
Under review as submission to TMLR

CAREL: Instruction-guided reinforcement learning with
cross-modal auxiliary objectives

Anonymous authors
Paper under double-blind review

Abstract

Grounding the instruction in the environment is a key step in solving language-guided
goal-reaching reinforcement learning problems. In automated reinforcement learning, a key
concern is to enhance the model’s ability to generalize across various tasks and environments.
In goal-reaching scenarios, the agent must comprehend the different parts of the instructions
within the environmental context in order to complete the overall task successfully. In this
work, we propose CAREL (Cross-modal Auxiliary REinforcement Learning) as a new
framework to solve this problem using auxiliary loss functions inspired by video-text retrieval
literature and a novel method called instruction tracking, which automatically keeps track
of progress in an environment. The results of our experiments suggest superior sample
efficiency and systematic generalization for this framework in multi-modal reinforcement
learning problems. Our code base is available here.

1 Introduction

Numerous studies have examined the use of language goals or instructions within the context of reinforcement
learning (RL) Röder et al. (2021); Geffner (2022); Luketina et al. (2019). Language goals typically provide
a higher-level and more abstract representation than goals derived from the state space Rolf & Asada
(2014). While state-based goals often specify the agent’s final expected goal representation Liu et al. (2022);
Eysenbach et al. (2022), language goals offer more information about the desired sequence of actions and
the necessary subtasks Liu et al. (2022). Therefore, it is important to develop approaches that can extract
concise information from states or observations and effectively align it with textual information, a process
referred to as grounding Röder et al. (2021).

Previous research has attempted to ground instructions in observations or states using methods such as
reward shaping Goyal et al. (2019); Mirchandani et al. (2021) or goal-conditioned policy/value functions
Zhong et al. (2019); Hejna III et al. (2021); Akakzia et al. (2020); Deng et al. (2020), with the latter being a
key focus of many studies. Their approaches incorporate various architectural or algorithmic inductive biases,
such as cross-attention Hanjie et al. (2021), hierarchical policies Jiang et al. (2019); Andreas et al. (2017), and
feature-wise modulation Madan et al. (2021); Chevalier-Boisvert et al. (2018). Typically, these works involve
feeding instructions and observations into policy or value networks, extracting internal representations of
tokens and observations at each time step, and propagating them through the network. Previous studies
have explored auxiliary loss functions to improve these internal representations in RL Stooke et al. (2021);
Wang et al. (2023); Zheng et al. (2023), and have emphasized the importance of self-supervised/unsupervised
learning objectives Levine (2022) in RL. However, these loss functions lack the alignment property between
different input modalities, such as visual/symbolic states and textual commands/descriptions. Recent studies
have suggested contrastive loss functions to align text and vision modalities in an unsupervised manner Ma
et al. (2022); Yao et al. (2021); Radford et al. (2021); Yu et al. (2022); Li et al. (2022). Most of these
studies fall under the video-text retrieval literature Zhu et al. (2023); Ma et al. (2022), where the language
tokens and video frames align at different granularities. Since these methods require a corresponding textual
input along with the video, the idea has not yet been employed in language-informed reinforcement learning,
where the sequence of observation might not always match the textual modality (due to action failures or
inefficacy of trials). One can leverage the success signal or reward to detect the successful episodes and

1

https://github.com/ArminS03/CAREL

Under review as submission to TMLR

consider them aligned to the textual modality containing instructions or environment descriptions. Doing
so, the application of the above mentioned auxiliary loss functions makes sense.

Contrastive loss serves as a fundamental mechanism in representation learning, particularly in scenarios
where distinguishing between similar and dissimilar objects is essential. As outlined in Radford et al. (2021)
, this loss function operates by minimizing the distance between corresponding items in two modalities,
such as sequences of observations and their corresponding instructions, while simultaneously maximizing the
distance between unrelated or dissimilar items. This loss enhances representations via utilizing the weak
supervision that is available as pairs of matched observation sequence and instruction from the successful
trajectories and unmatched pairs from unsuccessful ones.

In this study, we propose a new framework, called CAREL (Cross-modal Auxiliary REinforcement
Learning), for the adoption of auxiliary grounding objectives from the video-text retrieval literature Zhu et al.
(2023), particularly X-CLIP Ma et al. (2022), to enhance the learned representations within these networks
and improve cross-modal grounding at different granularities. By leveraging this grounding objective, we
aim to improve the grounding between language instructions and observed states by transferring the multi-
grained alignment property of video-text retrieval methods to instruction-following agents. We also propose
a novel method to mask the accomplished parts of the instruction via the auxiliary score signals calculated
for the cross-modal loss while the episode progresses. This helps the agent to focus on the remaining parts
of the task without repeating previously done sub-tasks or being distracted by past goal-relevant entities
in the instruction. Our experiments on the MiniGrid and BabyAI environments Chevalier-Boisvert et al.
(2018) showcase the idea’s effectiveness in improving the systematic generalization and sample efficiency of
instruction-following agents. The primary contributions of our work are outlined as follows:

• We designed an auxiliary loss function to improve cross-modal alignment between language instruc-
tions and environmental observations.

• We introduced a novel instruction tracking mechanism to help the agent focus on the remaining
tasks by preventing the repetition of completed sub-tasks.

