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Abstract

Most large language models are fine-tuned us-
ing either expensive human-annotated data or
GPT-4 generated data which cannot guaran-
tee performance in certain domains. We argue
that although the web-crawled data often has
formatting errors causing semantic inaccura-
cies, it can still serve as a valuable source for
high-quality supervised fine-tuning in specific
domains without relying on advanced models
like GPT-4. To this end, we create a paired
training dataset by aligning web-crawled data
with a smaller set of high-quality data. By
training a language model on this dataset, we
can convert web data with irregular formats
into high-quality ones. Our experiments show
that training with the model-transformed data
yields better results, surpassing training with
only high-quality data by an average of 9.4% in
Chinese elementary school math problems. Ad-
ditionally, our 7B model outperforms several
open-source models larger than 30B and sur-
passes well-known closed-source models such
as GPT-3.5 and Claude-2, highlighting the effi-
cacy of our approach.!

1 Introduction

Large Language Models (LLMs) have attracted
much attention over the past year and high-quality
data has been a crucial factor in achieving their
excellent performance. Currently, two primary
methodologies are employed for data acquisition.
The first approach involves leveraging GPT-4 (Ope-
nAl, 2023) or other LLMs for distillation, such
as Alpaca (Taori et al., 2023), ORCA (Mukherjee
et al., 2023), and WizardLM (Xu et al., 2023), to
enhance the capabilities of smaller models. The
second approach (Zhou et al., 2023a; Databricks,
2023; Kopf et al., 2023) use human annotation or
selection to further enhance model performance,
emphasizing the significance of data quality over
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data quantity. However, in certain domains like
mathematics, even the state-of-the-art model GPT-
4 fails to achieve outstanding performance (Dong
et al., 2023; Mitra et al., 2024; Yuan et al., 2023),
while obtaining a large volume of human-annotated
data within a short timeframe is not only challeng-
ing but also costly. Conversely, web-crawled data
tends to have a larger volume despite being prone to
noise and formatting errors. Leveraging processed
web-crawled data for training can significantly alle-
viate the challenges associated with data collection
in specific domains.

We focus on mathematical reasoning, which re-
quires a deep understanding of mathematical con-
cepts and proficient reasoning abilities. Previous
studies (Dong et al., 2023; Mitra et al., 2024) have
demonstrated the benefits of enhancing datasets
with synthetic data. Typically, these studies (Luo
et al., 2023; Mitra et al., 2024) rely on the excellent
performance of GPT-4 on English mathematical
datasets to generate simulated data for distillation
to smaller models. In contrast, we explore the po-
tential to acquire high-quality data without depend-
ing on additional powerful LLMs such as GPT-4.

We identified two significant advantages of web-
crawled data: it (1) has a large volume and (2)
contains most of the necessary information to
solve specific problems, despite its poor format-
ting. Drawing on the intuition that rewriting data
is comparatively simpler for the LLM than per-
forming intricate reasoning tasks, we propose a
method that augments the dataset by converting
web-crawled data into high-quality ones. Our
approach begins by automatically aligning low-
quality web-crawled data with high-quality seed
data to generate <low-quality, high-quality> data
pairs. We subsequently utilize these pairs to fine-
tune an LL.M, developing a model specifically de-
signed to transform low-quality web-crawled data
into high-quality data. Our experiments demon-
strate that this approach significantly improves data



quality and boosts model performance, surpassing
traditional rule-based methods. The key contribu-
tions of our work are as follows:

1. We propose a simple and effective method
for transforming web-crawled data into high-
quality data without relying on additional
LLMs like GPT-4.

2. Our approach improves the performance of
two representative open-source models, with
an average improvement of 9.4%.

3. We revealed that formatting errors could lead
to semantic inaccuracies and analyzed the rea-
sons behind the effectiveness of our method.

2 Related Work

2.1 Large Language Models for Mathematical
Reasoning

Complex reasoning has become a critical capability
for LLMs, and a series of benchmarks have been
developed to assess this ability using mathemati-
cal word problems. Notable English benchmarks
include GSM8K (Cobbe et al., 2021) and SVAMP
(Patel et al., 2021), while Ape210K (Zhao et al.,
2020) and CMATH (Wei et al., 2023) are prominent
benchmarks in the Chinese language.

“Chain of Thought” (CoT) (Wei et al., 2022;
Zhou et al., 2023b; Kojima et al., 2022; Fu et al.,
2023) enhances the model’s reasoning capability
by predicting the step-by-step reasoning process
before arriving at the answer. Wang et al. (2023)
further enhances the model’s performance using
majority voting techniques. Additionally, the “Tree
of Thoughts” (ToT) (Yao et al., 2023) approach
explores reasoning paths through self-evaluation
by the LLM to facilitate global decision-making.
Moreover, equipping the model with tools such as
calculators (Cobbe et al., 2021) or programs (Gao
et al., 2023a; Chen et al., 2022; Imani et al., 2023;
Yue et al., 2023) can also contribute to improved
problem-solving abilities. In our paper, we con-
centrate on improving the data quality for CoT,
because it forms the foundation of the model’s rea-
soning capability.

2.2 Is GPT4 Generated Data Enough?

Utilizing synthetic data generated by strong LLMs
(Taori et al., 2023; Mukherjee et al., 2023; Gu-
nasekar et al., 2023; Wang et al., 2024) for training
has proven effective in enhancing model perfor-
mance. In mathematics, studies (Luo et al., 2023;
Mitra et al., 2024; Yuan et al., 2023; Yu et al.,

2023) emphasize that utilizing a powerful LLM
(GPT3.5/GPT4) to generate diverse and challeng-
ing datasets can significantly improve model per-
formance.

