
Slicing Vision Transformer for Flexible Inference

Yitian Zhang1,2∗ Huseyin Coskun1 Xu Ma2 Huan Wang2 Ke Ma1

Xi (Stephen) Chen1 Derek Hao Hu3 Yun Fu2

1Snap Inc. 2Northeastern University 3Meta

Abstract

Vision Transformers (ViT) is known for its scalability. In this work, we target
to scale down a ViT to fit in an environment with dynamic-changing resource
constraints. We observe that smaller ViTs are intrinsically the sub-networks of a
larger ViT with different widths. Thus, we propose a general framework, named
Scala, to enable a single network to represent multiple smaller ViTs with flexible
inference capability, which aligns with the inherent design of ViT to vary from
widths. Concretely, Scala activates several subnets during training, introduces
Isolated Activation to disentangle the smallest sub-network from other subnets,
and leverages Scale Coordination to ensure each sub-network receives simplified,
steady, and accurate learning objectives. Comprehensive empirical validations on
different tasks demonstrate that with only one-shot training, Scala learns slimmable
representation without modifying the original ViT structure and matches the per-
formance of Separate Training. Compared with the prior art, Scala achieves an
average improvement of 1.6% on ImageNet-1K with fewer parameters. Code is
available at here.

1 Introduction

Vision Transformers (ViTs) [9] are renowned for its scalability and various avenues [41, 5, 7] have
been explored to scale up ViT models. To tailor ViTs to run on devices with limited resources, some
recent progress [36, 35] utilize knowledge distillation [13] to scale down ViT. Particularly, DeiT [29]
introduces two smaller variants of DeiT-B: DeiT-Ti and DeiT-S which have been widely used in
resource-limited applications. Although these small ViTs exhibit enhanced efficiency, they lack the
flexibility to implement customized adjustments that accommodate dynamically changing resource
constraints in real-world scenarios, e.g., the computation budget of mobile phones depends on the
energy level (low-power mode) and number of running apps. Consequently, the standard Separate
Training (ST) protocol trains models with different sizes separately to provide a spectrum of options
with diversified performance and computation. ST requires repetitive training procedures to produce
multiple model choices, and the challenge is amplified for foundation models [26, 24, 17]. From
users’ perspective, they are only offered limited model choices, that might not cater to all scenarios.

Analyzing the architectures of ViT-Ti/S/B, we observe that these ViTs are the same architecture with
the only difference in the number of embedding dimensions (we ignore the difference in the number
of heads as it does not impact the overall model size), indicating smaller ViTs are intrinsically the
sub-networks of larger model with different widths (see Fig. 1). This suggests that a large ViT can be
transformed to represent small models by uniformly slicing the weight matrix at each layer. Given
a width ratio r, we adjust the size of the network by this single hyperparameter, allowing a single
ViT to represent multiple small variants with the weights of those sub-networks shared in a nested
nature, e.g., ViT-B (r=0.25) equals ViT-Ti and ViT-B (r=0.5) corresponds to ViT-S. In this manner,
we empower ViTs for flexible inference capability, and we aim to slice a ViT within a broad slicing

∗Work done when Yitian was an intern at Snap Inc.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/BeSpontaneous/Scala-pytorch


…

(i) irregular slicing

Block

Block

Block

Block

Block

Block

Block

…

ViT-S

ViT-Ti

ViT-B

…

(ii) uniform slicing

Block

Block

Block

Block

conventional ViT structure

Figure 1: Illustration of different means to slice the ViT
architecture. Irregular slicing [2, 38, 4] results in uncon-
ventional structures while uniform slicing [37] aligns with
the inherent design of ViT to vary from widths.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Width Ratio

45
50
55
60
65
70
75

Ac
c 

(%
)

ST
US-Net
Scala

1.00

+2.6

0.75
-1.8-3.8

0.500.25

+3.2
-5.0

+1.1+9.9
+3.9

Figure 2: The available uniform slicing
method US-Net [37] lags behind Sepa-
rate Training (ST) remarkably on ViTs.
Performance gaps with ST are shown.

bound and fine-grained slicing granularity so that the diversity and number of sub-networks can be
ensured for higher flexibility. This problem is non-trivial as fully training all the sub-networks within
a constrained budget is nearly infeasible. Consequently, it is quite challenging for these subnets to
match the performance of separate training.

Although various approaches have delved into slicing deep networks for flexible inference, the
problem we target to resolve, i.e., uniformly slicing ViTs within a large slicing bound and fine-grained
slicing granularity, is intrinsically different from others in three perspectives: (1) slicing strategy: as
shown in Fig. 1 (i), the supernet training techniques [2, 38, 4] in NAS usually slice through multiple
dimensions with a small slicing bound, resulting in irregularities in model architectures and a minor
computational adjustment space. (2) slicing granularity: recent width slicing approaches [14, 18]
either slice specific portions of the network or utilize a considerably large slicing granularity, leading
to a limited number of models produced. (3) network architecture: US-Net [37] shares a similar
vision with us but it has only demonstrated success in the CNN architecture.

It is crucial to note the fundamental differences between slicing CNN and ViT: (1) vanilla small ViTs
such as ViT-Ti/S/B, are inherently designed to vary based on widths, aligning with our approach.
Conversely, many CNNs are structured to vary from depths, like ResNet-18/34 [12], and slicing them
by width brings unconventional architectures. (2) slimmable CNN necessitates calibration [39, 37]
for each sub-network pre-inference due to Batch Normalization [15], unlike slimmable ViTs that can
be directly utilized for evaluation. (3) the transformer architecture [33] has wider applications than
CNN in this era, e.g., MAE [11], CLIP [26], DINOv2 [24], LLMs [31, 32, 1]. Nevertheless, ViTs
have much less image-specific inductive bias than CNN and their slimmable ability remains unclear.
As shown in Fig. 2, we empirically implement US-Net on ViT-S and observe substantial performance
gaps at most width ratios compared to ST, indicating that the available solution of uniform slicing
does not work well on the transformer architecture.

To investigate the underlying causes of this phenomenon, we conduct analyses in Sec. 3 which are
briefly summarized in two folds: (1) ViTs display minimal interpolation ability, indicating that the
optimization of intermediate subnets falls notably short compared to Separate Training (ST); (2)
sustained activation of the smallest sub-network poses a negative effect on other subnets, which
affects the overall performance as their weights are shared in a nested nature. To resolve these issues,
we propose a general framework, named Scala, to enforce ViTs to learn slimmable representation.
Specifically, we propose Isolated Activation to disentangle the representation of the smallest sub-
network from other subnets while still preserving the lower bound performance. Besides, we present
Scale Coordination to ensure each subnet receives simplified, steady, and accurate learning objectives.
In this manner, the slimmable ViT can be transformed into multiple smaller variants during inference
and match the performance of ST.

