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ABSTRACT

Many physical systems that are represented by partial differential equations
(PDEs) admit multiple valid solutions, such as eigenstates of differential opera-
tors, or wave modes, yet most neural PDE surrogates are deterministic and col-
lapse to averages. This multiplicity of solutions is especially predominant in var-
ious engineering and scientific domains ranging from acoustics and seismology
to quantum systems. With the ability to generate or complete sparse measure-
ments, diffusion-based approaches to solve PDEs by sampling physically valid
solutions are gaining traction as an alternative to traditional numerical solvers.
In this paper, we present a novel physics-informed conditional diffusion frame-
work for multi-modal PDEs, called PDEDIFF, that learns distributions over solu-
tion fields from sparse, irregular samples while enforcing governing equations and
boundary conditions through mesh-free residual penalties computed by automatic
differentiation. PDEDIFF is capable of effectively solving PDEs with multiple
valid solutions by learning P[Y|X], i.e., it learns a solution field Y for a corre-
sponding input spatial information X . Unlike Physics-Informed Neural Networks
(PINNs), which minimize residuals around expected values E[Y|X] and hence
tend to regress toward a conditional mean, PDEDIFF samples diverse physically
consistent solutions by integrating PDE residuals directly into the diffusion objec-
tive. Our results indicate that generative, physics-informed diffusion is a practical
tool for uncertainty-aware and multi-modal PDE modeling in low-to-moderate di-
mensions.

1 INTRODUCTION

Accurate modeling and solving of partial differential equations (PDEs) is fundamental to advanc-
ing scientific disciplines, areas ranging from acoustics and seismology to quantum systems and fluid
dynamics. Physics-Informed Neural Networks (PINNs)[Raissi et al|(2019a) have emerged as a pow-
erful approach for embedding known physical laws into machine learning models. In recent years,
PINNSs have excelled in incorporating domain-specific equations and information into the learning
process by adding residual terms, which include differential equation and boundary conditions, to a
regressor’s loss, allowing data-efficient training from limited observations. Despite their ability to
leverage domain knowledge and efficiently estimate conditional means (E[Y | X]), PINNs collapse
multi-modal target distributions to a single mean-field solution and hence blur distinct physically
admissible solutions or eigenstates and fail to capture these multiple scenarios.

Diffusion models, driven by advances in deep generative modeling, have achieved remarkable per-
formance in tasks requiring detailed sampling from complex probability distributions such as in|{Ho
et al.| (2020b)); Song et al.| (2020). In this paper, we propose using this capability of reversing a noise
process to sample from solution fields.

Diffusion models have further advanced into multiple domains such as image synthesis Rombach
et al.|(2022); |[Kawar et al.[(2022); [Kakinuma et al.|(2025)), healthcare (Cao et al.|(2024); /Chung & Ye
(2022), and drug discovery |Alakhdar et al.|(2024); |Corso et al.| (2023). Conditional variants can, in
principle, capture the distribution over solution fields P[Y'| X | rather than a single point estimate, of-
fering critical advantages in problems where multiple solutions naturally arise such as parameterized
PDE:s or in eigen-PDEs. However, standard diffusion models typically do not incorporate physical
constraints explicitly, resulting in samples that may violate conservation laws, boundary conditions,
or any other operator constraints.
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In consideration of the above problems with diffusion models, there are some recent works, like
Bastek et al.|(2025) and |Shu et al.[(2023), that include physics residual as penalties during training.
Yet they targeted cases where the PDE’s solution pairs can be sampled from a single mode distri-
bution. Also, the above methods retained a grid-based input for training and generation that only
support computation residuals using finite-difference stencils.

This ability to sample multiple modes is particularly advantageous in solving PDEs with multiple
solutions, such as Schrodinger equation in quantum mechanics with multiple eigenfunctions |Lun-
deen et al.| (2011) or multiple wave solutions in Helmholtz equation. Another important setting
where multiple solutions arise is in PDEs with unknown parameters or boundary/initial conditions.
These unknown parameters can either be missing from data recorded during experiments or often
be expensive to measure or reconstruct, thus requiring that solutions from multiple parameter set-
tings be identified that fit the observed measurements. For example, an experimental dataset may
contain records of acoustic waves using multiple sensors in a room, however the source locations
(initial conditions) or room configuration (boundary conditions) for each experiment may not be
fully recorded. In this case, solving the Helmholtz equation to sample multiple solutions that con-
form to the observed sensor readings, while accounting for the physics, would be of interest. In
contrast, standard approaches such as finite difference solvers or even PINNs may either guess a few
parameter values and present solutions for them, or learn a single mean estimated parameter value
across all experiments.

Motivated by these challenges, we introduce PDEDIFF, a mesh-free, physics-informed conditional
diffusion framework that learns distributions over solution fields from sparse, irregular samples
while steering generation toward physically valid solutions. The model conditions on coordinates
and uses automatic differentiation to evaluate PDE residuals and boundary or initial conditions di-
rectly at sampled points, therefore no fixed mesh or finite-difference stencils are required. PDED-
IFF’s interface is flexible and compatible with different PDEs and we only replace the residual and
boundary conditions. Therefore, this makes PDEDIFF a complement to classical solvers as these
methods are mesh-specific and equation-specific, whereas our method can be trained once and then
work as a generative surrogate that can produce physics aware solutions at new coordinates without
the need for re-meshing.

The key contributions of our work include the following:

* Generative solver for multi-modal PDEs: PDEDIFF learns distributions over solution fields
and samples distinct, physically admissible modes instead of regressing to an average.

* Physics-conditioned sampler: A coordinate-conditioned encoder—decoder (CCED) de-
noiser that embeds both spatial coordinates and diffusion time, trained with a dual loss
on data fidelity and residual physics.

* Mesh-free residual enforcement: Higher-order derivatives are computed via autograd, en-
abling irregular or sparse point clouds rather than fixed grids as used in previous work on
physics-informed diffusion models.

* Comprehensive evaluations: We benchmark our method on Infinite Potential Wells, Gross-
Pitaevskii Equation, and Helmholtz Equation, reporting the Wasserstein-1 distance and
modality recall against analytical ground truth. We have also experimented on simpler toy
problems with circles similar to the ones in [Bastek et al.| (2025). Our results indicate that
PDEDIFF outperforms PINNs on PDEs with multiple solutions.

2 RELATED WORK

2.1 DIFFUSION MODELS

With the development of diffusion models |Song et al.| (2020),Ho et al.| (2020b), and [Song et al.
(2021), their applications for solving PDEs are emerging. Most of them involve a conditioned
diffusion using score-based method to guide the solution based on sparse observations. Huang
et al.|(2024b) proposed training procedure and sampling strategies that are conditioned on incoming
observations to recover accurate PDEs trajectories based on the score-based approach |[Song et al.
(2021)). |Qu et al.| (2024) consider the inverse problem of data assimilation where they aim to re-
cover the complete weather state from observations of various modalities. [Riihling Cachay et al.
(2023) proposed a fully data-driven framework using temporal interpolation as the forward process
and forecasting as the reverse diffusion process for spatial-temporal forecasting problems. However,
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relying solely on data-driven approaches may fail to capture the underlying physical laws, poten-
tially leading to samples that lack physical consistency or generalizability beyond the training data.
Another diffusion-based work Du et al.| (2024) focus on chaotic systems, but their approach is also
completely data-driven and implicitly learns the physics distribution with high-fidelity samples.

2.2 PHYSICS-INFORMED MODELS

PINNs Raissi et al.|(2017)) have appeared as a robust framework for solving both forward and inverse
problems governed by PDEs. The key idea behind PINNSs is to incorporate the PDE directly into
the loss function of a neural network. This is achieved by penalizing the network’s predictions
when they deviate from the physical laws represented by the PDE. As a result, PINNs can learn
solutions even from sparse or noisy training data while ensuring that the learned function respects
the underlying physics. The line of work by [Jin et al.| (2022) uses feed-forward neural network to
learn the multiple eigenfunctions for the family of Schrodinger’s equations. They achieved multiple
solutions through penalizing with several physics-informed regularizers and iteratively training to
learn new eigenfunctions. However, this approach is only applicable to eigenproblems and would
not be generalized to other types of PDE. Recently, some attention-based methods such asWu et al.
(2024) use physics-aware attention to learn a deterministic solver on dense meshes and irregular
geometries, but the learned attention patterns remain unconstrained and may violate fundamental
physical laws such as boundary conditions, and limiting their reliability.

Towards physics informed diffusion-based approaches, CocoGen Jacobsen et al.| (2024) and Diffu-
sionPDE Huang et al| (2024a) inject the governing equations into the sampling process of score-
based generative models to enforce the consistency of the samples with the underlying PDE, but
physics guidance was only applied to the last IV steps. They also focus on the reconstruction prob-
lem that conditioned on grids of sparse measurement. Shysheya et al.|(2024) focused on forecasting
tasks with conditioning training and sampling via the score-based approach. Recent works by Bastek
et al. (2025) and [Shu et al.| (2023) use the Denoising Diffusion Probabilistic Model (DDPM) archi-
tecture combined with physics-informed loss during training. The physics-informed guidance in
Shu et al.| (2023) is applied with some probability p; (a hyperparameter) as an additional input to
the UNET architecture in DDPM. Bastek et al.| (2025) models the physics term as a virtual like-
lihood and combines this with the diffusion training loss. Above all, these works employed the
finite difference method to compute the physics-informed guidance. This limited the generalization
of the model as we need to construct the finite difference scheme for every new PDE, which can
become complicated and unstable for high-order derivatives. Also, computing a finite difference
required a fixed grid for consistency. Our work makes use of the automatic differentiation technique
to circumvent these issues.

3 BACKGROUND
3.1 PARTIAL DIFFERENTIAL EQUATION CONSTRAINTS

We consider the following general form for a system of PDEs defined on some domain €2

{f(u(x)) = f(z), z€Q

B(u(z)) = b(x), x€0Q (D

where F is the interior differential operator for instance, Laplacian or Hamiltonian, B encodes the
boundary condition, 02 is the boundary of domain 2, and u is the solution field that satisfies the
set of PDEs for all z € Q and boundary conditions € 0. f and b are functions independent
of u, usually representing external conditions applied to the system. In physics-informed learning
setup, along with the data loss, which is the /5 loss between the generated samples and ground truth
samples, we also aim to minimize a physics residual R. This physics residual is calculated by taking
I difference measuring the extent to which boundary and interior physics constraints are satisfied at
model prediction % as given in Raisst et al.| (2019b).