However, the data generated by LLMs has in-
herent limitations. Although models have a certain
degree of fault tolerance (Yu et al., 2023), rely-
ing solely on synthetic data generated by strong
LLMs can limit the upper bound. For instance,
in domains where the best LLM performs poorly,
the quality of generated data may not be guaran-
teed. Our method leverages the knowledge in web-
crawled data, along with the powerful information
extraction and format standardization capabilities
of LLMs, thereby obviating the need for additional
LLMs to generate answers from scratch.

3 Methods
3.1 Settings

Training Data Sets. We acquired a meticulously
annotated dataset from an educational institution,
along with a web-crawled collection of mathemat-
ical problems. Due to their distinct origins, these
two datasets are not independently and identically
distributed (i.i.d.). This web-crawled dataset has
been filtered with rules, thus almost all the data
used in this paper are mathematical problems with
detailed solving processes. The manual-annotated
seed dataset consists of 84,095 instances, while the
web-crawled dataset comprises 573,960 instances.

3.2 A Close Look on Web-Crawled Data

Misleading Caused by Formatting Issues. Al-
though our preprocessing efforts have enhanced
the quality of the web-crawled data, there still re-
main numerous format errors and non-standard for-
matting issues. An example is shown in Figure
1, the expression 3.14 x 62 = 3.14 x 36 is repre-
sented as 3.14 x 62 = 3.14 x 36 in the crawled
data, which is mathematically incorrect. Due to
the extensive combinatorial nature of mathemati-
cal formulas, these errors can result in expressions
that appear to be intact in terms of formatting but
completely misrepresent the underlying physical
meaning. Consequently, training with these errors
can mislead the model, particularly in complex sce-
narios. We summarize the most significant errors
of web-crawled data in Table 1 and show corre-
sponding examples in Table 8.

It is quite difficult to correct those errors using
rule-based methods, which we will explain in Sec-



Error Type Detailed Description

Fraction Format Errors
Super/Subscripts Errors
Missing Line Breaks
Non-standard formula
Garbled Characters

The fraction are not in latex format. 5 may be in the form of “x\ny” or “xy”.

The positional information of special characters such as superscripts and subscripts may be lost.
Occasionally, the line breaks (“\n”") between different lines are missing.

Some symbols are displayed in non-standard form, such as “x” being typed as “X”.

Severe formatting disruptions were observed in a tiny subset of samples due to OCR.

Table 1: Typical error types in web-crawled data. The fraction format errors and superscripts/subscripts errors are

the most common in our data.

Data with Errors
Question: The radius of a small circle is 2 cm, and the
radius of a large circle is times that of the small circle.
What is the area of the large circle?
Answer:
The radius of the large circle: 2 X 3=6 (cm)
The area of the large circle: 3.14 X 62 =3.14 X 36 =
113.04 (cm2) X

Correct Format
Question: The radius of a small circle is 2 cm, and the
radius of a large circle is 3 times that of the small
circle. What is the area of the large circle?
Answer:
The radius of the large circle: 2 X 3=6 (cm)
The area of the large circle: 3.14 x 62 =3.14 x 36 =
113.04 (cm?)

Figure 1: An example of a web-crawled sample with
“local errors” and “global errors”. The “local errors” are
denoted in blue, and the “global errors” are denoted in
red.

tion 3.2. Utilizing these flawed samples for training
may not only introduce inconsistent output formats
but also affect the model’s understanding of mathe-
matical concepts. However, if we discard samples
with errors entirely, it would significantly reduce
the information content in the training data, thereby
affecting the model’s performance.

The Drawbacks of Rule-Based Methods In
data preprocessing, rule-based methods often hold
significant importance. However, it is important to
note that while certain errors can be resolved using
rule-based methods, others may not be amenable
to such approaches in principle. To state it more
clearly, we define two distinct types of errors: local
errors and global errors.
* Local errors refer to errors that can be cor-
rected by examining a few consecutive words.
* Global errors refer to errors that can only
be rectified if the method comprehends the
entirety of the example, including both the
question and the answer.

The primary limitation of rule-based methods

is that they can only solve “local errors” but not
“global errors”. Figure 1 illustrates an example,
with the “local errors” highlighted in blue and the
“global errors” marked in red. In this instance, the
crucial information of “3 times” is missing from
the question, making it impossible to fill in the
blank without consulting the answer. Addition-
ally, determining whether “62” represents “62” or
simply “62” poses a challenge for rule-based ap-
proaches, as both interpretations are prevalent in
the corpus. Consequently, these two instances are
classified as global errors. Conversely, the third
scenario involving “cm2” commonly denotes “cm?”
in most cases, making it a “local error” that can be
easily addressed using rules. Another drawback of
rule-based methods is the requirement to analyze
numerous cases and handle various boundary sit-
uations when constructing rules. This process is
not only highly challenging but also significantly
increases people’s workload.

Feasibility of Model-based Methods After care-
ful examination of the web-crawled samples, we
believe that despite the presence of numerous for-
matting issues in the crawled data, the data itself
still contains a substantial amount of valuable in-
formation. We arrived at the following findings:

1. Despite the vast array of mathematical prob-
lem types, the types of formatting errors tend
to be relatively uniform. Consequently, by
fine-tuning a model, it should be capable of
learning the correct paradigms efficiently with
a limited number of samples.