Compared to ST which trains all the subnets individually, Scala reduces the storage and training
costs remarkably since the weights of smaller ViTs are shared with the full model and we only need
one-shot training without extending the training duration. Further, Scala has a very large slicing
bound and fine-grained slicing granularity, enabling diverse sub-network choices during evaluation.
In this way, the delivered system can make tailored adjustments that accommodate dynamically
changing resource constraints in real-world scenarios, promising the application on edge devices.
Compared with the prior art SN-Net [25] which supports flexible inference on ViTs, Scala clearly
outperforms it under different computation with fewer parameters. Moreover, Scala matches the

2



performance of ST on various tasks without modifying the network architecture, demonstrating
its generalizability and potential to replace ST as a new training paradigm. The contributions are
summarized as follows:

• Although slicing ViTs exhibits multiple advantages, we provide detailed analysis and
practical insights into the slimmable ability between different architectures (Sec. 3 and
Tab. 2) and find slicing the ViT architecture to be the most challenging problem.

• We propose a general framework Scala to enable ViTs to learn slimmable representation for
flexible inference. We present Isolated Activation to disentangle the representation of the
smallest subnet and Scale Coordination to ensure each subnet receives simplified, steady,
and accurate signals.

• Comprehensive experiments on different tasks demonstrate that Scala, requiring only one-
shot training, outperforms prior art and matches the performance of ST, substantially reduces
the memory requirements of storing multiple models.

2 Related Work

Scaling Up ViTs. Like Transfromer [33] in NLP, scalability and performance improvements in
ViTs [9] have been a central focus of recent research. Specifically, strategies have been explored to
scale the depth of ViT [46, 30] and it is scaled to even larger sizes with almost 2 billion parameters
and reaches new state-of-the-art results [41]. Afterward, ViTs have been scaled up to 4 billion [5]
and 22 billion [7] parameters with extraordinary performance and enormous costs.

Scaling Down ViTs. The advent of ViTs has also sparked interest in scaling down these models.
Techniques such as knowledge distillation [13] have been explored to reduce the ViT model size [36,
35]. For example, DeiT [29] presents smaller ViTs with 5M parameters. Additionally, researchers
have explored quantization methods [22, 21] to further compress ViTs for deployment on edge
devices. Unfortunately, these static models cannot make customized adjustments for resource-
changing environments in real scenarios.

Slimmable Neural Network. The derivation of multiple smaller models from a single network has
been previously explored but most works focus on the CNN structure. Slimmable Networks [39, 37]
and its variants [34, 3, 10] train a shared network which adapts the width to accommodate the resource
constraints during inference. Later, this idea is adapted into two-stage NAS methods [2, 38, 4] for
supernet training. The supernet is scaled at multiple dimensions with a small computation change, in
contrast to our work where we only scale the width dimension with a large slicing bound. SN-Net [25]
is a recently proposed method that constructs a supernet with several pre-trained models and inserts
linear layers to build dynamic routes for flexible inference. Recently, several of these techniques
have been extended to Transformer architecture [14, 18], while they either scale part of the network
or the slicing granularity is large which means they could only deliver very few models in the end.
Differing from the previous works, our method is the first work to scale the ViT structure with large
slicing bound and small slicing granularity which is intrinsically a more challenging problem.

3 Revisiting Slicing in Vision Transformer

Due to the excessive costs of constantly activating all the sub-networks during training, the sandwich
rule is proposed in US-Net [37] to train the slimmable network at the smallest width, largest width,
and 2 random intermediate widths in each iteration so that the performance of the lower bound and
upper bound are guaranteed. Although the intermediate sub-networks are optimized less frequently
compared to Separate Training (ST), US-Net manages to achieve comparable performance with ST
on the CNN architecture. To have a better understanding of the distinction between CNN and ViT,
we apply US-Net to MobileNetV2 [28], a CNN, and DeiT-S [29], a ViT, but constantly activate
four sub-networks with the width ratio of {0.25, 0.5, 0.75, 1.0} at each iteration. Subsequently, we
evaluate the pre-trained models at both inbound [0.25, 1.0] and outbound (0, 0.25) unseen width
ratios to evaluate their interpolation and extrapolation abilities, respectively. Shown in Fig. 3, CNN
exhibits moderate interpolation and extrapolation capabilities by achieving acceptable performance at
previously unobserved widths during training. In stark contrast, ViT fails entirely at unseen widths,
suggesting that optimizing larger sub-networks does not directly benefit the performance of smaller
ViTs, even though their weights are shared in a nested nature.

3



0.2 0.3 0.4 0.5
Width Ratio

0
10
20
30
40
50
60

Ac
c 

(%
)

US-Net(CNN)
US-Net(ViT)

Figure 3: Evaluating US-Net over CNN and ViT
at unseen width ratios to examine the interpola-
tion (denoted as ⋆) and extrapolation (denoted as
+) abilities on ImageNet-1K.

0.2 0.4 0.6 0.8 1.0
Width Ratio

45
50
55
60
65
70
75

Ac
c 

(%
)

US-Net
US-Net*+1.8Avg

∆ Acc1.(%)

Figure 4: We train US-Net on ViT-S without con-
stantly activating the smallest subnet (denoted as
*) and observe an average performance gain of
1.8% at other width ratios on ImageNet-1K.

We analyze the results from the expected training epochs for each sub-network. Let X represent the
total number of networks to be delivered, wherein X − 2 intermediate sub-networks are included, and
according to the sandwich rule, two of these are randomly sampled during each iteration. Formally,
the expected training epochs for the intermediate networks ξ can be expressed as:

ξ =
2

X − 2
× η, (1)

where η is the number of training epochs for the full model and it suggests that the optimization of
most sub-networks falls notably short compared to ST. As ViT has demonstrated minimal interpolation
ability at unseen widths compared to CNN, each sub-network within the slimmable ViT requires
optimal utilization of every training iteration to achieve satisfactory performance. Nevertheless,
the smallest subnet is constantly activated during training according to the sandwich rule and we
hypothesize that the over-emphasis of the smallest sub-network, often exhibits the worse performance,
may increase the training difficulty of other subnets as their weights are shared in a nested nature.
To validate it, we implement US-Net [37] on DeiT-S without constantly activating the smallest
sub-network. Fig. 4 verifies our hypothesis showing an accuracy drop at the smallest subnet but a
significant performance improvement at other width ratios.

4 Scala

We first introduce the training and inference paradigms of Scala. Then, we describe Isolated Activation
which disentangles the smallest subnet from other sub-networks while maintaining the lower bound
performance. Further, we present Scale Coordination to ensure each subnet receives simplified,
accurate, and steady learning objectives. Without any modification to the architecture, we deliver a
general framework Scala which could be easily built on existing methods.