R(ﬂ(l‘), JJ) = )\intﬁﬂ + )\bc'cbc 2)
= Aint|[F(@(z)) = f(@)[|2 + Avel[B(i(x)) — b(z)]]2 3)

here 4(x) is the solution predicted by a deep learning model, and L. is the physics residual of the
boundary conditions and L, is the physics residual of PDE constraints defined in the interior of
the domain 2. \;,,; and A, are the weights that we want to consider for the respective residuals.
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Figure 1: PDEDIFF denoising step denoises random noise into solution field and eigenvalues by
conditioning on the spatial coordinates x. The goal of this coordinate conditioned encoder decoder
(CCED) architecture is to generate samples that follow the residual F and boundary conditions 5

For problems dealing with multiple solutions either through eigen-states or parameterized PDEs, we
will be training the generative model to generate both the solution field and eigenvalues/parameters
for the differential operators; we revisit this in detail in Section

Usually when closed form of a differential operator does not exist, researchers generally opt for a
finite difference approach to calculate the derivatives, but this method becomes very unstable for
higher order derivatives and that is why we will be using automatic differentiation to eliminate this
uncertainty in gradient calculation and making it more flexible than using a grid-based approach.

3.2 DENOISING DIFFUSION PROBABILISTIC MODEL

Diffusion models are a class of deep generative models inspired by non-equilibrium thermodynam-
ics. [Ho et al.| (2020b) models the forward process by iteratively adding noise to the data so that it
resembles a random distribution. Formally, Eq. {4|defines the forward diffusion process, here wg is

the true data and noise sampled from a gaussian distribution is added over time stepst € 1,...,7"
pluglug—1) = N(ug; /1 = Brus—1, BeI), “)

here {3;}Z_, controls the variance schedule in the above equation and after large enough T steps, ur
will resemble a sample from a gaussian distribution. The objective of a diffusion model is to learn
a reverse (denoising) process that denoises a sample generated from A/(0, I) into samples from the
data distribution pg,,. Mathematically, the model and the reverse process parameterized by model
parameters 6 is defined as:

qo(ui—1|ug) = N (wp—1; po(ue, t), o (u, t)), (5)

This allows the generation of samples from complex data distributions. In the case of conditional
diffusion models, additional information (such as class labels or prompts) is used to condition the
denoising network. The model then approximates the full conditional density and generates outputs
sampled from the distribution of a desired output class or prompt.

4 METHOD

In this section, we will dive deep into PDEDIFF, a novel conditioned diffusion model framework that
learns a distribution corresponding to solution field and parameters in a PDE agnostic setting. We
will begin with formalizing the learning task (Sec. [4.1)), and derive the physics-informed conditional
diffusion algorithm (Sec. [A.I). We will then describe the architecture and the training objective (Sec.
2] and Sec. [d.3) and then introduce the metrics used to benchmark the results (Sec. [4.4).

4.1 PROBLEM FORMULATION

Similar to a standard data-driven approach, we will provide the independent variables as input to the
diffusion model. The forward and reverse process of the diffusion model then outputs our dependent
variables. For our problem setting, we will be working with different PDEs such as Time Inde-
pendent Schrodinger’s Equation (TISE), and non-homogeneous Helmholtz equation. The input for
each of the corresponding PDE will be the spatial coordinates x and the output is the corresponding
solution field and the parameter that satisfies the PDE. In this paper, we will use u(x) to denote
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the solution field or eigenfunction and A to denote the parameter of the differential operator or the
eigenvalue. Both terms will be used interchangeably as we discuss different PDEs.

Our method is designed to learn distributions over feasible solutions fields and eigenvalues of the
PDE directly from data. For given spatial coordinates = € 2 C R?, the diffusion model is condi-
tioned on x to generate the dependent variables u(z) and A. The goal of the model is to learn to
generate samples that follow the below PDE:

Hau(z) = g(z) (6)

here H, is a linear or non-linear differential operator (usually of second-order or higher order)
dependent on parameter A, and g : 2 — R is a known function, and v : 2 — R is the solution
field. The role of A in different PDEs works as a system parameter, for instance, in the case of
eigen-PDEs such as the Schrodinger equation, A represents the eigenvalue or the energy of the
corresponding wavefunction. In the case of the non-homogeneous Helmholtz equation, A = k is
being used to denote the wavenumber that could correspond to different frequencies and waves that
have been collected from a physical setup. In general form of PDE, A will represent the physical
system parameters such as conductivity, viscosity, Young’s Modulus and many more depending on
the physical system and the PDE describing the system. When PDEDIFF perform sampling, it
samples the solution field and this system parameter jointly. For simplicity, we only consider PDE
with Dirichlet boundary condition in our problem formulation, that is, B(u(z)) = 0. But the method
can be expand to more general setting of any multi-solution PDEs with non-zero boundary condition

(Sec.[A53).

Given a distribution p(x) where x € §), we are interested in learning the multi-modal condi-
tional density function p(u(z), A| ) from the sparse dataset {(z(™), 4", \(M)}N_ whose sam-
ples follow the PDEs. For simplicity, we will use ¥ = (u, ) to denote a data point, and
p(¥|z) to denote a probability distribution. The forward diffusion process is simulated by grad-
ually adding controlled Gaussian noise to ¥, which can be model as a conditional distribution
p(Ueyq (2)|Ws(2),2) ~ N (VT = BeWy(x), BI), where {5;} 1, is a sequence of noise scheduler.

Uple <+ Up_q|e+ - Uylz - Uy|z + Yglz
~—~— S~~~
Gaussian noise real data

This process eventually yields a structured latent representation at timestep 7'. We adapt the method
from [Ho et al.| (2020b)); [Song et al.| (2020) to derive a simplified loss function for the denoising
process. Note that the reverse distribution q(V;(x)|W;41(x), z) is intractable, we therefore use a
neural network NN (U, x, ) to model the inverse diffusion steps go(¥¢—1|¥¢, ¥g, z) that maximize
the log-likelihood of ¢(¥q|x):

log q(Vo|z) = log/Q(‘I’o:ﬂﬂC)d\I’l:T )

This log-likelihood is not tractable due to unknown denoising process. Therefore, we will approxi-
mate it with evidence lower bound, which is easier to optimize:

q(Vo.r|z)
1 v >E log ——————
qu( O‘m) — p(\I’l;Tl\po,w) |:Og p(\IllT|\IJ0,:L') (8)
Simplifying the evidence lower bound (further details in the Appendix [A.T) gives us
q0(¥o| V1, 2)
1 v >E log ————
0g q(Vo|z) = Ep(w,|w,,2) [Og (01| W, 7)
T
+ ZEP(‘I’N‘I’W) [Drr(p(Ve1|Vs, Uo, x)||qe(Vi—1| ¥, 7))] )
t=2

:Ldala,t

In addition to maximizing the likelihood of ¢(Wy|z), we are also interested in incorporating the
physics guidance in training the diffusion model. Our goal is also to minimize the likelihood of
the residual q(R(¥o,z)|¥o,x) ~ N(R(¥g,x),0?), where the variance o2 approaches 0 as the
model learns ¥y. In this paper, we consider PDEs of the form H u(xz) = g(z). Below is how this
PDE-loss or L esdual 18 defined:

log L](R(‘I’07$)\\1/0733) X ||7'l,\ﬁo - g||§ = ‘Cresidual(\ijo) (10)
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Algorithm 1 PDEDIFF Training

1: Input: Training dataset ¥ = (ug(x), Ag) Algorithm 2 PDEDIFF Sampling
2: Output: Trained denoising process CCEDy

1: Input: Number of samples N, trained de-

3: repeat . noising process CCEDy
4z~ Uniform(Q) . 2: Output: Set of samples {¥o} ¥ |
5: Uo(x) ~ q(To|x) (from training data) 3 fori—1to N do v
6 t ~ Uniform{l, ..., T’} 4: Sample z; ~ Uniform(2)
e N((z’ D) 5. fort=1toT do
8 a=][(1-5) 6: Wo(x;) = CCEDy (W, (x;), 24, t)
9: Uy(z) = VaWo(z) + VI —are 7 Sample Uy (z;) with DDIM |Song
10: Wy = CCEDy(Ty(x), x, ) et al] (2020)
11: Compute Vg Liow¢(To) (as in 8: end for
12 Update CCEDy via GD 9: end for

13: until converged

4.2 TRAINING AND SAMPLING ALGORITHMS

We follow a similar training objective and approach as given in Ho et al.| (2020a); Bastek et al.
(2025), where we add a physics informed loss as a regularizer to the entire loss function. The
training algorithm in [Bastek et al.| (2025) uses a finite difference stencil method to calculate the
derivatives of the quantities required in the residual. We instead leverage the power of automatic
differentiation (autodiff) to calculate the gradients for the residual equations. This strategy provides
more flexibility to calculate higher order derivatives as compared to using finite difference stencils,
which become unstable when calculating higher order derivatives. Moreover, the finite difference
method can only be feasible where the data points are arranged in a regular grid and all the points
on the grid correspond to only a single solution, whereas PDEDIFF can train on data points that are
randomly sampled from a multi-modal distribution and each generated sample can correspond to
any of the feasible solutions.

