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Abstract

Large Language Models (LLMs) capable of handling extended contexts are in
high demand, yet their inference remains challenging due to substantial Key-Value
(KV) cache size and high memory bandwidth requirements. Previous research
has demonstrated that KV cache exhibits low-rank characteristics within the hid-
den dimension, suggesting the potential for effective compression. However, due
to the widely adopted Rotary Position Embedding (RoPE) mechanism in modern
LLMs, naive low-rank compression suffers severe accuracy degradation or cre-
ates a new speed bottleneck, as the low-rank cache must first be reconstructed
in order to apply RoPE. In this paper, we introduce two key insights: first, the
application of RoPE to the key vectors increases their variance, which in turn re-
sults in a higher rank; second, after the key vectors are transformed into the latent
space, they largely maintain their representation across most layers. Based on
these insights, we propose the Sparse Attention in Latent Space (SALS) frame-
work. SALS projects the KV cache into a compact latent space via low-rank
projection, and performs sparse token selection using RoPE-free query—key in-
teractions in this space. By reconstructing only a small subset of important to-
kens, it avoids the overhead of full KV cache reconstruction. We comprehensively
evaluate SALS on various tasks using two large-scale models: LLaMA2-7b-chat
and Mistral-7b, and additionally verify its scalability on the RULER-128k bench-
mark with LLaMA3.1-8B-Instruct. Experimental results demonstrate that SALS
achieves SOTA performance by maintaining competitive accuracy. Under differ-
ent settings, SALS achieves 6.4-fold KV cache compression and 5.7-fold speed-up
in the attention operator compared to FlashAttention2 on the 4K sequence. For the
end-to-end throughput performance, we achieves 1.4-fold and 4.5-fold improve-
ment compared to GPT-fast on 4k and 32K sequences, respectively. The source
code will be publicly available in the future.

1 Introduction

The groundbreaking success of Large Language Models (LLMs), such as ChatGPT [I5] and
Claude [[], is transforming information retrieval in many areas. The exponential growth in LLM
service requests is creating an unprecedented demand for inference optimization algorithms, espe-
cially for long-context applications. In particular, many research efforts [[[4, 201, 28, B3] show that
the Key-Value cache (KV cache) acts as a major performance bottleneck in LLM serving. As the
sequence length increases, the KV cache consumes a large portion of GPU device memory. This
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Table 1: KV data movement, memory cost and complexity comparison of quantization, low rank
and token sparse method that is with fixed, dynamic and local token selection strategy.

Name Methods KV data movement Memory size Computation Complexity Accuracy
Palu [4] Low Rank Median Low High Low
Loki [20] Dynamic + Low Rank Low Median Median Median
StreamingLLM [B3] Fixed pattern Low Median Low Low
Quest [22] Dynamic Low High Median Median
DS [29] Dynamic Low Median Median High
Hshare [23] Dynamic Low Median Median High
SALS (Ours) Dynamic+Low Rank Low Low Midian High

high resource requirement underscores the urgent need to mitigate the KV cache memory overhead
and further improve attention efficiency.

To tackle the KV cache overhead challenge, previous works [, 20] show that the KV cache exhibits
low-rank characteristics within the hidden dimension, and thus can be effectively compressed in
the latent space. Palu [4] further shows that there exists a clear trade-off between accuracy and
reconstruction overhead for multi-head attention. Compressing each KV head separately reduces
the overhead but at the cost of losing accuracy. However, compressing all heads together by low-
rank projection improves accuracy by preserving the global information but results in significantly
increased reconstruction cost. In this work, we show that sparsely selecting a small subset of tokens
from the KV cache significantly reduces reconstruction error while preserving model accuracy.

Recently, Rotary Position Embedding (RoPE) [21]] has been widely adopted in LLMs; it introduces
sinusoidal positional information by multiplying query and key states with rotation matrices. This
not only prevents the fusion of low rank weights into the query state, but also requires the reconstruc-
tion of key states from the latent space. In this work, we observe that the application of RoPE to the
key vectors increases their variance, which in turn results in a higher rank. Therefore, the KV cache
must be compressed before applying RoPE, which leads to high reconstruction complexity. We fur-
ther observe that the key vectors in the latent space largely preserve their representation across most
layers. Inspired by Double Sparse [29], we use these compressed key vectors as token selection
guidance, so that only the selected tokens need to be reconstructed, which significantly reduces the
reconstruction complexity.

In this paper, we propose the Sparse Attention in Latent Space (SALS) framework. SALS projects
all attention heads into a shared single-head latent space via low-rank projection, for both pre-RoPE
queries and pre-RoPE keys. The approximation attention scores are computed in the latent space and
the top-k tokens are selected accordingly. These selected tokens are then reconstructed and applied
with RoPE for the final attention computation. By reconstructing only a small subset of all tokens,
it avoids the overhead of full KV cache reconstruction.

