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Figure 1: A comparison of mathematical reasoning benchmarks and the methods on the visual reasoning
problem. (1) illustrates that unlike existing benchmarks that rely on textual reasoning, Math-VR requires deep
visual reasoning to resolve the math problems. (2) shows that on a visually ambiguous problem from Math-VR,
both text-only and unified multimodal models fail. Our method, CodePlot-CoT, succeeds by programmatically
generating the figure to uncover its true geometric properties, thus arriving at the correct solution.

ABSTRACT

Recent advances in Large Language Models (LLMs) and Vision Language Mod-
els (VLMs) have shown significant progress in mathematical reasoning, yet they
still face a critical bottleneck with problems requiring visual assistance, such as
drawing auxiliary lines or plotting functions to solve the problems. Most LLMs
and VLMs are constrained to text-only reasoning chains, while multimodal unified
models that can generate interleaved text and images lack the necessary precision
and controllability for such tasks. To address this, we propose CodePlot-CoT,
a code-driven Chain-of-Thought paradigm for “thinking with images” in mathe-
matics. Our approach leverages the VLM to generate text reasoning as well as
executable plotting code, which is then rendered into images as “visual thought”,
to solve mathematical problems. To achieve this, we first construct Math-VR,
the first large-scale, bilingual dataset and benchmark for Mathematics problems
with Visual Reasoning, comprising 178K samples. Second, to create high-quality
training data, we develop a state-of-the-art image-to-code converter specialized
for parsing complex mathematical figures into codes. Finally, using these train-
ing data, we train the CodePlot-CoT model for solving mathematical problems.
Experimental results show that our model achieves up to 21% increase over base
model on our new benchmark, fully validating the efficacy of our proposed code-
driven reasoning paradigm. Our work opens a new direction for multimodal math-
ematical reasoning and provides the community with the first large-scale dataset,
comprehensive benchmark, and strong approach for such problems.

“Algebra is but written geometry and geometry is but figured algebra.”
— Sophie Germain
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1 INTRODUCTION

Human cognition is inherently multimodal, leveraging visual graphs, diagrams, and sketches to facil-
itate complex reasoning. This is particularly evident in mathematics, where such visual aids—from
drawing auxiliary lines in geometric proofs to plotting functions—are essential for rendering abstract
relationships concrete and making the reasoning process more intuitive (Hu et al., [2024). While re-
cent advances in Vision Language Models (VLMs) have shown strong performance in mathematical
reasoning (Gao et al.,[2023a; Shi et al., 2024} Zhang et al., 2024b)), they typically reply on text-only
reasoning chains. This becomes a major limitation for problems that require visual reasoning, where
humans would simply sketch diagrams or add auxiliary lines to facilitate reasoning. Such deficiency
in multimodal reasoning leads to redundant and even incorrect text-only reasoning in mathematical
problem solving (shown in Figure T).

Recent efforts in general-domain visual understanding have explored the paradigm of Visual Chain-
of-Thought (Visual CoT) (Shao et al., 2024), attempting to realize it by directly generating and
manipulating images (Li et al., 2025b; (Chen et al., 2025; |Li et al.,[2025a). However, this paradigm
breaks down in the context of mathematics problems that demand high precision, where naive image
generation is insufficient. Even state-of-the-art unified models struggle to execute precise operations
in mathematics, such as constructing auxiliary lines that satisfy strict geometric constraints.

The fundamental challenge in direct image generation and manipulation arises from the inherent
difficulty in modeling the high-dimensional distribution of natural images, which contain complex
textures and high-frequency details. However, mathematical visual aids differ significantly from
general image generation tasks: the critical aspect is not the pixel-level details or textures, but rather
the precise representation of key structured geometric properties such as shapes, lengths, positions,
and angular relationships. This distinction suggests that the essential information in mathemati-
cal figures can be better captured by structured representations rather than pixel-level encodings.
Therefore, we introduce programmatic code as the optimal representation for mathematical visual
reasoning. As an inherently textual and structured representation format, code aligns seamlessly
with language models (Suris et al.| 2023} |Wang et al.| 2025a; |2023)), enabling straightforward gen-
eration without introducing complex distributional modeling (e.g., diffusion models).

In this work, we propose a new paradigm that enables VLMs to engage in visual reasoning through
code generation. Instead of directly generating images with VLMs, which typically leads to de-
graded quality and precision in math plots, our approach guides the model to output executable
plotting codes which are rendered into images as intermediate “visual thoughts”. Once executed,
the generated code produces images that can be input back into the VLM reasoning sequence.