2. Compared to performing complex reasoning
tasks, it is easier for the LLM to rewrite the
data. In other words, modifying the format of
questions and answers to obtain training data
is much simpler than generating answers for
questions from scratch.

3. Different from rule-based methods focusing
on local considerations, LLLMs are good at
combining all the information in the sample.

Therefore, we recommend utilizing the informa-



Q: Divide into 4 parts, how much is each part?

A: Analysis: Divide a number into several equal
parts, calculate the number of each part
using division, and answer accordingly.

Prompt Engineering

Instruction:

Assuming you are an elementary school math
teacher, here is a question and corresponding
answer that may have language irregularities.

Solution: 3\n7 = 4=3\n28 onvert
Answer: Each part is 3\n28 standardized format.

[Question]

Please convert the question and answer to a

Divide into 4 parts, how much is each part?

Web-crawled [Answer]

Dataset

Analysis: Divide a number into several equal
Fuzzy parts, calculate the number of each part using
Matching division, and answer accordingly.

Re-Generation Math
Language Model Language
Model

Solution: 3\n7 = 4=3\n28.
Answer: Each part is 3\n28
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Solution: = ~4 = —
7 28

High-quality
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Answer: Each part is 7%
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Figure 2: An illustration of our proposed data transforming architecture. The answer coloured in green is matched,
resulting in a <web-crawled, high-quality> data pair. The text in red is originally wrong and needs to be corrected.
We then prompt the paired data to train a re-generation language model to convert the web-crawled data into
high-quality ones. Finally, we train a Math LLM using both the high-quality data and the cleaned web-crawled data.

tion in the web-crawled data and leveraging the
excellent understanding and languaging capabili-
ties of neural networks to construct high-quality
training data. This is related to the core idea of
Retrieval-Augmented Generation (RAG), which
we will discuss later in Section 5.

3.3 A Simple and Effective Method for Data
Cleaning

Based on the analysis above, we propose a sim-
ple and effective method to enhance the quality of
web-crawled data. This approach leverages the lin-
guistic capabilities of LL.Ms alongside the inherent
knowledge within web-crawled data to refine and
standardize its format, thereby effectively reducing
the occurrence of erroneous expressions.

Our method involves the following four steps as
shown in Figure 2:

1. Constructing format converter training data
by pairing web-crawled data with high-quality
data using fuzzy matching.

2. Train an LLM with the constructed data to
enable it to transform raw web-crawled exam-
ples into high-quality examples.

3. Use the trained LLM to convert the web-
crawled data into high-quality format.

4. Train another LLM to solve mathematical
problems using both the high-quality data and
the converted web-crawled data.

Formally, given a high-quality problem set

Dhigh = {(gi,ai)}; where ¢; is a math question
and a; is the corresponding answer, along with a
large web-crawled dataset Derawi = {(gj, ;) };s
we can derive a matched dataset in the following
manner:

Dtrain == {([q-; a]? [qla CLID‘(q, a) S Dhigh7
(¢',a") € Deraw1, match(q, ¢’) V match(a, a’)}.

Typically, the size of the matched dataset Dy, is
smaller than that of the high-quality dataset and

web-crawled dataset, i.e., [Diwain| < min(|Dhpign,
|Derawi|)- Subsequently, we fine-tune an
LLM g using the constructed dataset Dy, and
use this model to process the web-crawled data.
For each sample [g,a], the model generates
an output in a predefined concatenated format
“formatted([a’, ¢'])”. Afterwards, we apply rules
to extract the question and answer from the output,
resulting in the final mathematical problem-solving
training dataset Dejeaned = {¢}, @} }i. Samples that
do not conform to the predefined output format
are discarded. Finally, we fine-tune an LLLM on
both the high-quality data Dy and the cleaned
data Dgjeaned to improve the model performance in
mathematical reasoning.

“We have further augmented our dataset with samples con-
taining severe formatting errors, prompting the model to rec-
ognize these instances and output a “syntax error” indication.
The relative number of those dropped examples is small, and
we have verified that the dropped examples are not the main
reason for our improvement in effectiveness.



ChatGLM2-6B Qwenl.5-7B-Chat
Ape210K CMATH | Ape210K CMATH
W.o. Training 38.7 62.8 55.4 72.5
SFT w. Dpjgn 55.6 76.2 68.2 81.8
PT w. Derawt + SFT w. Dhigp 594 717.2 69.0 83.2
SFT w. D¢leaned 72.1 84.5 74.2 87.3
SFT w. Dcleaned + Dhigh 73.9 84.8 74.1 86.5

Table 2: Performance comparison among different language models on the Ape210K and CMATH. “SFT w. Dy;gy’

bl

denotes fine-tuning with human-annotated high-quality data only. “PT w. D¢aw1 + SFT w. Dyien” denotes first
post-training the model with web-crawled data and then fine-tuning the model with high-quality data. “SFT w.
Dcieaned + Dhigh”” denotes fine-tuning the model with model-converted and human-annotated data together. Best

results are denoted in Black.

4 Experiments

4.1 Experimental Setup
4.1.1 Test Datasets and Evaluation Method

Because all our training data are about Chinese ele-
mentary school math, following ChatGLM-Math
(Xu et al., 2024), we evaluate our performance on
two Chinese math datasets, Ape210K (Zhao et al.,
2020) and CMATH (Wei et al., 2023). Different
from the works that utilize LLM as the verifier
(Zheng et al., 2023; Xu et al., 2024), we wrote an
automatic evaluation script in Python. Our auto-
evaluation script exhibits an evaluation accuracy
of 95% on Ape210K. For CMATH, we utilize the
evaluation script 3 provided in the paper.