In summary this paper makes the contributions as follow:

* We observe that applying RoPE to key vectors leads to increased variance, resulting in higher
rank and lower compression rates. In , key vectors before RoPE can still maintain the represen-
tation for the critical token selection.

* We propose the Sparse Attention in Latent Space (SALS) framework to utilize the low-rank
pre-ROPE KV cache compression and further to adopt the KV cache in latent space to select
critical tokens. The sparse attention is then proposed with reduced KV data movement and
computational complexity.

* We comprehensively evaluate SALS on various tasks using two large-scale models: LLaMA2-
7b-chat and Mistral-7b, and additionally verify its scalability on the RULER-128k benchmark
with LLaMA3.1-8B-Instruct. Experimental results show that we can achieves much higher ac-
curacy comparing to the low-rank based KV cache compression. Comparing to sparse attention
works, under the similar benchmark accuracy, SALS achieves 6.4-fold KV cache compression
and 5.7-fold speed-up in attention operator compared to FlashAttention2 on 4K sequence. For
the end-to-end throughput performance, SALS achieves 1.4-fold and 4.5-fold improvement com-
pared to GPT-fast on 4k and 32K sequences respectively.
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Figure 1: (a) Increasing inference time due to low-rank matrix reconstruction. Low-rank KV cache
with overhead leads to longer inference time than the standard attention due to the reconstruction
overhead; (b) A simplifed key vector example with changed PCA direction after applying RoPE

2 Related work

2.1 Attention in Latent Space

The low rank matrix decomposition such as singular value decomposition (SVD) to compress LLMs
has been actively studied. Existing works such as ASVD [31], SVD-LLM [?4] and CALDERA [[I¥]
are proposed to compress LLM weights. However, as the context sequence length and batch size
increase, the KV cache size is getting larger than LLM weights, urging the need for KV cache com-
pression. Eigen Attention [T9] has been proposed to compress the KV cache after applying RoPE
but suffers a relatively large accuracy loss. To improve the accuracy, the most naive way is to com-
press the pre-RoPE KV cache. However, as Palu [8] points out, this will greatly introduce additional
computation for recovering the key vectors. Palu further proposes the grouped-head low-rank de-
composition optimization to reduce the computation overhead. We agree with Palu’s observation
but tackle the computation from the sparse perspective. By only selecting a subset of all the to-
kens (the critical tokens), the low-rank key vectors reconstruction complexity is greatly reduced. By
integrating sparse attention, we observe that the KV cache size, data movement and computation
complexity are all reduced as summarized in Table 0.

2.2 Sparse Attention

Early efforts to reduce attention complexity in transformers, such as Sparse Transformer [5], Re-
former [I2], and Longformer [B], primarily focused on training-based approaches to achieve sparse
attention. In contrast, recent studies [/, 22, 33] have explored post-training sparse attention, lever-
aging the inherent sparsity of attention scores to identify the most salient tokens without retraining.
For instance, Streamingl.LM [f] identifies initial and recent tokens as critical, while others [372, B3]
accumulate attention scores to locate important tokens in the KV cache. Quest [?2] assesses KV
cache page importance via min/max metrics, and Double-sparse [2Y] selects key KV tokens across
important channels. However, most of these post-training approaches mainly reduce bandwidth and
computation cost, leaving the KV cache uncompressed and thus a potential bottleneck [0, 28].

Natively Sparse Attention (NSA) [B0] introduces a dynamic hierarchical sparse strategy combining
coarse-grained token compression with fine-grained token selection. Unlike SALS, NSA requires
training from scratch to learn a compressed attention module. In contrast, SALS can be calibrated
post-training, performing top-k token selection based on low-rank latent approximations rather than
a trained sparse module. This allows SALS to achieve comparable sparsity behavior without retrain-
ing and with precise control over the KV-cache compression process.

Overall, our work addresses the limitation of prior sparse attention methods by storing and operat-
ing on a low-rank KV cache, then selectively reconstructing high-dimensional representations for
exact sparse attention. This design preserves accuracy while substantially reducing memory and
computation overhead.



3 Challenges on Latent Space Transformation

In this section, we first review the RoPE mechanism preventing the fusion of query and key states
in latent space. We also show that after RoPE, the key vector variance increases as well as the rank.
We then analyze the pre-RoPE representational capability of tokens in the latent space, focusing on
their ability to preserve key semantic features.

