + y2 = 1.
Note that for a given x, there are 2 possible values for y−coordinates. We generate 100 points on
the unit circle with coordinates (x, y) satisfying x2 + y2 = 1 for training.

Disjoint circle. To study if the diffusion model is able to learn distinct distributions, we generate 200
points, with 100 points on a unit circle with coordinates (x, y) satisfying x2 + y2 = 1 with centroid
at (0, 0), and another 100 points on a circle with coordinates (x, y) satisfying (x−2)2+(y−2)2 = 1
with center at (2, 2). The two circles do not overlap each other.

Concentric circle. We generate 200 points, with 100 points on a circle with coordinates (x, y)
satisfying x2 + y2 = 1, and another 100 on a circle with coordinates (x, y) satisfying x2 + y2 = 9.
The two circles share the same centroid at (0, 0). This creates a more complicated setting where for
some x coordinates, there exist 4 possible solutions. Figure 9 illustrates that PDEDIFF manages to
distinguish different distributions, while PINN collapsed to only learning the mean of the data.

For circle settings, we consider the weighting for physics informed loss cres = 0.01. To obtain new
samples for visualization and error quantification, we generate 200 points with Algorithm 2 of the
main paper. The generation by physics-informed PDEDIFF with cres = 0.01 can be visualize at
figures 7b, 8b, 9b for unit circle, disjoint circles and concentric circles, respectively. In comparison,
generation by PINN (also with cres = 0.01) are shown in Figures 7c, 8c, 9c, for unit circle, disjoint
circles and concentric circles, respectively. For each toy setting, we run 5 experiments for each
models on different seeds and present the average and one standard deviation of the metrics obtained
with each model in table 4. In general, the performance of PDEDIFF with physics-informed loss
outperforms that of PINN with similar residual coefficient cres, assessed using the P-MSE and the
Wasserstein metric. The experiments with toy examples of circles verify the performance of our
method and show potential of physics-informed diffusion in distinguishing multimode distribution.

A.6 COMPARISON WITH GAUSSIAN PROCESSES

We have performed a small set of experiments to compare PDEDIFF with Gaussian Processes as
in Rasmussen & Williams (2005). These methods discuss how the differential operator could be
embedded into the gaussian prior ensuring that the samples generated satisfy the governing equa-
tions. Even though Gaussian Process model uncertainty and can be used to generate samples from
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(a) Ground Truth (b) PDEDIFF (Physics-informed) (c) PINN

Figure 7: Comparison of generated samples by physics-informed PDEDIFF and PINN for unit
circle. The dotted red line shows the ground truth and the blue dots are the inference point clouds.

(a) Ground Truth (b) PDEDIFF (Physics-informed) (c) PINN

Figure 8: Comparison of generated samples by physics-informed PDEDIFF and PINN for disjoint
circles. The dotted red line shows the ground truth and the blue dots are the inference point clouds.

(a) Ground Truth (b) PDEDIFF (Physics-informed) (c) PINN

Figure 9: Comparison of generated samples by physics-informed PDEDIFF and PINN for concentric
circles. The dotted red line shows the ground truth and the blue dots are the inference point clouds.
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(a) Ground Truth (b) PDEDIFF (Physics-informed) (c) PINN

Figure 10: Comparison of generated samples by physics-informed PDEDIFF and PINN for 1D
Schrödinger equation with 2 wavefunctions in infinite potential well.

the solution like diffusion models, the inherent Gaussian assumption implies a unimodal function,
and hence the goal of this approach is still to learn the mean function. As a result, Gaussian Process
based methods cannot handle settings where the PDEs have multiple feasible solutions.

We compare PDEDIFF with the EPGP method in Harkonen et al. (2023) on solving the 1D
Schrodinger equation for infinite potential well with 2 states. For the Gaussian Process models,
because our data has samples from multiple solutions, we address this information to the kernel by
adding two RBF kernels, or multiplying 2 RBF kernels and we observe that the model is trying to
fit itself onto both the possible solutions. Whereas, we follow the method in Harkonen et al. (2023)
to write a physics-informed kernel and gave the additional information to use n = 1, 2 states. We
again experiment with sum and product of these EPGP kernels. As observed in all the 4 cases in
Figure 11, Gaussian Process kernels fail to learn to sample from multiple solutions.