4.1 Framework

Our goal is to build a general framework that makes a ViT F (·) slimmable, i.e., the delivered
network can be transformed into different small variants for flexible inference. First, we introduce
a hyperparameter r to denote the width ratio of the sub-network F r (·). Based on our analysis in
Fig. 3, ViTs have minimal interpolation ability, which suggests that all subnets have to be individually
optimized to achieve decent performance. Following the sandwich rule [37], we sample the smallest
s, largest l (l = 1), and 2 random intermediate width ratios m1, m2 at each iteration during training.
The corresponding sub-networks are: F s (·), F l (·), Fm1 (·) and Fm2 (·). and we accumulate the
gradients of those subnets at each iteration. At the inference stage, the network F (·) is evaluated at
an arbitrary width ratio that has been optimized during training by adjusting r.

4.2 Isolated Activation

Illustrated in Sec. 3, constant activation of the smallest sub-network F s (·) ensures its own accuracy
at the cost of other subnets’ performance. This is a dilemma as there is a significant accuracy drop
of F s (·) if we do not constantly activate it (see Fig. 4), otherwise, the performance of other sub-
networks are severely limited. To alleviate this issue, we propose Isolated Activation to disentangle

4



the representation of F s (·) from other sub-networks while still constantly activating it. It not only
ensures the performance of the lower bound but facilitates the optimization of other subnets as well.

Formally, given the learnable weight θ ∈ RCo×Ci×H×W of a random layer in ViT (Co, Ci stands for
the output, input channel number, H,W represents the height and width of the convolution kernel,
H = W = 1 for fully connected layers), the weight of F r (·) where r ̸= s is selected as:

θr = θ [: (r × Co) , : (r × Ci)] . (2)

In contrast, the smallest sub-network F s (·) is activated as:

θs = θ [− (s× Co) :, − (s× Ci) :] , (3)

where we slice the weights in a reverse direction so that we disentangle the representation of F s (·)
from other sub-networks. With this simple but critical design, we not only ensure the performance of
F s (·) with constant activation, but also alleviate the negative effects it brings.

4.3 Scale Coordination

We present the training strategy of Scala in this section. We follow the setting of DeiT [29] to train
the full model F l (·) with knowledge distillation and introduce a distillation token for knowledge
transfer between sub-networks. As our goal is to scale down a given network F (·) to multiple smaller
variants, we simply choose the pre-trained model itself F ◦ (·) as the external teacher for the full
network F l (·) to facilitate training. To optimize the sub-networks at different scales, we present the
Scale Coordination training strategy, which is composed of three techniques: Progressive Knowledge
Transfer, Stable Sampling, and Noisy Calibration, to ensure that each subnet receives simplified,
accurate, and steady learning objectives.

Progressive Knowledge Transfer. Given an input image v, the activated sub-network F r (·) produces
two predictions:

prcls, p
r
dis = F r (v; θr) , (4)

where prcls and prdis denote the prediction generated by the classification and distillation head,
respectively. As we activate multiple sub-networks: F s (·), F l (·), Fm1 (·) and Fm2 (·) at each
iteration during training, our idea is to utilize the predictions of the larger network to facilitate the
optimization of smaller subnets.

Given the sorted width ratio list R = [s,m1,m2, l], we utilize the KL divergence [19] loss to
progressively distill the knowledge of the larger network into the smaller one:

Lr
KL = −

K∑
k=1

pr
′

dis log

(
prdis
pr

′
dis

)
, (5)

where K represents the number of classes, r′ = R [ς (r) + 1] and ς (r) denotes the index of r in
R. Instead of using pldis as the optimization target for all smaller networks, we ensure each subnet
receives simplified learning objective as small subnet have large capacity gap compared to F l (·) (e.g.,
F l (·) is almost 16 times larger than F s (·) if s = 0.25) and minimizing their KL loss complicates
the optimization process and leads to inferior performance. With Progressive Knowledge Transfer,
we simplify the optimization objective for small sub-networks by utilizing Fm1 (·) and Fm2 (·) as
the teacher assistants to fill the gap between F l (·) and F s (·) and train them in a one-shot manner.

Stable Sampling. As the knowledge is gradually transferred from the larger network to the smaller
one, the two intermediate networks serve as the bridge to connect F l (·) and F s (·), as Fm2 (·) is the
student of F l (·) and Fm1 (·) is the teacher of F s (·). Therefore, we need to carefully control the
width ratios m1 and m2 to prevent the obvious model capacity variation.

Concretely, we introduce the slicing granularity ϵ and the number of networks X we can deliver
(including the full model) with a single ViT is denoted as:

X =
(l − s)

ϵ
+ 1. (6)

Then, we divide the slicing bound B = (s,l)
ϵ into two smaller ones:

B1 =
(s, m̄]

ϵ
, B2 =

(m̄, l)

ϵ
, (7)

5



where m̄ = (s+l)
2 and m̃1, m̃2 will be the random integer sampled from the uniform distribution B1,

B2, respectively. Thus, m1 and m2 are defined as:

m1 = m̃1 × ϵ, m2 = m̃2 × ϵ, (8)

and we ensure the model capacity gap between the four networks is stable and secure the learning
objective for each subnet is steady.

Noise Calibration. Although all the subnets receive guidance from larger networks, a notable issue
is that the predictions from the teacher are not always accurate, sometimes even noisy, especially at
the early training stage. To avoid the noisy signal dominating the optimization direction, we first
calculate the Cross-Entropy loss by:

Lr
CE = −

K∑
k=1

ŷk log (p
r
cls) , (9)

where ŷk represents the one-hot label for class k. Then, we calibrate the noise by combining the KL
divergence loss and Cross-Entropy loss:

Lr = Lr
CE + λ · Lr

KL, (10)

where λ is a hyperparameter used to balance the two losses and we empirically let λ = 1 in our
implementations. By doing so, we mitigate the negative effects brought by the noisy predictions of
the teacher model and ensure each subnet is guided by the accurate learning objectives.

5 Experiments

We validate Scala with the plain ViT structure DeiT [29]. We first analyze of the main property of
Scala and compare our method with the state-of-the-art method SN-Net [25] and Separate Training
(ST) at a larger scale. Moreover, we examine the transferability of Scala and its application on
Semantic Segmentation. Finally, we provide ablations to validate the efficacy of our designs.

5.1 Experiment Settings

All the object recognition experiments are carried out on ImageNet-1K [8]. We follow the training
recipe of DeiT [29] and conduct the experiments on 4 V100 GPUs. For Scala, we set s = 0.25,
l = 1.0, and ϵ = 0.0625 so that we could enable a single ViT to represent 13 different networks
(X = 13) with a large slicing bound (i.e., F l (·) is almost 16 times larger than F s (·)).

Table 1: Comparison with scaling baseline methods AutoFormer [4], US-Net [37] and Separate
Training under different width ratios r. The best results are bold-faced.