3.1 Latent Space Transformation with RoPE

The introduction of the RoPE mechanism complicates the low-rank transformation into the latent
space. We begin by considering the case without RoPE. Let K € R**¢ denote the key matrix, where
s is the number of tokens and d is the dimensionality of each head. By applying an orthonormal
projection matrix U € R%*", with r < d, we can transforme origin Key matrix into latent space:

K=KU ey

so that each original Key vector k; € R? is mapped to latent space k; € R" leading to kv cache
compression rate d/r. This method works well on the basis of that

UUT ~ 1, QKT ~ QUUTKT )

However, once RoPE is introduced, the relative order between the RoPE rotation matrix R and the
lowrank projector UUT becomes crucial. In Equation B, we show both design choices in a single
expression: (i) pre-RoPE transformation, where keys are first transformed and then rotated, and (ii)
post-RoPE transformation, where keys are rotated first and transformed afterwards. For a query at
position ¢ and a key at position j, the attention score be approximated in two lowrank forms:

QK] ~ QR;(R; UU")K" or QR;(UU'R;)K', (3)

pre-RoPE post-RoPE
where R,; and R ; are the RoPE rotation matrices for positions ¢ and j, respectively.

Ideally, we can adopt the post-RoPE transformation to cache K= KR, U and transform the rotated

query into a latent space Q = QR,;U to avoid the reconstruction complexity. However, as we will
discuss later, applying RoPE will rotate the key vectors with larger variance, making them difficult
to approximate using a low-rank matrix. On the other hand, in the pre-RoPE transformation, caching

K and reconstructing the full-rank keys as KUT will result in substantial overhead.

Variance amplification for post-RoPE rotation. Previous works [@, 2] observe that the key cache
exhibits low-rank characteristics with a relatively small rank to retain approximately 90% of the en-
ergy. As such, we can use a single projection weight U as shown in Equation [ to compress the
key cache. However, we find that this phenomenon only holds for the key cache prior to applying
RoPE. From Figure [(b), we observe that applying RoPE to a set of key vectors pushes the data
points outward and rotates their principal axes. As shown in Figure [(b), the principal component
is rotates away from its original direction and the points become more scattered with two main prin-
cipal components. This indicates the increased rank due to applying RoPE. Moreover, the principal
components rotate based on the token position, suggesting that a single fixed projection matrix may
no longer approximate all of these rotated subspaces. Therefore, a pre—RoPE key for latent space
transformation is preferable for maintaining accuracy.

Compute overhead during pre-RoPE reconstruction From Figure Di(a), we compare full atten-
tion with pre-RoPE low-rank compression across sequence lengths ranging from 1K to 32K to-
kens. While low—rank compression can reduce memory size, the time spent reconstructing low-rank
keys/values from their rank-r form and applying the RoPE rotation grows linearly with sequence
length and soon dominates the total attention runtime at 32 K tokens. This aligns with our analysis
of Equation B, which intruoduces a trade-off of memory savings and computational cost.

3.2 Token Representation in Latent Space
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Figure 3: Overall architecture of SALS. Three stages are introduced with stage 1 for multi-head KV
Cache compression, stage 2 for token selection in latent space and stage 3 for sparse attention.

Overlap Score Across Layers

To quantify the token representations of the query and key in ”
the latent space, we first compute the latent-space attention vec-
tor p = QK, where in the pre-RoPE setting, Q = QU. Let
C = {i1,i2,...,in,} € {1,...,8}, N. < s, denote the in-
dex set corresponding to the top-N, entries of p. The overlap
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Figure D presents the overlap score for LLaMA—-7B-chat, LLaMA— Figure 2: High overalp rate of
8B and Mistral-7B-v0.2. We observe that the average overlap score pre-RoPE across layers
mostly remains above 90% for layers 2-29 but drops below 50% in layers 0, 1. A similar observation
has been reported for hybrid RoPE attention design [7]. This finding indicates that, even when
ROPE is completely omitted, latent space tokens can still preserve almost all of the full attention
scores across the majority of layers.

4 Sparse Attention in Latent Space Framework

4.1 SALS Framework

In this section, we introduce our proposed SALS, which leverages a low-rank projection matrix
to transform multi-head pre-RoPE keys into a compact single-head latent space, thereby markedly
shrinking the memory footprint. To avoid the prohibitive cost of reconstructing the entire key cache,
SALS estimates attention scores directly in the latent space, selects the top-/N, most critical tokens,
and reconstructs only their corresponding keys. RoPE is only applied to the reconstructed keys,
which are then used to compute the exact attention weights. Figure B provides a high-level summary
of the SALS pipeline. Here, we use the top-k index [2,7] to indicate the selected tokens. The
selected tokens are then reconstructed and reshaped to multi-head keys for sparse attention. The
SALS framework is pipelined with three stages: KV cache compression to latent space, critical
token selection in latent space and selective reconstruction from latent space for the later sparse
attention.