Figure 11: Gaussian Process Experiments for 1D Infinite Potential Well for n = 1, 2 eigenstates
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A.7 LIMITATIONS AND FUTURE WORK

As briefly discussed in the main paper, we have demonstrated that PDEDIFF provides a more flexible
approach towards incorporating physics in diffusion models as the data is no longer bound to a mesh
and the calculation of physics residual can be performed using autograd instead of writing custom
finite difference kernels. We have also presented evidence that adding a physics informed loss to a
conditional diffusion model can generate solution of PDEs that are more faithful to the underlying
physics as compared to using a PINN or a vanilla diffusion model.

Our method lays the foundation for many possible extensions, such as developing a training algo-
rithm to train the diffusion model to learn unseen eigenstates when a particular subset of eigenstates
have been provided for training. Another possible future extension could be to develop a data-free
approach where no dataset will be required and the denoising step can be guided to generate solu-
tions using the physics informed regularizer.

In a preliminary experiment, we compare the time taken to solve first 4 eigenvalues and eigenfunc-
tions for the 2D infinite potential well Schrodinger equation using an eigensolver (SciPy) on a
1000 × 1000 grid with the time taken to sample 106 samples from the same grid using PDEDIFF.
The eigensolver took almost 5708 seconds whereas PDEDIFF took only around 3126 seconds which
is a 1.8 times faster. A potential research direction would be to speed-up the training and sampling
time as this could help make the existing PDEDIFF sampler more efficient to generate data on new
spatial-temporal coordinates.

Previously, we had also mentioned that scaling this framework to noisy and high-dimensional ex-
perimental datasets could potentially accelerate the development of real-time digital simulations of
various problems. We believe that our method could be extended to other fields such as to drug
discoveries, healthcare and finance, where systems can be modeled as PDEs and these PDEs will
have multiple solutions.

A.8 ABLATION STUDY

To study which weight cres would be best guided our physics-informed PDEDIFF, for each setting,
we ran 5 experiments for each value cres ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 1, 10} and average
the P-MSE and WD metrics. The best average metrics for non-zero cres for each setting of the
Schrodinger equations, and non-homogeneous Helmholtz equation are presented in Table 1 and
Table 2 of the main paper.

A.8.1 ON WEIGHTS FOR RESIDUAL LOSS AND METRICS

In the circle experiments, where the ground truth distribution P(Y |X) has finitely many modes,
PDEDIFF successfully captures all branches of the distribution. PINN, however, treats the problem
as a regression task, learning the conditional mean E(Y |X) and thus fails to accurately predict the
y-values for given x-coordinates. More visualizations of our toy examples that demonstrate this
behavior can be found in 9, 8, 7.

As we increase the cres value for the physics constraint, this reduces our training loss as well as the
PMSE metric (results shown in Table 5, 6, 7, 8, 9 and better illustrated in Figure 14, 15). Small
cres values (0.001, 0.005, 0.01) give low P-MSE and WD metric, with cres = 0.001 achieving the
best P-MSE and WD for learning 3 wavefunctions for 1D TISE, and cres = 0.005 achieving the
best metrics for learning 2 wavefunctions for 1D TISE and 1D GP, as shown in Table 5, 7, and 6,
respectively. An example of the learned denoising process with cres = 0.001 is shown in figure 5.

For 1D Schrodinger cases, a higher cres, i.e. cres = 0.1, 1, 10 resulted in a flatter curve distribution
(figure 13) compared to the distribution learned with a smaller cres = 0.001, 0.005, 0.01 (figure
12). One reason might be that strong physics residuals make the distribution converge to the trivial
solution where the wavefunction ψ(x) = 0 and the energy E = 0. This trivial solution also satisfies
the Schrodinger equation of the formHψ = Eψ. In addition, more points tend to concentrate around
the first predicted eigenvalue, or also known as mode collapsed. This occurs when we enforce a
strong penalty on the physics-informed loss.