• We enhanced overall performance and sample efficiency in two benchmarks.

Put the red ball next to the purple box.

Memory

Obs. Global Aggregator

Lang. Global Aggregator

Policy/Value
Heads

Obs.
Encoder

E-I Score

E-W Value Vec.

O-W Value Vec.

O-I Value Vec.

A
O

SM

E-W Score

O-I Score

O-W Score

Auxiliary Loss

Instruction Masking

Instruction
Tracking via

Figure 1: Overall view of CAREL. In this figure, we showcase CAREL over a candidate baseline model
from Chevalier-Boisvert et al. (2018). (Left) The blue box handles the (masked) instruction and its lo-
cal/global representations, while the pink box contains the components related to observation. (Right) The
purple box shows the calculation steps for the X-CLIP loss and tracks scores for instruction masking.

2

Under review as submission to TMLR

2 Methods

Language-Informed Reinforcement Learning (LIRL) builds upon traditional RL by integrating natural lan-
guage instruction as a structured input to enrich the learning process. In our proposed method, we aim to
leverage the instruction more effectively, going beyond merely conditioning the model on it. We introduce
a novel loss function that enhances representation learning by incorporating a contrastive loss between the
observation and instruction modalities, thereby achieving more meaningful and grounded representations for
observations. The enhanced representation not only streamlines the reinforcement learning process but also
enables tracking of the instruction and dynamic conditioning of the model on the remaining components of
the instruction throughout the trajectories.

In this study, we first incorporate an auxiliary loss inspired by the X-CLIP model Ma et al. (2022) to enhance
the grounding between instruction and observations in instruction-following RL agents. This auxiliary loss
serves as a supplementary objective, augmenting the primary RL task with a multi-grained alignment prop-
erty, which introduces an additional learning signal to guide the model’s learning process. This design choice
was motivated by the ability of contrastive loss to effectively create meaningful embeddings through aligning
observations with the intended instruction, ultimately enhancing the overall performance of the RL system.
Additionally, we leverage the alignment scores calculated within the X-CLIP loss to track the accomplished
sub-tasks and mask their information from the instruction. This masking aims to filter out the distractor
parts of the instruction and focus on the remaining parts, improving the overall sample efficiency of the
agents. We call this technique instruction tracking. Both the proposed auxiliary loss and the instruction
tracking ability can act as frameworks and don’t alter the structure of the base model. In the remainder of
this section, we explain the auxiliary loss and the instruction tracking separately.

2.1 Auxiliary Loss

The auxiliary loss in CAREL is applied only to successful trajectories to ensure that the loss signals align with
goal-relevant behavior. During training, a batch of trajectories is collected, each containing observations,
actions, rewards, and corresponding instructions. The aggregated rewards for each trajectory are calculated
to determine success. A fraction of the maximum achievable reward is used as the acceptance threshold,
ensuring that only sufficiently high-performing trajectories are classified as successful.

This separation is done only for the auxiliary loss, and the base model’s RL loop is run over all interactions,
whether successful or unsuccessful. Hence, it differs from offline RL in which only certain episodes are
selected for the whole training process Levine et al. (2020).

Each successful episode contains a sequence of observation-action pairs ep = ([O1, a1]..., [On, an]) meeting the
instructed criteria and an accompanying instruction instr = (I1, ..., Im) with m tokens. Since the X-CLIP
loss requires local and global encoders for each modality, we must choose such representations from the model
or incorporate additional modules to extract them. To explore the exclusive impact of the auxiliary loss and
minimize any changes to the architecture, we use the model’s existing observation and instruction encoders,
which are crucial components of the model itself. We utilize these encoders to extract local representations for
each observation-action [Ot, at] denoted as xt ∈ Rd×1, t = 1, ..., n in which each action is embedded similar to
positional embedding in Transformers Vaswani et al. (2017) and is added to the observation representation.
Each instruction token Ii is encoded as vi ∈ Rd×1, i = 1, ..., m. The global representations can be chosen
from the model itself or added to the model by aggregation techniques such as mean-pooling or attention.
We denote the global representations for observations and the instruction by x̃ and ṽ, respectively. The
auxiliary loss function is then calculated according to Ma et al. (2022) as below. We restate the formulas in
our context to make this paper self-contained.

To utilize contrastive loss, we first need to calculate the similarity score for each episode (ep), a sequence of
observations, and an instruction (instr) pair denoted as s(ep, instr). To do this, we calculate four separate
values; Episode-Instruction (SE−I), as well as Episode-Word (SE−W), Observation-Instruction (SO−I) and
Observation-Word (SO−W) similarity values. Episode-Instruction score can be calculated using this formula:

SE−I = x̃T ṽ, (1)

3

Under review as submission to TMLR

with x̃, ṽ ∈ Rd×1, SE−I ∈ R. Other values are calculated similarly:

SE−W = (V x̃)T , (2)

SO−I = Xṽ, (3)