4.2 Multi-head KV cache Compression to Latent Space

In the offline calibration process, we select a small calibration dataset from the pre-training corpus
and collect its pre-RoPE key tensors. Let K € R**"? denote the stacked multihead keys of the
s calibration sequences. We begin by computing the empirical covariance of the calibration keys:
C = K'K. Applying an eigenvalue decomposition, C = UX U, and selecting the leading 7
eigenvectors U, yields the optimal rank-r projection matrix for the latent space. Note that the key
vectors K € R**" are reshaped by merging the head number with head dimension. We provide
the rational using the following lemma.

Lemma 1. For any column-orthonormal matrix U € R"" satisfying UTU = 1, we define
the captured variance by U as E(U). For the multi-head joint projection, all possible projection
matrix set is defined as U, := {U € R">" | U'U = 1}, and B, := {diag(Uy,...,U,) |U; €



Algorithm 1 Sparse Attention in Latent Space

Input: Pre-RoPE query q € R™, key k € R™?, value v € R"?, Projection matrix U, € R"4x",

Low-rank key cache K € R(S-Dxr, quantised value cache V € R(S-Dxnd, Sparsity budget £,
Approx latent rank 7*
Output: Attended output y € R™?

1: Function SPARSEATTENTION(q, k, v, U,., K,V, k)

2 q <+ qU,; k «+ kU, # Project new token to r-dim. latent space
3 K + concat(K, k); V « concat(V,v)

4: p « qr*f(I* # Cheap similarity on top-r* dims
5:  C + TopK(p', k) # Selectr top—k critical token index
6 Ke IN(CUrT # Reconstruct critical latent key cache
7 q”* + RoPE(q); Kg + RoPE(K¢) # Standard flash attention (FA) computation
8 p Softmax(qRKé%T/\/&)

9: y < pVe
10: return y
11: End Function

Rdw/, U] U, = 1./}, where v’ = r/n, is all possible projection matrix set for per-head projection.
For all situations, the optimal U from multi-head joint projection matrix can capture more enery
then per—head projection matrix:

max E(U) > max E(U)

Uel, ueB,

Proof. Pick any U = diag(Ul, ceey Un) € B, with U] U; = I,.. Because the blocks occupy
disjoint coordinate ranges, their product is blockdiagonal:

U'U = diag(U] Uy,..., U, U,,) = diag(L,...,L/) =1,.

Hence U is column-orthonormal and thus U € U,.; consequently B,. C U,.. Since every candidate in
B, is feasible for the joint search I/, maximizing over the larger set cannot yield a smaller value. [J

4.3 Critical Token Selection in Latent Space

As discussed in previous works [25, 9], tokenwise attention is inherently sparse. However, identi-
fying the relevant (critical) tokens fast enough remains the main bottleneck of most sparse-attention
schemes. Guided by the observation in Sec B2 that pre-RoPE latent keys already reveal the sparsity
pattern of the middle layers, we forgo the expensive full-rank query-key multiplication and instead
work in the latent space.

More specifically, let U, € R"¥*" be the joint projector from Equation M and let 7* < 7 for scoring.
We project the query once, @ = Ulq € R", and keep only its leading coordinates G~ € R,
Each cached key already stores its full latent vector k; = Ul k;, from which we extract the first *

dimensions, k; ..+ € R"". The approximate attention score of token in position j is a cheap inner
product

_ ~T
Sj = Aipx kj’”’*

Thus, critical tokens are identified directly from the existing key cache, without extra storage and at
a fraction of the original compute.

4.4 Selective Reconstruction from Latent Space for Sparse Attention

Sparse attention is defined by restricting the standard attention computation to a selected subset of
keys and values. Given a query matrix Q € R™*% and a full set of key and value matrices of length
s, we identify a subset of salient indices

C:{il,ig,...,iNC}g{l,...,s}, Nc<<8, (4)



where N, denotes the number of selected positions on the token sequence. The corresponding sub-
matrices Ko € RVeX"%4 and Vo € RNeX"Xd gre extracted based on the selected indicesC. Here,
the salient indices C are obtained via critical token selection in latent space. The sparse attention
output is then computed by restricting the standard attention to the selected tokens:

KT
Pc = softmax(Q\/ac ) , y =pcVe. (@)

This method works well since the softmax operation normalizes the input distribution so that the
output sums to 1 and only a few positions (or tokens) in C dominate with large values. The rest
scores after softmax closes to 0. The whole SALS algorithm is summarized in Algorithm [I.

4.5 Performance Discussion

As the roofline model [R] suggests, the performance of a GPU is bounded by either computation
or memory bandwidth. In attention computation, performance is commonly bounded by memory
bandwidth [[Z], which is primarily consumed by KV cache data movement. For a context of s tokens
and feature dimension d, full attention needs to transfer 2sd elements of keys and values. On the
other hand, for the SALS framework, critical token selection and sparse attention both involve data
movement. Critical token selection requires r* < d latent dimensions, so the query—key dot products
read sr* elements. After selecting the top—k tokens, SALS only needs to access low-rank key and
value caches, each of size kr. The second pass therefore moves 2kr elements.