Across all settings, the residual weight (cres) is balancing the two scenarios: a small value allows
for more flexible generation, while for larger values it forces the model to learn a trivial solution. As
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Setting Unit circle Disjoint circles Concentric circles

cres P Q P Q P Q

0
MSE 0.389±0.058 0.0028±0.0014 0.489±0.053 0.013±0.0023 0.277±0.085 0.052±0.014
WD 0.475±0.010 0.0116±0.0192 0.533±0.015 0.421±0.055 0.907±0.032 0.560±0.038

0.01
MSE 0.379±0.085 0.0014±0.0006 0.486±0.052 0.012±0.0038 0.274±0.092 0.052±0.012
WD 0.471±0.013 0.0852±0.0191 0.532±0.015 0.417±0.089 0.906±0.037 0.549±0.030

Table 4: Performance comparison between PINN (P) and PDEDIFF (Q) across different problem
settings. Here, MSE is as defined in section A.4.1 and WD is the Wasserstein metric for uniform
distribution on circles defined in section A.4.2. The error is range of one standard deviation.

observed in Table 5, 6, and 7, increasing cres, causes the model to collapse to a single mode, where
the PMSE remains small for PDEDIFF, but the Wasserstein distance increases.

Similarly, for the 2D Schrodinger cases, we can see a similar trend with respect to cres in Table 8, 9.
For the harder 4 wave case, PDEDIFF achieves a better Wasserstein metric as compared to the other
methods. Since the ”average” eigenstate for the 4 waves is the degenerate state, i.e., the eigenstates
with the same energy ((1, 2), (2, 1)), PINN is able to give a much lower P-MSE value, but we can
see from the Wasserstein metric, the samples generated have collapsed onto this average state and is
not able to generate a mixture of all the learned states. PDEDIFF in this case is still able to prevent
this catastrophic mode collapse and generate a good mixture of eigenstates.

(a) PDEDIFF with cres = 0.001 (b) PDEDIFF with cres = 0.005 (c) PDEDIFF with cres = 0.01

Figure 12: Generated samples by physics-informed PDEDIFF with different cres values for 1D
Schrodinger equation in infinite potential well.

(a) PDEDIFF with cres = 0.1 (b) PDEDIFF with cres = 1 (c) PDEDIFF with cres = 10

Figure 13: Generated samples by physics-informed PDEDIFF with different cres values for 1D
Schrodinger equation in infinite potential well.
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Setting 1D (2 waves: n = 1, 2)

cres P D N Q

0
PMSE 0.822 ± 0.016 0.9323 ± 0.0225 0.8090 ± 0.0236 0.0168 ± 0.010
WD 0.539 ± 0.022 0.1572 ± 0.00601 0.5440 ± 0.0147 0.0863 ± 0.059

0.001
PMSE 0.974 ± 0.247 0.9351 ± 0.0251 0.9600 ± 0.1299 0.0137 ± 0.013
WD 0.423 ± 0.052 0.1572 ± 0.00602 0.4460 ± 0.0442 0.0865 ± 0.063

0.005
PMSE 1.052 ± 0.329 0.9350 ± 0.0249 1.0300 ± 0.1924 0.0146 ± 0.011
WD 0.244 ± 0.031 0.1570 ± 0.00602 0.3500 ± 0.0421 0.0862 ± 0.061

0.01
PMSE 1.106 ± 0.371 0.9348 ± 0.0247 1.1082 ± 0.2024 0.0392 ± 0.032
WD 0.313 ± 0.020 0.1572 ± 0.00602 0.3077 ± 0.0349 0.113 ± 0.037

0.05
PMSE 1.923 ± 0.456 0.9370 ± 0.0264 1.3800 ± 0.2067 0.239 ± 0.157
WD 0.327 ± 0.069 0.1570 ± 0.00609 0.2300 ± 0.0188 0.152 ± 0.057

0.1
PMSE 3.414 ± 1.49 0.9400 ± 0.0274 1.5200 ± 0.2919 0.748 ± 0.411
WD 0.587 ± 0.130 0.1580 ± 0.00593 0.2270 ± 0.0350 0.153 ± 0.057

1
PMSE 3325 ± 2996 0.9390 ± 0.0412 1.7900 ± 0.4569 1.05 ± 0.317
WD 0.306 ± 0.206 0.1730 ± 0.0100 0.1260 ± 0.0046 0.188 ± 0.476

10
PMSE 3540 ± 2741 0.9910 ± 0.0376 2.6000 ± 2.1009 2.05 ± 1.753
WD 0.236 ± 0.110 0.1670 ± 0.0193 0.1280 ± 0.0106 0.170 ± 0.009

Table 5: Performance comparison between PINN (P), DeepONet (D), Physic-informed Neural Op-
erator (N), and PDEDIFF (Q) for 1D (2 waves).