SO−W = XV T , (4)

where X = (xT
1 ; ...; xT

n) ∈ Rn×d is local representation for observations, V = (vT
1 ; ...; vT

m) ∈ Rm×d in local
representations for instruction tokens, and SE−W ∈ R1×m, SO−I ∈ Rn×1 and SO−W ∈ Rn×m provides
fine-granular similarities between the language instruction and the episode of observation. These values are
then aggregated with appropriate attention weights via a technique called Attention Over Similarity Matrix
(AOSM). Episode-Word (S′

E−W) and Observation-Instruction (S′
O−I) scores are calculated from the values

as follows:

S′
O−I = Softmax(SO−I [., 1])T SO−I [., 1], (5)

S′
E−W = Softmax(SE−W [1, .])T SE−W [1, .], (6)

where:
Softmax(x[.]) = exp(x[.]/τ)∑

j exp(x[j]/τ) , (7)

in which, τ controls the softmax temperature. For the Observation-Word score, bi-level attention is per-
formed, resulting in two fine-grained similarity vectors. These vectors are then converted to scores similar
to the previous part:

S′
instr[i, 1] = Softmax(SO−W [i, .])T SO−W [i, .], i ∈ {1, ..., n}, (8)

S′
ep[1, i] = Softmax(SO−W [., i])T SO−W [., i] i ∈ {1, ..., m}, (9)

where S′
instr ∈ Rn×1 show the similarity value between the instruction and n observations in the episode

and S′
ep ∈ R1×m represents the similarity value between the episode and m words in the instruction.

The second attention operation is performed on these vectors to calculate the Observation-Word similarity
score (S′

O−W):

S′
O−W = (Softmax(S′

ep[1, .])T S′
ep[1, .] + Softmax(S′

instr[., 1])T S′
instr[., 1])/2. (10)

The final similarity score between an episode and an instruction is computed using the previously calculated
scores:

s(ep, instr) = (SE−I + S′
E−W + S′

O−I + S′
O−W)/4. (11)

This method takes into consideration both fine-grained and coarse-grained contrasts. Considering N episode-
instruction pairs in a batch of successful trials, the auxiliary loss is calculated as below:

Laux = − 1
N

N∑
i=1

(log exp(s(epi, instri))∑N
j=1 exp(s(epi, instrj))

+ log exp(s(epi, instri))∑N
j=1 exp(s(epj , instri))

) (12)

The total objective is calculated by adding this loss to the primary RL loss, LRL, with a coefficient of λC .

Ltotal = LRL + λC .Laux (13)

4

Under review as submission to TMLR

The overall architecture of a base model Chevalier-Boisvert et al. (2018) and the calculation of the auxiliary
loss are depicted in Figure 1. If the shape of the output representations from the observation and instruction
encoders does not align, we employ linear transformation layers to bring them into the same feature space.
This transformation is crucial as it facilitates the calculation of similarity between these representations
within our loss function.

Algorithm 1 CAREL framework
1: Initialize baseline πθ(a | s, I) and env
2: Get instruction I from the environment
3: for each batch of rollouts do
4: for each rollout in batch do
5: while episode not done do
6: at ∼ πθ(at | st, I)
7: Execute at, Recieve rt, st+1
8: Baseline stores (st, I, at, rt, st+1) for it’s own loss
9: st ← st+1

10: if episode terminated and successful then
11: Save the whole episodes: Bsuccess ← epi

12: end if
13: end while
14: end for
15: Update θ based on baseline’s RL loss
16: Update θ using Bsuccess to compute and apply the auxiliary loss (Laux) based on Eq. 12
17: end for

2.2 Instruction Tracking

We can consider the similarities from eqs. 1 to 4 as a measure of matching between the instruction and
the episode at different granularities. Once calculated at each time step of the episode, this matching can
signal the agent about the status of the sub-task accomplishments. The agent can then be guided toward
the residual goal by masking those sub-tasks from the instruction. More precisely, at time step t of the
current episode, the agent has seen a partial episode ep(t) = ([O1, a1], ..., [Ot, at]) that in a fairly trained
model should align with initial stages of the instruction. The instruction itself can be parsed into a set of
related sub-tasks C = {ci} via rule-based heuristics, and there can be constraints on their interrelations.
However, if prior knowledge of the instruction is unavailable, we can leverage Natural Language Processing
tools such as SpaCy or Language Models to carry out this process. For example, an instruction of the form
"Do X, then do Y, then do Z" includes three sub-tasks X, Y, and Z which have a sequential order constraint
(X → Y → Z). Other examples could involve different forms of directed graphs where a specific sub-task is
acceptable only if its parents have been satisfied before during the episode. The set of acceptable sub-tasks
at time step t is denoted by Ct, which contains the root nodes in the dependency graphs at the start of the
episode.

In order to track the accomplished sub-task, we assess the similarity between C members and the partial
episode. This can be done by tracking SE−W or SO−W , which provides fine-grained similarities across the
language modality. In the case of SE−W , the similarity per token in ci is averaged to get a final scalar
similarity. For SO−W , the maximum similarity between the observations and each word is considered for
averaging across ci tokens. Another option is to calculate a learned representation for the whole ci instead of
averaging and to track the instructions based on their similarity with the partial episode, aiming at preserving
the contextual information in the representation of the sub-task. The final calculated similarity of each
acceptable sub-task ci, denoted by St

ci
, is tracked at each time step. Once this similarity rises significantly,

the matching is detected, and ci is removed from the instruction participating in the language-conditioned
model. More precisely, we remove ci from the instruction when the following condition is satisfied:

5

Under review as submission to TMLR

(ci ∈ Ct) ∧ (St
ci
≥ k × 1

t− 1

t−1∑
j=1

Sj
ci

). (14)

Here, k > 1 is a hyperparameter that specifies the significance of the matching score’s spike. While the
auxiliary loss described in the previous subsection is applied on the episode level, instruction tracking happens
at every time step of the episode over the partial episode and the masked instruction. This process is
represented in Figure 1.