4.1.2 Models

We experiment on two most widely used Chinese
open-source models, i.e., ChatGLM (Du et al.,
2022; Zeng et al., 2023) and Qwen (Bai et al.,
2023), specifically, ChatGLM2-6B and Qwen1.5-
7B-Chat. We employ fully parameterized super-
vised fine-tuning (SFT) in all our experiments. Due
to time constraints, we did not conduct hyperpa-
rameter searches; instead, all experiments were
performed once using a pre-determined, stable hy-
perparameter set. During the training process, we
employed a batch size of 128 for both models, a
learning rate of Se-5 for ChatGLM, and a learn-
ing rate of 5e-6 for Qwen. We do not use early
stopping, but instead train all data for three epochs.

4.2 Main Results

Our results are shown in Table 2. The conventional
approach of post-training with noisy, web-crawled
data only marginally improves model performance

Shttps://github.com/XiaoMi/cmath

by an average of 1.8%. In contrast, fine-tuning
the model with both high-quality and our cleaned
data significantly enhances performance by an av-
erage of 9.4%, demonstrating the effectiveness of
our method. This improvement can be attributed
to the following reasons: (1) The presence of er-
rors in the web-crawled data hinders the learning
of mathematical reasoning. (2) The format dis-
parity between web-crawled (pure text) and high-
quality data (I&TgX) makes it challenging to inte-
grate both paradigms of information. (3) Two-stage
fine-tuning makes it more susceptible for the model
to forget the data used in the post-training stage, in-
dicating that SFT exhibits superior data efficiency
compared to post-training.

An intriguing observation that deviates from
common sense is the comparable performance of
SFT with D¢jeaned to that of SFT with both D¢jeaned
and Dpgh. We propose two potential explanations
for this phenomenon. Firstly, the cleaned data
is generated by the model, which results in the
distillation of certain information from the high-
quality data into the cleaned web-crawled data
during the cleaning process. Secondly, our high-
quality dataset encompasses various types of math-
ematical problems, not limited to just mathematical
word problems, which could potentially influence
the distribution of the data.

Although we focus on improving data utilization
rather than brushing rankings, we still achieved
outstanding performance on small models within
10B. Comparison between different representative
models is in Table 3. Our performance with the 7B
model surpasses several models larger than 30B,
including Yi-Chat (Young et al., 2024), DeepSeek-
Chat (Bi et al., 2024), and ChatGLM3. Addition-
ally, our results exceed some well-known closed-
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Figure 3: Comparison between rule-based and model-based method on Ape210K, as training data grows. The figure
left is the results on ChatGLM and the figure right is the results on Qwen. The horizontal axis represents the amount
of SFT data, and the vertical axis represents the accuracy on Ape210K.

source models like GPT-3.5 (OpenAl, 2023) and
Claude-2 (Anthropic, 2023).

| #params | Ape210K CMATH | Avg.

GPT-4-1106-Preview' | N/A 84.2 89.3 |86.8
GPT-4-0613" N/A 83.6 86.5 |85.1
GPT-3.5-Turbo-06137 | N/A 70.4 76.8 |73.6
Claude-2" N/A 72.8 80.5 |76.7
GLM-4f N/A 93.5 89.0 [91.3
Yi-Chat' 34B 65.1 717 |71.4
DeepSeek-Chat' 67B 76.7 80.3 [78.5
Qwen-Chat' 72B 77.1 88.1 |82.6
ChatGLM3-SFT' 32B 78.0 798 [79.8
Ours (ChatGLM2) 6B 73.9 84.8 |79.4
Ours (Qwenl.5) 7B 74.2 87.3 |80.8

Table 3: Performance comparison among different lan-
guage models on the Ape210K and CMATH. Results
denoted by T are reported by Xu et al. (2024). “#params”
denotes the number of parameters, and “Avg.” denotes
the average performance.

4.3 More Analysis of the Effectiveness

To better compare the effectiveness of the tradi-
tional process pipeline (rule-based) and our model-
based method, we eliminated the influence of high-
quality data by solely employing the cleaned web-
crawled data for SFT. We develop a refined rule-
based data cleaning strategy to transform the web-
crawled data into the SFT format. Details are in
Appendix A.3, and results are in Figure 3.

Model-Based vs. Rule-Based From Figure 3,
we can see that under various models and dif-
ferent data volumes, the model-based cleaning
method consistently outperforms the rule-based
one. Specifically, with ChatGLM2, the model-
based method demonstrates an average improve-
ment of 3.6% over the rule-based method, whereas

with Qwen, the gap widens to an average improve-
ment of 6.7%. This leads us to conclude that a
better base model benefits more from our model-
based re-generation strategy.

The Influence of the Number of SFT Data We
conducted an investigation into the impact of in-
creasing data volume on model performance. Re-
markably, we observed a linearly increasing trend
in the model’s effectiveness as the data doubled,
suggesting a log-linear relationship. This finding
aligns with previous research (Yuan et al., 2023;
Dong et al., 2023). On ChatGLM, there is an ap-
proximate 5% improvement in performance for
every doubling of data volume. However, in the
case of Qwen, doubling the data volume only leads
to a 2% improvement. This discrepancy may be
attributed to the nature of the data encountered dur-
ing the pre-training phase. Specifically, the more
limited exposure to mathematical-related data dur-
ing pre-training, the more notable the performance
gains with increased data volume.