Combining this two phases, the sparse variant moves sr* + 2kr scalars, so its memory-bound
speed-up is: sr?_f_%m = 7 i_ R Here d,.» = r*/d, d, = r/d, ks = k/s denote the
latent-approximated-score ratio, the low-rank ratio, and the token sparsity, respectively. We develop
a Triton kernel that fuses token selection, reconstruction and RoPE rotation into a single pass.
This fused reconstruct-RoPE kernel reduces memory traffic by 7.69x to 14.28 x, depending on
the chosen sparsity level and low-rank compression ratio, compared to the standard FlashAttention
implementation.

S Experiment

5.1 Setup

Models and tasks. We evaluate

our SALS framework on two main- Taple 2: Evaluation on GSM8K and CoQA datasets for
stream 7B chat models: LLaMA2- 1]aMA2-7B—chat

7B—Chat [23], that employs multi—
head attention (MHA), and Mistral-7B— /. i04 GSMSK (strict/flexible)t CoQAt Memory  Comp.
v0.2 [ICT], that uses grouped—query at- Access| _ratio}

tention (GQA). To assess accuracy, we _basline 0.2335/0.2335 05997 100 1.00
report results on the reasoning bench-  KIVI4 0.2297/0.2305 05992 031 031

, ; KIVI-2 0.2047 /0.2047 0.6010 019  0.19
mark GSM8K [6], the conversational =~ =7 30%(3bit) 0.1713/0.1759 05938 014  0.14

alu-5U7(501 . 3/0. .. . .

benchmark CoQA [I6], and the 16 En-  pyjy-50%(3bi 0.0614/0.0879 05560  0.09  0.09
glish subsets of LongBench [0] that “gyys7sq, 0.2312/0.2343 05975 0.3 028
probe long—context understanding. All ~ SALS-12.5% 0.2176 /0.2229 0.6070  0.07 0.15

experiments are conducted on a machine
with Xeon(R) Platinum 8336C CPU, one GPU (ampere architecture), and 128G RAM.

Baselines. We compare SALS with several state of the art baseline in two directions. For KV-cache
compression we select Palu (low-rank projection) [A] and KIVI (quantization) [T4]. For token—
sparse decoding we include Double Sparse [?9], Hshare [?5], and Loki [P0]. For the KV—cache
compression baselines, we evaluate Palu at every reported compression ratio, including its variants
that apply the optional quantisation step. For KIVI we evaluate both official settings: 4 bit and 2
bit. For the token—sparse baselines, sparsity is introduced only during the decoding phase, and we
enforce the same overall sparsity ratio as Hshare to ensure a fair comparison.

Compression setup and calibration. To obtain the latent projection matrix, we randomly sample
512 sequences of length 4096 from the C4 corpus [9] and compute it offline. We apply multi-head
Joint compression to the key cache at two ratios: d, = 25% and d,, = 12.5%. For latent scoring,



Table 3: Evaluation on LongBench datasets
Single- Multi- Summari- Memory

Model Method QA QA Zation Few-shot Synthetic Code  Avg Access),
baseline 2450  22.18 23.64 62.80 6.50 56.29  32.65 1.00
KIVI-4bit 2476  22.22 23.40 62.67 6.75 56.42  32.70 0.31
Palu-30% (3bit)  22.36  22.01 22.66 60.39 7.50 50.53 3091 0.13

LLaMA2-7B-chat SALS-25% 2437  22.50 23.40 63.01 6.50 53.80 32.26 0.11
KIVI-2bit 23.11 2140 22.67 62.81 5.75 55.84 31.93 0.19
Palu-50% (3bit)  20.48  22.18 21.44 54.62 5.75 37.07 2692 0.09
SALS-12.5% 2481 22.52 23.08 62.84 5.00 53.58 3197 0.06
baseline 3643  29.65 28.06 66.72 44.87 5296 43.12 1.00
KIVI-4bit 36.34  29.85 28.09 66.81 44.67 5290 43.11 0.31
Palu-30% (3bit)  29.48  36.40 27.20 65.73 53.19 40.77 34.74 0.13

Mistral-7B-v0.2 SALS-25% 36.61  29.92 27.57 66.63 43.54 5249 42.79 0.11
KIVI-2bit 3534  28.63 27.72 66.77 39.68 52.63 41.80 0.19
Palu-50% (3bit)  26.73  32.72 25.73 63.25 18.57 4443  35.71 0.09
SALS-12.5% 35.18  29.88 27.18 66.98 35.32 51.39  40.99 0.06

we simply set r* = 0.5 for all models. Since value tensors are almost full rank and play a pivotal
role in attention, we forgo low-rank projection for them and instead perform channel-wise group
quantisation that mirrors the key-cache setting (4 bit at 25% and 2 bit at 12.5%).