These two techniques can be applied jointly, as the auxiliary loss improves the similarity scores through time,
and the improved similarities enhance the instruction tracking. To prevent false positives during tracking at
the initial epochs of training, one can constrain the probability of masking and relax this constraint gradually
as the learning progresses.

Algorithm 2 Instruction Tracking (IT) framework
1: Input: Environment env and instruction I
2: Split instruction I into sub-tasks by rule-based heuristics (C = {ci})
3: for t in max_steps do
4: ot = env.step()
5: Compute each sub-task’s (ci) similarity with this step’s observation (ot)
6: St

ci
←− mean(Vci

x̃t)
7: Keep moving average of Sci over time in S̃ci

8: if St
ci

> S̃ci × k then
9: with a probability p:

10: I ←− Omit detected sub-task (ci) from the instruction
11: C ←− Omit detected sub-task (ci) from the C
12: end if
13: Give the new I to the policy
14: end for

2.2.1 Instruction Tracking Implementation Details

Splitting into subtasks
To implement Instruction Tracking, the subtasks need to be extracted from the initial instruction. In our
case, the environments provide a clear and consistent instruction format, which enables us to split sentences
into individual words by using string matching to identify conjunctions for subtask separation. We tokenize
the instructions and determine the positions of conjunctions. This process produces a list of subtasks, each
paired with its corresponding conjunction.

For example, the “GoToSeq” environment uses the following structure:

“go to a/the {color} {type}” + “and go to a/the {color} {type}” + “, then go to a/the {color} {type}” +
“and go to a/the {color} {type}”

Given this format, we tokenize the sentence and match the words “and” and “then” to identify and separate
the subtasks.

Example:

"Go to the red box and go to a green ball, then go to the blue key."

We use the conjunctions “and” and “then” to split the instruction into the following subtasks:

"Go to the red box” + and + “go to a green ball” + then + “go to the blue key."

6

Under review as submission to TMLR

Masking Process
To exclude a completed subtask, we mask both the subtask tokens and their associated conjunction by
replacing these tokens with a <mask> token when reconstructing the instruction. This idea, inspired by se-
quential thinking, helps the model avoid repeating tasks by letting it focus on the remaining tasks when a
portion of the tokens are masked.

If the condition in 14 is met for any of the subtasks—for example, the first one—we mask that subtask with
a probability. The final instruction will then look like this:

"<mask> <mask> <mask> <mask> <mask> <mask> go to a green ball, then go to the blue key."

This masked instruction is then passed to the model.

To extend this for other environments without a clear format, NLP tools such as SpaCy or Large Language
Models like GPT-4o can be used to break the instructions down to subtasks and subsequently to mask the
completed ones.

Masking Probability.
When the threshold in Equation 14 is reached, we only apply the masking with a certain probability. This
number starts very low in the initial stages of training and rises over time following a tanh function. We
implement this to avoid falsely masking uncompleted subtasks at the early stages of training, when the
encoders haven’t been properly trained and don’t produce strong representations.

The exact function for the probability is as follows:

prob = tanh
(

current_frame
max_frames

)
where max_frames determines the total number of training steps.

3 Experiments

In our experiments, we conducted a comparative analysis to assess the impact of X-CLIP Ma et al. (2022)
auxiliary loss on generalization and sample efficiency of instruction-following agents. We showcase the
success of CAREL along with the instruction tracking technique in our experiments1. For this purpose,
we employ a baseline called BabyAI Chevalier-Boisvert et al. (2018) (the proposed model along with the
BabyAI benchmark), for which we explain the experimental setup and results in the following paragraphs.
Additionally, to compare our results with recent works, we consider SHELM Paischer et al. (2023) , which
uses CLIP embedding to detect objects in the observation, and LISA Garg et al. (2022) , which leverages
imitation learning for a sample efficient training process.

3.1 CAREL Results

We employ the BabyAI environment Chevalier-Boisvert et al. (2018), a lightweight but logically complex
benchmark with procedurally generated difficulty levels, which enables in-depth exploration of grounded
language learning in the goal-conditioned RL context. We use BabyAI’s baseline model as the base model
and minimally modify its current structure. Word-level representations are calculated using a simple token
embedding layer. Then, a GRU encoder calculates the global instruction representation. Similarly, we
use the model’s default observation encoder, a convolutional neural network with three two-dimensional
convolution layers. All observations pass through this encoder to calculate local representations. Mean-
pooling/Attention over these local representations is applied as the aggregation method to calculate the
global observation representation.

1For the experiments reported in this paper, we have used one NVIDIA 3090 GPU and one TITAN RTX GPU over two
weeks.

