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Efficient End-effector Co-Design by Demonstration
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Abstract—Manipulating deformable and fragile objects re-
mains a critical challenge in robotics due to their complex dynam-
ics and susceptibility to damage. Existing approaches typically
address either hardware design or control policies in isolation.
In this work, we present the first co-design framework that
simultaneously optimizes both end-effector design and control for
deformable and fragile object manipulation. Our key insight is
incorporating human priors through demonstrations, guiding the
search for high-performance designs and control policies while
maintaining sample efficiency. Our approach integrates a com-
pact design space using cage-based deformation, a differentiable
inverse design process, and a reinforcement learning algorithm
(RLPD) to efficiently explore the joint design-control space. We
evaluate our approach in the challenging task of grasping silk
tofu. Preliminary experiment results demonstrate that our co-
designed end-effector significantly reduces damage compared
to the original parallel-jaw gripper. This work highlights the
potential of co-adaptive design and control for deformable fragile
object manipulation tasks.

I. INTRODUCTION

Deformable fragile object manipulation [8, 28] finds its
application in a variety of fields, including food handling,
surgical operations, and caregiving. It has been a challenging
problem due to several factors: (1) deformable object manipu-
lation is inherently difficult due to high dimensional state space
and complex dynamics, (2) variation of physical properties
such as stiffness, fracture stress and surface friction pose
difficulties to generalization; (3) precise and dynamic response
is required during the manipulation process to maintain the
integrity of the object.

Existing approaches to deformable object manipulation typ-
ically follow one of two lines: hardware-centric or control-
centric. The former involves the mechanical design of rigid [1],
soft [8, 27], or hybrid grippers [10]. For example, Wang et al.
[27] propose a dual-mode soft gripper made of rubber material
that can grasp different types of objects via prehensile or
suction-based interaction. These tailored grippers are the result
of expert human designers and have superior performance
over simple parallel jaw grippers. However, many of the
designs are not optimized in a data-driven manner against
empirical manipulation results, and the control policy usually
remains simple. On the other hand, control-oriented methods
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Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain. Funded by
the European Commission under the Horizon Europe Framework Programme
project SoftEnable, grant number 101070600. Contact: {ikemura,
yifeid}@kth.se.

Experiment videos and other supplementary materials are available at: https:
//sites.google.com/view/efficient-end-effector-and-con/home

rely on predefined standard end-effectors (such as parallel
jaw grippers). These approaches design advanced control
schemes by leveraging additional sensing to enable gentle
object handling [5, 11, 16, 28, 30]. However, these methods
usually assume fixed hardware and thus cannot exploit the full
potential of design-control that co-adaptation offers.

Despite the success of hardware- or control-oriented meth-
ods, joint hardware and control optimization remains un-
derexplored for deformable fragile object manipulation. This
disconnect motivates our interest in co-design [24] — the
simultaneous optimization of a robot’s physical design and its
control policy — as a promising solution. Co-design has been
applied to several fields in robotics, including locomotion [3,
31], manipulation [7, 25, 29], and modular robots [6, 23]. A
widely adopted co-design framework is bi-level optimization:
the lower level module typically is an Reinforcement Learning
(RL) policy that learns the optimal control given a pre-defined
design, while the upper level, e.g. done via Bayesian Opti-
mization (BO) [4, 7, 20, 22], systematically selects different
designs for evaluation. Recent works also formulate the co-
design process as a two-stage Markov Decision Process (MDP)
consisting of a design phase and a control phase [12, 17, 31],
resulting in higher sample efficiency. By leveraging co-design
methods, optimal design and control can be acquired through a
data-driven manner. This has the potential to outperform both
design-oriented and control-oriented methods for deformable
fragile object manipulation.