4.4 Impact on Questions Across Grades

We further explore the impact of the cleaning
method on questions across different grade lev-
els. Typically, as students progress through higher
grades, the knowledge required becomes more com-
plex and often necessitates more intricate thinking
processes. We classify and analyze the samples
directly based on the grade labels provided in the
CMATH dataset. Results are in Table 4.
Compared with the rule-based method, we can
see that the model-based re-generation strategy can
improve the performance of questions across differ-
ent grades, with the greatest improvement observed
for the fifth- or sixth-grade questions. The notable



Model Gl G2 G3 G4 G5 Go6
Rule-ChatGLM 92 87 84 82 60 71
Model-ChatGLM = 94 (+2) 94 +7) 90 (+6) 84 (+2) 75 (+15 70 (-1)
Rule-Qwen 92 89 92 85 72 68
Model-Qwen 94 +2) 93 (+4) 92(H0) 86 (+1) 80 +8) 79 (+11)

Table 4: Performance on different grades. G1, G2, ..., and G6 respectively represent grades 1 to 6. “Rule” denotes
the rule-based data cleaning strategy, and “Model” denotes our model-based data cleaning strategy.

improvement is primarily attributed to the mitiga-
tion of global errors. The significant improvement
observed in the fifth-grade or sixth-grade questions
could be attributed to their higher complexity and
greater demand for data accuracy. Additionally,
these questions predominantly assess concepts re-
lated to fractions or geometry, which have a higher
probability of errors in the original data.

4.5 Robustness w.r.t. the Number of
High-Quality Data

In our experiments, we utilized a corpus of high-
quality seed data consisting of 84,095 instances.
This extensive dataset subsequently yielded 24,336
paired instances for training the generator, indicat-
ing that approximately 28.9% of the high-quality
data could be successfully paired. However, it
might not be possible for others to collect such
a large number of high-quality data. Therefore,
we conduct experiments to explore the relationship
between the performance with the number of high-
quality data (paired data).

Dataset Rule M-10k M-20k M-40k M-All
Ape210K-C' 50.6 52.6 532 538 542
CMATH-C 693 728 750 745 743
Ape210K-@ 60.5 66.1 679 678 679
CMATH-QQ 79.2 825 827 828 82.0

Table 5: Performance w.r.t. different amounts of high-
quality data. “10k™, “20k”, “40k”, “All” respectively
represent the number of high-quality seed data. “Rule”
denotes the rule-based data cleaning strategy, and “M”
denotes our model-based data cleaning strategy. “C”
denotes ChatGLM and “Q” denotes Qwen.

We conducted experiments by varying the num-
ber of high-quality data and comparing the perfor-
mance of both rule-based method and model-based
methods. Owing to time constraints, our SFT ex-
periments were conducted on a subset of 80,000
samples. The results are summarized in Table 5.

Notably, even with a limited set of 10,000 high-
quality data instances (yielding 2,990 pairs), our
method significantly outperforms the rule-based
approach. This demonstrates the robustness and
practicality of our method in real-world scenarios.

4.6 The Quality of Data Cleaning

We evaluated the quality of 100 random data en-
tries, and the corresponding results are presented
in Table 6. It can be observed that the rule-based
rewriting method surpasses the baseline by 5 points,
while ChatGLM surpasses it by 13 points, and
Qwen surpasses it by 18 points. These results
demonstrate the effectiveness of our method. How-
ever, none of these methods achieves an accuracy
above 90% due to the limitations in the mathemat-
ical capabilities of LL.Ms, making it challenging
to handle complex scenarios. One potential di-
rection is to conduct additional validation on the
generated samples and facilitate the synchronous
improvement of both model quality and data qual-
ity through techniques such as self-training.

Origin Rule
1%  76%

Model-GLM  Model-Qwen
84% 89%

Table 6: The data quality under different methods.
We sampled and assessed the quality of 100 data en-
tries. “Rule” denotes the rule-based method. “Model-
GLM?” denotes the accuracy of the samples generated by
ChatGLM2-6B. “Model-Qwen” denotes the accuracy
of the samples generated by Qwen1.5-7B-Chat.

Table 7 presents a converted case using Qwen1.5-
7B-Chat. In this case, the model (1) accurately
identifies and converts fraction errors in the sen-
tence into a I&TEX format, and (2) fills in missing
numbers in the question by comprehending the con-
text, which cannot be realized through rule-based
methods. Additional cases can be found in Ap-
pendix A.4. From these cases, it can be concluded
that our method significantly improves data quality
in various error types.



Original (Chinese)

Translated (English)

Q: Guangming Chicken Farm raised 2400 chickens
this year, an increase from last year. How many

Q: YLHHFENE I S FEFENE2400H , L EFE chickens did it raise last year?
iR \%gﬁ%ﬂ%g//l\ A? N A: Analysis: Consider the number of chickens
A: AT EEFEFRER REEER raised last year as unit “1”, and calculate the quan-

fire1”,
E2400BR IS AT E (14

KB IR, ARETE, &

tity of unit “1” using division. Divide the quantity
2400 by the corresponding fraction(1+

Web- 1
Crawled 5) . 5).
AT EEFOR AL 2400+ (1+1 Solution: Number of chickens raised last year:
5) , =2400+6 2400-+(1+1
5, =2400x5 5), =2400+6
6, =2000 (F) . & EFEFHFIH2000H. 5, =2400x5
6, =2000 (chickens). Answer: There were 2000
chickens raised last year.
Q: ¢ B384 4 4F 2 090400, | b 4F Q: Guangming Chicken Farm raised 2400 chickens
Ml FEFLLAHA? ' this year, an increase of é from last year. How many
Model- Asﬁﬁ 2400= (141) chickens did it raise last year?
Cleaned 22'400';§ j 5 A: Solution: 2400-+(1+%)
2000 (}1) =2400--2
P N =2000 (chickens)

% EEFFNE2000 .