Following KIVI, we adopt a mixed high—precision / low—precision scheme: tokens in the most recent
window are compressed by only 50%, whereas all preceding tokens are compressed according to
the target ratio of the experiment. The high—precision window is aligned with the sparsity window:
when the sparse mechanism always selects the most recent w tokens, the compression stage likewise
keeps those same w tokens in high precision. Based on the observations in Figure B, we skip the
sparsification for layers 0, 1, and 31 across all models to ensure more accurate compression and
sparsity results.

5.2 KVcache Compression Comparison

Implementation details. For the dataset GSM8K and CoQA, we always keep the most recent
w = 128 tokens and decode the remaining context at a fixed sparsity of 1/4. For the dataset
LongBench, LLaMA2-7B—Chat supports a 4 k context window, whereas Mistral-7B—v0.2 supports
32k. To equalise the average sparsity at 1/8 on this benchmark, we retain N, = 512 tokens for
LLaMA2-7B—Chat and N, = 1024 tokens for Mistral-7B-v0.2. For LLaMA2-7B—Chat we follow
the Hshare [Z5] configuration (x = 16 sink tokens, y = 432 critical tokens, z = 64 recent tokens)
and simply double each count for Mistral-7B—v0.2.

Results. Tables D shows the evaluation on the benchmark (GSM8K, CoQA) on LLaMA2-7B—chat
model. We can see that although Palu achieves the highest compression rate, the acurracy drop is
non-negligible, especillay for the GSM8K dataset. SALS provides two setting results with 25%
KV cache compression rate (SALS-25%) and 12.5% compression rate (SALS-12.5%). SALS-
25% achieves the best accuracy compared to KIVI and Palu, with neligible loss compared to the
baseline. Tables B compares task-level performance across six LongBench categories, alongside
normalized memory access costs. The first three columns reflect core reasoning tasks, where SALS
achieves consistently strong performance. Notably, SALS-12.5% retains competitive accuracy while
reducing memory access to just 6% of the baseline. This indicates that SALS preserves informative
tokens more effectively. The memory-access savings translate into practical latency improvements,
as fewer KV memory lookups reduce attention computation overhead.

5.3 Token-Sparse Comparison

Since SALS incorporates a sparsification stage, we also compare it with state of the art sparse de-
coders, such as Double Sparse, HShare and Loki in LongBench datasets.

Implementation details. We use the same sparse setting as Sec B2 for all methods, which have
x = 16 sink tokens, y = 432 critical tokens and z = 64 recent tokens, achieving sparsity on
LLaMA2-7b—chat at 1/8.



Table 4: Comparison of Token Sparse Methods on LLaMA2-7B-chat Using LongBench Tasks

Single- Multi- Summari- . Memory
Method QA QA Zation Few-shot Synthetic Code  Avg Access),
baseline 2450  22.18 23.64 62.80 6.50 56.29 32.65 1.00
Double Sparse ~ 24.78  22.72 24.70 61.84 4.17 51.66 31.64 0.16
HShare 2459  22.18 24.54 61.69 4.74 5326 31.83 0.14
Loki 2457  18.09 24.37 63.43 4.75 5649 3195 0.19
SALS-25% 2437 2250 23.40 63.01 6.50 53.80 32.26 0.11
SALS-12.5% 2481 2252 23.08 62.84 5.00 53.58 31.97 0.06

Table 5: Performance comparison of baseline and SALS methods on the RULER dataset with
Llama3.1-8B-Instruct (4k sequence length).

Method | avg SI  S2 MKI MK2 MV MQ FEW QAl QA2
Baseline 81.60 99.6 960 946 73.6 9385 969 6847 69.6 418

SALS-25% 80.81 99.6 952 942 658 932 964 7153 702 412
SALS-12.5% | 75.86 974 938 928 422 84.05 93.05 7253 678 39.14

Result. Table B shows that, on LongBench, SALS with 25% key compression matches the average
accuracy of the baseline while issuing only about 11% of the baselines memory traffic. When the
compression is tightened to 12.5%, the Memory—Access Ratio drops to just 5.8%, yet SALS still
outperforms all competing sparse methods in accuracy. These results suggest that the latent-space
scoring mechanism selects critical tokens more accurately than existing heuristics, enabling KV-
cache compression and token sparsity to coexist without loss of accuracy.