To this end, this work takes an initial step towards lever-
aging co-design approaches for deformable fragile object
manipulation. Here, we develop a framework that integrates
(i) a compact yet expressive design space via cage-based
deformation [21], (ii) an inverse design method for incor-
porating expert-provided shape demonstrations to improve
sample efficiency, and (iii) a reinforcement learning algorithm
(RLPD [2]) capable of leveraging smobjectall amount of
expert demonstrations to efficiently explore the joint design-
control space. We evaluate the proposed method in both
simulated and real-world experiments on a silk tofu pick-
up task. The results demonstrate that our co-designed gripper
and control policy can successfully manipulate objects while
avoiding damage. object

To summarize, our contributions are as follows:
1) This is the first work, to the best of our knowledge, that

introduces a co-design framework tailored to deformable
fragile object manipulation.

2) We incorporate few human demonstrations into the co-
design policy learning process, improving performance
and sample efficiency.

https://sites.google.com/view/efficient-end-effector-and-con/home
https://sites.google.com/view/efficient-end-effector-and-con/home
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Fig. 1: Overview of the proposed co-design pipeline. The co-design process starts by gathering human demonstrations of
hardware designs, an inverse design process, and control demonstrations of the resulting inverse designs. This is followed
by online sample-efficient co-design policy learning with RLPD, which leverages both offline demonstrations and online
exploration experience. Lastly, we extract the design chosen by the converged co-design policy and perform control finetuning.

3) Preliminary experiments on a silk tofu grasping task in
simulation and real world validate the effectiveness and
efficiency of our proposed pipeline.

II. PROBLEM FORMULATION

We tackle the problem of deformable object manipulation
and formulate it as a co-design process. The process optimizes
the manipulation policy as well as the physical design of a
robot end-effector. Following [12, 17], we formulate it as a
two-stage MDP, comprising a design stage and a control stage.

We aim to optimize end-effector design and control policy,
enabling manipulation of deformable fragile objects without
inducing damage. For this purpose, we formulate it as a stress-
minimization manipulation problem. That is, apart from max-
imizing the manipulation task success rate, we also minimize
the stress applied to the target object during handling. Previous
works have formulated this as a manipulation problem where
the object deformation is minimized by measuring its change
in shape [5], the applied force [16], or inferring the applied
force via tactile sensors [11]. By contrast, we decide to mea-
sure the stress applied to the object. This correlates directly
to any potential damage suffered by the object and enables
reducing its deformation while, e.g., grasping.

Here, we assume that the stress applied to the object
cannot be measured in the real world. Therefore, the co-design
process is a two-stage Partially Observable MDP (POMDP).
The co-design process starts with a design policy πD(aD|oD),
where aD ∈ AD and oD ∈OD. The design aD remains constant
during the control phase, with a control policy πC(aC|oC),

where aC ∈ AC and oC ∈ OC. To handle the different obser-
vation spaces, we define a common observation space that
includes both co-design stages. Additionally, we augment the
observation with a binary flag to identify the MDP phase. That
is, o = [oD,oC, f ] ∈O, where the flag f is zero for the design
stage and one for the control stage.

The design action aD defines the geometry of the fingers
of a standard parallel jaw gripper. The parameterization of
the action space is described further in Section III-A. The
control action space is defined as aC = [δpee,δqee,δwee]∈R7,
where δpee ∈ R3 is the displacement of the end-effector in
the Cartesian frame, δqee ∈ R3 is the delta rotation vector,
and δwee ∈ R is the change in the gripper closing width.
In practice, we concatenate the design action space and the
control action space a = [aD,aC]. During transition, only one
part of the concatenated action vector is active depending on
the phase, while the other is ignored. The observation for both
phases is defined as o= [pee,pobj,wee, f ,d], where pee and pobj
are the positions of the end-effector and the target object in
Cartesian space, respectively, wee is the current finger width,
and d ∈ R is a scalar that informs about the current design
used to manipulate the object.