Method Param r = 0.25 r = 0.50 r = 0.75 r = 1.00

Acc1. GFLOPs Acc1. GFLOPs Acc1. GFLOPs Acc1. GFLOPs

AutoFormer [4] 22M 50.8% 0.4 65.6% 1.3 69.5% 2.7 69.8% 4.6
US-Net [37] 22M 52.7% 0.4 60.1% 1.3 66.9% 2.7 73.2% 4.6
Separate Training 43M 45.8% 0.4 65.1% 1.3 70.7% 2.7 75.0% 4.6

Scala 22M 58.7% 0.4 68.3% 1.3 73.3% 2.7 76.1% 4.6

5.2 Proof-of-Concept

In this part, we conduct experiments over DeiT-S [29] for 100-epoch training to prove the concept.

Comparison with scaling baselines. We compare Scala with multiple scaling baselines, including:
(1) AutoFormer [4]: we apply this ViT-based supernet training method into our setting to scale
through width; (2) US-Net [37]: the prior work that obtains similar performance with ST over the
CNN structure; (3) Separate Training (ST): we repetitively train the model with different widths from
scratch and evaluate them individually. Tab. 1 shows that AutoFormer lags behind Scala remarkably
as we target to scale in a wider range. US-Net shows significantly worse performance compared
to ST which indicates that scaling down ViT is a more challenging problem compared to the CNN
architecture. Nevertheless, Scala achieves better performance compared to ST at all width ratios with
one-shot training, reducing the storage costs of saving multiple models observably.

6



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
GFLOPs

45

50

55

60

65

70

75

Ac
c 

(%
)

ST
Scala (X=25)
Scala (X=13)
Scala (X=7)
Scala (X=4)

1.00

+4.9

0.750.500.25

+6.9 +1.7+14.0

+1.2+12.6 +2.4+2.7
+12.9 +3.2 +1.1+2.6

+5.2 +3.5+14.0 +1.5

Figure 5: Comparisons of Scala with different
slicing granularity and Separate Training (ST).
Improvements over ST are shown.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
GFLOPs

45

50

55

60

65

70

75

Ac
c 

(%
)

ST
Scala (s=0.25)
Scala (s=0.50)
Scala (s=0.75)

-
+4.5

1.00

-

0.750.25

-
+6.1 +3.8

0.50

+1.8
+1.9

+3.2 +2.6+12.9 +1.1

Figure 6: Comparisons of Scala with different
slicing bounds and Separate Training (ST). Im-
provements over ST are shown.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
GFLOPs

60
64
68
72
76
80
84

Ac
c 

(%
)

Uniformer_S (ST)
Uniformer_S (Scala)

0.25 0.75
+0.9+1.6

1.00

+6.1

0.50

+1.3

Figure 7: Comparisons of Scala and Separate
Training (ST) over the CNN-ViT hybrid architec-
ture Uniformer-S [20]. Improvements over ST
are shown.

0.0 0.4 0.8 1.2 1.6
GFLOPs

52
57
62
67
72
77
82

Ac
c 

(%
)

Uniformer_XS (ST)
Uniformer_XS (Scala)

0.25
+0.2+6.8 +1.4

0.750.50

+0.5

1.00

Figure 8: Comparisons of Scala and Separate
Training (ST) over lightweight model Uniformer-
XS [20] with token pruning. Improvements over
ST are shown.

Slicing Granularity and Bound. Fig. 5 shows the results of various slicing granularity ϵ. First,
Scala outperforms ST with different ϵ and the advantage at small width ratios is more obvious, which
promises its application on edge devices. Moreover, it is shown that less fine-grained granularity ϵ
results in better overall performance with the same slicing bound as the expected training epochs ξ
for intermediate subnets increase correspondingly. We further conduct experiments with different s
while fixing l and ϵ to study the effect of the slicing bound. Fig. 6 shows that smaller bounds lead to
markedly better performance and it further verifies that slicing through a large bound is intrinsically
more difficult, which distinguishes Scala from the supernet training methods [2, 38, 4] in NAS.

Application on Hybrid Structures. We experiment Scala on the CNN-ViT hybrid architecture
Uniformer-S [20]. As Uniformer contains Batch Normalization (BN) [15] which cannot be directly
evaluated after slicing because of normalization shifting [39], we calibrate the statistics of BN before
inference following [37]. Shown in Fig. 7, Uniformer-S is scaled down to 13 different variants with
better performance compared to ST, demonstrating the generalization ability of Scala. However,
performing BN calibration at each width ratio requires considerable extra effort. This highlights the
benefit of ViT, as Layer Normalization (LN) allows direct evaluation without additional operations.

Application on Lightweight Structures. We further validate Scala on lightweight structure
Uniformer-XS [20] which integrates the design of token pruning and train these methods for 150
epochs. Shown in Fig. 8, Scala still matches the performance of ST and exhibits a significant
advantage at small width ratios, which promises its application on edge devices with a limited budget.

Fast Interpolation of Slimmable Representation. Training models with different slicing granularity
ϵ from scratch is time-consuming and here we show that the slimmable representation of certain
granularity can be scaled to others with a small amount of training epochs. Specifically, we train the
model with the original ϵ for 70 epochs and decrease the value of ϵ in the last 30 epochs to deliver
more sub-networks for higher inference flexibility. Fig. 9 shows the results of fast interpolation are
similar to those trained from scratch and the newly appeared sub-networks are quickly interpolated to
achieve decent performance. We further increase ϵ for sub-networks with higher performance and the
phenomenon shown in Fig. 10 is similar to down interpolation. Besides, we observe that the accuracy
of abandoned sub-networks gradually decreases but they maintain the performance to a great extent.

Slimmable Ability across Architectures. We examine the slimmable ability of different architectures
in Tab. 2 by applying Scala on different architectures and evaluating these networks at unseen width

7



0 1 2 3 4
GFLOPs

45

50

55

60

65

70

75

Ac
c 

(%
)

ST
Scala (X=25)
Scala (X=13-25)

1.000.75
+1.2+2.4

0.500.25
+2.7+12.6
+2.3 +2.0+12.6 +1.1

(a) Results of w/ and w/o
down interpolation.

0 5 10 15 20 25 30
Epoch

10

30

50

70

Ac
c 

(%
)

r=1.00000
r=0.90625
r=0.65625
r=0.40625

(b) Accuracy change of
the introduced subnets.

Figure 9: Down Interpolation. We reduce the
slicing granularity in the last 30-epoch training
of DeiT-S [29] on ImageNet-1K to deliver more
sub-networks for higher inference flexibility.

0 1 2 3 4
GFLOPs

45

50

55

60

65

70

75

Ac
c 

(%
)

ST
Scala (X=7)
Scala (X=13-7)

1.000.75
+1.5

+4.3+13.3

0.25
+3.5
+3.1 +1.2

0.50
+14.0 +5.2

(a) Results of w/ and w/o
up interpolation.

0 5 10 15 20 25
Epoch

55

59

63

67

71

75

Ac
c 

(%
)

r=1.0000
r=0.9375
r=0.6875
r=0.4375

(b) Accuracy change of
the abandoned subnets.

