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Abstract

Face recognition (FR) has been applied to nearly every aspect of daily life, but1

it is always accompanied by the underlying risk of leaking private information.2

At present, almost all attack models against FR rely heavily on the presence of3

a classification layer. However, in practice, the FR model can obtain complex4

feature embedding of the input via the model backbone, and then compare it5

with the target for inference, which does not explicitly involve the outputs of the6

classification layer adopting logit or other losses. In this work, we advocate a7

novel inference attack composed of two stages for practical FR models without a8

classification layer. The first stage is the membership inference attack. Specifically,9

We analyze the distances between the intermediate features and batch normalization10

(BN) parameters. The results indicate that this distance is a critical metric for11

membership inference. We thus design a simple but effective attack model that can12

determine whether a face image is from the training data set or not. The second13

stage is the model inversion attack, where sensitive private data is reconstructed14

using a pre-trained generative adversarial network (GAN) guided by the attack15

model in the first stage. To the best of our knowledge, the proposed attack model is16

the very first in the literature developed for FR models without a classification layer.17

We illustrate the application of the proposed attack model in the establishment of18

privacy-preserving FR techniques.19

1 Introduction20

Face recognition (FR) [5, 31, 18, 21, 13] technology has improved steadily over the past few years.21

It has been widely applied in a large number of personal or commercial scenarios for enhancing22

user experience. Recent studies [3, 27, 36] indicated that existing FR models can remember the23

information from the training data, making them vulnerable to some privacy attacks such as model24

extraction attacks [29], model inversion attacks [6], attribute inference attacks [7] (also known as25

property inference attacks) and membership inference attacks [26]. As a result, malicious attackers26

may be able to obtain users’ private information through the use of certain attacks, which could cause27

significant damage. In order to facilitate the development of privacy-preserving FR methods, it is28

essential to evaluate the leakage of the private information quantitatively. This motivates this study29

which leads to the establishment of novel inference attacks to quantify such privacy leakage.30

Inference attacks on machine learning algorithms can be roughly categorized into membership31

inference attacks and model inversion attacks [24]. We shall focus on both types of attacks against32

FR models. The goal of a membership inference attack is to infer whether a record is included in33

the training data set or not, which is usually formulated as a binary classification problem. Model34

inversion attacks attempt to recover the input of the target model. For example, some inversion attacks35

can recover the identity information of the training data from the FR model.36
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Figure 1: The schematic diagram of the training and inference process of the FR model. Our attack
target is the backbone, while traditional attacks focus on the output of the classification layer which
can be removed in the generalized FR process.

At present, both types of attacks against FR usually rely on the presence of a classification layer. In37

other words, the performance of the attack and the corresponding defense algorithms [33] is heavily38

dependent on utilizing the output from logits in the classification layer or the labels themselves39

[4]. Nevertheless, FR has completely different training and inference paradigms, as shown in Fig.1.40

Existing face recognition techniques do include a classifier after the feature extraction network41

(backbone) in training, but the classifier is not used during inference. Instead, they extract feature42

embeddings from the image pair using the trained backbone, then calculate their similarity based43

on certain metrics to determine whether the two images are from the same person to achieve FR.44

Therefore, in a realistic setup, the attacker can only acquire the feature embedding of the query45

image and has no access to the discarded classification layer. The aforementioned difference in the46

paradigms of training and inference for FR brings significant challenges to the current attack methods,47

because there is evidence [8] indicating that compared with logits and losses, the feature embedding,48

as a more general representation, contains less information about the training data. Moreover, the49

training stage of an FR system is essentially a closed-set classification problem, while the inference50

phase becomes a more complicated open-set problem. In summary, performing inference attacks51

against FR without exploiting the classification layer is non-trivial but practically important.52

In this paper, we shall propose a novel two-stage attack algorithm, and its diagram is shown in Fig.2.53

The first stage is the membership inference attack. Compared to previous attack methods that focus on54

the classification layer of the target model, we explore the inherent relationship between the backbone55

output of the target model and the training data set. Specifically, we first analyze the distribution of56

the distances between the intermediate features of the member/non-member samples and statistics57

stored in the Batch Normalization layer in the trained backbone, and found it critical for membership58

inference. We then design an attack model to determine whether a sample belongs to the training data59

set or not, through utilizing this distance distribution. We conduct experiments under different levels60

of prior knowledge including partial access to training data set and no access to training data set. In61

both cases, the proposed membership attack is efficient and can provide state-of-the-art performance.62