III. CO-DESIGN BY DEMONSTRATION

Our co-design process is composed of three modules de-
picted in Figure 1. Firstly, to initiate the co-design process, a
small set of initial designs from a human expert is provided
based on domain expertise. These potentially sub-optimal
designs are utilized in an inverse design process that fits the
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Fig. 2: We propose an inverse design process that leverages
the differentiability of cage-based deformation. Given a target
design provided by an expert, we iteratively find the corre-
sponding design parameters that best match the target mesh,
which is used as the design demonstration.

corresponding action design parameters, aD, which serve as the
initial design demonstration. With the fitted designs, a human
operator controls the robot in simulation to generate a single
control demonstration per design. Both the design and control
demonstrations are stored in an offline replay buffer. Secondly,
we train a co-design agent online using the offline data with
the Reinforcement Learning using Prior Data (RLPD) [2]
algorithm. A physics simulation provides information about
the stress induced on the object, which is used to reward
the agent during training. Finally, after the co-design policy
converges, we finetune the control for the resulting design
to further improve the performance. The rest of this section
provides the details for each sub-module.

A. End-Effector Design: Cage-Based Deformation

In this work, we adopt a design action space that offers
a favorable trade-off between dimensionality, diversity, and
smoothness: cage-based deformation (CBD). Although Xu
et al. [29] proposed the use of CBD for co-design, the deforma-
tions to the base mesh explored in that context were relatively
modest—typically involving only slight alterations, such as
elongation. In contrast, we demonstrate that CBD is capable
of producing significantly more dramatic shape variations, as
showcased in Figure 2. This flexibility is particularly valuable
for the manipulation of deformable objects while inducing
minimal stress. More specifically, by enabling designs to
conform more closely to the surface curvature of the target
object, a greater contact area is provided and localized stress
concentrations are minimized.

We parameterize the design action space as the displacement
vector applied to the cage handle points. Given a cage with
handles at rest position H = {h1,h2, ...,hn},hi ∈R3, we define
a set of displacement vectors δH = {δhi} for each handle such
that the deformation result is determined by a new cage with
handles ĥi = hi + δhi. As a result, our design space consists
of 3N parameters, where N is the number of cage handles. To
address potential issues such as self-intersecting mesh faces
resulting from aggressive deformations in CBD, we apply
mesh correction and smoothing as post-deformation steps to

Algorithm 1 Inverse Design with CBD.

Require: Target object mesh (Vt ,Ft), cage mesh (H,Fc), base
mesh (V̂b,Fb), maximum number of trials N, epoch E

for i← 1 : N do
Initialize H0← H
Sample an initial design parameter δH0 randomly
for j← 1 : E do

H j← H j−1 +δH j−1
Deform the base mesh using new cage H j
l j← Chamfer((V̂b,Fb),(Vt ,Ft))
Compute gradient w.r.t. design parameters ∇δH j l j
δH j+1← δH j−λ∇δH j l j
Save δH∗← δH j if l j is minimum so far.

end for
end for

ensure the physical validity of the design. Specifically, we
sample a point cloud from the surface of the initial deformed
mesh and use it to reconstruct a new, valid mesh. In this work,
we use a simple unit sphere as the base mesh.

B. Learning from Demonstration

To ensure sample efficiency, we incorporate demonstrations,
including both design demonstrations and associated control
demonstrations, into the learning process. We choose RLPD,
a Soft-Actor Critic (SAC) [13] variant, as our learning algo-
rithm. RLPD incorporates offline data during online training,
leading to higher sample efficiency and performance compared
to SAC.

To provide design demonstrations, we manually design M
end-effectors using CAD software, and subsequently infer the
corresponding design parameters, δH, that would result in an
end-effector shape as close to the manual design as possible.
Since the cage-based deformation process is differentiable,
we employ gradient descent based on the Adam optimizer.
We measure shape similarity using the Chamfer distance,
Chamfer((V̂b,Fb),(Vt ,Ft)), where (V̂b, Fb) and (Vt , Ft ) are the
vertices and faces of the current deformed mesh and the target
mesh, respectively. Algorithm 1 illustrates the inverse design
process. Figure 2 shows examples of target designs as well
as the deformation result of the inferred design parameters.
Note that when the number of handles is increased, the inverse
design produces deformations that are closer to the target
shape, as depicted in Figure 3.