Implementing this paradigm requires addressing two key challenges. First, there is a lack of struc-
tured dataset and benchmark for mathematical problems that demand visual reasoning, as existing
works focus mainly on interpreting given figures rather than reasoning with visual images during
problem solving (Lu et al., 2023} |[Zhang et al., 2024a). Therefore, we construct Math-VR, a large-
scale bilingual dataset and benchmark comprising 173K training, 5K testing mathematical problems
with visual reasoning solutions. We then benchmark existing SOTA models, thereby establishing
strong baselines and highlighting the difficulty of this new task. Second, training models to output
code as representations of visual thought requires a bidirectional mapping between code and im-
ages. We tackle this by developing MatplotCode, a high-fidelity image-to-code converter, which we
leverage to construct code-driven CoT for training. The curated data then serves as the foundation
for training CodePlot-CoT, a model specialized for code-driven visual reasoning. Our experiments
show that it achieves a up to 21% increase over base model, validating the efficacy of our approach.

The main contributions of our work can be summarized as follows:

* We propose a novel and efficien paradigm that enables VLMs to engage in visual reasoning
through code generation.

* We construct Math-VR, the first large-scale, bilingual dataset and benchmark (178K sam-
ples) for Mathematical problems with Visual Reasoning.

* We develop MatplotCode, a state-of-the-art image-to-code converter for mathematical fig-
ures, and train CodePlot-CoT model, a specialized model that achieves up to a 21% per-
formance increase over strong baselines.
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2 RELATED WORK

VLMs in Mathematics Reasoning. Recent progress on multimodal mathematical reasoning
largely follows two lines: scaling math-specific multimodal data and improving architectures for
visual-text alignment. Representative data-centric efforts include G-LLaVA (Gao et al., [2023a)
with a geometry-focused corpus (Geol70K), Math-LLaVA (Shi et al., 2024) with the large-scale
MathV360K, and MAVIS (Zhang et al.,|2024b) which further optimizes math-specific visual encod-
ing and provides auto-generated CoT-rationales. To evaluate these developments, benchmarks such
as MathVista (Lu et al.| 2023, MathVerse (Zhang et al., 2024a), Math-Vision (Wang et al., [2024),
and MV-Math (Wang et al., 2025b) have emerged, each targeting different aspects of mathematical
reasoning in visual contexts. Despite these advances, existing studies have mainly focused on under-
standing given visual inputs, rather than incorporating visual information into the reasoning chain
(plotting auxiliary lines or functions in solutions etc.).

“Thinking with image” Models. To overcome the limitations of text-only reasoning, recent re-
search focuses on “Thinking with image,” or Visual Chain-of-Thought (VCoT), where models ac-
tively retrieve or generate visual aids in reasoning process. Several works (Corbiere et al., 2025}
Jiang et al.| 2025; |[Zhang et al., 2025; |[OpenAl, 2025b; Suris et al., 2023 |Shao et al., |2024) imple-
ment a multimodal chain of thought where they retrieve and crop from the input image and interleave
these visual snippets into the reasoning chain to provide more focused context for subsequent VQA
steps. Other works (Li et al.,[2025ajb; |Chern et al., 2025} |Pan et al.| [2025) focus on building unified
models capable of generating interleaved text and image reasoning chain auto-regressively. These
approaches discretize or embed images into visual tokens and train a single sequence model that
sequencially outputs text and image during decoding. The generated images can serve as visual
feedback for navigation tasks like mazes.

Visual Reasoning Models in Mathematics. Contemporary visual reasoning models for mathe-
matics predominantly follow two paradigms: interleaved “thinking with image” (L1 et al., |2025a;
Chen et al.| [2025; Wang et al., 2025d) and agent-plus-code tool use (Hu et al.| |2024; |Gao et al.|
2023bj [Zhou et al., |2023). Interleaved approaches enable the model to sequentially add auxiliary
lines and plot functions. However, the visual actions are weakly controllable, which hampers pre-
cise geometric constructions and limits the interpretability of intermediate reasoning steps. The
agent-plus-code paradigm treats the model as a planner that create and manipulate input figure by
predicting code snippets and call to external tools (Python, CAS/solver libraries, plotting utilities
etc.). The executed outputs are again inputted to the model as visual feedback. In contrast to inter-
leaved generation, tool-augmented agents provide precise and verifiable outputs by executing code,
yet their performance largely depends on the reliability of the planner. Current planners are often
zero-shot and not specifically trained for mathematical reasoning, which makes them susceptible to
producing fragile or incorrect tool-use sequences.