We will now introduce the objective function of PDEDIFF that is a loss function composed of the
standard reconstruction error and physics informed constraints. The loss function is defined as:

‘Ctotal,toilo) = Etw[l:T],p(\I/Lﬂm) Cdataﬁdata,t(\ym \i]O) + Cresﬁresidual,t(\ilo)} (11

where we use it to train a denoising process as in Algorithm ]

Here Ly, is called the data loss which is the reconstruction error between the predicted output and
the ground truth values, and for our framework we have used a standard Mean Square Error (MSE)
loss. Liesigqual 18 the residual loss, which penalizes the model when the generated samples do not
satisfy the underlying physics constraints, i.e., the solutions generated must follow the PDEs. The
terms Cqqtq and cr.s are hyperparameters that we set during training to weight the importance of
the data loss and physics loss, respectively. Since, we provide the model with the initial spatial
and temporal information, we can leverage the use of autodiff to calculate high order derivatives for
calculating the residual. This approach also allows us to use randomly sampled data points instead of
going with a grid-based approach providing us with more flexibility with respect to the dataset used
and also for the sampling part for inference. For PDEDIFF sampling Algorithm [2, we utilize the
sampling method from Denoising Diffusion Implicit Model (DDIM) Song et al.[(2020) to accelerate
the generation process. Also, in step 4 of Algorithm 2] we could replace uniform samples of z; with
any other grid or mesh coordinates for applicable uses.

4.3 ARCHITECTURE

PDEDIFF employs a coordinate conditioned encoder decoder (CCED) denoiser that converts a
noisy input into its corresponding denoised output by conditioning on the spatial coordinates (in-
dependent variable) and diffusion time-step. We pass the noisy input along with the spatial coordi-
nates z € 2 C R? and the diffusion time ¢ into the denoiser where each layer is called a Conditional
Block, which consists of a set of linear and embedding layers. Figure[I]demonstrates how the denois-
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Setting |  Vanilla | Physics-informed
Setting |  Vanilla | Physics-informed | PMSE WD |PMSE WD
PMSE WD | PMSE WD P | 1.253 0.378| 1.239  0.340
| | D @stes) p | 9357 0411|7326 0410
1D D | 0932 0.157| 0.935 0.157 Q| 1222 0.169| 1.194 0.156

(2 states) N | 0.809 0.544 | 0.960 0.446

Q| 0.017 0.086 | 0.015 0.086 2D(4 states) P | 1.250 0482 | 1.243 0.477
degenerate D | 7.661 0.485| 7.659 0.485
1D P | 0.371 0.737 | 0.460 0.442 NIl 1332 0299 0.933 0513
(3 states) 1131 8-‘3‘22 8-%2 81431? 823 Q| 1309 0.150| 1.338  0.124
Q 0:022 0:055 0:012 0:050 2D (4 states) P | 1.133 0597 | 1.123  0.623
non-degenerate D | 22.34 0.513 | 22.34  0.513
1D GP P | 1550 2.036| 1.291 2.418 N| 1.198 0344 | 1.257 0.587
(3 states) 1131 8-822 Hgg 8-32; }f]‘gé Q| 1.100 0222 1.091  0.205
Q| 0140 0195|0126 0194  Helmholtz P | 0.800 0.107 | 0.746  0.108
Equation D | 21.35 0.168 | 21.35 0.168
. . N | 0.753 0.111 | 1.000 0.106
Table 1: Performance comparison between Q| 0253 0092|0227  0.091

PINN (P), DeepONet |Lu et al.| (2021) (D),
Physics-informed Neural Operator [Li et al.
(2021) (N) and PDEDIFF (Q) across differ-
ent problem settings for 1D examples. PMSE
here is P-MSE and WD is the Wasserstein
metric. The lower values represent better
match between the ground truth and the sam-
pled wavefunctions. Details of the energy
states will be provided in Appendix
The first 2 rows correspond to 1D Infinite Po-
tential Well, and 1D GP corresponds to 1D

Table 2: Performance comparison between PINN
(P), DeepONet Lu et al. (2021) (D), Physics-
informed Neural Operator |Li1 et al.| (2021) (N) and
PDEDIFF (Q) across different problem settings.
PMSE here is P-MSE and WD is the Wasserstein
metric. The lower values represent better match
between the ground truth and the sampled wave-
functions. Details of the energy states for 2D
Schrodinger experiments will be provided in Ap-
pendix [A.5.3] and of the frequency parameters for

Gross-Pitacvskii Equation. the non-homogeneous Helmholtz equation will be

provided in Appendix[A.5.4]

ing model converts random noise into the corresponding solutions functions and their corresponding
eigenvalues or parameters. The details can be found in Appendix

Further, we use ADAMW for training and we also experiment with different weights for the residual
loss (cres) (additional results on this is discussed in Appendix . For baselines, we compare our
method with a vanilla conditional diffusion model (c,es = 0) with no physics regularization, and
we also compare PDEDIFF with a physics-informed fully-connected neural network (PINN) Raissi
et al.| (2019b), physics-informed neural operator (PINO) |Li et al.| (2021)) and DeepONet |Lu et al.
(2021). We use the same values of the physics-informed hyperparameter ¢, for all comparative
studies and ablation results. Since for the training algorithm we do not require to implement a
custom finite difference stencil and instead proceed with using autodiff, this makes our framework
compatible with mesh-free datasets.

4.4 QUANTIFICATION METRICS

Given some spatial input x € 2, PDEDIFF would generate ¥y = (ug, Ag) corresponding to this x.
The PDEs that it is trying to solve has multiple correct solutions, for e.g., the first 3 wavefunctions
and energy values for the Schrédinger’s Equation could correspond to the following possible solu-
tions (u(()l)7 )\él)), (u,(f)7 /\5)2))7 (u(()g)7 A((Jg)). Since each of these is a correct solution to the PDE, we
need a metric that can effectively compare the generated samples with the true distribution or the

ground truth solutions.

P-MSE: This metric calculates the mean squared error of the samples generated with the ground-
truth eigenstates or solutions modes. Formally, the metric can be defined as below:
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. ) 2
P-MSE = E,_q [H(ﬁo(x)7/\0<x)) _ (u(k(x))7)\(k(x))) M (12)
where  k(x) = argmin [[Ao(x) — AP]|5 (13)
ie{l,...,M}

Here, M is the number of feasible solution modes, (7ig(x), Ao(x)) is the generated sample for a
particular x, and k(x) is the function that assigns a particular sample to its closest solution field by
comparing the parameter values and this state is then used to calculate the MSE.

Earth-Mover’s Distance (Wasserstein-1): For two probability measures p, ¢ on a domain 2 C R?
we use the 1-Wasserstein distance (WD), here I'(p, ¢) denotes the set of couplings with marginals p
and ¢

Wi = nt [ Jx-yldyxy), (14)
v€l(p,a) Jaxa

This metric is used to compare the distances between two probability distributions and in some

PDEs, wavefunctions have a special property, i.e., it also represents the probability densities of

a particle, i.e., represents the probability density function of the particle. The ground truth

distribution is represented by a linear combination of the probability distribution of the individual

solution modes, and the generated distribution can be calculated by squaring the predicted 1 (x).

To compare the predicted probability distribution and the true distribution, we evaluate both the
functions on the same set of point cloud x. Then the distributions are normalized as below:

WP OGP 15
Ppred(X) S e [Vea ()2 Prrue (X Z S ex WO 15)

where Z ., ™; = 1 (linear combination coefficients) and after calculating the probability distribu-
tions, we use the optimal transport library Flamary et al.|(2021).

5 EXPERIMENT RESULTS

In this section, we present our experiment setup and results for several PDE problems with multiple
solutions such as Time Independent Schrédinger Equation in 1D and 2D infinite potential well,
non-homogeneous Helmholtz Equation, Gross—Pitaevskii Equation. More experiment results can be
found in Sec. [A.5]on some other equations like Burgers’ Equation and toy examples on circle.

5.1 1D SCHRODINGER: PARTICLE IN A BOX

We consider the time-independent Schrodinger equation for a quantum particle in a one-dimensional
infinite potential well:

(—Zag +V(z) - E) Y(x) =0, V(z)= {0’ TL <% < TR

oo, otherwise

HE

where V' (z) denotes the infinite potential well, or in other words, the space of a 1D box that contains
the particle where it moves freely inside but trapped between the wall (x,,xr) defined as above.
Note that 92 are the second-order derivatives of ¢ with respect to x and could be calculate using
automatic differentiation to compute the physics informed loss during training. Given this PDE, we
are trying to recover the solution field ¢(z) and corresponding energy or parameter F. Results are
presented in Table[T|and Figure 2]

5.2 1D SCHRODINGER: GROSS-PITAEVSKII EQUATION

We consider also one-dimensional time-independent Gross-Pitaevskii equation, a form of non-linear
Schrodinger equation. In specific, the Halmiltonian operator H is non-linear and written as follow:

292
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Figure 2: Comparing generated samples by PDEDIFF and PINN for 1D Schrédinger equation
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Figure 3: Comparing generated samples by PDEDIFF for 1D Gross-Pitaevskii equation

where Uy is interaction force, V(z) =

%mx2 is the harmonic trapping potential. Not many non-

linear Schodinger equations have closed-form solution, such as the one presented here. We obtain
training samples and ground truth by solving the time-independent Gross-Pitaevskii equation nu-
merically as in|Chiofalo et al (2000). Results are presented in Table[T] Figure[3]and [
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Figure 4: Generated samples by physics-informed PDEDIFF, PINN and PINO with ¢,.s = 0.001
values for 1D Gross-Pitaevskii equation. Although PINO achieves a very low PMSE metric, it
collapses to a single mode and results in a high WD metric.

5.3 2D SCHRODINGER: PARTICLE IN A BOX
We again consider the TISE for a quantum particle in a two-dimensional infinite potential well:

Ve - {

0, =z <z<2xpg,
otherwise

Yy <y <Yr

(_;;L(ag +02) + V(x) — E) Y(x) =0,

oo,

He

where x = (x, ) denotes the spatial coordinates and V' (x) denotes the 2D infinite potential well. 92
and 85 are the second-order partial derivatives of ) with respect to « and y. The particle is confined

inside the box B = [z, 2g] X [yr, yr] C R? with Dirichlet boundary conditions, i.e., ¥(x) = 0 for
any x € 9B, where B denotes the boundary of B. The results are presented in Tab. 2]
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5.4 HELMHOLTZ EQUATION

Another case study is the Helmholtz equation that arises from applications in heat conduction or
acoustics. The Helmholtz equation is a non-homogeneous elliptic PDE express as follow:

V2p(x) + k*(x) = f(z)

Hiyp

where integer or real valued parameter k is known as frequency or wave number, f is a source
function that describe the emission source of the wave i(x), with z € . Our goal is to recover
the high resolution propagation of the wave through the environment (x) and its frequency k.
Training data is simulated by solving the second-order finite-difference linear system Hiy = f
with low fidelity. The results are presented in Table [2]

6 DISCUSSION

We observed that PDEDIFF consistently achieves low MSE and WD metric, with physics-informed
PDEDIFF achieving the best result in almost all cases (Tab. [I] [2) This demonstrates that PDEDIFF
is capable of modeling, generating multimodal distributions and achieves higher numerical accuracy
compared to the ground truth. As shown in Fig. [2] PDEDIFF effectively captures the multiple modes
present in the training data, while standard feedforward neural networks tend to regress to the mean,
failing to represent the distinct modes and instead producing oversmoothed approximations.