C. Stress Measurement

To simulate the manipulation of deformable fragile objects
we use NVIDIA Isaac Gym [19]. The deformable objects are
modeled as tetrahedral meshes and simulated through a 3D
co-rotational FEM framework, with the resulting equations
solved using a GPU-accelerated Newton method [18]. The
simulation provides ready-to-use Von Misses stress tensors for
the tetrahedral. Prior studies validated Isaac Gym’s accuracy
in deformation modeling as well as stress simulation [14, 15].



4

(a) (b) (c)

Fig. 3: An example of inverse design results with different
numbers of cage handles. (a): the target design made by a
human, (b): inverse design with a 12-handle cage, (c): inverse
design with a 30-handle cage. For all cage-based deformation
results, we use a simple unit sphere as the base mesh.

Since material fracture is dictated by the maximum stress
applied, we focus our reward on the top 10 percent of the
stress value across the entire object tetrahedral. In addition,
we wish to penalize high stress values more aggressively, thus
we employ a quadratic function over the stress values. As a
result, we formulate our stress penalty as follows:

rstress =−
(ασtop10 +(1−α)σmean))

2

β
, (1)

where α ∈ [0,1] balances the penalty from peak stress σtop10 as
well as average stress σmean. We additionally include a division
term β to indicate aggressive penalization after stress values
over a stress value near β .

D. Finetuning

After the policy converges to a suitable design-control pair,
we further finetune the control of the end-effector optimized
for the design. This is achieved by fixing the design and
trimming the design stage in the dual POMDP. Specifically, we
first generate some “pseudo control demonstrations” from the
previous policy to fill the offline replay buffer. Then, we train
a control policy given the design using RLPD online, with the
offline data. We multiply the previously used stress penalty
by 5 times for this second stage of training, to further push
the performance in terms of stress-minimization. Note that a
more aggressive stress term was infeasible in the previous co-
design process, as it would compromise the design exploration
efficiency and task completion rate.

IV. EXPERIMENT

We evaluate the effectiveness of our method in a silk tofu
pick-up task both in simulation and real-world experiments.
Silk tofu has low fracture stress, thus requiring minimized
stress during grasping.

In our experiments, we analyze and answer the following
questions:
• Can the co-design framework successfully manipulate

deformable fragile objects while applying minimal stress?
• Is it more sample efficient than the baselines?
• Can the co-design policies learned in simulation by the

proposed framework be transferred to a real robot?

Demo. (1) Demo. (2) Demo. (3)

Fig. 4: The three human demonstrations of design utilized for
the silk tofu pick-up task.

A. Experiment Setup and Evaluation Metrics

Task: We define a silk tofu block of size 30mm x 50mm x
40mm (width, length, and height, respectively). At the start of
a new training episode, we apply domain randomization on the
tofu’s deformation properties, i.e., the Young’s modulus (from
8 kPa to 10 kPa) and the Poisson ratio (from 0.3 to 0.325) [26].
The value range is selected based on the material properties of
common silk tofu. In addition, we utilize a Ufactory Xarm7
for the manipulation.

Metrics: For quantitative evaluation of the task outcome,
we adopt three metrics:

(1) Success rate: We measure the success rate of the
policy as the average of the binary success flag over multiple
evaluation episodes.

(2) Top 10% stress mean: Since the fracture of a deformable
fragile object is dictated by the highest local stress values
exerted, we define a metric focusing on the mean of the top
10% stress value across the entire object tetrahedrons.

(3) Median stress: This metric computes the median value
over the stress values across the object tetrahedrons. It focuses
on the “average” level of the stress, insensitive to outliers.

Note that the latter two stress metrics are taken at each time
step in an episode, and the final values are computed as an
average over the interaction period (i.e. excludes times when
the robot is not in contact with the object).
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Fig. 5: The episodic return of the proposed framework with
expert demonstrations (blue) and without demonstrations (red).



5

Baselines: To evaluate the effectiveness and efficiency of
the proposed framework, we compare it with the following
baselines:

(1) Original Gripper + RLPD: Given the original parallel
jaw gripper of Ufactory XArm7, we train a control policy to
pick up the tofu. Control demonstration is provided.