Figure 14: Ablation study results from Table 5 with error bar for 1D Schrodinger equation (2 waves).
PDEDIFF achieves lowest PMSE and WD metric compare with PINN, Physics-informed Neural
Operator and DeepONet for cres ≤ 0.1 values. Overall, PDEDIFF with cres = 0.005 gives the
lowest PMSE and WD metrics.
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Setting 1D (3 waves: n = 1, 2, 3)

cres P D N Q

0
PMSE 0.371 ± 0.031 4.37 ± 0.029 0.3330 ± 0.0337 0.0218 ± 0.013
WD 0.737 ± 0.023 0.114 ± 0.00275 0.7760 ± 0.0331 0.0549 ± 0.009

0.001
PMSE 0.460 ± 0.435 4.37 ± 0.029 0.4450 ± 0.0349 0.0123 ± 0.012
WD 0.422 ± 0.151 0.114 ± 0.00275 0.4700 ± 0.1350 0.0499 ± 0.019

0.005
PMSE 0.521 ± 0.079 4.37 ± 0.029 0.5250 ± 0.0374 0.0299 ± 0.011
WD 0.315 ± 0.088 0.114 ± 0.00275 0.3370 ± 0.0827 0.0716 ± 0.014

0.01
PMSE 0.534 ± 0.167 4.37 ± 0.029 0.5831 ± 0.0449 0.0347 ± 0.006
WD 0.266 ± 0.064 0.114 ± 0.00275 0.2907 ± 0.0643 0.0838 ± 0.022

0.05
PMSE 1.330 ± 0.528 4.38 ± 0.0307 0.8140 ± 0.0964 0.532 ± 0.222
WD 0.399 ± 0.154 0.114 ± 0.00287 0.1920 ± 0.0316 0.176 ± 0.130

0.1
PMSE 7.63 ± 6.148 4.38 ± 0.0335 0.9540 ± 0.1395 0.807 ± 0.108
WD 0.503 ± 0.132 0.115 ± 0.00327 0.1270 ± 0.0045 0.111 ± 0.013

1
PMSE 6989 ± 6330 4.41 ± 0.0335 1.0800 ± 0.1151 0.971 ± 0.171
WD 0.224 ± 0.149 0.113 ± 0.00676 0.1320 ± 0.0251 0.145 ± 0.059

10
PMSE 7552 ± 5669 4.20 ± 0.138 2.1200 ± 2.5231 1.56 ± 1.61
WD 0.154 ± 0.056 0.165 ± 0.0621 0.1260 ± 0.0161 0.143 ± 0.0241

Table 6: Performance comparison between PINN (P), DeepONet (D), Physic-informed Neural Op-
erator (N), and PDEDIFF (Q) for 1D (3 waves).

Figure 15: Ablation study results from Table 6 with error bar for 1D Schrodinger equation (3 waves).
PDEDIFF achieves lowest PMSE and WD metric compare with PINN, Physics-informed Neural
Operator and DeepONet for small cres values. Overall, PDEDIFF with cres = 0.001 gives the
lowest PMSE and WD metrics.
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Setting 1D GP (3 waves: n = 1, 2, 3)

cres P D N Q

0
PMSE 1.550 ± 0.804 0.868 ± 0.004 0.0685 ± 0.00263 0.140 ± 0.007
WD 2.036 ± 1.222 1.431 ± 0.027 1.180 ± 0.0449 0.195 ± 0.043

0.001
PMSE 1.291 ± 0.479 0.867 ± 0.00487 0.0691 ± 0.00260 0.126 ± 0.019
WD 2.418 ± 1.084 1.431 ± 0.0274 1.185 ± 0.0451 0.194 ± 0.033

0.005
PMSE 1.550 ± 0.804 0.868 ± 0.00451 0.0708 ± 0.00243 0.118 ± 0.028
WD 2.040 ± 1.222 1.430 ± 0.0274 1.203 ± 0.0472 0.338 ± 0.186

0.01
PMSE 1.550 ± 0.804 0.868 ± 0.00438 0.0732 ± 0.00222 0.139 ± 0.032
WD 2.036 ± 1.222 1.431 ± 0.0274 1.223 ± 0.0533 0.333 ± 0.187