3 MATH-VR: DATASET AND BENCHMARK FOR MATH VISUAL REASONING

3.1 MATHEMATICAL PROBLEMS REQUIRE VISUAL REASONING

Previous mathematical benchmarks, such as Math-500 (vals.ai, [2025b), AIME (vals.ai, [2025a), and
HMMT (MathArena, [2025)), primarily evaluate models’ textual reasoning abilities. More recent ef-
forts like MathVista (Lu et al.|[2023) and MATH-Vision (Wang et al., 2024) introduce a multimodal
setting by incorporating image-based questions. However, their focus remains largely on visual
perception and extracting information from images, and the reasoning processes are still text-only
reasoning without introducing visual thoughts.

We argue that visual reasoning in mathematics should be an active process of “reasoning with im-
ages”, which motivates us to propose a new benchmark, Math-VR. Figure [T(a) illustrates the dis-
tinction between existing benchmarks and ours. Previous benchmarks’ reasoning can be performed
entirely in text, whereas Math-VR necessitates multimodal reasoning with images. For example,
the isosceles triangle problem shown in Figure [T[a) requires considering three possible scenarios.
Moving beyond naive visual perception, Math-VR demands solvers to conduct reasoning in both
text and image domains, such as adding auxiliary lines, to assist with solving math problems.
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3.2 DATASET CONSTRUCTION

Dataset Collection and Filtering. We begin with collecting 900k secondary-school-level math
problems with solutions from public websites, each containing at least one image in explanation
(reasoning process) of the solution. Using Qwen2.5-VL-72B, we filter out irrelevant or purely tex-
tual images and retain only samples that require mathematical figures for reasoning. Furthermore,
we employ GPT-4.1 to convert textual images into readable text and standardize each question into
Markdown format. GPT-4.1 further conducts quality checks to discard incomplete or incoherent
questions. This process results in Math-VR dataset, the first large-scale dataset targeted for visual
mathematical reasoning, comprising 178,150 bilingual (English and Chinese) samples.

Dataset Statistics. In Math-VR dataset, each sample consists of a question, a reasoning process,
and a final answer, with at least one image in the reasoning process. Math-VR encompasses a wide
variety of visual reasoning tasks, with 29% text-only and 71% multimodal questions, spanning do-
mains such as Geometry, Algebra, Calculus, and Statistics, where Geometry dominates (81%), and
is hierarchically categorized into subdomains and knowledge points (e.g., Triangle, Circle, Quadri-
lateral, Area, and Perimeter). More details about our dataset collection, categorization, and statistics
are presented in Appendix.

3.3 BENCHMARK AND EVALUATION

Benchmark Construction. To evaluate the visual mathematical reasoning capabilities of different
models, we develop the Math-VR benchmark, which consists of 5k bilingual mathematical questions
drawn from our dataset. The questions in Math-VR are selected through a careful pipeline designed
to ensure a deterministic and reliable evaluation. First, proof-based questions are excluded to avoid
the difficulty and bias of assessing the logical validity. Most multiple-choice questions are excluded,
since random guessing can yield correct answers by chance. From the remaining questions, a ran-
dom pool of 3,000 samples was drawn from our dataset and manually reviewed to remove questions
that require minimal or trivial visual reasoning.

Benchmark Statistics and Distribution. Our Math-VR benchmark is divided into two subsets: the
Text subset, containing 2k text-only questions, and the Multimodal subset, comprising 3k questions
that are demonstrated with both text and mathematical images. Both subsets require reasoning or
imagination in the visual domain to solve the questions. Table[T|and Figure[2]summarize the statistics
and distribution of knowledge types of Math-VR benchmark, respectively.

Evaluation Metrics. Figure[3illustrates the evaluation pipeline of Math-VR, where GPT-4.1 (Ope-
nAl, |2025a) is employed as the VLM evaluation tool. We design two metrics: Answer Correctness
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Figure 3: Math-VR Evaluation Pipeline. We design a VLM-based framework to comprehensively
assess visual reasoning abilities of different models. The evaluation uses two metrics: Answer
Correctness (AC), which gives a reliable binary judgment of the final answer, and Process Score
(PS), which provides a fine-grained assessment of the solving process.