The second stage is the model inversion attack. Previous model inversion attacks against FR such as63

those from [28, 1, 17] are heavily dependent on the classifier of the target model. They often guide64

the optimization of the attack network using the logit of the classifier’s output or some well-designed65

loss functions based on the logit. For the FR models in consideration, none of these approaches are66

applicable. We thus put forward a novel inversion attack approach, where our attack model in the first67

stage guides the synthesis network, StyleGAN, to optimize the latent code such that the synthesized68

face becomes close to a member sample in the training data set as much as possible. Specifically, we69

adopt the PPA [28] paradigm, preferring to sample a random batch of samples, filtering out these70

samples that are more likely to be considered members of the training data set by the first-stage attack71
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Figure 2: The diagram of the proposed two-stage inference attack against FR models without
classification layers. The first stage is the membership inference attack. The attack model utilizes
the parameters from the Batch Normalization layers to determine whether a sample belongs to the
training data set or not. The second stage is the model inversion attack. StyleGAN is adopted to
synthesize images and optimize the results from the output of the first-stage attack.

model, and then further optimizing the remaining samples to make them better fit the membership72

distribution. Experiments demonstrate that the proposed attack algorithm against FR can recover73

some sensitive private information in the training data set.74

Our contributions can be summarized as follows:75

• We extend existing inference attacks against FR models by relaxing the assumption of the76

existence of a classification layer in the inference process. The proposed attack method can77

thus make the defense techniques in literature targeting the FR classification layer subject to78

the risk of private information leakage again.79

• We analyze the distance between the intermediate features of member/non-member samples80

of the training data set and the parameters of the BN layers. We design a simple and effective81

attack model accordingly, which is applicable to the trained FR models without classification82

layers. Experiments demonstrate that our method outperforms the state-of-the-art methods83

with the same prior knowledge.84

• We propose a model inversion attack algorithm that does not require the classification layer.85

It makes the synthesized samples better fit the membership distribution, and its effectiveness86

is verified by our experiments.87

2 Related Work88

2.1 Membership Inference Attack89

Member inference attacks aim to speculate whether a record has been involved in the training of the90

target model. In recent years, there have been significant efforts devoted to membership inference91

attacks and defenses. Specifically, [26] first proposed the membership inference attack, where the92

attacker achieves membership inference through multiple attack models. [25] relaxed the assumptions93

in membership inference attacks; other works [4, 20] proposed membership inference attacks for94

scenarios where only labels are available. In addition, [2] analyzed the membership inference95

attack from a causal perspective. Meanwhile, some works focused on defenses against membership96

inference attacks, and the available algorithms can be broadly categorized into two types: overfitting97
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reduction [30, 26, 25] and perturbation model prediction [23, 15, 33]. On the contrary, the attack98

method presented in this paper does not require the use of labels and model predictions. It not only99

achieves good attack performance, and more importantly, it renders the existing defense methods that100

are based on the presence of the classification layer vulnerable again.101

Recently, attack techniques [19, 8] with no demand of the classification layers attracted great attention,102

which were developed mainly for pedestrian re-identification (Re-ID). FR is a more challenging task103

compared with pedestrian re-identification in the sense that the face data set contains only face-related104

information but has more identities and samples than the Re-ID data set. Moreover, [19] requires105

acquiring multiple samples of the same class, while [8] needs to obtain partial training data. These106

conditions are difficult to fulfill in realistic scenarios. The developed method in this paper outperforms107

the existing membership inference attack algorithms in terms of improved success rate under the108

same amount of available information.109

2.2 Model Inversion Attack110

The model inversion attack is a particular type of privacy attacks on machine learning models,111

which aims at reconstructing the data used in training. Many recent model inversion techniques112

[17, 28, 1, 10] have been implemented with the help of the generative power of GAN. [17] formulated113

model inversion as the problem of finding the maximum a posteriori (MAP) estimate given a target114

label, and limited the search space to the generative space of GAN. [28] proposed a more robust cross-115

domain attack with a pre-trained GAN, which can generate realistic training samples independent116

of the pre-trained data. MIRROR [1], on the other hand, explored a new space P over StyleGAN,117

and regularize latent vectors in P to obtain good performance. [10] cast the latent space search as a118

Markov decision process (MDP) and solved it using reinforcement learning.119

Meanwhile, there are some works [33, 32, 22] focusing on defenses against model inversion attacks.120