7

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

GoToSeqS5R2
Babyai + CAREL (attention)
Babyai + CAREL (mean)
Babyai

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

OpenDoorsOrderN4
Babyai + CAREL (attention)
Babyai + CAREL (mean)
Babyai

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

PickupLoc
Babyai + CAREL (attention)
Babyai + CAREL (mean)
Babyai

(c)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

PutNextLocalS6N4
Babyai + CAREL (attention)
Babyai + CAREL (mean)
Babyai

(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frames 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

(S
R)

SynthS5R2
Babyai + CAREL (attention)
Babyai + CAREL (mean)
Babyai

(e)

Figure 2: Test SRs indicating the overall effect of Vanilla CAREL on BabyAI. (The results are smoothed
before plotting.)

The evaluation framework for this work is based on systematic generalization to assess the language grounding
property of the model. We report the agent’s success rate (SR) over a set of unseen tasks at each BabyAI
level, separated by pairs of color and type of target objects or specific orders of objects in the instruction.
This metric is recorded during validation checkpoints throughout training.

Figure 2 illustrates the improved sample efficiency brought about by CAREL auxiliary loss (without instruc-
tion tracking and action embedding to minimize the modifications to the baseline model, hence called Vanilla
CAREL). All results are reported over two random seeds. The results indicate improved sample efficiency of
CAREL methods across all levels, especially those with step-by-step solutions that require the alignment be-
tween the instruction parts and episode interactions more explicitly, namely GoToSeq and OpenDoorsOrder,
which contain a sequence of Open/GoTo subtasks described in the instruction. The generalization is signifi-
cantly improved in more complex tasks, i.e., Synth.

Method Task Samples Success Rate
Babyai GoToSeqS5R2 10M 41%
Babyai + CAREL 10M 73%
Babyai OpenDoorsOrderN4 3M 24%
Babyai + CAREL 3M 79%
Babyai PickupLoc 5M 35%
Babyai + CAREL 5M 53%
Babyai PutNextLocalS6N4 7.5M 34%
Babyai + CAREL 7.5M 63%
Babyai SynthS5R2 20M 20%
Babyai + CAREL 20M 28%

Table 1: Impact of CAREL on sample efficiency.

8

Under review as submission to TMLR

3.1.1 Sample Efficiency

Figures 2 and 3 present a comparison between the sample efficiency of our method and other baselines. In
addition to this, we have conducted a quantitative study. Table 1 highlight the superiority of our method’s
sample efficiency, as we achieve better performance with the same number of samples. The reported values
roughly represent the halfway point of the samples required for model convergence, except for the Synth
environment, which did not converge due to its complexity.

3.1.2 CAREL + Instruction Tracking

For instruction tracking, we use only the SE−W vector and average over tokens of each sub-task to track the
score over time. To detect sub-task matching from the score signal, we set k = 2 in Equation 14. All the
other settings are kept the same as in vanilla CAREL, except that we also add action embeddings to local
observation representations, as described in the Auxiliary Loss section. We mask acceptable sub-tasks with
a certain possibility that follows a hyperbolic tangent function in terms of training steps. This is meant to
minimize the amount of masking at the start of the learning process when the model has not yet learned a
good embedding for instructions and observations, and increase it over time.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

GoToSeqS5R2
Babyai + CAREL
Babyai + CAREL + IT
Babyai

(a)

0 1 2 3 4 5 6 7
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

OpenDoorsOrderN4
Babyai + CAREL
Babyai + CAREL + IT
Babyai

(b)

Figure 3: Test SRs indicating the effect of CAREL + instruction tracking on the baseline models. (The
results are smoothed before plotting.)

The results of the full CAREL method (with instruction tracking and action embedding) are reported on the
GoToSeq and OpenDoorsOrder environments. We break down the instructions in this environment with a rule-
based parsing to increase the level of detail in the instructions. The instruction, stated initially as "open the
[color1] door, then open the [color2] door", is converted to "go to the [color1] door, then
open the [color1] door, then go to [color2] door, then open the [color2] door" and so on.
This introduces the challenge of sequential sub-tasks into BabyAI tasks. The results in Figure 3 indicate
that instruction tracking improves CAREL. This improvement is more apparent in the case of environments
with multistep, complex tasks that include more intermediate sub-tasks, such as GoToSeq.

3.2 Comparison with Recent Models

To compare our model against recent baselines, we apply and evaluate our models using two baselines,
SHELM Paischer et al. (2023) and LISA, Garg et al. (2022). We evaluate the effectiveness of our framework
by applying it on top of SHELM while comparing the performance of LISA with the BabyAI + CAREL
model.