Answer: There were 2000 chickens raised last year.

Table 7: Case of our model transformed examples. Our data are all Chinese elementary school math problems. For
ease of understanding, we have provided an English translation on the right.

5 Discussions

Relationship with RAG The widely discussed
RAG (Gao et al., 2023b; Komeili et al., 2022; Thop-
pilan et al., 2022; Schick et al., 2023) technology is
conducted during the inference period. Providing
references to the model and allowing the model
to refer to these references in generating answers,
helps the model reduce “hallucinations”, especially
for knowledge-intensive tasks. Our method can be
seen as RAG during the training process. Distilling
the model’s unknown knowledge into the training
data can further enhance the model’s capabilities.
The injection of knowledge can also positively im-
pact the model’s generalization in related domains.

Possible Applications in Other Domains A core
idea of our paper is that: the effective use of appro-
priate data formats and instructions, derived from
pretraining datasets, can facilitate the efficient SFT.
Therefore, our method can be extended to vari-
ous scenarios. Numerous open-source high-quality
datasets can be used to create paired data through
alignment with web-crawled resources. For in-
stance, by aggregating relevant Wikipedia entries
for specific QA datasets, one can train a model
to generate pertinent questions and answers corre-
sponding to those entries. Furthermore, in niche
scenarios featuring unique personal corpora, it is
feasible to initiate training with a small amount of

seed data to produce high-quality SFT data, thereby
integrating this knowledge into the model.

Future Directions Our training data for the trans-
forming method is automatically constructed using
fuzzy matching, which presents both benefits and
challenges. While this approach enables the gener-
ator to produce correct answers even when the orig-
inal answers are incorrect, it can also lead to errors
in instances where the original answers are accu-
rate. In such cases, employing additional verifiers
could be helpful. Furthermore, implementing self-
training methods may be valuable to concurrently
improve the model’s mathematical capabilities and
the quality of the transformed data.

6 Conclusion

We observed that in mathematical problems, format
errors in the web-crawled data not only cause confu-
sion in the output format but also result in semantic
inaccuracies. Building on this insight, we propose
a simple and efficient method that leverages the
abundant information in web-crawled data and the
strong understanding capabilities of LLMs. Our
method enables the transformation of web-crawled
data into high-quality ones without additional lan-
guage models such as GPT-4. Experiments demon-
strate the superiority of our method. In the future,
it is worth exploring how to extend this method to
enhance data quality in various other scenarios.



7 Limitations

Although our method greatly improved the model
performance without relying on specific annota-
tion or additional LLLMs, for some special scenar-
ios when it’s difficult to construct suitable pairs, a
certain amount of annotation is still needed as a
cold start. Moreover, the cleaning process could
introduce new errors in the data, thus additional
methods that could enhance the data quality are
still a problem worth exploring.
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A Appendix
A.1 Datasets

The web-crawled data often appear in rich text for-
mat (a mixture of texts and images). We apply Op-
tical Character Recognition (OCR) to extract text
from images on the webpage and then we employ
rules to further discard low-quality samples, obtain-
ing a portion of relatively high-quality samples. Al-
though these samples already have relatively high
quality, there are still many format errors and cases
of non-standard formatting, which are difficult to
process using rules. Ultimately, we obtain 84,095
high-quality seed data and 573,960 web-crawled
data.

A.2 Format Error Examples of Web-Crawled
Data

Examples of typical format errors are shown in
Table 8, including fraction format errors, super-
scripts/subscripts errors, missing line errors and
other non-standard formats.
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A.3 Rule-based Methods

It should be noted that the web-crawled data we
mentioned in the article has already been filtered
through specific rules, yet numerous errors persist.
We revised the data using rule-based methods as
described in Section 4.3, applying the following
rules.

1. Develop a series of templates to extract only
the corresponding detailed answer parts as
answers to the questions.

Correct fraction related errors, such as replac-
ing “NUM1\nNUM2” with “NUM1/NUM?2”.
Correct equation related non-standardize ex-
pressions, such as replacing “,=” with “=" and
replaceing “,~” with “~”.

However, many format errors, while simple for hu-
mans, prove challenging for traditional rule-based
systems. Firstly, it is impossible to enumerate all
the rules comprehensively. Secondly, some global
errors can not be fixed using rule-based methods.
Crucially, cleaning one format might introduce er-
rors in another. For instance, in the rule replac-
ing NUM1\nNUM2 with NUM1/NUM2, where
NUMI and NUM2 are digits and “\n” denotes a
line break, an accurate replacement is difficult with-
out affecting other data. A case is shown in Table
9. However, neural networks can address this issue
more effectively.

A4 Case Study

In addition to the examples presented in the main
text, we show two additional model-transformed
cases with Qwen1.5-7B-Chat in Table 10. In the
first case, the superscript is erroneously formatted
as “2n+1” instead of “2" 4 1”. Our model succeeds
in detecting and correcting it. In the second case,
the missing line break between two equations re-
sults in confusion and misinterpretation. By insert-
ing appropriate line breaks, our model transforms
the text into a more readable format. In both cases,
our model accurately extracts the crucial elements
of the sample instead of merely copying the entire
analysis.


https://openreview.net/forum?id=-Aw0rrrPUF

Error Type

Original Web-Crawled Data (Chinese)

Translated Data (English)

Fraction
Format
Errors

Q: I 4 FE 524007, & F
hn, FEFELADH?