Figure 10: Up Interpolation. We increase the
slicing granularity in the last 30-epoch training
of DeiT-S [29] on ImageNet-1K to deliver fewer
sub-networks for higher performance.

Table 2: Slimmable ability examination over different architectures on ImageNet-1K under various
width ratios. The interpolated results are shown in blue color.

Architecture Model Top-1 Acc. (%)

0.40625 0.4375 0.46875 0.50 0.53125 0.5625 0.59375

ViT DeiT-S 1.7 66.4 1.6 68.3 1.9 70.0 1.9
CNN-ViT Uniformer-S 30.4 73.5 27.8 75.5 32.6 77.0 37.5
CNN MobileNet v2 58.8 60.4 60.7 61.6 61.8 64.3 64.4

ratios to explore the interpolation ability. CNN exhibits very strong interpolation ability as the
performance at unseen widths lies in the range of trained width ratios. In contrast, CNN-ViT and
ViT suffer from remarkable performance decreases to different extents and ViT achieves almost zero
accuracy which further validates that the problem we target to solve, i.e., slicing ViT, is the most
challenging one.

5.3 Comparisons over Extended Training

In this section, we perform training over DeiT-B [29] for 300-epoch training following the standard
protocol on ImageNet-1K [8] to compare with the state-of-the-art.

Comparisons with state-of-the-art. SN-Net [25] is state-of-the-art work that supports flexible
inference on ViT. Specifically, it utilizes several pre-trained models (e.g., DeiT-Ti/S/B) to construct
a supernet and inserts additional layers to build dynamic routes for flexible inference. Shown in
Tab. 3, we empirically compare Scala with SN-Net over DeiT-B following the standard 300-epoch
training protocol [29]. Scala obtains similar performance with SN-Net at large width ratios and clearly
outperforms it at small computational budgets. Besides, SN-Net has to preserve the parameters of
multiple models and additional layers, while Scala only needs to keep the weights of the full network.
When adopting the stronger teacher network [27] as SN-Net does, Scala outperforms SN-Net with an
average improvement of 1.6% across all width ratios.

Comparisons with Separate Training. In Tab. 4, we compare with ST on DeiT-B [29] with longer
training process, i.e., 300-epoch training, where r = 0.25, 0.50, 1.00 corresponds to DeiT-Ti, DeiT-S
and DeiT-B, respectively. Scala exhibits a clear advantage at r = 0.25 and matches the performance
of ST except r = 0.50 due to significantly less training time. When X = 7, we can achieve similar
performance at r = 0.50 with 40% training epochs of ST. Further reducing X to 4, resulting in the
constant activation of the two intermediate networks, allows us to consistently outperform ST at all
width ratios. This substantiates the effectiveness of Scala and the slimmable representation.

Table 3: Comparison with SN-Net [25] over DeiT-
B [29] on ImageNet-1K. ♢, ♣ denotes utilizing
DeiT-B [29], RegNetY-16GF [27] as the teacher
model to facilitate training.

Method Param Top-1 Acc. (%)

0.25 0.375 0.50 0.625 0.75 0.875 1.00

♣ SN-Net [25] 118M 70.6 74.8 79.5 79.3 81.2 81.9 81.9

♢ Scala 86M 75.3 76.9 79.3 80.5 81.2 81.6 82.0
♣ Scala 86M 75.4 77.2 79.7 80.9 81.8 82.2 82.9

Table 4: Comparison with Separate Training
(ST) over DeiT-B [29] on ImageNet-1K under
different width ratios r. ξ denotes the expected
training epochs of each model.

Method Param r = 0.25 r = 0.50 r = 0.75 r = 1.00

Acc1. Acc1. ξ Acc1. ξ Acc1.

ST 163M 72.2% 79.9% 300 81.0% 300 81.8%

Scala (X=13) 86M 75.3% 79.3% 55 81.2% 55 82.0%
Scala (X=7) 86M 75.3% 79.7% 120 81.4% 120 82.0%
Scala (X=4) 86M 75.6% 80.9% 300 81.9% 300 82.2%

8



5.4 Transferability

To assess the transferability of Scala, we employ DeiT-B [29] as the backbone for a 300-epoch
pre-training on ImageNet-1K and leverage the foundation model DINOv2-B [24] as the teacher
network to inherit good behaviors. Our study aims to address two key questions:

Whether the slimmable representation can be transferred to downstream tasks? As depicted
in Fig. 11a, Scala consistently outperforms Separate Training (ST) across all width ratios, despite
the intermediate sub-networks being trained for approximately 55 epochs. After that, we conduct
linear probing on video recognition dataset UCF101 with 8 evenly sampled frames and average their
features for the final prediction. For the classification head added on Scala, we make it slimmable to
fit the features with various dimensions and follow the same training protocol as in object recognition.
In Fig. 11b, two notable observations emerge: (1) Scala consistently outperforms ST across different
width ratios on the UCF101 dataset, implying the great transferability of the slimmable representation;
(2) Scala retains its slimmable ability when applied to a new task and exhibits promising performance
across a wide slicing range (10∼141 GFLOPs), promising its application on other downstream tasks.

0 3 6 9 12 15 18
GFLOPs

73

75

77

79

81

83

Ac
c 

(%
)

ST
Scala

0.750.25

+0.1 +0.8

0.50

+3.4 +1.3

1.00

(a) Pre-training on ImageNet-1K.

10 40 70 100 130
GFLOPs

74

76

78

80

82

84

Ac
c 

(%
)

ST
Scala

0.25 0.75

+1.1+0.6

1.00

+0.6

0.50

+1.5

(b) Linear probing on UCF101 with 8 sampled frames.

Figure 11: Transferability of Scala. We first conduct pre-training on ImageNet-1K with the help of
foundation model DINOv2-B [24]. Then we conduct linear probing on video recognition dataset
UCF101. Improvements over ST are shown.

Whether the generalization ability can be maintained in the slimmable representation? Inspired
by the work [43] which replicates the success of vision foundation models on ImageNet-1K, we
remove all the Cross-Entropy losses during training to alleviate the dataset bias issue and inherit
the strong generalization ability of the teacher network DINOv2. Then we conduct linear probing
on 12 fine-grained classification datasets following the setup in DINOv2. Tab. 5 shows that Scala
significantly outperforms DeiT variants on the average performance of fine-grained classification
which suggests that Scala indeed inherits the fruitful knowledge from DINOv2 with remarkable
improvement in its generalization ability. Moreover, the improvement over DeiT does not decrease
when we scale down the width ratios during inference and it indicates that Scala maintains the flexible
inference capability very well even though it contains more knowledge than before.

Table 5: Comparison of Scala and DeiT on 12 fine-grained classification datasets. Scala-B is distilled
from DINOv2-B on ImageNet-1K for 300 epochs and then we conduct linear probing on fine-grained
datasets. The average accuracy of 12 datasets is shown in the last column.