(AC) and Process Score (PS). Given the free-form nature of the answers (e.g., multiple numbers,
ranges, or short text responses), we first use the VLM to analyze the ground-truth solution and gen-
erate a comprehensive summary of the final answer for each question. Simultaneously, the VLM is
prompted to identify “scoring points” within the solution. These scoring points refer to the critical
steps required to solve the problem, such as applying theorems, making necessary deductions, and
performing calculations. Each scoring point is assigned a value reflecting its difficulty (e.g., 1 or
2). These extracted answers and scoring points serve as a reference to compare with the model-
generated responses during evaluation.

(1) Answer Correctness (AC): To ensure consistent, reproducible, and objective evaluation results,
this metric strictly checks whether the model-generated answer matches the ground-truth answer. If
the answer is completely correct, it receives a score of 1 for AC; any error or omission results in a
score of 0.

(2) Process Score (PS): When solving mathematical questions, even if the final answer is incorrect,
the reasoning process may still be meaningful. This metric awards partial credit if the model hits
several scoring points in the reasoning process but fails to achieve the completely correct final an-
swer. If a final answer is completely correct (i.e., AC=100), then it automatically receives a PS of
100. Otherwise, PS for a question q is defined as follows:

m .
> j=1"Yj
Doy Vi

i=1Yi
where « represents a discount factor, we take o = 0.7. n is the total number of scoring points for

the question. m is the number of scoring points hit by the model answer. v; is the point value of the
Jj-th scoring point.

PS(q) = a x x 100, when the answer is not fully correct (D)

We have conducted a manual review of the VLM summarized information for each sample in our
benchmark. For more details about the manual verification and the templates used for prompting
GPT-4.1, please refer to the Appendix.

4 CODEPLOT-COT PARADIGM: CODE-DRIVEN COT FOR MATHEMATICS
VISUAL REASONING

4.1 PARADIGM OVERVIEW

Existing VLMs remain constrained when visual aids are required. Most models still rely primarily
on text-only chain-of-thought reasoning, which often fails to capture complex visual elements and
geometric properties. To address this, recent efforts introduce Visual CoT by directly generating
or manipulating images. However, it is difficult for current image generation models to satisfy
strict geometric constraints in the mathematical context. These shortcomings constitute fundamental
obstacles to accurate visual reasoning in mathematics.
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Figure 4: Illustration of the CodePlot-CoT paradigm for mathematical visual reasoning. The
model interleaves natural language reasoning with code-based visual reasoning. At points in the
solution that require visual support, the model generates a sequence of executable plotting code,
which is rendered via Python into precise figures and input back into the model. This allows the
model to “see” its own visual thought and leverage it for subsequent reasoning, ultimately leading
to a more accurate final solution.

To overcome these limitations, we propose CodePlot-CoT, which represents “visual thoughts” as
executable plotting code instead of pixel-encoded images. Our key insight is to replace pixel-level
visual generation and manipulation with a language modeling problem: instead of “drawing” in
visual space, the VLM can “write” code in the text modality where it is inherently proficient. Math-
ematical figures do not rely on pixel-level fidelity or texture details. Instead, what matters are the
structural attributes such as geometric shapes, spatial positions, and angular relations, making ex-
ecutable plotting code a perfect fit for representing such structured geometric information. By re-
leasing the burden of pixel-level distribution modeling, the model can concentrate on the precise
geometric information, making it easier to reason with mathematical figures.

Figure @] presents the CodePlot-CoT paradigm, where text reasoning is interleaved with code-based
visual reasoning. The model first generates a reasoning chain in natural language. When visual
reasoning step is necessary (such as constructing an auxiliary line), it generates a block of plotting
code that represents the required visual information. This code is executed to render an image,
which is then input back to the model as the visual reasoning. Such visual thought allows the model
to ground its subsequent reasoning in precise, self-generated visual evidence. This fundamentally
changes the nature of the model’s reasoning, moving it beyond text-only reasoning to a multimodal
reasoning chain where thoughts and hypotheses are proposed, tested, and refined in both visual and
linguistic domains.

4.2 CODE-DRIVEN COT CURATION WITH IMAGE-TO-CODE CONVERTER

A core prerequisite for training CodePlot-CoT is the high-quality data that integrates images, plot-
ting code, and reasoning chains as presented in Figure 4] Such data allows the model to learn how
visual thoughts can be faithfully represented as executable code. However, existing mathematical re-
sources rarely provide paired code annotations for visual reasoning, making it difficult to obtain the
structured supervision required for code-driven CoT. This motivates the need for a reliable image-to-
code mapping that can convert mathematical figures to plotting code. Yet, no fine-grained converter
specialized for this domain is publicly available. Even large commercial models (e.g., Gemini-2.5-
Pro, GPT-5) are unreliable for zero-shot image-to-code conversion on complex mathematical figures,
limiting practical effectiveness. To overcome this bottleneck, we develop MatplotCode, a state-of-
the-art converter tailored for mathematical figures, which enables scalable creation of code—image
pairs and supports the curation of supervised fine-tuning data for CodePlot-CoT.

