
How Do Training Methods Influence the
Utilization of Vision Models?

Paul Gavrikov1,2 Shashank Agnihotri2 Margret Keuper2,3 Janis Keuper1,2

1 IMLA, Offenburg University, Germany
2 University of Mannheim, Germany

3 Max-Planck-Institute for Informatics, Saarland Informatics Campus, Germany

Abstract

Not all learnable parameters (e.g., weights) contribute equally to a neural network’s
decision function. In fact, entire layers’ parameters can sometimes be reset to
random values with little to no impact on the model’s decisions. We revisit ear-
lier studies that examined how architecture and task complexity influence this
phenomenon and ask: is this phenomenon also affected by how we train the model?
We conducted experimental evaluations on a diverse set of ImageNet-1k classifica-
tion models to explore this, keeping the architecture and training data constant but
varying the training pipeline. Our findings reveal that the training method strongly
influences which layers become critical to the decision function for a given task.
For example, improved training regimes and self-supervised training increase the
importance of early layers while significantly under-utilizing deeper layers. In
contrast, methods such as adversarial training display an opposite trend. Our pre-
liminary results extend previous findings, offering a more nuanced understanding
of the inner mechanics of neural networks.
Code: https://github.com/paulgavrikov/layer_criticality

1 Introduction

A famous neurology myth often misattributed to Albert Einstein states that humans only use 10%
of the neural connections in their brains (Radford, 1999). While modern research assumes that
humans use all neural connections (Boyd, 2008; Herculano-Houzel, 2009) – the same cannot be said
about artificial neural networks. Quite the contrary, it is well known that trained neural networks
do not utilize their entire capacity. This becomes evident through the lens of parameter pruning
(LeCun et al., 1989b; Hassibi et al., 1993), where (large numbers) of neurons can be removed after
training without affecting performance, or, alternatively, the distillation of large into equivalent
smaller networks (Hinton et al., 2015; Hoffmann et al., 2021). Alas, the learned decision function
only occupies a fraction of the neural network and the remaining neurons seem to be wasted.

Zhang et al. (2022) showed that this seems to affect layers disproportionally. The learnable parame-
ters1 of some layers are critical to the decision function and replacing them with any other values than
the learned ones (significantly) affects accuracy. In contrast, the performance is barely affected when
the parameters in auxiliary layers are randomized. For instance, entire residual blocks of ResNets
(He et al., 2015) trained on ImageNet (Russakovsky et al., 2015) can be randomized without hurting
accuracy. Affected layers seem to be dictated by training data size or more generally the complexity
of the training function in addition to the architecture. Chatterji et al. (2020) have even extended these

1Throughout the rest of the article, the term parameters specifically refers to learnable parameters.
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Figure 1: Training methods determine what layers become critical. We measure the criticality
of fifty different ResNet-50-based models that all utilize the same exact network architecture and
training data (ImageNet-1k) but differ in their training methods. Darker spots denote layers that are
critical, i.e., in significantly different predictions and decreased performance after reset. Brighter
spots are auxiliary, i.e., resetting these layers does not significantly affect the model. We denote the
average (mean±std) layer criticality for both, a model across layers on the right, for a layer across
model on the bottom.
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findings to generalization, by showing that the average module criticality correlates with performance
- i.e., more complex networks seem to generalize better.

We revisit the prior findings of (Zhang et al., 2022; Chatterji et al., 2020) on image classification
models, which were obtained under rather clean conditions, such as the absence of weight decay
(Krogh & Hertz, 1991) or batch normalization layers (Ioffe & Szegedy, 2015) during training, and
an overall simple training pipeline. These conditions do not reflect practical training pipelines well.
Thus, we raise the question: how does the training method affect layer criticality? To this end, we
study criticality on a large model zoo of image classification models where the training data and
architecture are fixed but the training pipeline is modified.

Specifically, we use the model zoo of (Gavrikov & Keuper, 2024) with a few replacements and select
fifty different ResNet-50 image classification models (He et al., 2015) that all utilize the exact same
network architecture but were trained in different manners. Our changes to training belong to the
following categories: a baseline model following the original training (He et al., 2015); various
augmentation techniques (Hendrycks et al., 2020, 2022, 2021; Jaini et al., 2024; Müller et al., 2023;
Modas et al., 2022; Li et al., 2021; Erichson et al., 2022; Cubuk et al., 2019, 2020; Lim et al., 2019;
Geirhos et al., 2019); adversarial training against a projected gradient descent (PGD) adversary
(Madry et al., 2018; Salman et al., 2020) – which technically, is also a form of augmentation, but
we observed significantly different behavior of these models; various self-supervised learning (SSL)
approaches (Chen et al., 2020, 2021; Caron et al., 2021, 2020) with supervised finetuning of the
classification-head; and improved training recipes in timm (Wightman, 2019; Wightman et al., 2021)
and PyTorch (Paszke et al., 2019; Vryniotis, 2023) combining multiple hyper-parameter optimizations
into supervised training.