0.05
PMSE 1.550 ± 0.804 0.869 ± 0.00440 0.0874 ± 0.00399 0.134 ± 0.018
WD 2.040 ± 1.222 1.430 ± 0.0276 1.236 ± 0.0903 0.937 ± 0.734

0.1
PMSE 1.550 ± 0.804 0.871 ± 0.00507 0.0930 ± 0.00923 0.189 ± 0.089
WD 2.040 ± 1.222 1.430 ± 0.0276 1.144 ± 0.175 0.644 ± 0.453

1
PMSE 1.550 ± 0.804 0.898 ± 0.00864 0.1016 ± 0.00198 0.248 ± 0.137
WD 2.040 ± 1.222 1.430 ± 0.0260 1.899 ± 0.889 1.100 ± 0.565

10
PMSE 1.550 ± 0.804 0.915 ± 0.0427 0.1016 ± 0.00197 0.286 ± 0.204
WD 2.040 ± 1.222 1.120 ± 0.0841 2.992 ± 0.414 0.453 ± 0.072

Table 7: Performance comparison between PINN (P), DeepONet (D), Physic-informed Neural Oper-
ator (N), and PDEDIFF (Q) for the 1D GP (3 waves) setting. Lower values indicate better agreement
with the ground truth wavefunctions.

Figure 16: Ablation study results from Table 7 with error bar for 1D Gross-Pitaevskii equation
(3 waves). PDEDIFF achieves lowest WD metric compare with PINN, Physics-informed Neural
Operator and DeepONet for all cres ≤ 10 values. Physics-informed neural operator converges to a
single mode to achieve the small PMSE metric but failed to learn the whole multi-modal distribution
with all 3 wavefunctions. This showed in Figure 4 and the high WD metric.
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Setting 2D (3 waves: (1, 1), (2, 1), (2, 2))

cres P D N Q

0
PMSE 1.253 ± 0.147 7.3269 ± 0.2681 1.2543 ± 0.1392 1.222 ± 0.071
WD 0.378 ± 0.072 0.4419 ± 0.0584 0.2967 ± 0.0301 0.169 ± 0.037

0.001
PMSE 1.239 ± 0.098 7.3264 ± 0.2682 1.3980 ± 0.6033 1.194 ± 0.097
WD 0.340 ± 0.075 0.4420 ± 0.0584 0.5020 ± 0.2341 0.155 ± 0.037

0.005
PMSE 1.229 ± 0.061 7.3300 ± 0.2676 2.0700 ± 0.6581 1.201 ± 0.098
WD 0.363 ± 0.100 1.1800 ± 1.6280 0.8260 ± 0.1594 0.187 ± 0.042

0.01
PMSE 1.184 ± 0.062 7.3259 ± 0.2675 4.7610 ± 7.9025 1.174 ± 0.098
WD 0.368 ± 0.076 0.4419 ± 0.0584 0.8188 ± 0.2973 0.173 ± 0.047

0.05
PMSE 1.004 ± 0.087 7.3200 ± 0.2651 245373 ± 548545 0.923 ± 0.095
WD 0.444 ± 0.058 0.4420 ± 0.0585 1.09 ± 0.4884 0.238 ± 0.047

0.1
PMSE 0.793 ± 0.049 7.3300 ± 0.2725 21437 ± 3047.6 0.769 ± 0.145
WD 0.502 ± 0.083 0.4420 ± 0.0587 1.31 ± 0.4834 0.264 ± 0.0599

1
PMSE 49.531 ± 3.639 7.3700 ± 0.2144 571194 ± 883341 1.103 ± 1.247
WD 0.239 ± 0.047 0.4390 ± 0.0536 1.33 ± 0.3529 0.338 ± 0.083

10
PMSE 1474.578 ± 293.978 7.2100 ± 0.1260 16423 ± 2072.9 3.059 ± 2.304
WD 0.169 ± 0.044 0.4540 ± 0.0143 0.690 ± 0.1398 0.248 ± 0.048

Table 8: Results for the 2D (3 waves: (1, 1), (2, 1), (2, 2)) experiment, comparing PINN (P), Deep-
ONet (D), Neural Operator (N), and PDEDIFF (Q).