In the case of 1D Schrodinger equation, PDEDIFF has lower errors in both MSE and Wasserstein
distance. Incorporating physics-informed guidance further improves performance. Nevertheless,
Schrédinger equations have trivial solution where ¢(z) = 0, E = 0. This causes problems as with
our physics guidance, since the physics loss is also minimized (equal to 0) if the model infers the
trivial solution, as observed in our ablation study in[A.8] [[2)and [I3] For the 1D Gross-Pitaevskii
equation, PINO achieves a low P-MSE metric but this is due to convergence to a single mode, as
observed in Fig. ] and the high WD metric in Tab. 2] while PDEDIFF is able to obtain both low
P-MSE and WD metric. We also demonstrate the capabilities of PDEDIFF on 2D Schrédinger
equation. In the problem setting of 3 waves, the model is able to learn the different eigenstates
and produce samples that are much closer to the true distribution and have a lower MSE loss. In
the case where there are 4 waves, the model was trained on both setting wherestates where there
are degenerate eigenstates, i.e., 2 eigenstates had the same energy but different wavefunctions, and
non-degenerate eigenstates. PDEDIFF is yet able to distinguish the degenerate energy states and
generate samples that have a lower Wasserstein metric.

In inhomogeneous Helmholtz Equation, we tested our framework with 2 parameters. In this setting,
we observed that the model picks up the low frequency wave better and it sometimes missed the
peak in high frequency wave. Nevertheless, after training for 5000 epochs, PDEDIFF achieves the
lowest metric comparing to other baselines, which also trained with the same amount of training
points and number of epochs (Tab. [2).

7 CONCLUSION

We introduced PDEDIFF, a physics-informed conditional diffusion framework that samples entire
ensembles of solution fields and eigenvalues for multiple solution PDEs. In contrast, PINNs regress
to a conditional mean or collapse to one of the modes. We have also demonstrated that our approach
is more flexible than other approaches to incorporating physics in diffusion models in terms of
the data samples being mesh-free and also for calculating the physics residuals using automatic
differentiation. Also, unlike previous work, we provide the first evidence that physics informed
diffusion models can provide better results than physics informed neural networks for PDEs with
multiple solutions, and thus are more faithful to the physical law that they must follow. Our work
shows a potential towards learning and generating new data for multi-modal PDEs.

Looking ahead, our framework can potentially be used to explore methods to discover unseen solu-
tion fields and eigenvalues that are not observed in data. Similar to recent works, such as|Jin et al.
(2022), extending PDEDIFF to learning solution fields in a data-free environment is an interesting
direction. Scaling this framework to noisy and high-dimensional experimental datasets would en-
able developing real-time digital simulations of problems that could be studied in much detail and
also accelerate the growth of drug discoveries and sustainable quantum technologies.
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A APPENDIX

A.1 DERIVATIONS OF SIMPLIFIED TRAINING LOSS

Continuing from Sec 1] of the main paper, we had briefly discussed the problem formulation of
PDEDIFF. The inverse diffusion step for go(¥:_1|¥;, ¥p, ) that maximizes the log-likelihood of
q(Wo|z) is defined in Eq. [7)of the paper as:

log q(Tg|x) = log/q(\llo:ﬂx)d\I/l;T (16)

Below are the steps for deriving and simplifying the lower evidence bound for our conditioned
DDPM. Note that log of an expectation over a distribution might be intractable, so we consider
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optimizing the evidence lower bound like previous work Ho et al.| (2020b)); |Song et al.| (2020)).

log q(¥y|x) :log/q(@0:T|x)qu1:T
q(Yo.r|z)
=log | — g o P(Yrr|Vo, 2)d¥y.
Og/p(‘I’LT\\Ifo,x)p( 17| Vo, 2)dV 1.1

q(To.r|x)
= logE —_—
08 Bp(Ya.r|¥o,z) [p(\I’LTWo, x)

q(\IIO;T|l‘) :l
p(\Ill:T|\I/07x)
a(Ur|Wo, 2) T,y q(Wes| ¥y, )
Hz:lp(wt‘q/t la\IIO) )
B q(Vr|2)qo (Vo W1, ) [T, qo(Ve|Vira, )
_EP(‘I’LT|‘I’0,1) IOg T
Ht:p(\llt‘\llt—la\l/m )

0(Ur|2)g0 (Yol ¥y, 7) [Ty a9 (Wi 1| ¥4, @)

T/ p(W [y, Vo, )

2 EP(‘IJI:Tl\I’O»E) log

= EP(‘I’LTN’OJ) log

= EP(‘I’LTN’O@) log

Observed that products inside the log term could be rewritten as

o Wo| W ()1 ]
q(¥r|z)go (Yol ¥y, x +Zl qo(Wi—1|¥¢, )
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:ﬁdmm,t

A.2 DETAILS OF THE STEPS FOR TRAINING AND SAMPLING ALGORITHM

We are also providing details of the training and sampling algorithm here for completeness. The
forward diffusion process is simulated by gradually adding controlled Gaussian noise to ¥, which
can be model as a conditional distribution p(Vyi1 ()| Ve (z), x) ~ N (V1 — BtV (x), B¢ 1), where
{B:}E_, is a sequence of noise scheduler.

A.2.1 LATENT STEPS FOR TRAINING

We can use reparametrization trick to write p(Uyy1(x)| Vs (x), z) as

Ui (x) = /1= B0 (x) +\/Brer, € ~N(0,1)

We can unroll \Ilt+1 based on \Ift 1
Uy1(z) = V1= Bu(v/1 = BeaVio1(z) + /Bi1e-1) + V/Brer, €—1~N(0,1)
2\/1—@\/1—51: 1 (2) + /1= B/ Beorer—1 + \/ Brer
=1 =BivV1 =B 1% 1(x) + /1T — (1= B)(1 - Bi_1)e
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where € ~ N(0, I); and the third equal sign holds since sum of two Gaussian distribution is also a
Gaussian distribution.

Unroll with respect to ¢, we have W, 1 in term of ¥

i1 (2) = V1= Bi/1 = Bi1 Wi (@) + /T — (1= B)(1 — Bi—1)e

t+1

= H \/ 1-— 55\:[’0($) +

t+1

1- ] - B.e

s=1

So for brevity of notation, we denote
t+1

Qpp1 = H (1-8) 17)

s=1
as used in Algorithm [I] of the main paper.
A.2.2 DDIM SAMPLING

We adapt the sampling technique from Song et al.| (2020) for more efficient sampling. Details are
provided here for completeness.

In step 6 of Algorithm 2] we obtain
Wo(x;) = CCEDg (W, (x;), 24, 1) (18)
We can update denoise step ¥;_1 (z;) using the predicted W (x;) and W, (z;)

1—a;

Uy (x;) = \/@4@)(%) +
with a; defined as in[A.2.1]

(wiw:) = Varbo(a:)) 19)

1—ay

A.3 ARCHITECTURE IMPLEMENTATION

In Sec. of the main paper, we had briefly discussed that PDEDIFF employs a coordinate-
conditioned encoder decoder (CCED) denoiser that converts a noisy input into its corresponding
denoised output by conditioning on the spatial coordinates.

The first step in the CCED forward pass is the encoder, where the noisy input, x and ¢ are passed
through this encoder layer that has multiple sets of the Conditional Block and between each of these
blocks, the activation function used is softplus or tanh based on the problem setting and the residual
equations involved. This encoder converts all this data into a low-dimensional latent representation.

The next step is the bottleneck layer that also consists of the Conditional Block and captures the en-
coding within this low dimensional latent space to capture critical information required for denoising
the input.

After the bottleneck layer, the latent information passes through the decoder, similar to the encoder,
transforms the latent information into the original domain to give us the predicted noise. Every layer
of this decoder also has a skip connection from the encoder layer to effectively relay the encodings
to improve efficiency and accuracy.

We implement PDEDIFF in PyTorch 2.5.1 with CUDA 12.0 on an NVIDIA A100
GPU. All random seeds were fixed using torch.manual_seed, np.random.seed, and
torch.cuda.manual_seed.

We use a lightweight CCED to predict (1&, E) given noisy input z, the diffusion timestep t €
{0,...,T—1}, and the spatial coordinate x:

Diffusion Hyperparameters:

e Steps: T' = 100.
* Noise schedule: cosine, 3; € [107°,1072]
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* Objective: DDPM Lyginple 0n xg plus physics residual weight cpeg
* Optimizer: AdamW, Ir = 5x10™*

* Training: 1000 updates, batch 32

» Sampling: deterministic DDIM “single-step”

The implementation of our code can be found at: code

A.4 METRICS FOR TOY EXAMPLES

We discussed the P-MSE and Wasserstein metric for Schrodinger equations. For toy examples
where we consider settings involve circles, the metrics are defined slightly different from that of
the ones described in Section {4.4] of the main paper since we do not have explicit eigenvalues for
circle setups, and distributions on circles are not similar to those belongs to wavefunctions. We used
mean squared error (MSE) to and Wasserstein distance on uniform distribution of circles (setting
dependent) to evaluate the generated samples against ground truth values.