5.4 RULER Benchmark

Dataset. RULER [IIU] is a recently proposed long-context benchmark designed to evaluate the rea-
soning, retrieval, and compositional understanding capabilities of large language models across a
wide range of input lengths and retrieval patterns. It decomposes the evaluation into fine-grained re-
trieval types, including single-key, multi-key, multi-value, and multi-query tasks, along with few-shot
and question-answering (QA) subtasks. Compared with LongBench, RULER provides a more de-
tailed breakdown of retrieval behaviors, making it well-suited for assessing token selection accuracy
and KV-cache compression performance.

Implementation details. The experimental setup follows the same configuration as in Sec. B2.
We evaluate all methods on a 128k-token context, applying an 8 sparsity ratio, i.e., selecting 16k
active tokens during inference. The retained-to-pruned token ratio is identical to that used in the
LongBench experiments, ensuring consistent compression levels and comparable evaluation metrics.
All experiments are conducted on the LLaMA 3.1-8B-Instruct model with a 4k sequence length.

Result. Table B summarizes the performance of SALS on the RULER dataset. At a 25% com-
pression ratio, SALS achieves nearly identical average accuracy to the baseline (80.81 vs. 81.60),
demonstrating its high fidelity in token selection and KV-cache reconstruction. Performance remains
consistent across most retrieval subtasks, including NIAH-Single-1/2, Multi-Value, and Multi-Query,
indicating that latent-space sparsification preserves key contextual semantics even under substantial
cache reduction.

When the compression is further tightened to 12.5%, accuracy degradation mainly occurs in NIAH-
Single-1 and Multi-Key-2, where the retrieval dependency is strongest. Nevertheless, the model
still achieves competitive overall performance (75.86 average) and stable scores on Few-shot and
QA tasks. These results suggest that the proposed latent-space attention mechanism can maintain
accurate token importance estimation even under extreme sparsity, enabling effective KV-cache com-
pression with minimal accuracy loss across retrieval-oriented benchmarks.

5.5 Efficiency Evaluation

Inference details. Following Hshare [’5], all speed tests are performed on the PyTorch back-
end, with the Triton—based fused kernel as discussed in Sec E3. We evaluate two aspects: (i)



Table 6: Attention Operator Latency (ms) across Methods and Input Configurations
Config (ms) \ Flash-attn [Z] Loki [20] Double-sparse [29] Hshare [25] SALS-25% SALS-12.5%

bs=8, 1k 0.230 0.248 0.138 0.134 0.409 £0.093 0.357 £0.051
bs=8, 2k 0.830 0.464 0.237 0.430 0.430 +0.018 0.359 £ 0.012
bs=8, 4k 1.630 1.102 0.724 0.576 0.530 £0.008 0.439 £0.016
bs=16, 1k 0.440 0.452 0.223 0.134 0.415 £0.008 0.360 £0.011
bs=16, 2k 1.630 0.864 0.434 0.246 0.552 £0.040 0.444£0.019
bs=16, 4k 3.230 2.101 1.319 1.067 0.757 £0.026  0.565 £ 0.013

self-attention latency and (ii) end—to—end generation speed—up. Self—attention latency is com-
pared against FlashAttention—v2 [[], whereas end—to—end throughput is benchmarked against GPT-
Fast [[3]. Experiments use batch sizes of 8 and 16 and sequence lengths of 1k, 2k, and 4k tokens;
the sparsity ratio is fixed at 1/8 for all methods.

Result. Tables B reports our attention latency comparisons. Mean and varaince are reported using
1000 repetions. Thanks to the added token sparsity, SALS accelerates the standalone attention opera-
tor by 7,46x speedup for batch size (bs) =8 and 4k sequence length (4k). Similar performance speed
is also observed when batch size is 16. SALS will introduce some overhead for short sequences (e.g.
1k) but for longer sequences the speed-up is significantly better than the state-of-the-art sparse algo-
rithm. As discussed in Section B3, reducing memory access will improve the attention performance.

Table @ shows the end-to-end through-

put speed-up of SALS comparing to the  Taple 7: Long Context End-to-End Performance

GPT-Fast results. Note that batch size is  Throughput Comparison (token/second)
chosen 4 for sequence 64k to avoid GPU

out of memory. Mean and varaince are Bsz | Seq (k) | GPT-Fast | SALS-25% | SALS-12.5%
reported using 50 repetions. We observe

. 8 4 118 154.1+7.1 163.5 + 5.1
that when sequence is 8k, the speed-up 8 8 70.6 198.6+51 | 150.1+ 3.3
of SALS-12.5% is 2.13x although the 8 16 38.3 102.5+ 0.3 1227+ 7.7
sparsity ratio is 1/8. This is due to the 8 32 19.8 67.97+0.8 | 89.47+1.4
overhead of reconstructing the selected 4 64 9.2 32.92 4+ 0.3 | 42.96+ 0.9

token. When the sequence is set 32k, the
speed-up of SALS-12.5% is increasing
and reaches 4.57x. Coupled with the strong accuracy of SALS, these results confirm that combin-
ing latentspace KVcache compression with token sparsification offers an effective tradeoff between
speed and accuracy.