[33] proposed a unified purification framework to resist both model inversion and membership121

inference attacks by reducing the dispersion of confidence score vectors. DuetFace [22] utilized122

a framework that converts RGB images into their frequency-domain representations and makes it123

difficult for attackers to recover the training data by splitting them. PPFR-FD [32] investigated124

the impact of visualization components on recognition networks based on the privacy-accuracy125

trade-off analysis and finally proposed an image masking method, which can effectively remove the126

visualization part of the images without affecting the FR accuracy evidently.127

3 Method128

In this section, we present the proposed attack method in detail, whose diagram is shown in Fig.2.129

We first briefly review the existing training and inference paradigms of FR in Section 3.2. Next,130

we introduce the difference in the distance distribution of member/non-member compared to BN131

layer parameters in Section 3.3, which will guide the member inference attack. In Section 3.3,132

we will formally introduce the first stage of the inference attack, i.e. membership inference attack133

algorithm. Furthermore, we will introduce our second stage - the model inversion attack method134

without classification layers in Section 3.4.135

3.1 Background136

Commonly adopted training and inference paradigms of FR are shown in Fig.1. Given a face data137

set D, an image sampled from it is denoted as x ∈ Rc×h×w, where c, h and w represent the number138

of channels, height and width of the sample. Its identity label can be represented as a one-hot139

vector y ∈ Rn×1, where n is the number of classes. In the training phase, a backbone network B140

with model parameters collected in θb takes an input sample and extracts the corresponding high-141

dimensional feature embedding v = B(x) ∈ Rf×1, where f is the dimensionalities of the embedding.142

The backbone network B employs a classification layer C, whose parameters are collected in θc,143

to predict the class ŷ = C(B(x)) for the obtained embedding v. The cross-entropy, denoted as144

LCE(ŷ, y), is usually used as the loss function in training, and the training process can be formulated145

as the following minimization problem with respect to θb and θc:146

min
θb,θc

E(x,y)∼DLCE [C(B(x)), y]. (1)

4



During inference, the goal is to decide whether the two face images come from the same person or147

not. The trained backbone B is utilized to extract the embeddings of the two face images without148

utilizing the classification layer anymore. The similarity of the obtained two embeddings is evaluated149

based on certain metrics. If the computed similarity is higher than a well-designed threshold, they are150

considered to be from the same person.151

3.2 Distance Distribution Comparison152

Current studies [19, 8] on the distributions of feature embeddings of samples from the training data set153

(i.e., member samples) and other samples (i.e., non-member samples) were carried out. In particular,154

[19] requires a large number of inter-class samples to calculate the class centers, while ASSD [8]155

demands access to some training samples as reference samples to calculate their Euclidean distances.156

These assumptions may be too strict and are not always available to attackers. Thus, we shall look for157

information on the training samples stored in the trained backbone network B itself.158

Specifically, we consider replacing the reference samples required in [19, 8] with the statistics stored159

in the Batch Normalization (BN) [14] layer of the trained backbone network. A BN layer normalizes160

the feature maps during the training process to mitigate covariate shifts [14], and it implicitly captures161

the channel-wise means and variances [35]. To gain more insights, we compare the distances between162

the intermediate features of the member/non-member samples and the corresponding "running mean"163

and "running variance (var)" in several BN layers, and the results are shown in Appendix.164

There is a clear boundary separating the distance distribution of member and non-member samples165

in some BN layers. This indicates that the BN layer parameters may be utilized for membership166

inference. This observation is fundamentally different from the findings in [19, 8], as they completely167

ignored the information stored in the trained model itself on the training data set. The performance of168

the techniques from [19, 8] heavily depends on the number of samples used. If the available samples169

are insufficient, they will not perform as well as expected. Our observation, on the other hand, relax170

these constraints on the following membership inference attack.171

3.3 Inference Membership Attack172

The proposed membership inference attack algorithm is designed based on the observation presented173

in the previous subsection. It is also the first step of our attack model, as shown as Stage 1 in Fig. 2.174

Specifically, we consider the "running mean" parameters in certain BN layers, denoted by ui ∈ Rbi×1,175

where bi represents the number of channels in the ith BN layer, and thus we obtain a set of vectors176

u = {u1, u2, · · · , un}, where n represents the number of BN layers selected. It is worthwhile to177

point out that since the number of channels in the BN layers can be different, the vectors ui in u do178

not necessarily have the same dimensionality.179

Given the input image x, we extract the intermediate features vi ∈ Rci×hi×wi before a particular BN180

layer, and then we obtain vi ∈ Rci×1 by normalizing along both the height and width dimensions181

following the BN operation. We then compute the Euclidean distance between the extracted and182

normalized feature vi, and the reference ui using183

di =
1

bi
||vi − ui||22. (2)