Method r Arch A
ir

cr
af

t

C
al

10
1

C
ar

s

C
10

C
10

0

D
T

D

Fl
ow

er
s

Fo
od

Pe
ts

SU
N

V
O

C

C
U

B

Av
er

ag
e

DeiT-B 1.00 ViT-B 49.1 90.7 57.1 95.6 81.1 70.3 90.7 76.9 92.8 63.0 83.0 72.8 77.0
DeiT-S 1.00 ViT-S 44.5 90.3 49.4 94.1 77.7 69.5 88.8 72.1 92.1 60.5 83.3 71.9 74.5
DeiT-Ti 1.00 ViT-Ti 39.9 88.8 39.7 90.6 72.5 67.0 85.1 65.0 91.1 56.1 81.6 69.4 70.6

Scala-B 1.00 ViT-B 63.0 95.1 74.3 97.3 86.6 78.0 97.3 83.4 94.6 69.7 87.6 84.1 84.2
Scala-B 0.50 ViT-S 55.2 93.9 64.4 95.5 81.9 74.9 96.0 78.6 94.0 65.9 86.1 81.1 80.6
Scala-B 0.25 ViT-Ti 49.6 92.1 55.4 93.6 78.1 72.1 93.4 72.8 92.9 61.4 84.2 76.7 76.8

5.5 Dense Prediction

In previous sections, we have validated the effectiveness of Scala on classification tasks, we further
examine whether the slimmable representation could be transferred for dense prediction task like

9



Table 6: Evaluation of slimmable representa-
tion on dense prediction task Semantic Seg-
mentation over ADE20K [45] dataset. We
equipped the pre-trained Uniformer-S [20]
from Fig. 7 with Semantic FPN [16] and com-
pare the sub-networks extracted from Scala
with Separate Training (ST).

Backbone mIoU. (%)

0.25 0.50 0.75 1.00

Uniformer-S (ST) 33.9 40.4 42.6 45.3
Uniformer-S (Scala) 35.0 40.7 43.7 46.1

Table 7: Ablation study of Scala over DeiT-S [29]
on ImageNet-1K under various width ratios. IA,
PKT, SS, NC denote Isolated Activation, Progressive
Knowledge Transfer, Stable Sampling, Noise Cali-
bration, respectively. The best results are bold-faced.

Method Top-1 Acc. (%)

0.25 0.375 0.50 0.625 0.75 0.875 1.00

Scala 58.7 63.4 68.3 71.3 73.3 74.4 76.1
w/o IA 57.3 61.5 66.4 69.8 72.0 73.4 75.8
w/o PKT 53.0 60.1 65.6 68.8 71.7 73.7 76.2
w/o SS 58.7 62.7 68.1 71.3 73.1 74.2 75.9
w/o NC 50.2 62.7 67.2 70.5 72.7 74.0 76.3

semantic segmentation. We utilize the pre-trained model Uniformer-S [20] drawn from Fig. 7, which
has a hierarchical design and is obtained by 100-epoch training (our results lag behind official results
where the backbone is trained for 300 epochs), and equip it with Semantic FPN [16]. To compare with
Separate Training (ST), we extract four subnets from Scala (Uniformer-S) and train them separately.
Shown in Tab. 6, Scala outperforms ST at all widths which verifies the slimmable representation
benefits the downstream tasks. Note that we do not scale the decoder as it involves extra designs
and is out of the scope of this work. However, we show that the slimmable representation can be
generalized to semantic segmentation as feature extractors because the feature maps are spatially
intact, promising its application as an end-to-end slimmable framework on dense prediction tasks.

5.6 Ablation Study

We conduct ablation to examine the effectiveness of our designs in Tab. 7. First, we build Scala
without Isolated Activation so that the smallest sub-network will entangle with others and it shows
an obvious performance drop at all width ratios. Then, we remove Progressive Knowledge Transfer
(PKT) and pass the knowledge from F l (·) to smaller subnets through classification token following
US-Net [37]. It shows much worse performance, especially at small ratios, which proves the strength
of PKT as it implicitly introduces some teacher assistants to simplify the optimization objective for
small sub-networks. Further, we random sample the width ratios of m1 and m2 between (s, l) and
compare it with Stable Sampling (SS). The results are slightly inferior to SS which suggests SS is
helpful in securing the steady learning objective for each sub-network. Finally, we remove Noise
Calibration (NC) from Scala and only use the predictions from larger networks to guide the small
subnets. It shows remarkable performance drops at small width ratios, where the noise from the
teacher network is most obvious, demonstrating the effectiveness of NC in calibrating the noise and
providing accurate signals for sub-networks.

6 Conclusion and Limitations

In this paper, we observed that smaller ViTs are intrinsically the sub-networks of a large ViT with
different width ratios. However, slicing ViT is very challenging due to its poor interpolation ability. To
address this issue, we proposed Scala to enable a single network to represent multiple smaller variants
with flexible inference capability. Specifically, we proposed Isolated Activation to disentangle the
representation of the smallest subnet from others and presented Scale Coordination to ensure the
sub-network receives simplified, steady, and accurate learning objectives. Extensive experiments
on different tasks prove that Scala, requiring only one-shot training, outperforms the state-of-the-
art method under different computations and matches the performance of Separate Training with
significantly fewer parameters, promising the potential as a new training paradigm.

One limitation of Scala is the longer training time compared to conventional supervised learning of
a single model, attributable to the activation of multiple subnets during training. Nevertheless, our
training time is obviously less than separately training all the sub-networks. In the future, we aim to
enhance the training efficiency of Scala.

10



References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize
it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

[3] Y.-H. Cao, P. Sun, and S. Zhou. Three guidelines you should know for universally slimmable
self-supervised learning. In CVPR, 2023.

[4] M. Chen, H. Peng, J. Fu, and H. Ling. Autoformer: Searching transformers for visual recognition.
In ICCV, 2021.

[5] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni, P. Padlewski, D. Salz, S. Goodman,
A. Grycner, B. Mustafa, L. Beyer, et al. Pali: A jointly-scaled multilingual language-image
model. arXiv preprint arXiv:2209.06794, 2022.

[6] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data
augmentation with a reduced search space. In CVPRW, 2020.

[7] M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer, A. P. Steiner, M. Caron,
R. Geirhos, I. Alabdulmohsin, et al. Scaling vision transformers to 22 billion parameters. In
ICML, 2023.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[10] M. Grimaldi, L. Mocerino, A. Cipolletta, and A. Calimera. Dynamic convnets on tiny devices
via nested sparsity. IEEE Internet of Things Journal, 2022.

[11] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016.

[13] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[14] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu. Dynabert: Dynamic bert with
adaptive width and depth. NeurIPS, 2020.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[16] A. Kirillov, R. Girshick, K. He, and P. Dollár. Panoptic feature pyramid networks. In CVPR,
2019.