A ST 2400— (1+1

5) , =2400-=6

5, =2400x5

6, =2000 (H) . Z&: EFEFEIE2000H.

Q: Guangming Chicken Farm raised 2400 chickens
this year, an increase from last year. How many
chickens did it raise last year?
A: Solution: 2400--(1+1
5),=2400-+6

5,=2400x5

6,=2000 (chickens).Answer:
chickens raised last year.

There were 2000

Super/
Subscripts
Errors

Q: B — AR F X T — IR S5 M A Rl BY — J) 48
F 28 BB 3T R RS K [E] BY — J) 48 F 3R
5B X MR 4 S ik S M AP RN B — 70,48
TR Bt

Az ARE BT A 0K — R F R T LR A
(8] — 71,48 F 25 3B 21+ 1=3 .8 — MR 48 7 X
FT2UR, A8 —T) 48T A8 S BB 22+ 1=5 /K I
I BRI AR T X HTn Ik S5 WA E] BT — J) 48T
AR (2n+1)Ex.

Q: After folding a rope in half once and cutting it
in the middle, the rope becomes 3 segments. After
folding it twice and cutting it in the middle, the rope
becomes 5 segments. If we fold the rope n times
and cut it in the middle, the rope will become
segments.

A: According to the analysis, folding a rope once
and cutting it in the middle results in 3 segments,
which can be represented as 21+1=3. Folding the
rope twice and cutting it in the middle results in 5
segments, represented as 22+1=5. Following this
pattern, if we fold the rope n times and cut it in
the middle, the rope will be divided into (2n+1)
segments.

Missing
Line
Breaks

Q: —HRERN KK ZER K, FitllE
/NIFATEBRI60 T, 12/ EIik B RO . TS
IR, SERREE/NS HITHRIADITBI0TF K - 39X
VR ZESE PR £ /D NP RIA O X 2 (F HLB R
A: R BOXENRE SR A N AKX
(60— 10) xz = 60 x 1250z = 60 X 1250z =
72050z +~ 50 = 720 = 50z = 14.4%: XHIEE
SEBRFT 14,4/ NP RIGR 0 X

Q: A car is transporting disaster relief supplies to
a disaster area. The original plan was to travel 60
kilometers per hour and reach the destination in 12
hours. Due to weather conditions, the actual travel
distance per hour is 10 kilometers less than planned.
How many hours will it take for the car to reach the
disaster area in reality? (Solve using proportions)
A: Solution: Assuming that this car actually arrived
at the disaster area in x hours,(60 — 10) xx = 60 X
1250z = 60 x 12502 = 72050z <+ 50 = 720 +
50x = 14.4Answer: This car actually took 14.4
hours to reach the disaster area

Non-standard
Formula

Q: MR R, HE 1113k, H265% 08 M REH
Z/b R0

A: T EXH, By R
xTy=20, (1)

2xT4y=46 (2)

FHx2, 1%

2x2y=40 (3)

-, 5

2y=6

y=3

BT Ax=20-3=17
ZEITR, /A3

Q: Chickens and rabbits are in the same cage, there
are a total of 11 heads and 26 legs. How many
chickens and rabbits are there respectively?

A: Let’s say there are x chickens and y rabbits.
xTy=20, (1)

2x Tdy=46 (2)

(1HX2, we get

2xT2y=40 (3)

(2) - (1), we get

2y=6

y=3

Therefore, x=20-3=17

Answer: There are 17 chickens and 3 rabbits.

Table 8: Typical error types and their corresponding instances. Our data are all Chinese elementary school math

problems. For ease of understanding, we have provided an English translation highlighted in blue.
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ID Web-Crawled Examples Rule Converted Examples
Q: JLHAFF G 5 FIE 82400, L E Y
m, REFWEDA?
A AT IBRFEFEE ABEFER
ficre, REBAR R, AREITRE, &
H2400BR AN RIA 70 % (1+
1
5) .
BT EEFFER K 2400+ (1+1 Q: JLHASF G 5 FIF G400, £ F 1
5) . =2400+6 . EEFFGEHR?
5, =2400x5 A: = F X B A ¥ . 2400+
6, =2000 (H) . &. E£#EFE582000H . (1+1/5) =2400--6/5=2400x5/6=2000 () .
B REFFIE2000.

Q: Guangming Chicken Farm raised 2400 chickens

Case 1 this year, an increase from last year. How many Q: Guangming Chicken Farm raised 2400 chickens
chickens did it raise last year? this year, an increase from last year. How many
A: Analysis: Consider the number of chickens chickens did it raise last year?
raised last year as unit “1”, and calculate the quan- A: Solution: Number of chickens raised last year:
tity of unit “1” using division. Divide the quantity 2400-+-(1+1/5)=2400--6/5=2400% 5/6=2000 (chick-
2400 by the corresponding fraction(1+ ens). Therefore, there were 2000 chickens raised
1 last year.
5).
Solution: Number of chickens raised last year:
2400=-(1+1
5), =2400+-6
5, =2400x5
6, =2000 (chickens). Therefore, there were 2000
chickens raised last year.
Q: T AIE10.53 7 KRB HiE — 1 K6k,
WISKHIK T EPTE, FTLMEE? (H Q: TAIE10.552 77 KEJE VP £ — D K6K,
TiERE) WISAKKTTEPILE, FLEHEZE? (H
Az AT LUK JitERR)
6x3.5xx=10.5 Az AT LUOR,
21x=10.5 6x3.5xx=10.5/21x=10.5
x=10.5+21 x=10.5+21
x=0.5 x=0.5
& ATLAH0.5 K. % AILUHO.5 K.