2 Methodology

Our study aims to assess the contribution of individual layers to a neural network’s decision function.
To gauge a layer’s importance, we replace its parameters with random values (randomization). If
the network’s decisions remain largely unchanged after randomization, it suggests that the learned
parameters contribute little beyond noise.

This methodology largely follows Zhang et al. (2022), who reset the parameters of individual layers to
values drawn from the original initialization2. However, while Zhang et al. (2022) measured criticality
of a layer by the change in accuracy due to the randomization, we measure the angle between the
probability vectors resulting from the randomization. Specifically, we apply a Softmax function to
the network logits to obtain (pseudo-)probabilities, measure the cosine distance between those before
and after randomization, and aggregate the measurements into a single scalar by averaging over all
samples. The effect of each layer randomization on this measured distance is what we define as the
criticality of a layer.

This methodological change can be evaluated in an unsupervised manner and more importantly, is
also sensitive to changes in the probability distribution including variations in errors (we refer the
reader to (Geirhos et al., 2020) for a discussion on why this is important). As such, it provides a
more holistic measurement of consistency in the decision before and after randomization well beyond
correct predictions.

We call a layer auxiliary if the decision is insignificantly affected by the reset (≈ 0% criticality) and
critical (≈ 100% criticality) if the distance between decisions changes significantly. Realistically, the
criticality for most layers does not lie on the extremes of this spectrum, but anywhere in between. Due
to a significant variance (standard error of up to 45% on a few layers in specific models; see Figure 5)
in criticality on some layers, we repeat experiments with different random seeds and report the mean
over three trials. For computational reasons, we evaluate layers on a subset of 10,000 random images
from the ImageNet ILSVRC-2012 challenge validation set (Russakovsky et al., 2015).

Zhang et al. (2022) analyzed residual blocks as a whole – in contrast, we more meticulously randomize
individual layers, which include different convolution and fully-connected layers. However, we do
not re-initialize batch normalization layers (Ioffe & Szegedy, 2015) to avoid signal propagation
issues.

2We match the initialization used by each training method.
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3 Results

Due to the wide use and availability of pre-trained models, currently, all our results are obtained on
ResNet-50 (He et al., 2015). Recall that this architecture consists of a stem (denoted by [0.*]), 4
stages (denoted by [1-4.*]), a pooling layer, and a fully-connected classification head (denoted by
[Head]). Each stage consists of several residual bottle-neck blocks which include learnable 1 × 1
convolutions (conv1, conv3), 3× 3 convolutions (conv2), as well as batch-normalization layers (Ioffe
& Szegedy, 2015). The first residual block in each stage is special, as it downsamples by a strided
convolution, thus, adding a learnable layer on the skip connection (downsample).

General Observations. The results in Figure 1 (analogously see Appendix A for more views) clearly
show that the training method influences what layers become critical – despite that all models were
trained on the same training set (some with more extreme forms of data augmentation utilizing a
negligible amount of extra data).

In contrast to previous findings (Zhang et al., 2022; Chatterji et al., 2020), we observe that no layer
is always auxiliary across training methods. For instance, we observe an average criticality of just
36% for a spatial convolution layer ([3.5] conv2). Yet, if we randomize the same layer in a PixMix
(Hendrycks et al., 2022) model, we observe a strong criticality of 95%. On the opposite, we do find
layers that are always critical. As expected, these include the initial stem convolution ([0.0] conv)
and the classification head (fc). Beyond, we find that most first convolution layers in each stage
([*.0] conv1) are critical – yet the number of outliers increases with depth. Similarly, we find that the
downsampling convolution ([*.0] downsample) in each stage is often critical. In stage 1 this layer
is critical for all models but again the criticality of deeper downsampling convolutions depends on
the training strategy used for the model. Lastly, akin to Gavrikov & Keuper (2023), we find that
pointwise convolution layers tend to be more critical than spatial convolution layers (except for the
stem). For all other layers, criticality depends on the training method. In the following paragraphs,
we analyze specific categories of training methods.