We transmit the distance vector d = {d1, d2, · · · , dn} into the classification network A. Due to the184

good distinguishability of the features we extract, we do not need to design a complex network for185

membership inference. Here, we only need to use a fully connected layer and a sigmoid function to186

compose our attack model, which predicts the probability that the sample is a member. If it is from187

the training data set, then the attack model should output 1, otherwise we expect it to output 0.188

More empirical experiments show that the use of both the original face image and its horizontally189

flipped version is capable of enhancing the performance. Therefore, in the implemented membership190

inference scheme, we first flip horizontally an image x to obtain x′, and then extract v′i by following191

the same procedure used to find vi. The distance di is now computed as192

di =
1

bi
||vi + v′i

2
− ui||22. (3)
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The classification network A is trained through solving193

min
θA
LCE [A(d), s] (4)

where θA denotes the parameters of the classifier A in our attack model, and s is the binary label (0194

or 1). The training procedure of the membership inference attack is shown in Algorithm 1.195

Algorithm 1: The training procedure of the membership inference attack (Stage 1)
Input: Member of training data xm and non-member data xn, number of training iterations M .
Output: The optimal parameters of the attack model θbest.

1 Extract the parameters of Batch Normalization layers in the target FR model, denoted as u.
2 Set θbest = θ0 and Accbest = 0, where θ0 denotes the initial parameters of the attack model A

and Accbest records the best performance on the test set.
3 for i = 0, 1, 2, · · · ,M − 1 do
4 Horizontally flip the member data xm and non-member data xn, and obtain x′

m and x′
n,

respectively.
5 Feed the target model with xm, x′

m, xn and x′
n, and extract the corresponding intermediate

features vm, v′m, vn and v′n.
6 Compute the distance using Eq.3 and obtain the distance vectors dm and dn.
7 Update the classifier parameters using the following equation:
8

θi+1 ← θi − α∇θi (LCE [A(dm), 1] + LCE [A(dn), 0])
where α denotes the optimization step.

9 Evaluate the model on the test set and obtain the accuracy Acci+1, and update θbest =
θi+1, Accbest = Acci+1 if Acci+1 > Accbest.

3.4 Model Inversion Attack196

Existing model inversion attacks require that target labels are given in order to improve the prediction197

score of the target identity. In this work, we consider a model inversion attack on the FR models198

without the classification layer. As such, our goal is not to reconstruct the original image when the199

target identity is known. Instead, we focus on recovering the identity of the training data set using the200

trained backbone model as much as possible.201

The model inversion attack is Stage 2 of the proposed attack model in Fig. 2. The procedure of model202

inversion attack is shown in Algorithm 2. In particular, we utilize the powerful generative model203

StyleGAN [16] to help restore the identity information of the training data. We first collect samples204

from a normal distribution z ∈ N (0, 1), and these samples are fed into StyleGAN’s mapping network205

to obtain a more disentangled subspaceW . All our subsequent optimizations will be performed inW206

space.207

[28, 1] have pointed out that the selection of the initial latent vectors to optimize has a strong impact208

on the effectiveness of model inversion attacks and its importance should not be underestimated.209

As the classification layer is absent in our case, it is not feasible to obtain the confidence of the210

target label, and we have to utilize the attack model in Stage 1 to select samples that are closer to211

the distribution of the training set. For this purpose, we feed all the initial latent vectors into the212

StyleGAN and produce a set of initial face images. After proper resizing, these images with their213

horizontally flipped versions are processed following Stage 1 and we can get the prediction of the214

developed attack model A. Those images with high membership classification scores are retained as215

the ’final’ set of initial vectors.216

Next, we optimize the latent vectors as follows. In particular, we perform some operations on the217

images synthesized using the latent vectors, and propagate the transformed images through the218

developed membership inference attack model in Stage 1. The membership classification network219

predicts the probability that the generated images belong to the training set. The latent vectors will220

then be iteratively updated to further increase the membership prediction probability. We desire to221

enhance the robustness through data augmentations and finally find a good set of latent vectors.222
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Algorithm 2: The procedure of the model inversion attack (Stage 2)
Input: Initial N points sampled from a normal distribution z ∈ N (0, 1), number of iteration M .
Output: The generated candidate set q (the size of q is Int (0.1N), Int (0.1N) is the integer part

of 0.1N ), and the realistic training image set r.
1 Generate N images from initial sample points z by the generator.
2 Extract the parameters of Batch Normalization layers in the target FR model, denoted as u.
3 Feed the target model with the generated images and their horizontally flipped versions, and

compute the distance using Eq.3, and then predict the probability of membership. (We simplify
this step as MI, i.e., the membership inference.)