Figure 17: Ablation study results from Table 8 with error bar for 2D Schrodinger equation (3 waves).
PDEDIFF achieves lowest WD and PMSE metric compare with PINN, Physics-informed Neural
Operator and DeepONet for all cres ≤ 0.1 values. PDEDIFF with cres = 0.1 gives the lowest
PMSE metric and PDEDIFF with cres = 0.001 gives the lowest WD metric.
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Setting 2D (4 waves: (1, 1), (1, 2), (2, 1), (2, 2))

cres P D N Q

0
PMSE 1.250 ± 0.059 7.661 ± 0.539 1.332 ± 0.197 1.309 ± 0.073
WD 0.482 ± 0.073 0.4846 ± 0.0709 0.300 ± 0.103 0.150 ± 0.042

0.001
PMSE 1.243 ± 0.055 7.659 ± 0.539 0.933 ± 0.305 1.338 ± 0.074
WD 0.477 ± 0.078 0.4846 ± 0.0708 0.513 ± 0.104 0.124 ± 0.051

0.005
PMSE 1.223 ± 0.038 7.660 ± 0.539 135492 ± 302955 1.390 ± 0.147
WD 0.481 ± 0.077 0.4850 ± 0.0708 1.07 ± 0.647 0.202 ± 0.118

0.01
PMSE 1.181 ± 0.041 7.661 ± 0.539 129839 ± 289801 1.414 ± 0.192
WD 0.527 ± 0.105 0.4846 ± 0.0708 1.010 ± 0.629 0.194 ± 0.103

0.05
PMSE 1.006 ± 0.042 7.660 ± 0.539 1209.46 ± 2686.2 1.088 ± 0.211
WD 0.592 ± 0.094 0.4850 ± 0.0708 1.22 ± 0.377 0.386 ± 0.114

0.1
PMSE 0.790 ± 0.041 7.660 ± 0.539 3388.96 ± 7461.78 0.928 ± 0.109
WD 0.597 ± 0.069 0.4850 ± 0.0708 1.05 ± 0.306 0.326 ± 0.098

1
PMSE 21.005 ± 1.826 7.670 ± 0.400 46626.9 ± 44388 0.815 ± 0.165
WD 0.211 ± 0.035 0.4840 ± 0.0675 1.41 ± 0.354 0.301 ± 0.032

10
PMSE 460.817 ± 56.397 7.290 ± 0.146 1317743 ± 2756065 0.808 ± 0.201
WD 0.160 ± 0.046 0.4580 ± 0.0135 1.44 ± 0.360 0.392 ± 0.162

Table 9: Results for 2D (4 waves: (1, 1), (1, 2), (2, 1), (2, 2)) experiment, comparing PINN (P),
DeepONet (D), Neural Operator (N), and PDEDIFF (Q).

Figure 18: Ablation study results from Table 9 with error bar for 2D Schrodinger equation (4 waves).
PDEDIFF achieves lowest WD metric compare with PINN, Physics-informed Neural Operator and
DeepONet for all cres ≤ 0.1 values. PINN with cres = 10 gives the lowest PMSE metric and
PDEDIFF with cres = 0.001 gives the lowest WD metric.
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Setting 2D (4 waves: (1, 1), (2, 1), (3, 1), (4, 1))

cres P D N Q

0
PMSE 1.1333± 0.0696 22.342± 2.3903 1.1984± 0.1170 1.1004± 0.0490
WD 0.5973± 0.1604 0.5127± 0.1082 0.3442± 0.1107 0.22174± 0.1484

0.001
PMSE 1.1299± 0.05626 22.342± 2.3903 1.2570± 0.5490 1.0905± 0.0559
WD 0.6233± 0.0560 0.5127± 0.1082 0.58746± 0.1358 0.20494± 0.0891

0.005
PMSE 1.9343± 0.7272 22.342± 2.39033 2.2754± 2.1479 1.0326± 0.1810
WD 0.4815± 0.0074 0.5128± 0.1083 0.67119± 0.2896 0.38876± 0.2228

0.01
PMSE 1.6699± 0.8890 22.342± 2.3903 8328.97± 18620 0.9246± 0.1270
WD 0.4702± 0.0269 0.5127± 0.1082 0.8739± 0.5174 0.5585± 0.1533