Adversarial Training (AT). This training technique intends to increase the robustness of neural
networks by training on adversarially perturbed training samples (Madry et al., 2018). To avoid
perturbations that cause a shift in semantic meaning, perturbations are often constrained by an attack
perturbation budget ϵ for some ℓp norm. We consider AT using a PGD attack (Madry et al., 2018)
which optimizes the perturbations over several iterations (here: three). Please note, that reported ϵ
values for ℓ∞ norms are short for ϵ/255 (but not for the ℓ2 norm).

We find that AT increases the criticality proportional to the attack budget ϵ during training results. To
make this more tangible, we average the criticality over all layers and show the results in Figure 2.
We do not observe differences between training that utilizes ℓ2 or ℓ∞ norms for attacks. Our findings
in Figure 1 suggest that neural networks utilize more of their capacity under increasing training
attack strength. This augments previous findings that showed similar insights through accuracy
improvements with larger networks (Madry et al., 2018) or richer representations in convolutions
filters (Gavrikov & Keuper, 2022a,b). AT primarily increases the criticality in the layers of the first
and second stages and slightly in the third stage. The criticality of layers in the fourth stage is barely
affected but rather decreases, compared to the baseline (please refer to Figure 4).

Augmentations. Compared to AT, the influence of different augmentation strategies seems weaker.
We do find that augmentations tend to increase the average criticality, i.e., they do occupy more of the
network capacity – but most changes are rather small. Affected layers seem to fluctuate by method,
but we find that all augmentation methods consistently increase the criticality of some of the deepest
layers ([4.0] downsample, [4.1] conv2, [4.2] conv2/3). Similar to the organization of the human brain
(Hubel & Wiesel, 1979), deeper layers in neural networks are associated with activations of more
complex features. For images, these tend to correspond to shapes as opposed to texture information
that is captured by early layers (LeCun et al., 1989a; Yosinski et al., 2014). Indeed, prior work has
observed that our tested augmentations increase in their shape responses (Gavrikov & Keuper, 2024).
Thus, a reasonable hypothesis is that the increased criticality in deeper layers correlates with stronger
shape representations.

Strong outliers to our observations are the PixMix models (Hendrycks et al., 2022). These models have
the highest average criticality in our model zoo without a single auxiliary layer. The augmentation
technique has been shown to improve multiple safety dimensions beyond test accuracy and combined
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Figure 2: Adversarial training increases the average criticality proportional to the training
attack budget ϵ. We ablate ℓ∞ from ℓ2-norm training but do not observe any significant differences
in their trends. The marker size in the plot indicates the validation accuracy on ImageNet-1k (larger
is better).

with the findings of Chatterji et al. (2020) it may indeed suggest that a higher degree of criticality
correlates with “better” neural networks.

Self-Supervised Learning (SSL). SSL has been shown to produce rich representations for many
downstream tasks (see Oquab et al. (2024) for a recent example) as the granularity and implicit biases
of annotations do not confine it. Interestingly, we find that DINO (Caron et al., 2021), MoCo v3 (Chen
et al., 2021), and SwAV (Caron et al., 2020) severely differ in their criticality measurements from the
supervised models we discussed before. These SSL models have a large presence of auxiliary layers
in the last three stages but (slightly) increase in criticality of early layers. This suggests that SSL
learns shorter decision functions and, thus, seeks to strengthen early operations. However, we again
find an outlier: SimCLRv2 (Chen et al., 2020) has no auxiliary layers and shows a somewhat similar
distribution of criticality to PixMix.

Improved Training Recipes. The standard 90 epoch ImageNet training with simple augmentations
was shown to be suboptimal for many models including ResNets (Wightman et al., 2021). Modern
training recipes utilize a significantly more complex set of training tweaks – often in combination
with longer training schedules (Wightman et al., 2021; Vryniotis, 2023). Similar to our findings on
self-supervised learners, these improved training methods appear to shift model decisions to early
operations while relaxing deeper operations. Most notably, this increases the criticality of the first and
second residual blocks. These models show great improvements in generalization on many datasets
but at the same time, they even further prioritize texture information (Gavrikov & Keuper, 2024).
Ultimately, this may suggest that these techniques better fit ImageNet problems but may not provide
improvements for representations beyond.