4 Select Top-n (n= Int(0.1N)) sampling points in descending probability order as the candidates
to optimize their intermediate representations wj

0(j = 1, 2, · · · , Int(0.1N)). The relationship
between z and w is shown in Fig.2.

5 Set q = {} and append optimized candidates to it as follows:
6 for j = 1, 2, · · · , Int(0.1N) do
7 Generate the image xj

0 from the selected sample point wj
0 by the generator.

xj
0 = G(wj

0)

8 for i = 0, 1, 2, · · · ,M − 1 do
9 Perform some data augmentation operations on the image xj

i and get the counterparts
xj
i1,xj

i2,· · · ,xj
im, where m denotes the number of the data augmentation types.

10 Make membership inference and compute the average probability:

pji =
1

m+ 1
[MI(xj

i ) +

m∑
k=1

(MI(xj
ik))]

11 Optimize the sample point wj
i by minimizing the loss function:

wj
i+1 ← wj

i − αw∇wLCE [p
j
i , 1]

where αw denotes the optimization step size.
12 Generate the updated images: xj

i+1 = G(wj
i+1)

13 Append the optimized candidate to the set q = q ∪ {xj
M}

14 For each candidate xj
M ∈ q, search the similar image in the training data based on the cosine

similarity, and obtain the image pairs.
15 Select Top-n (n = Int(0.01N)) image pairs in descending similaritiy order and obtain the

realistic training image set r.

4 Experiment223

In this section, we will describe our experimental setup and results in detail. First, for the membership224

inference attack of Stage 1, we perform two different settings based on different prior information:225

the partial training data Dp and the auxiliary data Ds. For the model inversion attack of Stage 2, we226

only use the auxiliary data Ds.227

4.1 Dataset and Target Model228

We use two datasets for inference attack, CASIA-WebFace [34] and MS1M-ArcFace [5]. The229

CASIA-WebFace dataset is collected in a semi-automatical way from the Internet, and is usually used230

for face verification and face identification tasks. The dataset contains 494,414 face images of 10,575231

real identities. MS1M-ArcFace is obtained by cleansing on MS1M [9], and it contains 5.8M images232

from 85k different celebs.233

We use IR-SE-50 as the backbone, which combines an improved version of the vanilla ResNet-50234

[11] with SENet [12], and use ArcFace [5] as the margin-based measurements (head). The target235

model is trained for 50 epochs with an initial learning rate of 0.1 and step scheduling at 10, 20, 30236
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Table 1: The attack success rate of the membership inference attack in the case 1. We also consider
the case where the target models are trained with randomly flipped images, denoted as ’FR(flip)’.

Dp

Proportion

1% 5% 10% 1%+FR(flip) 5%+FR(flip) 10%+FR(flip)

ASSD [8] 57.20 57.32 65.42 55.31 56.28 60.45
Amean 77.94 78.03 79.75 73.83 74.84 78.27
Amean&var 77.22 76.52 78.58 68.24 69.34 78.18
Amean&flip 91.94 91.74 91.94 97.37 97.46 97.42

Table 2: The attack success rate of the membership inference attack in the case 2.

Ds

Target Model(Backbone+Head)

IR-SE-50+ArcFace IR-SE-50+CosFace IR-SE-101+ArcFace

Amean 63.37 62.56 71.19
Amean&var 64.43 62.25 71.29
Amean&flip 87.30 82.93 85.04

and 40 epochs, using the SGD optimizer with a momentum of 0.9, weight decay of 0.0001. Previous237

researches [25, 2] have proved ’if a model is overfitted, then it is vulnerable to membership inference238

attack.’ In this experiment, to avoid overfitting, we choose the FR model that has the best test accuracy239

in all epochs during training as the target model.240

4.2 Membership Inference Attack241

As above mentioned, we give two different cases. Case 1: access to part of the training dataset. Case242