To evaluate the capability of our framework on RGB environments, we apply and test it on SHELM Paischer
et al. (2023). SHELM leverages the knowledge hidden in pre-trained models such as CLIP and Transformer-
XL. It also uses CLIP to extract textual tokens related to every observation. Then, these tokens are passed
through the frozen Transformer-XL network to form a memory of tokens throughout the episode. This hidden

9

Under review as submission to TMLR

memory is then concatenated to a CNN representation of observation and passed to actor/critic heads. We
must modify SHELM’s structure as it doesn’t use the environment’s instructions, which are crucial to
success in a multi-goal setting. To do so, we utilize BERT’s tokenizer to embed the instructions and pass
them through a Multihead-Attention layer with four heads. The resulting embedding is concatenated to
the hidden layer alongside the outputs of the CNN model and Transformer-XL, which are then passed to
the actor-critic head. We consider the encoder output for observations as the local representations and add
another Multi-head Attention layer followed by a mean-pooling over them to calculate the corresponding
global representations. Table 2 , shows the sample efficiency of our approach by reporting the success rates
for each model. The number of frames is chosen as the midpoint of convergence. Additionally, Figure 4
demonstrates faster convergence of our framework compared to the SHELM baseline.

We conducted further experiments to evaluate our model against imitation learning, which is known for its
fast training and sample efficiency. Table 3 details the comparison in samples and success rate between
our models. We present the results for the LISA and BabyAI + CAREL models on the number of frames
required for their convergence. Additionally, we provide the results for BabyAI under the same number
of frames as BabyAI + CAREL to demonstrate our sample efficiency. The results for LISA represent the
highest performance that this model can achieve whereas our model achieves significantly higher performance
upon convergence.

Please refer to the Appendix for more results on time consumption A.1, coefficient tuning, and ablation
studies on Instruction Tracking A.2.

0 1 2 3 4 5 6
Frames 1e6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
Re

wa
rd

MiniGrid-GoToObj-6x6-N2-v0

SHELM
SHELM + CAREL

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Re

wa
rd

MiniGrid-PutNear-6x6-N2-v0
SHELM
SHELM + CAREL

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Frames 1e6

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

wa
rd

MiniGrid-GoToDoor-6x6-N2-v0

SHELM
SHELM + CAREL

(c)

Figure 4: Sample efficiency comparison after applying the CAREL framework to the SHELM baseline.
(The results are smoothed before plotting.)

Model Task Frames Success Rate

SHELM PutNear 5M 20%± 3%
SHELM + CAREL 5M 27%± 2%

SHELM GoToDoor 1.5M 50%± 3%
SHELM + CAREL 1.5M 83%± 1%

SHELM GoToObject 1.5M 77%± 1%
SHELM + CAREL 1.5M 78%± 2%

Table 2: Sample efficiency and performance comparison of CAREL on SHELM baseline.

4 Limitations

CAREL framework is designed to improve the model’s understanding of common concepts in observation
and instruction via representation learning. As a result, it can only be applied to environments that provide
clear textual instruction to the agent. The framework does not impose any constraint on the environment
or the MDP beyond providing instructions.

10

Under review as submission to TMLR

Model Task Frames Success Rate

BabyAI
GoToSeqS5R2

14M 76%± 3%
LISA 7M (100k trajectories) 77%± 2%
BabyAI + CAREL 14M 93%± 2%

BabyAI
OpenDoorsOrderN4

4M 62%± 5%
LISA 1.5M (100k trajectories) 60%± 3%
BabyAI + CAREL 4M 97%± 2%

Table 3: Sample efficiency and performance comparison with LISA. (LISA converges on 100k trajectories,
and an increase in the number of frames will not improve performance.)

The primary requirement for applying CAREL is that the base model must generate embeddings for visual
observations and textual instructions via separate encoders (e.g. dual-encoder models) or another mechanism.

5 Conclusion

This paper proposes the CAREL framework which adopts auxiliary cross-modal contrastive loss functions to
the multi-modal RL setting, especially instruction-following agents. The aim is to improve the multi-grained
alignment between different modalities, leading to superior grounding in the context of learning agents. We
apply this method to existing instruction-following agents. The results indicate the sample efficiency and
generalization boost from the proposed framework. As for the future directions of this study, we suggest
further experiments on more complex environments and other multi-modal sequential decision-making agents.
Also, the instruction tracking idea seems to be a promising direction for further investigation.

References
Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani, and Olivier Sigaud. Grounding

language to autonomously-acquired skills via goal generation. arXiv preprint arXiv:2006.07185, 2020.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In International conference on machine learning, pp. 166–175. PMLR, 2017.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded language
learning. arXiv preprint arXiv:1810.08272, 2018.

Zhiwei Deng, Karthik Narasimhan, and Olga Russakovsky. Evolving graphical planner: Contextual global
planning for vision-and-language navigation. Advances in Neural Information Processing Systems, 33:
20660–20672, 2020.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning as
goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:35603–
35620, 2022.

Divyansh Garg, Skanda Vaidyanath, Kuno Kim, Jiaming Song, and Stefano Ermon. Lisa: Learning inter-
pretable skill abstractions from language, 2022. URL https://arxiv.org/abs/2203.00054.

Hector Geffner. Target languages (vs. inductive biases) for learning to act and plan. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 12326–12333, 2022.

Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping in
reinforcement learning. arXiv preprint arXiv:1903.02020, 2019.

11

https://arxiv.org/abs/2203.00054

Under review as submission to TMLR

Austin W Hanjie, Victor Y Zhong, and Karthik Narasimhan. Grounding language to entities and dynamics
for generalization in reinforcement learning. In International Conference on Machine Learning, pp. 4051–
4062. PMLR, 2021.