We leverage the ImgCode-8.6M dataset from MathCoder-VL (Wang et al.||2025a) as the foundation
of our experiment. We begin by filtering out images that are not representative of standard mathe-
matical figures, thereby curating a high-quality subset focused on geometry diagrams and function
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plots. All code representations in this dataset are in Python. On this curated data, we train Matplot-
Code, which demonstrates superior generalization and conversion fidelity. To further enhance the
quality of our supervised fine-tuning data, we use MatplotCode to generate multiple Python code
representations for each source image and employ GPT-4.1 to select the optimal representation.

4.3 TRAINING DETAILS

We leverage Qwen2.5VL-32B as the base model for both MatPlotCode and CodePlot-CoT model.
MatPlotCode goes through a two-stage training process: we first align the visual components by
training only the vision encoder (ViT) and the MLP projector for one epoch, and then perform
full-parameter fine-tuning for two additional epochs. For the CodePlot-CoT model, we initialize
its weights from vision-aligned MatPlotCode after Stage 1. We then fully finetune this model on
our curated SFT dataset for 5000 steps. During MatPlotCode training, we assign loss to the textual
reasoning chain and generated code while no loss is applied to the rendered images in the sequence.
More details on our training are presented in the Appendix.

5 EXPERIMENTS

5.1 HUMAN CORRELATION ANALYSIS

To further validate the reliability of our automatic evaluation pipeline, we conduct a human correla-
tion study. We invite 15 senior undergraduate students majoring in STEM disciplines as our human
experts. We then randomly sample 1000 questions from our benchmark and generate a total of 3000
answers from GPT4.1, Gemini-2.5-pro and Claude-Sonnet-4. Each participant is assigned 200 an-
swers and is asked to (i) judge the Answer Correctness (AC) in a correct/incorrect manner and (ii)
assign a Process Score (PS) based on the same scoring point in our benchmark. Both scores show
strong consistency between human annotations and GPT-4.1 evaluations.

* Answer Correctness (AC): We report Cohen’s k = 0.75 and MCC = 0.75. For binary
judgments, beyond simple accuracy, these measures account for chance agreement and
balance between positive/negative classes.

* Process Score (PS): We report Pearson » = 0.72 and Spearman p = 0.70. Pearson
captures the linear correlation between human and GPT-4.1 scores, while Spearman focuses
on rank-order consistency.

5.2 BENCHMARKING EXISTING MODELS AND CODEPLOT-COT ON MATH-VR

For a comprehensive evaluation, we compare our approach against a suite of state-of-the-art LLMs,
VLMs, or UMs, including both open-source and closed-source ones on the 2500 English questions in
our benchmark, as shown in Table[2] Among closed-source and large open-source models, Gemini-
2.5-Pro stands out, achieving the highest overall scores (PS = 80.8, AC = 64.7) on the Math-VR. We
observe that “thinking” models which benefit from better-structured textual chains performs better
on our benchmark. Among no-thinking models, Nano Banana achieves the highest score, primarily
due to its stronger visual reasoning capabilities rather than purely text-based chains. Nevertheless,
there remains substantial space for improvement in Answer Correctness across closed-source mod-
els. Even the strongest performer, Gemini-2.5-Pro, still fails on approximately one-third of the
benchmark problems. This gap highlights that current advances in chain length and scale alone are
insufficient, and points toward future research directions in developing more faithful and control-
lable visual reasoning mechanisms.

The limitations are more significant in open-source models under 100B, most of which remain
constrained to pure text reasoning and consequently exhibit low answer correctness on Math-VR
benchmark (e.g., Gemma, Qwen2.5-VL-72B). Attempts to “think with images” by directly gener-
ating pixels (e.g., Bagel-Zebra-CoT) provide only modest gains due to poor controllability and low
geometric precision due to model scale. In contrast, our code-driven approach yields substantial
improvements: CodePlot-CoT surpasses its 32B base VLM by up to 21% and largely outperforms
the Qwen2.5-VL-72B across all metrics, demonstrating that structured, verifiable visual reasoning
is more decisive than model size or longer textual chains.
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Table 2: Math-VR evaluation results. This table compares the model performances on our bench-
mark. The second column specifies the model size by its parameter count. For models that support
an internal reasoning process, v'in the “Thinking” column indicate this mode is turned on during
evaluation. Model Types: VLM: Vision Language Model, LLM: Large Language Model, UM: Uni-
fied Model. Metrics: PS: Process Score, AC: Answer Correctness. Blue and Yellow highlight the
top score in each model group. Bold signifies the highest score across all models.