A.4.1 MEAN SQUARED ERROR

This metric calculates the mean squared error of the samples generated with the ground truth circles
coordinates. We compute the squared distance to all possible y-coordinates for an spatial x and
simply choose the minimum. Formally, the metric can be defined as below:

A 2
MSE = Ex~q Lglelr)l} 19— yi||2:|
where ) is set of possible solution of y-coordinates

A.4.2 WASSERSTEIN DISTANCE ON UNIFORM DISTRIBUTIONS

For two probability measures p, ¢ on a domain  C R? Denotes I'(p, q) the set of couplings with
marginals p and ¢

Wi = nt [ x-yldyxy), o)
YEL(p.9) Jaxa
where T'(p, ¢) denotes the set of couplings with marginals p and g.

Let {x;}_; C R denote sampled z-coordinates and let {g;}7_; be the predicted y-values from a
model. We define a uniform distribution on (z;, §;) pairs. We define the predicted distribution to be

R 1
ppred((x% yl)) = E(S(I“QJ

Unit circle. We define the distribution for ground truth pairs (x;, y;) for each x; uniformly sampled
from [—1, 1] as follow
1, ifa?+y2=1

1
Poue((T0: Vi) = 5 0wy Where Oa ) = {o, otherwise

Disjoint circles We define the distribution for ground truth pairs (x;,y;) for each z; uniformly
sampled from [—1, 3] as follow

2
1
Puue (i, Yi)) = Zm%%i,yi)
k=1
where
5 1, ifa?4yi=1,a; <lor(z; —2)%+ (y; —2)2=1,2; >1
(2i:90) 700, otherwise
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and 7y, is the weight if (z;,y;) belongs to circle k (k = 1 for circle centers at (0,0) and k = 2 for
circle centers at (2, 2))

Concentric circles We define the distribution for ground truth pairs (z;, y;) for each x; uniformly
sampled from [—1, 1] as follow

2
1
ptrue((xiy yz)) = I; ﬂ—k%a(mhyi)

where

5 - 1, 1f(x“yl) GC
@v) =10, otherwise

with
C=C1UCy
with C; = {(zi, ) 27 +y? =9, and z; & [—1,1]}
Co={(zs,y) a2 +y?=1lora? +y? =9, and z; € [-1,1]}
and 7y, is the weight if (z;, y;) belongs to C.
A.5 EXPERIMENT SETUP
In this section, we continue from Section [5]of the main paper and discuss the results of PDEDIFF in

the problem settings defined earlier. We first discuss more details of the problem settings, i.e. how
did we generate data for training and hyperparameters used in each physics setting.

A.5.1 1DSCHRODINGER: INFINITE POTENTIAL WELL/ PARTICLE IN A BOX

We consider the time-independent Schrédinger equation for a particle in a one-dimensional infinite
potential well:

Bute) = (302 + V(@) ) v

H

where V' (z) denotes the infinite potential well, or in other words, the space of a 1D box that contains
the particle where it moves freely inside but trapped between the wall (x 1, zr). The potential well
can be defined as

V(z) = 0, xp<z<2xR
oo, otherwise

In this setting, the particle is confined within (x1,, x ), with Dirichlet boundary conditions ¥ (z ) =

Y(zg) = 0.

Solving for ¢ (z), we can do it analytically as outside of 21, xR, ¥(x) = 0, so the wavefunction

takes the form:
2 . /nrx
v(@) =T (°T)

Dataset Generation: The dataset for 1D infinite potential well was generated by uniformly sampling
spatial coordinates between [0, L. After sampling the spatial coordinates, we analytically calculate
the wavefunction and the energy values. For our experiments, we simplify the constant values as
h =1,m = 1, and the size of the well is taken as L, = 3. We generate 100 data points for each of
the first few eigenstates for training, i.e. we choose n = 1, 2, 3 for the 1D TISE 3 waves setting, and
n = 1,2 for the 1D TISE 2 waves setting.

where n are positive integer values.
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Figure 5: PDEDIFF denoising steps with cq..s = 0.001 (left to right: denoise step ¢t =
100, 70, 40, 10, 0). The left-most subplot shows noisy samples from Gaussian and each of the steps
to the right shows the denoising process. The right-most subplot show the generated samples ¥y.

A.5.2 1D GROSS-PITAEVSKII EQUATION

We consider also one-dimensional time-independent Gross-Pitaevskii equation, a form of non-linear
Schrodinger equation. In specific, the Halmiltonian operator 7{ is non-linear and written as follow:

h%92 )
By(z) = | = + V(@) + Dol ()" ) ¥(z)
H
where Uy is interaction force, V(x) = %max2 is the harmonic trapping potential.

Not many non-linear Schodinger equations have closed-form solution, such as the one presented
here. We obtain training samples and ground truth by solving the time-independent Gross-Pitaevskii
equation via an explicit imaginary-time algorithm as in|Chiofalo et al.| (2000).

Setup: In this setting, the particle is free to move within (z,,zr) C R, with Dirichlet boundary
conditions ¢(z1) = 9(xr) = 0. We generate 100 data points for each wavefunction and their
corresponding energy using the algorithm in |Chiofalo et al.| (2000) for training and generate 200
points to evaluate our framework against the ground truth.

A.5.3 2DSCHRODINGER: SQUARE INFINITE POTENTIAL WELL

We next consider the time-independent Schrodinger equation for a particle in a two-dimensional
square infinite potential well:

B0) = (=502 40 + V() ) 0

H

where V' (x) denotes the infinite potential well, or in other words, the space of a 2D box that contains
the particle where it moves freely inside but trapped between the walls B = [z, 2] X [y, yr] C
R2. The potential well can be defined as:

V(X): 07 rrp < T < IR, Yy <Yy <Yr
oo, otherwise

In this setting, the particle is confined within B,with Dirichlet boundary conditions, i.e., ¥(x) = 0
for any x € 0B, where JB denotes the boundary of the box B.

Solving for (x), we can do it analytically as outside of B, ¢(x) = 0, so the wavefunction takes the

form:
P(x) = %sin (nmgrx) sin (m,gw)

where n,,n, are positive integer values.

Set up: The dataset for 2D infinite potential well was generated by uniformly sampling spatial co-
ordinates between = [0, L],y = [0, L,]. After sampling the spatial coordinates, we analytically
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calculate the wavefunction and the energy values. For our experiments, we simplify the constant
values as h = 1,m = 1, and the size of the well is taken as L, = L, = 3. For each eigen-
state, we sample 200 data points for all the states in total. For 3 wave setting, we choose the states
(neg,ny) as (1,1),(2,1), (2, 2), and for the 4 wave settings, we experiment on degenerate states
(1,1),(1,2),(2,1),(2,2), i.e. some wavefunctions has the same energy, and nondegenerate states
(1,1),(2,1),(3,1),(4,1), i.e. every wavefunctions has distinct energy.

A.5.4 HELMHOLTZ EQUATION

The Helmholtz equation is a non-homogeneous elliptic PDE that usually arises from applications in
heat conduction, ultrasound or acoustics[Basu & Rani (2021). It can be express as follow:

V2 (x) + k() = (=)
Hip

where the integer or real valued parameter k is known as frequency or wave number, and the source
function f describes the emission source of the wave (), with x = (x1,75) € Q C R2 In our
experiment, we use the following source function

f(z) = (1 + 87?) cos(m?x1)cos(m2xs)

Our goal is to recover the high resolution propagation of the wave through the environment ()
and its frequency k. Training data is simulated by solving the second-order finite-difference linear
system H1) = f with low fidelity on a 16 x 16 grid. The results are presented in Tab. 2 and [T T}

Setup: We sample 128 data points for each wave mode from a 16 x 16 grid and their corresponding
frequency k € {m, 47}. The ground truth solution grids for training and evaluating our framework
against the ground truth are obtained using the linear algebra solver on the discrete differential oper-
ator by second-order finite differences. Since only ground truth on fixed grid can be obtain through
numerical method, we sample from fixed grid points for evaluation as in figure[6f, comparing against
the ground truth in figure[6h and the prediction via PINN in figure[6p. In practical use cases, we can
sample from any possible partial coordinate to complete the solution space via sampling from the
learned PDEDIFF model, and hence can obtain multiple higher resolution solution fields on 32 x 32
grid with this method such as in figure [fd. The accuracy of the generated sample can be observed
from slices of the 2D solution as in figures [B-f for better visualization.

A.5.5 BURGERS’ EQUATION

We consider the 1D viscous Burgers’ equation, a nonlinear PDE widely used as a simplified model
of Navier-Stokes equations. In a more practical setting, we consider measurements of fluid dynamics
with various viscosity. Assume that measurements of the fluid flow and viscosity are difficult and
only low-fidelity, sparse measurements are obtained, and some governed physics are known in the

form of the viscous Burger’s equation Takamoto et al.[(2023)
1
Opu(t, x) + §8Iu2(t,x) = vOyu(z,t), =€ (0,1),t € (0,2]

u(0,z) = up(x), =€ (0,1)
where u(t, z) denotes the flow velocity and v is the viscosity controlling smoothness of the solution
and a periodic boundary condition.

Setup: We utilize the 1D Burgers’ Equation dataset from PDEBench |Takamoto et al.| (2023). To
simulate a scenario where governed physics are known but measurements are sparse, we isolate a
fixed initial condition trajectory and observe its evolution under varying physical parameters. We
extract solution fields for v € {0.001,0.4} and subsample from the original high-resolution data.
For training, we generate a dataset by uniformly sampling 100 spatial coordinate points for each
(viscosity, time) pair, resulting in a sparse representation of the fluid flow across the spatiotemporal
domain.

A.5.6 TOY EXAMPLES

In this section, we discuss in more details for the experiment setup for the toy examples with circles.
Given some « coordinates that are uniformly sampled from a given range (such as [—1, 1] for unit
circle). We want to generate the corresponding y coordinates that satisfy physics guidance.
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Figure 6: Ground truth, prediction by PINN and generated samples by physics-informed PDEDIFF
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Setting \ Burgers Equation
v 0

0 | 0.0516 +0.0024  0.0149 % 0.0025
0.001 ‘ 0.0685 £ 0.0119 0.0148 +0.0023
0.005 | 0.0956 4 0.0019  0.0199 % 0.0026
0.01 ‘ 0.1043 £0.0045  0.0233 £ 0.0039
0.05 | 0.1200 £ 0.0009  0.0375 £ 0.0084
0.1 ‘ 0.1220 £ 0.0007  0.0406 £ 0.0079
0.5 ‘ 0.1283 £ 0.0004  0.0496 £+ 0.0102
1 ‘ 0.1301 £0.0028  0.0540 £ 0.0106
10 ‘ 0.1264 £0.0137  0.0710 £ 0.0101

100 | 0.1063 £0.0494  0.0782 +0.0122

Table 3: Preliminary performance comparison between PINN (P) and PDEDIFF (Q) for Burger’s
Equation for a particular trajectory with 2 different viscocities over the entire space and time values
on P-MSE metric. The lower values represent better match between the ground truth and the sampled
datapoints.