Lastly, we attempt to correlate average layer criticality with accuracy on ImageNet-1k, across different
training strategies in Figure 3. Ignoring the category labels we observe a moderate Spearman’s
R = −0.46, but when we remove the adversarially trained models the correlation is faint (Spearman’s
R = −0.17). Thus, there is a low likelihood of a causal connection between ImageNet accuracy and
layer criticality.

4 Conclusion, Limitations, and Future Work

Our ongoing study extends previous findings about the complexity of learned decision functions of
image classification models. Instead of analyzing individual models as often done in mechanistic
interpretability works (e.g., (Olah et al., 2020; Goh et al., 2021)) we focus on the common impact
of training methods on layer criticality. We have shown that some forms of training leave distinct
patterns in the decision function.
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Figure 3: Correlation between average network criticality and performance on ImageNet-1k.

Discussion. Assessing the generalization of neural networks through benchmarks can be tricky, as
models may specialize in specific settings at a cost to others. Capturing all of these nuances in static
test datasets is often an unrealistic journey. For example, models excel in accuracy on the “clean”
ImageNet data but drop in performance if the same samples are corrupted (Hendrycks & Dietterich,
2019). In that sense, the decision function complexity may offer a better (relative) assessment of
generalization by focusing on the inner mechanics of models as opposed to benchmark results. Yet, it
remains to be seen if the observed correlations of Chatterji et al. (2020) hold on larger model zoos
and wider notions of generalization beyond clean accuracy on the ImageNet validation set.

However, even if criticality and generalization are orthogonal to each other, the complexity of the
decision function may still be relevant and offer a better explanation of phenomena that were linked
to (adversarial) robustness before. For instance, these include more human-likeness (Geirhos et al.,
2021; Gavrikov et al., 2023), better calibration (Grabinski et al., 2022a), and transferability (Salman
et al., 2020) under adversarial training. (Gavrikov & Keuper, 2022a,b) have shown that robust models
contain more diverse feature representations and suggested that this may be linked to transferability.

Future Work. We aim to extend our study to understand if the distinct patterns in the decision
function patterns may be an artifact of the scenario we studied. For instance, we wonder if layer
criticality depends on the test data - i.e., what happens if we replace ImageNet test data with corrupted
images (Hendrycks & Dietterich, 2019), different renditions (Hendrycks et al., 2021), or adversarial
perturbations (Goodfellow et al., 2015). Another dimension to explore is the architecture – we
are curious if our findings scale to modern network classification architectures such as ConvNeXt
(Liu et al., 2022), vision transformers (ViTs) (Dosovitskiy et al., 2021), zero-shot classification with
join-embedding models like CLIP (Radford et al., 2021), (classification) prompting on large language
models with vision capabilities such as BLIP (Li et al., 2022). How does criticality change under
architectural interventions aimed at robustness improvements, e.g., (Grabinski et al., 2022b; Lukasik
et al., 2023; Agnihotri et al., 2023, 2024a,b) and their task-specific robustness tests (Agnihotri et al.,
2024c)? Can we maybe even use this method to better understand the symbiotic connections of
individual modalities in multi-modal models parallel to the approaches in (Goh et al., 2021; Gavrikov
et al., 2024)?

Beyond mechanistic interpretability, we also hope that our results could guide practical applications
such as model compression and transfer learning. We would expect, that auxiliary layers do not need
to be distilled, or alternatively could be pruned without significantly affecting performance. As such,
compression techniques may be affected by the training method. Additionally, it was shown that
robust models perform better in transfer learning (Salman et al., 2020) but is this indeed due to the
increased robustness? We have observed that robust models also have a high ratio of critical layers,
perhaps this might be a better explanation.
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A Additional Analysis

We alternatively visualize the results from Figure 1 by plotting the difference in the criticality of each
layer with respect to the baseline in Figure 4. Figure 5 displays the standard error of measurements
over three independent runs with different seeds for the randomization.
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Figure 4: Criticality difference to the baseline. In addition to the plot in Figure 1, we here show the
difference to the baseline model (He et al., 2015). Positive numbers indicate increases in criticality
and negative numbers decrease.
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Figure 5: Criticality standard error. In addition to the plot in Figure 1, we here show the standard
error in criticality measurements over 3 runs with different seeds for the randomization.

B Model Training Strategy Details

In Table 1, we provide a legend for the training strategies considered.
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Table 1: An overview of the utilized models (training strategies) in our study.