(2) BO + RLPD: We follow the common bi-level optimiza-
tion paradigm for co-design, where the outer loop continues
to sample candidate designs, and the inner loop (with RLPD)
learns a control policy given the design. Here, we use Bayesian
Optimization in the outer loop. We terminate the algorithm
after evaluating 12 candidate designs, and take the best among
the 12.

(3) Ours w/o demonstration: An ablation of our framework
where design and control demonstrations are not provided, i.e.,
a pure online version of RLPD.

(4) Ours w/o control finetuning: An ablation study without
the control finetuning.

Note that for BO + RLPD, we choose 12 designs due
to practical limitations: each design’s control policy requires
about 4 hours of training, thus 2 days (4×12=48) for the
training of a single bi-level method.

Implementation details: We use a N=7 handle cage,
totaling 21 design parameters. The left and right finger designs
are defined as a mirrored pair. We provide M=3 distinct
episodes of demonstration with different expert designs, as
shown in Figure 4. This results in a demonstration dataset
with only 600 transitions. For stress penalty, we use α=0.8
and β=2000.

Method Success Rate Top 10% Stress Mean (Pa) Median Stress (Pa)

RLPD w. original gripper 1.0 3440.04 (±216.04) 743.05 (±120.05)
BO + RLPD (pure online) 1.0 8634.69 (±1115.44) 1197.04 (±107.72)
Ours, w/o. demo. 0.0 N/A N/A
Ours, w/o. control finetune 1.0 3298.41 (±491.62) 609.50 (±96.95)
Ours 1.0 2542.21 (±168.01) 407.78 (±29.67)

TABLE I: Quantitative results on tofu pick-up task in simu-
lation, evaluation is taken as the mean over 10 episodes. The
value in bracket (±) indicates the standard deviation over 10
evaluations.

B. Framework Effectiveness and Efficiency

Effectiveness: As shown in Table I, compared to the orig-
inal parallel jaw gripper, our co-design framework produces
a design-control pair that reduces the exerted stress during
manipulation, while maintaining a high task success rate. This
also validates the necessity of co-design for deformable fragile
object manipulation. Compared to our framework, BO + RLPD
achieves lower converged performance. A potential reason
for the failure of the bi-level approach is the relatively high
dimension of the design space (21-dimensional in this case),
where 12 samples could not provide a good coverage for BO.
However, sampling more designs significantly increases the
computational cost of BO due to the computational complexity
of the Gaussian Process. In addition, without expert guidance
or priors, it is difficult to explore meaningful designs in such
a high-dimensional space.

Fig. 6: Visualization of the converged Q-function values. We
show the first two principle components of the 21-dimensional
CBD design space obtained using all the explored designs
during RL training. The optimal design selected by the final
policy is marked by a cyan star. The designs with low Q-values
are shown by yellow crosses, while those with high values
are marked by green circles. From the corresponding mesh
visualization, we observe a clear distinction in the learned
design policy Q-function.

Additionally, we observe that without demonstrations, the
policy fails to converge during training and the tofu cannot be
picked up. As shown in Figure 5, the return stops increasing
after 600 episodes. This shows the difficulties of learning a co-
design policy for deformable fragile object manipulation: (1)
the policy has to explore the joint design-control space, and
(2) successful grasp and stress minimization are conflicting
objectives. This highlights the need for human prior knowl-
edge, which can significantly improve convergence even with
a small number of demonstrations. Furthermore, we validate

Best design at the 11th design sample.Best design of ours.

Fig. 7: Visualization of the sample efficiency of our method
against BO + RLPD. We define a single score (Equation 2)
to capture both success rate and stress minimization, for vi-
sualization convenience. Note that in our method, the samples
collected during the finetune stage is also included in the plot.



6

(a) Printed tools

(c) Installation on XArm7

(b) Front view

(d) Back view

Fig. 8: We print out the best design selected by the converged
co-design policy and install it on an XArm7 robot arm to
perform real-world experiments.

the choice of control finetuning by an ablation study without
it. The results show that the stress applied to the tofu is further
minimized through refining the control policy.