Unit circle. This problem could be formulated as a simple problem /1 — 22 = =4y, in which the
“eigen-values” £1 is not explicitly exposed to the model. We instead required the model to learn
this and output y|z from provided training pairs (z,y) and the physical constraints 2% + y? = 1.
Note that for a given x, there are 2 possible values for y—coordinates. We generate 100 points on
the unit circle with coordinates (z,y) satisfying 2 + y* = 1 for training.

Disjoint circle. To study if the diffusion model is able to learn distinct distributions, we generate 200
points, with 100 points on a unit circle with coordinates (z,y) satisfying 2 + y? = 1 with centroid
at (0, 0), and another 100 points on a circle with coordinates (, y) satisfying (x—2)%+(y—2)? =1
with center at (2, 2). The two circles do not overlap each other.

Concentric circle. We generate 200 points, with 100 points on a circle with coordinates (z,y)
satisfying 22 4+ y* = 1, and another 100 on a circle with coordinates (x, %) satisfying 2% + 3% = 9.
The two circles share the same centroid at (0, 0). This creates a more complicated setting where for
some z coordinates, there exist 4 possible solutions. Figure [9]illustrates that PDEDIFF manages to
distinguish different distributions, while PINN collapsed to only learning the mean of the data.

For circle settings, we consider the weighting for physics informed loss ¢;..s = 0.01. To obtain new
samples for visualization and error quantification, we generate 200 points with Algorithm 2 of the
main paper. The generation by physics-informed PDEDIFF with c¢,.; = 0.01 can be visualize at
figures[7p, [8p, [Op for unit circle, disjoint circles and concentric circles, respectively. In comparison,
generation by PINN (also with ¢,.s = 0.01) are shown in Figures Ek, @:, E}:, for unit circle, disjoint
circles and concentric circles, respectively. For each toy setting, we run 5 experiments for each
models on different seeds and present the average and one standard deviation of the metrics obtained
with each model in table ] In general, the performance of PDEDIFF with physics-informed loss
outperforms that of PINN with similar residual coefficient c¢,..s, assessed using the P-MSE and the
Wasserstein metric. The experiments with toy examples of circles verify the performance of our
method and show potential of physics-informed diffusion in distinguishing multimode distribution.

A.6 COMPARISON WITH GAUSSIAN PROCESSES

We have performed a small set of experiments to compare PDEDIFF with Gaussian Processes as
in [Rasmussen & Williams| (2005). These methods discuss how the differential operator could be
embedded into the gaussian prior ensuring that the samples generated satisfy the governing equa-
tions. Even though Gaussian Process model uncertainty and can be used to generate samples from
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Figure 7: Comparison of generated samples by physics-informed PDEDIFF and PINN for unit
circle. The dotted red line shows the ground truth and the blue dots are the inference point clouds.
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Figure 8: Comparison of generated samples by physics-informed PDEDIFF and PINN for disjoint
circles. The dotted red line shows the ground truth and the blue dots are the inference point clouds.
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Figure 9: Comparison of generated samples by physics-informed PDEDIFF and PINN for concentric
circles. The dotted red line shows the ground truth and the blue dots are the inference point clouds.
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Figure 10: Comparison of generated samples by physics-informed PDEDIFF and PINN for 1D
Schrodinger equation with 2 wavefunctions in infinite potential well.

the solution like diffusion models, the inherent Gaussian assumption implies a unimodal function,
and hence the goal of this approach is still to learn the mean function. As a result, Gaussian Process
based methods cannot handle settings where the PDEs have multiple feasible solutions.

We compare PDEDIFF with the EPGP method in [Harkonen et al] (2023) on solving the 1D
Schrodinger equation for infinite potential well with 2 states. For the Gaussian Process models,
because our data has samples from multiple solutions, we address this information to the kernel by
adding two RBF kernels, or multiplying 2 RBF kernels and we observe that the model is trying to
fit itself onto both the possible solutions. Whereas, we follow the method in|Harkonen et al.| (2023)
to write a physics-informed kernel and gave the additional information to use n = 1,2 states. We
again experiment with sum and product of these EPGP kernels. As observed in all the 4 cases in
Figure[IT]} Gaussian Process kernels fail to learn to sample from multiple solutions.
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Figure 11: Gaussian Process Experiments for 1D Infinite Potential Well for n = 1, 2 eigenstates
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A.7 LIMITATIONS AND FUTURE WORK

As briefly discussed in the main paper, we have demonstrated that PDEDIFF provides a more flexible
approach towards incorporating physics in diffusion models as the data is no longer bound to a mesh
and the calculation of physics residual can be performed using autograd instead of writing custom
finite difference kernels. We have also presented evidence that adding a physics informed loss to a
conditional diffusion model can generate solution of PDEs that are more faithful to the underlying
physics as compared to using a PINN or a vanilla diffusion model.

Our method lays the foundation for many possible extensions, such as developing a training algo-
rithm to train the diffusion model to learn unseen eigenstates when a particular subset of eigenstates
have been provided for training. Another possible future extension could be to develop a data-free
approach where no dataset will be required and the denoising step can be guided to generate solu-
tions using the physics informed regularizer.

In a preliminary experiment, we compare the time taken to solve first 4 eigenvalues and eigenfunc-
tions for the 2D infinite potential well Schrodinger equation using an eigensolver (SciPy) on a
1000 x 1000 grid with the time taken to sample 10° samples from the same grid using PDEDIFF.
The eigensolver took almost 5708 seconds whereas PDEDIFF took only around 3126 seconds which
is a 1.8 times faster. A potential research direction would be to speed-up the training and sampling
time as this could help make the existing PDEDIFF sampler more efficient to generate data on new
spatial-temporal coordinates.

Previously, we had also mentioned that scaling this framework to noisy and high-dimensional ex-
perimental datasets could potentially accelerate the development of real-time digital simulations of
various problems. We believe that our method could be extended to other fields such as to drug
discoveries, healthcare and finance, where systems can be modeled as PDEs and these PDEs will
have multiple solutions.

A.8 ABLATION STUDY

To study which weight c,.s would be best guided our physics-informed PDEDIFF, for each setting,
we ran 5 experiments for each value ¢,.; € {0,0.001,0.005,0.01,0.05,0.1,1,10} and average
the P-MSE and WD metrics. The best average metrics for non-zero c,., for each setting of the
Schrodinger equations, and non-homogeneous Helmholtz equation are presented in Table [T] and
Table 2] of the main paper.

A.8.1 ON WEIGHTS FOR RESIDUAL LOSS AND METRICS

In the circle experiments, where the ground truth distribution P(Y'|X) has finitely many modes,
PDEDIFF successfully captures all branches of the distribution. PINN, however, treats the problem
as a regression task, learning the conditional mean E(Y'|X) and thus fails to accurately predict the
y-values for given z-coordinates. More visualizations of our toy examples that demonstrate this
behavior can be found in[9][3]

As we increase the ¢, value for the physics constraint, this reduces our training loss as well as the
PMSE metric (results shown in Table [5] [6] [7] [B] [0] and better illustrated in Figure [T4] [I5). Small
cres values (0.001, 0.005, 0.01) give low P-MSE and WD metric, with ¢,.s = 0.001 achieving the
best P-MSE and WD for learning 3 wavefunctions for 1D TISE, and ¢,..s = 0.005 achieving the
best metrics for learning 2 wavefunctions for 1D TISE and 1D GP, as shown in Table E], and@
respectively. An example of the learned denoising process with ¢,s = 0.001 is shown in figure 5

For 1D Schrodinger cases, a higher ¢,¢s, i.€. ¢yes = 0.1, 1, 10 resulted in a flatter curve distribution
(figure [I3) compared to the distribution learned with a smaller ¢,.s = 0.001,0.005,0.01 (figure
[I2). One reason might be that strong physics residuals make the distribution converge to the trivial
solution where the wavefunction ¢(z) = 0 and the energy E' = 0. This trivial solution also satisfies
the Schrodinger equation of the form H1 = E1). In addition, more points tend to concentrate around
the first predicted eigenvalue, or also known as mode collapsed. This occurs when we enforce a
strong penalty on the physics-informed loss.

Across all settings, the residual weight (c,..s) is balancing the two scenarios: a small value allows
for more flexible generation, while for larger values it forces the model to learn a trivial solution. As
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Setting | Unit circle | Disjoint circles | Concentric circles
| P Q | P Q [ P Q
MSE ‘ 0.38940.058 0.0028+0.0014 ‘ 0.489+0.053 0.013+0.0023 ‘ 0.277+0.085 0.052+0.014
MSE ‘ ‘ ‘

0.475£0.010 0.0116+0.0192 | 0.533+0.015 0.421£0.055 | 0.907+0.032 0.560+0.038

0.379£0.085 0.001440.0006 | 0.48640.052 0.0124+0.0038 | 0.2744+0.092 0.052+0.012
0.471£0.013 0.085240.0191 | 0.5324+0.015 0.417£0.089 | 0.906+0.037 0.549+0.030

Table 4: Performance comparison between PINN (P) and PDEDIFF (Q) across different problem

settings. Here, MSE is as defined in section [A.4.1|and WD is the Wasserstein metric for uniform
distribution on circles defined in section|A.4.2 The error is range of one standard deviation.

observed in Table|§|, |§[, andm increasing c,.s, causes the model to collapse to a single mode, where
the PMSE remains small for PDEDIFF, but the Wasserstein distance increases.