2: access to the auxiliary dataset. In the case 1, we choose CASIA-WebFace as the training data set.243

We use different proportions of training data for training the attack model, which uses ASSD [8]244

as the baseline. In the case 2, MS1M-ArcFace is used as the training data set. We train a shadow245

model to mimic the behavior of the target model [25]. Specifically, we first split the dataset Ds by246

half into Dshadow and Dtarget. Then we split Dshadow by half into Dmember
shadow and Dnon−member

shadow .247

Dtarget is used for the attack evaluation, it is also split into Dmember
target and Dnon−member

target . All the248

Dmember serve as the members of the (shadow or target) model’s training data, while the other serves249

as the non-member data. For evaluation, we sample 60,000 images from members and non-members250

separately in both cases and use the attack success rate (ASR) as the evaluation metric.251

Furthermore, we perform experiments with different settings for ablation study. First, we conduct252

an experiment case where the images are not flipped and the "mean distance" is fed to the attack253

model, denoted as Amean. And then we consider replacing the "mean distance" with "mean and254

variance distances", which both are input to the attack model, denoted as Amean&var. Finally, we255

use "mean distances" of the normal image and the horizontally flipped one as fusion features to input256

the attack model, denoted as Amean&flip. Specially in case 2, we use different combinations of the257

backbones and heads as the target models to validate the generalization of our methods. All results258

of the membership inference attack are shown in Tab.1 and Tab.2 As Tab.1 shows, in case 1, the259

performance of our attack significantly outperforms the baseline. We believe this is due to the fact260

that our selected BN-based features characterize the membership of the training set better than the261

reference sample selected in [8], despite our network design is more lightweight than the latter. And262

we are also able to achieve relatively good results in the Ds experiments in case 2, which validates263

the effectiveness of our method.264

4.3 Model Inversion Attack265

To our knowledge, this is the first time that the model inversion attack is launched against an FR266

model without the classification layer. Previous metrics always judge the accuracy of the generated267

images given a target label, which are obviously not applicable in this scenario. Therefore, we use268

a new metric compatible with our proposed scenario. To be specific, we will use the target model269
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Figure 3: Some results of the model inversion attack in case 2. The first and third rows show the
original training images, while the second and fourth rows show the synthesis images generated by
our proposed algorithm without using the classification layer.

to extract the embedding of the final generated results, and obtain the most likely class index by270

means of the classification layer trained for FR. Then we search the most similar image pairs as271

mentioned in Algorithm 2. Some attack results are provided in Fig.3. The first and third rows show272

the original training images, while the second and fourth rows show the synthesis images generated273

by our proposed algorithm without using the classification layer. It can be seen that the reconstructed274

image is very similar to the original image (more results can be found in the appendix). This also275

confirms the effectiveness of our algorithm to some extent.276

5 Limitation277

Although we propose an inference attack algorithm against face recognition models without classi-278

fication layers, there are actually some inherent assumptions that need to be considered. First, our279

membership inference attack is implemented based on the backbone’s internal BN layer parameters,280

which means that our algorithm currently can only be applied to white-box attacks in such a scenario.281

Therefore, it is a future challenge to explore further attacks in a completely black-box scenario.282

In addition, since we are not able to operate a delicate control on the attack, we cannot guarantee the283

expected results given the target class. And the identity characteristics of our final synthesis images284

still need to be improved, which is another major challenge in this scenario due to the fact that we285

cannot optimize the latent vector for a specific target label.286

6 Conclusion287

In this paper, we propose a new scenario where the inference attack against face recognition models288

can be implemented without the classification layers. This is a more realistic and more challenging289

attack, where the adversary cannot obtain information about the classification layer on the stage of290

training, and all the defenses based on the classification layer will be ineffective in this scenario.291

Considering the internal parameters of the model, we theoretically analyze the distance distributions292

between the member/non-member and the BN layer parameters, and accordingly design a simple and293

efficient attack model that is compatible with this novel scenario. Experiments demonstrate that our294

method outperforms state-of-the-art similar works under the same prior. Further, we propose a model295

inversion attack algorithm in this scenario. We utilize the classifier in our attack model to free model296

inversion attacks from dependence on the classification layer, and make the generated samples closer297

to the membership distribution. The final experimental results prove that our proposed method is able298

to recover the identities of some training members. We hope that this scenario and the algorithm we299

proposed will encourage more researchers to focus on face recognition attacks in real scenarios, and300

to attach further importance to privacy security protection.301
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