Case 2 Q: How thick can workers lay 10.5 cubic meters Q: How thick can workers lay 10.5 cubic meters

of yellow sand in a rectangular sand pit that is 6
meters long and 3.5 meters wide? (Using equations
to solve)

A: Assuming that the layer can be laid to a thickness
of x meters, 6x3.5xx=10.5

21x=10.5

x=10.5+21

x=0.5

Therefore, the layer can be laid to a thickness of 0.5
meters.

of yellow sand in a rectangular sand pit that is 6
meters long and 3.5 meters wide? (Using equations
to solve)

A: Assuming that the layer can be laid to a thickness
of x meters, 6x3.5xx=10.5/21x=10.5

x=10.5+21

x=0.5

Therefore, the layer can be laid to a thickness of 0.5
meters.

Table 9: Case of our examples using rule-based methods. The translation is marked in blue. In the first case,
“NUM1\n NUM2” is correctly transformed into “NUMI/NUM2”. However, in the second case, the raw web-crawled
data is correct, but the rule-based method incorrectly alters the expression.
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Error Types Web-Crawled Examples Model Converted Examples
Q: FF— R4 ¥ X1 — k5 WA 8] BY — TJ) 48
T2 3B xﬂﬁﬁme}ﬂ A BY — J) 48 7 28
J5 B R IR 48 5 i Ja M R B — T, 48
TR B
A: ARIE 5 7 7T 1945 — IR 48 F X 37 LK M o
IETJ*j],2%%\7@"1)&3&;7521-{—1:3.5{%‘*7]‘&?%?5@ Q: BB T — UG MR A —T], 4
R e T e T I ey E
K SRR . ; A BT — 7] 4 - , e
AP IREARRIT IR ainse . s T o Find R Ao 13—
ERRIBE X471 T8 — ] 210123 . BTIHORL.
AR ’ = A: . BHEES: MUK EE—T],
K200 NP EN B —T7 /5 22+1=5. ol +1=3EH“‘“ i 4
O N TR B — ) 4 BY T R 48 T A2 SR, MAEET—T), H22+1=5
A@n+1)EL. ' ’ '
e ‘ . o
AESRS:(2n1). FLAR i, A IES ) MR, 4R
a1y =y 2741 ,
Q: After folding a rope in half once and cutting it g;%j; +(2)"i)
in the middle, the rope becomes 3 segments. After = '
Supet/ folding it twice and cutting it in the middle, the.rope Q: After folding a rope in half once and cutting it
: becomes 5 segments. If we fold the rope n times . .
Subscripts and cut it in the middle. the rope will become in the middle, the rope becomes 3 segments. After
Errors Y t‘ ! radie, pe w1 — folding it twice and cutting it in the middle, the rope
segments. . . becomes 5 segments. If we fold the rope n times
A: According to the analysis, folding a rope once and cut it in the middle, the rope will become ( )
and cutting it in the middle results in 3 segments, segments ’
which can be represent.ed. as 21+!=3' Foldlng.the A: From the question, it can be inferred that if you
rope twice and cutting it in the middle results in 5 fold it once and cut it in the middle. there will be
segments, represented as 22+1=5. Following this ol 113 ’
pattern, if we fold the rope n times and cut it in S . .
the middle, the rope will be divided into (2n+1) Lyt [ It twice and cutitin the middle, there
segments. . ) . . . .
[Detailed Solution] From the question, it can be ;Il};err;fggé ltfhzorléggl\ijﬁ getldr?\?iilsg(ilnigt(;”aﬂ 11r;
inferred that if you fold it once and cut it in the segments ’
middle, ther.e Wll.l be 21+1=3.' . . Therefore, the answer is: (2" + 1)
If you fold it twice and cut it in the middle, there
will be 22+1=5.
Therefore, if you fold it n times and cut it all in
the middle, the rope will be divided into (2n+1)
segments.
Therefore, the answer is: (2n+1)
Q' | #%ﬁ/+W\jA.ﬂ>—78 Wj/\ %ﬂ:/‘i'#
PMEFE=12, =AMBEE&ELSD?
A: i R=AEARER, EPARy.
HEER:
3x+2y=78
Q: = =M+ M EE=78, MP=FAE+= 2x+3y=72
/\!ﬁ/_n = AMEE A EZ D S
A: iR =AM AR FRR Ky HEE x=18
H: 3x+2y=782x+3y=72fFEx=18 y=12%: = y=12
A8 EALEL 2. B ZMRRELS, ERAELR.
Missing/
Line Q: Three triangles + two circles = 78, two triangles Q: Three triangles + two circles = 78, two triangles
Breaks + three circles = 72, how much do triangles and

circles represent respectively?

A: Solution: Let a triangle represent X, a circle
represents y, therefore: 3x+2y=782x+3y=72. The
solution is x=18 y=12. Answer: A triangle repre-
sents 18, and a circle represents 12.

+ three circles = 72, how much do triangles and
circles represent respectively?

A: Solution: Let a triangle represent X, a circle
represents y, therefore:

3x+2y=78

2x+3y=72

The solution is

x=18

y=12

Answer: A triangle represents 18, and a circle rep-
resents 12.
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Table 10: Case of our model transformed examples. The translation is marked in blue.
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