0.05
PMSE 2.0404± 1.3113 22.344± 2.3907 1774100± 3922300 0.7339± 0.1237
WD 0.46002± 0.0199 0.51276± 0.1082 1.1972± 0.4778 0.4753± 0.0588

0.1
PMSE 2.2239± 1.5007 22.350± 2.3901 604850± 1335200 0.6149± 0.1649
WD 0.4576± 0.0203 0.5127± 0.1081 1.3754± 0.5193 0.4431± 0.0244

1
PMSE 15.223± 16.508 22.362± 2.2990 31462.9± 69532.2 1.50± 2.2162
WD 0.5161± 0.0757 0.5129± 0.1050 1.0066± 0.3278 0.4436± 0.0018

10
PMSE 637.61± 197.99 20.565± 0.5769 863.57± 375.39 4.3467± 8.2002
WD 0.6188± 0.1821 0.4660± 0.0136 0.7310± 0.0744 0.4640± 0.0443

Table 10: Results for the 2D (4 waves: (1, 1), (2, 1), (3, 1), (4, 1)) experiment, comparing PINN (P),
DeepONet (D), Neural Operator (N), and PDEDIFF (Q).

Figure 19: Ablation study results from Table 10 with error bar for 2D Schrodinger equation (4
waves). PDEDIFF achieves lowest PMSE metric compare with PINN, Physics-informed Neural
Operator and DeepONet for all cres values. PDEDIFF with cres = 0.001 gives the lowest WD
metric.
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Setting Helmholtz (2 parameters: k ∈ {π, 4π})

cres P D N Q

0
PMSE 0.800 ± 0.110 21.35 ± 2.67 0.753 ± 0.217 0.254 ± 0.153
WD 0.107 ± 0.0401 0.168 ± 0.00103 0.111 ± 0.0425 0.0915 ± 0.0052

0.001
PMSE 0.746 ± 0.315 21.35 ± 2.67 1.00 ± 1.62 0.227 ± 0.0867
WD 0.108 ± 0.0297 0.168 ± 0.00103 0.106 ± 0.0463 0.0913 ± 0.00615

0.005
PMSE 0.918 ± 0.164 21.4 ± 2.67 99.5 ± 178.81 0.320 ± 0.133
WD 0.102 ± 0.00921 0.168 ± 0.00103 0.303 ± 0.153 0.0874 ± 0.00455

0.01
PMSE 1.18 ± 0.476 21.35 ± 2.67 0.909 ± 1.01 0.570 ± 0.187
WD 0.109 ± 0.0234 0.168 ± 0.00103 0.160 ± 0.148 0.0886 ± 0.00580

0.05
PMSE 38.4 ± 17.41 21.6 ± 2.76 140 ± 126.08 2.740 ± 2.170
WD 0.0866 ± 0.00753 0.168 ± 0.001034 0.0925 ± 0.0121 0.0819 ± 0.00715

0.1
PMSE 48.7 ± 19.58 23.4 ± 3.02 159 ± 145.52 4.430 ± 0.566
WD 0.0875 ± 0.00734 0.167 ± 0.001047 0.0937 ± 0.0126 0.0803 ± 0.00419

1
PMSE 74.6 ± 27.11 11.1 ± 9.56 196 ± 158.64 5.510 ± 0.581
WD 0.0888 ± 0.00670 0.173 ± 0.03096 0.0987 ± 0.0134 0.0827 ± 0.00703

10
PMSE 89.9 ± 25.42 0.557 ± 0.000874 458 ± 246.35 6.540 ± 1.234
WD 0.0901 ± 0.00637 0.158 ± 0.0280 0.169 ± 0.0566 0.0746 ± 0.00446

Table 11: Results for the Helmholtz (2 parameters) experiment, comparing PINN (P), DeepONet
(D), Physics-informed Neural Operator (N), and PDEDIFF (Q).

Figure 20: Ablation study results from Table 11 with error bar for Helmholtz equation (4 waves).
PDEDIFF achieves lowest PMSE metric compare with PINN, Physics-informed Neural Operator
and DeepONet for all cres ≤ 1 values. PDEDIFF with cres = 0.001 gives the lowest PMSE metric
and PDEDIFF with cres = 10 gives the lowest WD metric.
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