Donald Joseph Hejna III, Pieter Abbeel, and Lerrel Pinto. Improving long-horizon imitation through lan-
guage prediction. 2021.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstraction for
hierarchical deep reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning: A
survey. Information Fusion, 85:1–22, September 2022. ISSN 1566-2535. doi: 10.1016/j.inffus.2022.03.003.
URL http://dx.doi.org/10.1016/j.inffus.2022.03.003.

Sergey Levine. Understanding the world through action. In Conference on Robot Learning, pp. 1752–1757.
PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Juncheng Li, Xin He, Longhui Wei, Long Qian, Linchao Zhu, Lingxi Xie, Yueting Zhuang, Qi Tian, and Sil-
iang Tang. Fine-grained semantically aligned vision-language pre-training. Advances in neural information
processing systems, 35:7290–7303, 2022.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Problems and
solutions. arXiv preprint arXiv:2201.08299, 2022.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstette,
Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by natural language.
arXiv preprint arXiv:1906.03926, 2019.

Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip: End-to-end multi-
grained contrastive learning for video-text retrieval. In Proceedings of the 30th ACM International Con-
ference on Multimedia, pp. 638–647, 2022.

Kanika Madan, Nan Rosemary Ke, Anirudh Goyal, Bernhard Schölkopf, and Yoshua Bengio. Fast and slow
learning of recurrent independent mechanisms. arXiv preprint arXiv:2105.08710, 2021.

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned language
abstraction. Advances in Neural Information Processing Systems, 34:29529–29540, 2021.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic helm: An interpretable
memory for reinforcement learning. arXiv preprint arXiv:2306.09312, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

Frank Röder, Ozan Özdemir, Phuong DH Nguyen, Stefan Wermter, and Manfred Eppe. The embodied
crossmodal self forms language and interaction: a computational cognitive review. Frontiers in psychology,
12:716671, 2021.

Matthias Rolf and Minoru Asada. Where do goals come from? a generic approach to autonomous goal-system
development. arXiv preprint arXiv:1410.5557, 2014.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

http://dx.doi.org/10.1016/j.inffus.2022.03.003

Under review as submission to TMLR

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning from
reinforcement learning. In International Conference on Machine Learning, pp. 9870–9879. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Haoyu Wang, Xinrui Yang, Yuhang Wang, and Lan Xuguang. Constrained contrastive reinforcement learn-
ing. In Asian Conference on Machine Learning, pp. 1070–1084. PMLR, 2023.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li,
Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. arXiv preprint
arXiv:2111.07783, 2021.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

Yang Yu. Towards sample efficient reinforcement learning. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pp. 5739–5743. International Joint Con-
ferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/820. URL https:
//doi.org/10.24963/ijcai.2018/820.

Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, and Furong
Huang. Taco: Temporal latent action-driven contrastive loss for visual reinforcement learning. arXiv
preprint arXiv:2306.13229, 2023.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to novel environment dy-
namics via reading. arXiv preprint arXiv:1910.08210, 2019.

Cunjuan Zhu, Qi Jia, Wei Chen, Yanming Guo, and Yu Liu. Deep learning for video-text retrieval: a review.
International Journal of Multimedia Information Retrieval, 12(1):3, 2023.

A Appendix

Implementation Details

Base Models. The BabyAI environment serves as a standard benchmark for instruction-following rein-
forcement learning. Its base model is trained using the PPO algorithm Schulman et al. (2017) and Adam
optimizer with parameters β1 = 0.9 and β2 = 0.999. The learning rate is 7e − 4, and the batch size is
256. We set λC = 0.01 and the temperature τ = 1 as CAREL-specific hyperparameters. To minimize the
changes to the baseline model updates, we backpropagate the gradients in an outer loop of PPO loss to be
able to capture episode-level similarities. This gradient update with different frequencies has been tried in
the previous literature Madan et al. (2021).

The actor-critic model from the SHELM model was also used as a baseline. We train the learnable parts
of the model using the PPO algorithm and Adam optimizer with the same hyperparameters. The learning
rate is 1e− 4, and the batch size is set to 16.

A.1 Time Consumption

To evaluate the CAREL framework’s time consumption, we designed an experiment to measure the frames
per second (FPS) achieved by our method and the baseline across various BabyAI benchmark environments.
We calculated the average FPS over 100,000 frames detailed in Table 4. The FPS results provide an indication
of our framework’s computational efficiency and time consumption compared to the baseline. Based on the
results obtained across different tasks in the BabyAI environment, our method processes approximately 420
frames (observations) per second on average, compared to the 668 FPS achieved by the BabyAI baseline. This
translates to an approximate runtime of 13 hours for processing 20 million frames (as commonly presented in

13

https://doi.org/10.24963/ijcai.2018/820
https://doi.org/10.24963/ijcai.2018/820

Under review as submission to TMLR

the tables as the maximum step count), compared to 8 hours for the BabyAI baseline. However, this does not
provide a substantial challenge, as the main issue in Reinforcement Learning is the number of interactions
with the environment needed for training.

Many works on RL Yu (2018); Ladosz et al. (2022) consider the number of interactions between the agent and
the environment—referred to as sample efficiency—as the primary challenge, rather than the overall training
time. This is because interactions with the environment are inherently constrained by the environment’s
properties and cannot be accelerated by increasing computational resources.