[17] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[18] S. Kudugunta, A. Kusupati, T. Dettmers, K. Chen, I. Dhillon, Y. Tsvetkov, H. Hajishirzi,
S. Kakade, A. Farhadi, P. Jain, et al. Matformer: Nested transformer for elastic inference. arXiv
preprint arXiv:2310.07707, 2023.

[19] S. Kullback. Information theory and statistics. Courier Corporation, 1997.

[20] K. Li, Y. Wang, J. Zhang, P. Gao, G. Song, Y. Liu, H. Li, and Y. Qiao. Uniformer: Unifying
convolution and self-attention for visual recognition. arXiv preprint arXiv:2201.09450, 2022.

11



[21] Z. Li and Q. Gu. I-vit: Integer-only quantization for efficient vision transformer inference. In
ICCV, 2023.

[22] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao. Post-training quantization for vision
transformer. NeurIPS, 2021.

[23] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[24] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023.

[25] Z. Pan, J. Cai, and B. Zhuang. Stitchable neural networks. In CVPR, 2023.

[26] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In ICML, 2021.

[27] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár. Designing network design
spaces. In CVPR, 2020.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018.

[29] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient
image transformers & distillation through attention. In ICML, 2021.

[30] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou. Going deeper with image
transformers. In ICCV, 2021.

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[32] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. NeurIPS, 2017.

[34] T. Vu, M. Eder, T. Price, and J.-M. Frahm. Any-width networks. In CVPRW, 2020.

[35] K. Wu, H. Peng, Z. Zhou, B. Xiao, M. Liu, L. Yuan, H. Xuan, M. Valenzuela, X. S. Chen,
X. Wang, et al. Tinyclip: Clip distillation via affinity mimicking and weight inheritance. In
ICCV, 2023.

[36] K. Wu, J. Zhang, H. Peng, M. Liu, B. Xiao, J. Fu, and L. Yuan. Tinyvit: Fast pretraining
distillation for small vision transformers. In ECCV, 2022.

[37] J. Yu and T. S. Huang. Universally slimmable networks and improved training techniques. In
ICCV, 2019.

[38] J. Yu, P. Jin, H. Liu, G. Bender, P.-J. Kindermans, M. Tan, T. Huang, X. Song, R. Pang, and
Q. Le. Bignas: Scaling up neural architecture search with big single-stage models. In ECCV,
2020.

[39] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018.

[40] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In ICCV, 2019.

12



[41] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling vision transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12104–12113,
2022.

[42] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. arXiv preprint arXiv:1710.09412, 2017.

[43] Y. Zhang, X. Ma, Y. Bai, H. Wang, and Y. Fu. Accessing vision foundation models at imagenet-
level costs. arXiv preprint arXiv:2407.10366, 2024.

[44] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation. In AAAI,
2020.

[45] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through
ade20k dataset. In CVPR, 2017.

[46] D. Zhou, B. Kang, X. Jin, L. Yang, X. Lian, Z. Jiang, Q. Hou, and J. Feng. Deepvit: Towards
deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

13



A Appendix

A.1 Implementation Details

For Separate Training (ST), we follow the exact training strategy of the official DeiT [29] and
Uniformer [20] setting. We use random horizontal flipping, random erasing [44], Mixup [42],
CutMix [40], and RandAugment [6] for data augmentation. AdamW [23] is utilized as the optimizer
with a momentum of 0.9 and a weight decay of 0.05. We set the learning rate to 1e-3 and decay with
a cosine shape. The models are trained on 4 V100 and 8 A100 GPUs with a total batch size of 1024.
We adopt Exponential Moving Average (EMA) following the official setting.

While we utilize the pre-trained ST model (r = 1.00) as the teacher for F l (·) to facilitate training
as mentioned in the Scale Coordination section in the main paper, we adopt a larger learning rate
(2e-3) and mild data augmentation (reduce the magnitude for RandAugment [6] to 1 and turn off
repeated augmentation) because Scale Coordination already regularizes the network training strongly.
At every training iteration, we activate four sub-networks separately based on Stable Sampling and
accumulate their gradients for backpropagation. The rest hyperparameters are set as the same as those
in Separate Training.

A.2 Slimmable Ability of Vanilla Representation

Tab. 1 shows that ViT is not slimmable if we directly evaluate the vanilla pre-trained model at
other widths. Here, we further explore the slimmable ability of vanilla representation and fine-tune
the vanilla pre-trained model with Scala. Tab. 8 shows that fine-tuning obtains obviously worse
performance at small width ratios compared to training from scratch, which denotes that the vanilla
representation is not slimmable and is essentially different from the slimmable representation.

Table 8: Comparisons of training from scratch and fine-tuning on ImageNet-1K.

Method Top-1 Acc. (%)

0.25 0.50 0.75 1.00

DeiT-S [29] - - - 75.0

+ Fine-tune 23.4 52.3 65.4 74.0
+ Scratch 58.7 68.3 73.3 76.1

A.3 Larger Slicing Bound

As discussed in the main text, the slicing bound has a huge impact on the performance of Scala. Here
we further expand the slicing bound from [0.25, 1.00] to [0.125, 1.000]. As shown in Fig. 12, Scala
suffers from an obvious performance drop at r = 0.25 as it is not constantly activated in the new
setting. Nevertheless, our method still manages to outperform ST at all width ratios and shows a
significant advantage at the smallest ratio r = 0.125.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
GFLOPs

25

35

45

55

65

75

Ac
c 

(%
)

ST
Scala (s=0.125)
Scala (s=0.25)
Scala (s=0.50)
Scala (s=0.75)

Figure 12: Increase the slicing bound to [0.125, 1.000] over DeiT-S [29] on ImageNet-1K.

A.4 Longer Training Process

Previous experiments validate that Scala achieves achieves performance comparable to that of Separate
Training (ST) on DeiT-B [29] in the 300-epoch training setting, even though the intermediate sub-

14



Table 9: Comparison with Separate Training (ST) over DeiT-B [29] on ImageNet-1K with different
training epochs under different r. ξ denotes the expected training epochs of each model.

Method Epoch r = 0.25 r = 0.50 r = 0.75 r = 1.00

Acc1. Acc1. ξ Acc1. ξ Acc1.

ST 300 72.2% 79.9% 300 81.0% 300 81.8%

Scala (X=13) 300 75.3% 79.3% 55 81.2% 55 82.0%
Scala (X=7) 300 75.3% 79.7% 120 81.4% 120 82.0%

Scala (X=13) 400 75.7% 79.5% 73 81.5% 73 82.3%
Scala (X=7) 400 76.0% 80.1% 160 81.7% 160 82.4%

networks training time is much less. We further extend the training process to 400 epochs in this
section and the results are shown in Tab. 9. The overall performance at various width ratios is
improved with longer training and Scala (X = 7) outperforms ST at all widths even though the
expected training epochs for intermediate sub-networks are still much less than ST.