Similarly, for the 2D Schrodinger cases, we can see a similar trend with respect to ¢, in Table@ EI
For the harder 4 wave case, PDEDIFF achieves a better Wasserstein metric as compared to the other
methods. Since the “average” eigenstate for the 4 waves is the degenerate state, i.e., the eigenstates
with the same energy ((1,2), (2,1)), PINN is able to give a much lower P-MSE value, but we can
see from the Wasserstein metric, the samples generated have collapsed onto this average state and is
not able to generate a mixture of all the learned states. PDEDIFF in this case is still able to prevent
this catastrophic mode collapse and generate a good mixture of eigenstates.
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Figure 12: Generated samples by physics-informed PDEDIFF with different c,.s values for 1D
Schrodinger equation in infinite potential well.
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Figure 13: Generated samples by physics-informed PDEDIFF with different c,..s values for 1D
Schrodinger equation in infinite potential well.
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Setting | 1D (2 waves: n = 1,2)
Cres ‘ P D N Q

0 PMSE | 0.822 £ 0.016 0.9323 £ 0.0225 0.8090 £ 0.0236 0.0168 £ 0.010
WD | 0.539 +0.022 0.1572 £+ 0.00601 0.5440 + 0.0147 0.0863 £ 0.059
0.001 PMSE | 0.974 £0.247 0.9351 £ 0.0251 0.9600 £ 0.1299 0.0137 4+ 0.013
’ WD | 0423 +0.052 0.1572 £ 0.00602 0.4460 + 0.0442 0.0865 £ 0.063
0.005 PMSE | 1.052 £ 0.329 0.9350 £ 0.0249 1.0300 £ 0.1924 0.0146 4+ 0.011
’ WD | 0.244 +0.031 0.1570 £ 0.00602 0.3500 £ 0.0421 0.0862 =+ 0.061
0.01 PMSE | 1.106 £+ 0.371 0.9348 £ 0.0247 1.1082 £ 0.2024 0.0392 £ 0.032
’ WD | 0.313 +0.020 0.1572 4 0.00602 0.3077 £ 0.0349 0.113 4 0.037
0.05 PMSE | 1.923 +£0.456 0.9370 £ 0.0264 1.3800 £+ 0.2067 0.239 4 0.157
’ WD | 0.327 £ 0.069 0.1570 4 0.00609 0.2300 £+ 0.0188 0.152 4 0.057
0.1 PMSE | 3.414 +1.49 0.9400 £ 0.0274 1.5200 +0.2919 0.748 £ 0.411

’ WD | 0.587 £ 0.130 0.1580 4 0.00593 0.2270 £ 0.0350 0.153 4 0.057

1 PMSE | 3325 +£2996 0.9390 £ 0.0412 1.7900 £ 0.4569 1.05 + 0.317
WD | 0.306 +0.206 0.1730 £ 0.0100 0.1260 £+ 0.0046 0.188 4 0.476

10 PMSE | 3540 £2741 0.9910 £ 0.0376 2.6000 £ 2.1009  2.05 4+ 1.753
WD |0.236 +£0.110 0.1670 £0.0193 0.1280 £+ 0.0106 0.170 4 0.009

Table 5: Performance comparison between PINN (P), DeepONet (D), Physic-informed Neural Op-
erator (N), and PDEDIFF (Q) for 1D (2 waves).

WD vs cres for 1D Schrodinger equation (2 waves)
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Figure 14: Ablation study results from Tablewith error bar for 1D Schrodinger equation (2 waves).
PDEDIFF achieves lowest PMSE and WD metric compare with PINN, Physics-informed Neural
Operator and DeepONet for c¢,..s < 0.1 values. Overall, PDEDIFF with ¢,.s = 0.005 gives the
lowest PMSE and WD metrics.
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Setting 1D (3 waves: n =1, 2,3)
CT‘ES P D N Q

0 PMSE | 0.371 4+ 0.031 4.374+0.029  0.3330 £0.0337 0.0218 +0.013
WD | 0.737 £0.023 0.114 £+ 0.00275 0.7760 £ 0.0331 0.0549 + 0.009
0.001 PMSE | 0.460 + 0435 437 +0.029  0.4450 4+ 0.0349 0.0123 4+ 0.012
’ WD | 0.422 £0.151 0.114 £ 0.00275 0.4700 £ 0.1350 0.0499 + 0.019
0.005 PMSE | 0.521 £ 0.079 437 +£0.029  0.5250 £+ 0.0374 0.0299 + 0.011
’ WD | 0.3154+0.088 0.114 £+ 0.00275 0.3370 4+ 0.0827 0.0716 +0.014
0.01 PMSE | 0.534 £0.167 437 £0.029  0.5831 £+ 0.0449 0.0347 + 0.006
) WD | 0.266 +0.064 0.114 £+ 0.00275 0.2907 4+ 0.0643 0.0838 + 0.022
0.05 PMSE | 1.330 £0.528 4.38 £ 0.0307 0.8140 £+ 0.0964 0.532 + 0.222
) WD |0.399 +0.154 0.114 + 0.00287 0.1920 +£0.0316 0.176 + 0.130
0.1 PMSE | 7.63 +£6.148 438 £0.0335 0.9540 +0.1395 0.807 £ 0.108
’ WD | 0.503 +0.132 0.115 £ 0.00327 0.1270 4+ 0.0045 0.111 £ 0.013
1 PMSE | 6989 4+ 6330 4.41 £0.0335 1.0800 & 0.1151 0.971 + 0.171
WD |0.224 £0.149 0.113 £ 0.00676 0.1320 + 0.0251 0.145 £+ 0.059

10 PMSE | 7552 4+ 5669 4204+ 0.138  2.1200 + 2.5231 1.56 + 1.61
WD | 0.154 +0.056 0.165 + 0.0621 0.1260 4+ 0.0161 0.143 £ 0.0241

Table 6: Performance comparison between PINN (P), DeepONet (D), Physic-informed Neural Op-

erator (N), and PDEDIFF (Q) for 1D (3 waves).

PMSE vs cres for 1D Schrodinger equation (3 waves)

WD vs cres for 1D Schrodinger equation (3 waves)
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Figure 15: Ablation study results from Table|§|with error bar for 1D Schrodinger equation (3 waves).
PDEDIFF achieves lowest PMSE and WD metric compare with PINN, Physics-informed Neural
Operator and DeepONet for small ¢,..s values. Overall, PDEDIFF with ¢,..s = 0.001 gives the
lowest PMSE and WD metrics.
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Setting 1D GP (3 waves: n = 1,2, 3)

Cres P D N Q
0 PMSE | 1.550 + 0.804 0.868 + 0.004  0.0685 + 0.00263 0.140 £ 0.007
WD | 2.036 +1.222 1.431 £0.027 1.180 4+ 0.0449  0.195 + 0.043
0.001 PMSE | 1.291 £ 0.479 0.867 & 0.00487 0.0691 +£ 0.00260 0.126 £ 0.019
’ WD | 2418 +1.084 1.431 +0.0274  1.1854£0.0451 0.194 £+ 0.033
0.005 PMSE | 1.550 + 0.804 0.868 4+ 0.00451 0.0708 £ 0.00243 0.118 £ 0.028
’ WD |2.040 £ 1.222 1.4304+0.0274 1.203 £0.0472 0.338 +0.186
0.01 PMSE | 1.550 + 0.804 0.868 4 0.00438 0.0732 &£ 0.00222 0.139 £ 0.032
) WD |2.036 £1.222 1.4314+0.0274 1.223 £0.0533 0.333 +0.187
0.05 PMSE | 1.550 + 0.804 0.869 4 0.00440 0.0874 &£ 0.00399 0.134 £ 0.018
' WD |2.040 £1.222 1.43040.0276  1.236 £0.0903 0.937 +0.734
01 PMSE | 1.550 4+ 0.804 0.871 £ 0.00507 0.0930 £ 0.00923 0.189 4 0.089
’ WD | 2.040 + 1.222 1.430 £ 0.0276 1.144 £ 0.175  0.644 +£0.453
1 PMSE | 1.550 + 0.804 0.898 4+ 0.00864 0.1016 £ 0.00198 0.248 + 0.137
WD |2.040 £1.222 1.430 £+ 0.0260 1.899 +0.889  1.100 &£ 0.565
10 PMSE | 1.550 + 0.804 0.915 £0.0427 0.1016 £ 0.00197 0.286 £ 0.204
WD | 2.040 +1.222 1.120 4+ 0.0841 2992+ 0414  0.453 +£0.072

Table 7: Performance comparison between PINN (P), DeepONet (D), Physic-informed Neural Oper-
ator (N), and PDEDIFF (Q) for the 1D GP (3 waves) setting. Lower values indicate better agreement
with the ground truth wavefunctions.