Environment Average-FPS (Babyai) Average-FPS (CAREL)
GoToSeqS5R2 629.60 512.19
OpenDoorsOrderN4 690.80 641.50
PickupLoc 679.86 265.33
PutNextLocalS6N4 688.75 287.51
SynthS5R2 655.66 394.32
Average 668.93 420.17

Table 4: Comparison of Average Frames Per Second (FPS) Between Babyai and CAREL Across Multiple
Environments.

A.2 Ablations

A.2.1 Auxiliary Loss Coefficient

We evaluated the impact of auxiliary loss coefficient (λ) on performance of CAREL framework. As shown
in Fig 5 values above 0.01 or below 0.001 result in a sudden decline in performance with 0.01 achieving the
highest performance.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

GoToSeqS5R2
CAREL (coef=1)
CAREL (coef=0.1)
CAREL (coef=0.05)
CAREL (coef=0.01)
CAREL (coef=0.005)
CAREL (coef=0.001)
CAREL (coef=0.0005)
CAREL (coef=0.0001)
Babyai

Figure 5: Experiment on the impact of the coefficient for our auxiliary loss.

A.2.2 Action Embeddings in Instruction Tracking

Instruction Tracking (IT) can use actions taken up to this point to predict the completion of a subtask;
therefore, adding the action embeddings to the observations helps the model to better detect the completion
of subtasks that are utilized in the IT mechanism. To further investigate this, we conducted a CAREL+IT
experiment on the GoToSeqS5R2 environment, comparing performance with and without action embeddings.
The results are depicted in Figure 6.

14

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

GoToSeqS5R2
Babyai + CAREL + IT
Babyai + CAREL + IT (W/O action)

Figure 6: Effect of adding action embeddings to the observations in Instruction Tracking.

A.2.3 Instruction Tracking Similarity Score

When calculating the threshold 14, we can only use the SE−W or SO−W because we need the similarity
of each word separately to be able to calculate a final score for each subtask. Between the two, we only
used SE−W in our experiments for computational efficiency. The experiment in Figure 7 indicates that the
SE−W works as well as SO−W . We employ SE−W because it is more computationally efficient due to its
lower dimension.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

GoToSeqS5R2
Babyai + CAREL + IT (S_EW)
Babyai + CAREL + IT (S_OW)

Figure 7: Results for using different embeddings for calculating the similarity score in Instruction Tracking

A.2.4 Impact of CAREL in Instruction Tracking

This experiment shows the effect of CAREL on the improvement achieved by applying Instruction Tracking.
As shown in Figure 8, applying Instruction Tracking to our model (baseline + CAREL) results in a slightly
higher improvement compared to its application on the original baseline.

A.3 Environments

MiniGrid Environment. MiniGrid is designed for research in reinforcement learning and decision-making
tasks. It provides a grid-based world where agents interact with their surroundings by perceiving symbolic
or RGB observations and executing discrete actions. The environment is fully customizable, allowing re-
searchers to define unique grid layouts, object types, and interaction rules. MiniGrid supports tasks such
as navigation, object manipulation, and goal-directed behaviors, offering varying levels of complexity to suit
different experimental needs.

15

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(S
R)

GoToSeqS5R2
Babyai + CAREL
Babyai + CAREL + IT
Babyai + IT
Babyai

Figure 8: Ablation study on the impact of combining CAREL with Instruction Tracking.

BabyAI Environment. BabyAI is an environment based on the MiniGrid environment. It is specifically
crafted to assess the performance of agents in following natural language instructions. BabyAI provides a
range of procedurally generated tasks that require agents to achieve goals by acting on textual commands.
These tasks are diverse, challenging agents in areas like navigation and interaction with objects.

The complexity of tasks in BabyAI varies significantly. Basic tasks involve simple objectives such as moving
to a specific location (e.g., "Go to the green square") or retrieving an object (e.g., "Pick up the red key").
More intricate tasks demand multiple interactions, such as "go to a red ball then go to a blue box".

A.4 Preliminary

Reinforcement Learning. Our experiments were conducted in two environments modeled as partially
observable Markov decision processes (POMDPs), represented by the tuple (S, A, O, Ω, P, γ, R). In this
framework s ∈ S represents the states of the environment, a ∈ A denotes the actions, o ∈ Ω refers to
observations drawn from the observation model O(o|s, a), P (s′|s, a) defines the transition dynamics, R is the
reward function, and γ is the discount factor. The objective during training is to determine a policy π that
maximizes the expected total discounted reward, expressed as:

max
π

Eπ

[∞∑
t=0

γtR(st, at)
]

.

16

	Introduction
	Methods
	Auxiliary Loss
	Instruction Tracking
	Instruction Tracking Implementation Details

	Experiments
	CAREL Results
	Sample Efficiency
	CAREL + Instruction Tracking

	Comparison with Recent Models

	Limitations
	Conclusion
	Appendix
	Time Consumption
	Ablations
	Auxiliary Loss Coefficient
	Action Embeddings in Instruction Tracking
	Instruction Tracking Similarity Score
	Impact of CAREL in Instruction Tracking

	Environments
	Preliminary