6 Conclusion

This paper investigates the KV cache compression based on the low-rank characteristics in the hid-
den dimension. We further discuss the increasing variance of keys due to applying rotary position
embedding and propose to use the pre-RoPE keys to select the critical tokens. We observe that
after the key vectors are transformed into the latent space, they largely maintain their representa-
tion across most layers and thereby the salient tokens are selected with high accuracy. Based on
these insights, we propose the Sparse Attention in Latent Space (SALS) framework. The SALS
framwork achieves compressed KV cache to the latent space, selects the critical token in the latent
space with significantly less computation load and performs sparse attention on the selected tokens.
By reconstructing only a small subset of important tokens, it avoids the overhead of full KV cache
reconstruction. Experimental results demonstrate that SALS achieves SOTA performance by main-
taining competitive accuracy under different settings and achieving 6.4-fold KV cache compression
and 5.7-fold speed-up in attention compared to FlashAttention2 on 4K sequences. For the end-to-
end throughput performance, we achieve 1.4-fold and 4.5-fold improvement compared to GPT-fast
on 4k and 32K sequences respectively.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction in this paper accurately reflect the papers con-
tributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitation our method in the experiment section. Result is
shown in Table 5 and discuss in Line 303.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

» The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes],

Justification: In this paper, all proofs of theorems are provided and all assumptions are
clearly stated or referenced in the statement of any theorems

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the settings are clearly discussed and cited. The results in this paper can
be reproduced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: : We provide open access to the data and code, with detailed instructions to
reproduce all the experimental results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper details all the calibration and evaluation details necessary to under-
stand the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the speed-up experiment in our paper, we repeat the same setting for 10
times and report the average and varaince.For our benchmark accuracy, we do not repeat
run the same benchmark multiple times since we notice very little variance in the accuracy.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, the paper provide sufficient information on the computer
resources needed to reproduce the experiments

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the challenging problem of LLM long-context inference
in the Introduction and the benefits to adopt our method. There is no negative societal
impacts for the work.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper has no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: : The creators or original owners of assets used in the paper are properly
credited and cited. The licenses and terms of use have been clearly mentioned and properly
respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: This paper is written by the authors and LLM is only used for grammar
checking.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A Key Dimensianlity Analysis with RoPE
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Figure 4: (a)-(b): Eigenvalue distributions of key covariance matrices in LLaMA-2-7B-Chat and
Mistral-7B-Instruct-v0.2 before and after applying Rotary Position Embedding (RoPE). (c)—(d):
Number of principal components required to retain 90% of the total variance across transformer
layers, indicating changes in effective rank after RoPE.

In this section, we conduct a numerical analysis to quantify how rotary position embedding (RoPE)
alters the principal-component structure of the key states. We perform principal component analysis
(PCA) on the key tensors before and after applying RoPE, denoted as pre-RoPE and post-RoPE,
respectively. Concretely, we first compute the covariance matrix of the key states and then carry
out an eigenvalue decomposition. The magnitude of each eigenvalue reflects the contribution of
its associated eigenvector: the presence of many small eigenvalues indicates that the corresponding
representation is effectively low rank. To relate rank to the spectrum more systematically, we adopt
the metrix introduced in Loki[20]:
d
— mi . (@) v
Rank;(v) = mln{ deZy: Z)\l > 100},
1=1

where /\l(z) denotes the i-th largest eigenvalue of the covariance matrix for the keys in layer . This
definition specifies the smallest number of principal components needed to explain at least v% of the
total variance, enabling a direct comparison of the intrinsic dimensionality before and after RoPE.

Figure Bl(a)—(b) illustrate the eigen—value spectra of the first layer (I = 0) for Llama—2—-7B—Chat and
Mistral-7B-Instruct—v0.2 under the pre-RoPE and post-RoPE conditions. The pre-RoPE spectra
exhibit a markedly larger number of small eigenvalues, whereas the post—-RoPE spectra are shifted
upward, corroborating our earlier finding that RoPE increases the overall variance. Figure B(c)—(d)
present the layer—wise Rank;(90) values, i.e. the minimal dimensionality needed to retain 90 % of
the variance. For both models, the post—-RoPE condition consistently requires a higher rank, reflect-
ing the broader spectra observed in panels (a)—(b). In addition, the required rank varies substantially
across layers, indicating that a layer—adaptive rank selection scheme could further enhance compres-
sion efficiency.
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