A.5 More Ablation Studies on Activation Method

𝑭𝒍(#) 𝑭𝒔(#)𝑭𝒎𝟐(#) 𝑭𝒎𝟏(#)

(𝒂)

𝑭𝒍(#) 𝑭𝒔(#)𝑭𝒎𝟐(#) 𝑭𝒎𝟏(#)

(𝒃)

𝑭𝒍(#) 𝑭𝒔(#)𝑭𝒎𝟐(#) 𝑭𝒎𝟏(#)

(𝒄)

Figure 13: Illustration of different activation methods.

Table 10: Ablation study of various activation methods over DeiT-S [29] on ImageNet-1K under
various widths. Different activation methods are illustrated in Fig. 13. The best results are bold-faced.

Method Top-1 Acc. (%)

0.25 0.375 0.50 0.625 0.75 0.875 1.00

Scala+(a) 58.7 63.4 68.3 71.3 73.3 74.4 76.1
Scala+(b) 57.6 61.3 64.9 72.4 74.1 74.7 76.1
Scala+(c) 58.3 63.3 67.2 69.4 72.0 72.9 74.8

We validated the effectiveness of Isolated Activation by removing this component and we further
conduct more ablation studies on the activation methods where the designs are illustrated in Fig. 13.
As shown in Tab. 10, choice (b) leads to slightly better performance at Fm2 (·), but the performance
drops at Fm1 (·) significantly as it is entangled with F s (·) and the over-emphasize of F s (·) adversely
affect its performance. On the other hand, choice (c) results in a similar performance at Fm1 (·),
but the accuracy decreases significantly at Fm2 (·) which further verifies our hypothesis that F s (·)
should be isolated to reduce its negative impact on other sub-networks.

A.6 Verification of Slimmable Ability

In the main text, we found that ViT has the minimal interpolation ability compared to the CNN
structure. This suggests that optimizing larger sub-networks does not directly contribute to the
performance improvement of smaller variants, even though their weights are shared in a nested nature.
A further question is, whether ViT can still maintain the slimmable ability for the unseen width ratios
during training.

To verify this point, we respectively fix the width ratios of m2,m1 to 0.8125 and 0.4375 during
training, so that only one sub-network is optimized at each range. Fig. 14 shows that the accuracy of
unseen sub-networks is very low due to the lack of interpolation ability. Nevertheless, the performance

15



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
GFLOPs

0
10
20
30
40
50
60
70
80

Ac
c 

(%
)

ST
Scala
Scala (fix m2)
Scala (fix m1)

Figure 14: Verification of Slimmable Ability over DeiT-S [29] on ImageNet-1K. We respectively fix
the width ratio of m2,m1 to 0.8125 and 0.4375, and observe the performance at other ratios is not
affected.

at other width ratios remains similar to the default setting even though their weights are shared with
each other. This indicates that the correlation between sub-networks in ViT is weak and further
highlights how challenging this problem is.

A.7 Comparisons with Distillation Baselines

Table 11: Comparison with baseline methods US-Net and Separate Training (ST) by adding an
external teacher on ImageNet-1K dataset under different width ratios r. All methods are built upon
DeiT-S [29] which are trained for 100 epochs and ξ denotes the expected training epochs of each
model. The best results are bold-faced.

Method Param r = 0.25 r = 0.50 r = 0.75 r = 1.00

Acc1. ξ GFLOPs Acc1. ξ GFLOPs Acc1. ξ GFLOPs Acc1. ξ GFLOPs

US-Net 22M 52.7% 100 0.4 60.1% 18 1.3 66.9% 18 2.7 73.2% 100 4.6
ST 43M 45.8% 100 0.4 65.1% 100 1.3 70.7% 100 2.7 75.0% 100 4.6

US-Net+KD 22M 51.6% 100 0.4 58.7% 18 1.3 66.6% 18 2.7 73.8% 100 4.6
ST+KD 43M 48.8% 100 0.4 67.5% 100 1.3 73.3% 100 2.7 76.4% 100 4.6

Scala 22M 58.7% 100 0.4 68.3% 18 1.3 73.3% 18 2.7 76.1% 100 4.6

While we have shown that Scala outperforms baseline methods US-Net [37] and Separate Training
(ST), we further compare Scala with much stronger baselines, by adding an external teacher to
their full network during training. Specifically, we adopt the pre-trained full model from ST as the
teacher and conduct knowledge distillation for models with different widths separately. Tab. 11
shows that ST+KD exhibits similar performance at larger width ratios with Scala, despite that Scala
clearly outperforms ST+KD at smaller widths, promising its application on edge devices. Although
obtaining a better full model, US-Net+KD exhibits worse performance at smaller width ratios because
it utilizes the full network as the teacher for all subnets and this phenomenon verifies our motivation
of proposing Progressive Knowledge Transfer.

A.8 Comparisons in Training Time

Assuming to deliver 13 models in the end, we compare the training time (100 Epoch) of Scala with
US-Net [37], Separate Training on 8 A100 GPUs. The difference between US-Net and Scala is not
large as the transformer architecture has been well-optimized on GPU and we do observe a significant
time gap between Scala and Separate Training as they have to train 13 models iteratively. Moreover,
Scala can be configured to deliver 25 models without an increase in training time as we sample 4
networks at each iteration in all scenarios which further highlights our strengths.

Table 12: Comparisons of training time with baseline methods on 8 A100 GPUs.

Method Training Hours

Separate Training 123
US-Net 20
Scala 21

16



A.9 Comparisons with MatFormer

MatFormer [18] only slices the FFN block in the transformer architecture so it offers a minor
computational adjustment space and we adapt their method on DeiT-S to compare with Scala. Fig. 15
shows that Scala achieves comparable performance with it (better in most cases) when s = 0.5 with
a larger adjustment scope.

Figure 15: Comparison of Scala and MatFormer over DeiT-S. Scala offers a significantly broader
scope for computational adjustment compared to MatFormer as MatFormer only scales the FFN
block in ViT. The right figure provides a detailed magnification of the left figure.

17



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contribution is to enable ViT to become slimmable during inference which
is described in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

18



Justification: We do not have theory included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included the implementation details in the main text and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19



Answer: [Yes]

Justification: We have included the details and will release the code soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We conduct experiments following the standard protocol and include the
details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Repeating experiments on ImageNet requires lots of resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided details of our computing resources in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and follow the rules.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the papers that created the datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23


	Introduction
	Related Work
	Revisiting Slicing in Vision Transformer
	Scala
	Framework
	Isolated Activation
	Scale Coordination

	Experiments
	Experiment Settings
	Proof-of-Concept
	Comparisons over Extended Training
	Transferability
	Dense Prediction
	Ablation Study

	Conclusion and Limitations
	Appendix
	Implementation Details
	Slimmable Ability of Vanilla Representation
	Larger Slicing Bound
	Longer Training Process
	More Ablation Studies on Activation Method
	Verification of Slimmable Ability
	Comparisons with Distillation Baselines
	Comparisons in Training Time
	Comparisons with MatFormer