WD vs cres for 1D Gross-Pitaevskii equation (3 waves)

PMSE vs cres for 1D Gross-Pitaevskii equation (3 waves)
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Figure 16: Ablation study results from Table [7| with error bar for 1D Gross-Pitaevskii equation
(3 waves). PDEDIFF achieves lowest WD metric compare with PINN, Physics-informed Neural
Operator and DeepONet for all ¢,..; < 10 values. Physics-informed neural operator converges to a
single mode to achieve the small PMSE metric but failed to learn the whole multi-modal distribution
with all 3 wavefunctions. This showed in Figure E| and the high WD metric.
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Setting 2D (3 waves: (1,1),(2,1),(2,2))
Cres P D N Q

0 PMSE 1.253 £ 0.147 7.3269 £0.2681 1.2543 £0.1392  1.222 +0.071
WD 0.378 £ 0.072 0.4419 £ 0.0584 0.2967 + 0.0301  0.169 + 0.037

0.001 PMSE 1.239 +£ 0.098 7.3264 £0.2682 1.3980 + 0.6033  1.194 + 0.097
’ WD 0.340 £ 0.075 0.4420 £ 0.0584 0.5020 + 0.2341  0.155 £ 0.037
0.005 PMSE 1.229 £ 0.061 7.3300 £ 0.2676  2.0700 £ 0.6581  1.201 & 0.098
’ WD 0.363 £ 0.100 1.1800 £ 1.6280 0.8260 £ 0.1594  0.187 £ 0.042
0.01 PMSE 1.184 £+ 0.062 7.3259 £0.2675 4.7610 & 7.9025  1.174 &+ 0.098
’ WD 0.368 £ 0.076 0.4419 £0.0584 0.8188 +£0.2973  0.173 £ 0.047
0.05 PMSE 1.004 + 0.087 7.3200 £ 0.2651 245373 &+ 548545 0.923 + 0.095
’ WD 0.444 £ 0.058 0.4420 £ 0.0585 1.09 £ 0.4884 0.238 + 0.047
0.1 PMSE 0.793 +£ 0.049 7.3300 £ 0.2725 21437 £3047.6  0.769 + 0.145
’ WD 0.502 £ 0.083 0.4420 £ 0.0587 1.31 £0.4834  0.264 £ 0.0599

1 PMSE 49.531 £ 3.639 7.3700 £ 0.2144 571194 + 883341 1.103 + 1.247
WD 0.239 £ 0.047 0.4390 £ 0.0536 1.33 +£0.3529 0.338 + 0.083

10 PMSE | 1474.578 +£293.978 7.2100 £ 0.1260 16423 £ 2072.9  3.059 £+ 2.304
WD 0.169 +£ 0.044 0.4540 £ 0.0143  0.690 + 0.1398 0.248 £ 0.048

Table 8: Results for the 2D (3 waves: (1,1),(2,1), (2, 2)) experiment, comparing PINN (P), Deep-
ONet (D), Neural Operator (N), and PDEDIFF (Q).

WD vs cres for 2D Schrodinger equation (3 waves)
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Figure 17: Ablation study results from Tablewith error bar for 2D Schrodinger equation (3 waves).
PDEDIFF achieves lowest WD and PMSE metric compare with PINN, Physics-informed Neural
Operator and DeepONet for all ¢,.s < 0.1 values. PDEDIFF with ¢,..s = 0.1 gives the lowest
PMSE metric and PDEDIFF with c,..s = 0.001 gives the lowest WD metric.
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Setting | 2D (4 waves: (1,1),(1,2),(2,1),(2,2))

Cres ‘ P D N Q
0 PMSE 1.250 + 0.059 7.661 + 0.539 1.332 £ 0.197 1.309 £ 0.073
WD 0.482 £0.073  0.4846 £+ 0.0709 0.300 £ 0.103 0.150 £ 0.042
0.001 PMSE | 1.243 +£0.055 7.659 + 0.539 0.933 £ 0.305 1.338 £+ 0.074
' WD 0.477 £0.078  0.4846 + 0.0708 0.513 £ 0.104 0.124 + 0.051
0.005 PMSE | 1.223 +£0.038 7.660 + 0.539 135492 + 302955  1.390 £ 0.147
’ WD 0.481 £0.077  0.4850 £ 0.0708 1.07 £ 0.647 0.202 £ 0.118
0.01 PMSE | 1.181 £0.041 7.661 + 0.539 129839 + 289801  1.414 £ 0.192
’ WD 0.527 £0.105  0.4846 + 0.0708 1.010 £ 0.629 0.194 £ 0.103
0.05 PMSE | 1.006 & 0.042 7.660 + 0.539 1209.46 £2686.2 1.088 £0.211
’ WD 0.592 £ 0.094  0.4850 + 0.0708 1.22 £0.377 0.386 £ 0.114
0.1 PMSE | 0.790 £ 0.041 7.660 £ 0.539  3388.96 + 7461.78 0.928 £ 0.109
’ WD 0.597 £ 0.069  0.4850 + 0.0708 1.05 £ 0.306 0.326 + 0.098
1 PMSE | 21.005 + 1.826 7.670 £ 0.400 46626.9 4+ 44388  0.815 +0.165
WD 0.211 £ 0.035  0.4840 + 0.0675 1.41 £0.354 0.301 £ 0.032
10 PMSE | 460.817 £56.397  7.290 £ 0.146 1317743 £ 2756065 0.808 +£ 0.201
WD 0.160 £ 0.046  0.4580 + 0.0135 1.44 £ 0.360 0.392 + 0.162

Table 9: Results for 2D (4 waves: (1,1),(1,2),(2,1),(2,2)) experiment, comparing PINN (P),
DeepONet (D), Neural Operator (N), and PDEDIFF (Q).
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Figure 18: Ablation study results from Table|§|with error bar for 2D Schrodinger equation (4 waves).
PDEDIFF achieves lowest WD metric compare with PINN, Physics-informed Neural Operator and
DeepONet for all ¢,.s < 0.1 values. PINN with ¢,.; = 10 gives the lowest PMSE metric and
PDEDIFF with ¢,.s = 0.001 gives the lowest WD metric.
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Setting 2D (4 waves: (1,1),(2,1),(3,1), (4,1))

Cres P D N Q
0 PMSE | 1.1333 +0.0696  22.342 + 2.3903 1.1984 + 0.1170 1.1004 + 0.0490
WD 0.5973 +0.1604  0.5127 £0.1082 0.3442 4+ 0.1107 0.22174 £0.1484
0.001 PMSE | 1.1299 4+ 0.05626 22.342 + 2.3903 1.2570 + 0.5490 1.0905 + 0.0559
’ WD | 0.6233 £0.0560 0.5127 +0.1082  0.58746 +0.1358  0.20494 £ 0.0891
0.005 PMSE | 1.9343 +£0.7272 22.342 £ 2.39033 2.2754 4+ 2.1479 1.0326 £+ 0.1810
’ WD | 0.4815+£0.0074 0.5128 +0.1083  0.67119 £0.2896  0.38876 £ 0.2228
0.01 PMSE | 1.6699 4+ 0.8890  22.342 + 2.3903 8328.97 4+ 18620 0.9246 + 0.1270
’ WD | 0.4702 £0.0269 0.5127 4+ 0.1082 0.8739 £ 0.5174 0.5585 + 0.1533
0.05 PMSE | 2.0404 £1.3113  22.344 4+ 2.3907 1774100 4 3922300 0.7339 £ 0.1237
’ WD | 0.46002 £ 0.0199 0.51276 4 0.1082 1.1972 +0.4778 0.4753 + 0.0588
0.1 PMSE | 2.2239 £ 1.5007 22.350 +2.3901 604850 4+ 1335200 0.6149 £ 0.1649
’ WD 0.4576 + 0.0203  0.5127 £0.1081 1.3754 + 0.5193 0.4431 + 0.0244

1 PMSE | 15.223 4+ 16.508 22.362 £+ 2.2990 31462.9 4+ 69532.2 1.50 £+ 2.2162

WD | 0.5161 £0.0757 0.5129 + 0.1050 1.0066 + 0.3278 0.4436 + 0.0018
10 PMSE | 637.61 +£197.99  20.565 £ 0.5769 863.57 + 375.39 4.3467 £+ 8.2002
WD 0.6188 +0.1821  0.4660 £+ 0.0136 0.7310 +0.0744 0.4640 + 0.0443

Table 10: Results for the 2D (4 waves: (1,1),(2,1),(3,1), (4, 1)) experiment, comparing PINN (P),
DeepONet (D), Neural Operator (N), and PDEDIFF (Q).

WD Vs cres for 2D Schrodinger equation (4 waves - non-degenerate)
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Figure 19: Ablation study results from Table with error bar for 2D Schrodinger equation (4
waves). PDEDIFF achieves lowest PMSE metric compare with PINN, Physics-informed Neural
Operator and DeepONet for all ¢,.s values. PDEDIFF with ¢,.s = 0.001 gives the lowest WD
metric.
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Setting Helmholtz (2 parameters: k € {m,4m})
Cres P D N Q

0 PMSE | 0.800 £ 0.110 21.35 £2.67 0.753 £ 0.217 0.254 +0.153
WD 0.107 £0.0401  0.168 £0.00103  0.111 £ 0.0425  0.0915 % 0.0052

0.001 PMSE | 0.746 £ 0.315 21.35 £ 2.67 1.00 £ 1.62 0.227 £ 0.0867
’ WD 0.108 £0.0297  0.168 £0.00103  0.106 & 0.0463  0.0913 £ 0.00615

0.005 PMSE | 0918 £0.164 21.4 £2.67 99.5 £178.81 0.320 £ 0.133
’ WD | 0.102£0.00921 0.168 +0.00103  0.303 £ 0.153  0.0874 £ 0.00455

0.01 PMSE 1.18 £0.476 21.35 £2.67 0.909 £ 1.01 0.570 £ 0.187
’ WD 0.109 £ 0.0234  0.168 £ 0.00103  0.160 £ 0.148  0.0886 =+ 0.00580

0.05 PMSE 384+ 1741 21.6 £2.76 140 + 126.08 2.740 £+ 2.170
’ WD | 0.0866 £ 0.00753 0.168 &+ 0.001034 0.0925 £ 0.0121 0.0819 £ 0.00715

0.1 PMSE 48.7 £19.58 23.4+3.02 159 £ 145.52 4.430 £ 0.566
' WD | 0.0875 £ 0.00734 0.167 & 0.001047 0.0937 & 0.0126 0.0803 +£ 0.00419

1 PMSE 74.6 £27.11 11.1 £9.56 196 + 158.64 5.510 £+ 0.581
WD | 0.0888 £ 0.00670 0.173 £ 0.03096 0.0987 & 0.0134 0.0827 £ 0.00703

10 PMSE 89.9 £2542  0.557 £0.000874 458 £ 246.35 6.540 + 1.234
WD | 0.0901 &£ 0.00637  0.158 £0.0280  0.169 £ 0.0566 0.0746 £ 0.00446

Table 11: Results for the Helmholtz (2 parameters) experiment, comparing PINN (P), DeepONet
(D), Physics-informed Neural Operator (N), and PDEDIFF (Q).
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Figure 20: Ablation study results from Table [11| with error bar for Helmholtz equation (4 waves).
PDEDIFF achieves lowest PMSE metric compare with PINN, Physics-informed Neural Operator
and DeepONet for all ¢,..; < 1 values. PDEDIFF with c,..s = 0.001 gives the lowest PMSE metric
and PDEDIFF with c,..s = 10 gives the lowest WD metric.
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