We evaluate the converged Q-value function over a range
of design actions. The Q-function serves as a surrogate model
for design quality, revealing how design parameters influence
task performance. Specifically, we apply Principal Component
Analysis (PCA) [9] to the design space using all explored
designs collected during training, and project them onto the
first two principal components. As shown in Figure 6, the
resulting Q-value landscape exhibits two distinct clusters of
high-performance designs near the center, while designs in
peripheral regions exhibit significantly lower Q-values.

To better understand these patterns, we sample represen-
tative designs from different regions of the latent space and
visualize their corresponding meshes. Designs sampled from
high Q-value regions generally feature relatively flat contact
surfaces, which maximizes contact area with the manipulated
object and reduces stress concentration. In contrast, those from
low Q-value regions often exhibit irregular geometries that
may compromise task success and lead to higher stress.

Efficiency: By constructing an integrated MDP and provid-
ing expert demonstrations, we learn a co-design policy with
high sample efficiency using our framework. We visualize
the sample efficiency in Figure 7. Since we are interested in
both task success rate and stress minimization, we capture
two aspects into a single score, s, for sample efficiency
visualization given by:

Fig. 9: When we deploy the control policy with the original
parallel jaw gripper, a visible indentation on the tofu is created,
as marked by the red rectangle.

s = max(0,1000∗ success rate−
σtop10

200
). (2)

The best result of BO + RLPD appeared at the 11th iteration
of the design. This required over 500k training steps in total.
In contrast, our method converges in about 120k steps and
significantly outperforms BO + RLPD in terms of stress
minimization. These results demonstrate both the effectiveness
of our approach and the efficiency gains from using limited
demonstrations to seed and accelerate the co-design process.
The performance advantage over classical hierarchical co-
design validates our integrated learning paradigm. Note that
due to time constraint, we only compare a single run for each
method, primarily validating our efficiency.

(1) (2)

(3) (4)

(5)

(6)

(7)

Fig. 10: Roll-out of our co-design policy in the real world.
The silk tofu is successfully picked up without any visible
damage.
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C. Real World Evaluation

We evaluate the policies learned in simulation by trans-
ferring them to the real world in a zero-shot manner. We
compare the grasp outcome of a silk tofu block with the same
dimensions as in simulation, using policies from Original
Gripper + RLPD and Ours. We 3D print and install the learned
design as shown in Figure 8. In addition, we utilize an external
camera to identify the object pose.

As shown in Figure 9, by using the original parallel jaw
gripper the robot damages the tofu while attempting to lift it,
preventing successful task completion. In contrast, with the
learned design the tofu can be held tightly in hand without
noticeable damage after picking, as presented in Figure 10.
These qualitative results demonstrate that the co-designed
robot gripper significantly reduces the damage to deformable
fragile objects during manipulation.

V. CONCLUSION

In this workshop contribution, we presented ongoing work
towards a data-driven co-design framework for deformable
and fragile object manipulation, with a particular focus on
stress minimization during contact. Our framework incorpo-
rates human demonstrations into both the design and control
processes via an inverse design module and an offline-online
reinforcement learning pipeline using RLPD. This facilitates
sample-efficient policy learning in a high-dimensional, coupled
design-control space. The cage-based deformation method
provides a compact yet expressive design space that generates
diverse end-effector geometries specifically tailored to the
manipulation task.

Through simulated and real-world experiments on a silk tofu
grasping task, we demonstrate that our co-design framework
produces design-control pairs that outperform baselines in
terms of both task success and stress minimization. Notably,
we find that expert demonstrations significantly improve con-
vergence and performance, highlighting the importance of
incorporating human priors into co-design.

In future, we identify several promising research direc-
tions. First, extending our framework to incorporate high-
dimensional point cloud observations could enhance perfor-
mance for contact-rich manipulation tasks involving large
object deformations, such as food item pickup and scooping
operations. Second, while the current CBD formulation uses
spherical base meshes suitable for simple topologies, exploring
alternative base meshes (e.g., tori) could expand the approach
to objects with more complex topological structures. Finally,
future work could investigate the co-design of shape, material
softness, and control for soft end-effectors, as well as the
integration of additional sensing modalities like tactile sensors
to further improve robustness and performance.
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