Model ImageNet accuracy [%]

Original Baseline (He et al., 2015) 76.15

A
dv

er
sa

ri
al

Tr
ai

ni
ng

PGD-AT (ϵ=0) (Salman et al., 2020; Madry et al., 2018) 75.81
PGD-AT (ℓ2, ϵ=0.01) (Salman et al., 2020; Madry et al., 2018) 75.67
PGD-AT (ℓ2, ϵ=0.03) (Salman et al., 2020; Madry et al., 2018) 75.77
PGD-AT (ℓ2, ϵ=0.05) (Salman et al., 2020; Madry et al., 2018) 75.58
PGD-AT (ℓ2, ϵ=0.1) (Salman et al., 2020; Madry et al., 2018) 74.79
PGD-AT (ℓ2, ϵ=0.25) (Salman et al., 2020; Madry et al., 2018) 74.14
PGD-AT (ℓ2, ϵ=0.5) (Salman et al., 2020; Madry et al., 2018) 73.17
PGD-AT (ℓ2, ϵ=1) (Salman et al., 2020; Madry et al., 2018) 70.42
PGD-AT (ℓ2, ϵ=3) (Salman et al., 2020; Madry et al., 2018) 62.83
PGD-AT (ℓ2, ϵ=5) (Salman et al., 2020; Madry et al., 2018) 56.14
PGD-AT (ℓ∞, ϵ=0.5) (Salman et al., 2020; Madry et al., 2018) 73.74
PGD-AT (ℓ∞, ϵ=1.0) (Salman et al., 2020; Madry et al., 2018) 72.04
PGD-AT (ℓ∞, ϵ=2.0) (Salman et al., 2020; Madry et al., 2018) 69.09
PGD-AT (ℓ∞, ϵ=4.0) (Salman et al., 2020; Madry et al., 2018) 63.87
PGD-AT (ℓ∞, ϵ=8.0) (Salman et al., 2020; Madry et al., 2018) 54.53

A
ug

m
en

ta
tio

ns

AutoAugment (270Ep) (Cubuk et al., 2019) 77.50
FastAutoAugment (270Ep) (Lim et al., 2019) 77.65
RandAugment (270Ep) (Cubuk et al., 2020) 77.64
AugMix (180Ep) (Hendrycks et al., 2020) 77.53
DeepAugment (Hendrycks et al., 2021) 76.65
DeepAugment+AugMix (Hendrycks et al., 2021) 75.80
Diffusion-like Noise (Jaini et al., 2024) 67.22
NoisyMix (Erichson et al., 2022) 77.05
OpticsAugment (Müller et al., 2023) 74.22
PRIME (Modas et al., 2022) 76.91
PixMix (180Ep) (Hendrycks et al., 2022) 78.09
PixMix (90Ep) (Hendrycks et al., 2022) 77.36
ShapeNet (SIN) (Geirhos et al., 2019) 60.18
ShapeNet (SIN+IN) (Geirhos et al., 2019) 74.59
ShapeNet (SIN+IN → IN) (Geirhos et al., 2019) 76.72
Texture/Shape-debiased Augmentation (Li et al., 2021) 76.89
Texture/Shape-Shape Bias Augmentation (Li et al., 2021) 76.21
Texture/Shape-Texture Bias Augmentation (Li et al., 2021) 75.27

SS
L

DINOv1 (Caron et al., 2021) 75.28
MoCo v3 (1000Ep) (Chen et al., 2021) 74.60
MoCo v3 (100Ep) (Chen et al., 2021) 68.91
MoCo v3 (300Ep) (Chen et al., 2021) 72.80
SimCLRv2 (Chen et al., 2020) 74.90
SwAV (Caron et al., 2020) 75.31

Im
pr

ov
ed

Tr
ai

ni
ng

timm A1 (Wightman, 2019; Wightman et al., 2021) 80.10
timm A1h (Wightman, 2019; Wightman et al., 2021) 80.10
timm A2 (Wightman, 2019; Wightman et al., 2021) 79.80
timm A3 (Wightman, 2019; Wightman et al., 2021) 77.55
timm B1k (Wightman, 2019; Wightman et al., 2021) 79.16
timm B2k (Wightman, 2019; Wightman et al., 2021) 79.27
timm C1 (Wightman, 2019; Wightman et al., 2021) 79.76
timm C2 (Wightman, 2019; Wightman et al., 2021) 79.92
timm D (Wightman, 2019; Wightman et al., 2021) 79.89
TorchVision 2 (Vryniotis, 2023; Paszke et al., 2019) 80.34
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