Model ‘ 4 Params ‘ Type ‘ Think H Text | Multimodal |  Overall
\ \ \ | PS AC | PS AC | PS AC

Closed-source Models and Open-source Models over 100B

GPT-40(2024) - VLM X 34.6 5.7 27.6 3.4 30.4 43
GPT-4.1-nano(2025a) - VLM X 45.9 13.1 33.6 6.4 38.5 9.1
GPT-4.1-mini(2025a) - VLM X 62.0 333 58.6 333 60.0 333
GPT-4.1(2025a) - VLM X 56.5 26.6 52.2 25.6 539 26.0
GPT-03(2025b) - VLM v 72.9 52.9 78.6 63.7 76.4 59.3
Gemini-2.0-Flash(2024) - VLM X 56.1 24.1 47.0 18.3 50.7 20.6
Gemini-2.5-Flash(2025) - VLM X 70.9 44.6 75.5 57.5 73.7 52.3
Gemini-2.5-Flash(2025) - VLM v 71.5 57.0 790 629 78.4 60.5
Gemini-2.5-Pro(2025) - VLM v 719  58.7 828 68.7 80.8 64.7
Nano Banana(2025) - UM X 72.3 49.1 74.7 56.3 73.8 534
Seed-1.6-Thinking(2025) - VLM v 73.0 53.0 76.6 62.0 75.2 58.4
Claude-Sonnet-4(2025) - VLM X 60.9 31.5 534 258 56.4 28.1
GLM-4.5V(2025) 108B VLM v 70.5 48.0 69.1 50.6 69.7 49.6
Deepseek-R12025 671B LLM v 69.9 49.5 - - - -

Open-source Models under 100B

Bagel(2025) 7B UM X 32.9 8.5 24.0 7.0 27.6 7.6
Bagel-Zebra-CoT(2025a) 7B UM X 41.5 139 29.1 7.6 34.1 10.1
Keye-VL-1.5(2025) 8B VLM X 44 .4 20.2 34.0 15.4 38.2 17.3
InternVL-3.5-8B(2025c¢) 8B VLM X 35.6 9.2 28.6 7.0 314 7.9
Gemma3(2025) 27B VLM X 50.8 19.2 40.8 14.1 44.8 16.1
Qwen-2.5-VL-3B(2025) 3B VLM X 334 7.9 23.6 3.6 27.5 5.3
Qwen-2.5-VL-7B(2025) 7B VLM X 18.0 4.5 11.0 2.0 13.8 3.0
Qwen-2.5-VL-32B(2025) 32B VLM X 36.9 10.6 31.5 9.6 33.7 10.0
Qwen-2.5-VL-72B(2025) 72B VLM X 44.6 15.3 38.2 12.7 40.8 13.7
CodePlot-CoT 32B VLM X 53.8 31.6 42.4 15.8 47.0 22.1
A Over Base Model +16.9 +21.0 | +10.9 +6.2 | +13.3 +12.1

5.3 IMAGE-CODE CONVERTER EVALUATION

We evaluate MatplotCode against FigCodifier-8B, GPT-03 and Gemini-2.5-pro (thinking budget
maximum). We randomly sample 1000 images from our dataset and task these models to convert it
to matplotlib code. We assess two aspects: (i) Execution Success Rate, i.e., the probability that the
generated code runs without errors. (ii) Reconstruction Fidelity, judged by GPT-4.1 via a standard-
ized prompt to decide which reconstruction is most similar to the original image. The full evaluation
prompt is provided in the Appendix.

Both MatplotCode and the FigCodifier-8B achieve a 100% execution success rate. In contrast, GPT-
03 reach 79.6%, while Gemini-2.5-Pro achieve 86.2%, indicating a higher likelihood of producing
invalid or incomplete code. For reconstruction fidelity, judged by GPT-4.1, MatplotCode is preferred
in 554 out of 1,000 cases, compared to 190 for FigCodifier-8B, 49 for GPT-03, and 207 for Gemini-
2.5-Pro. These results demonstrate that our converter not only guarantees reliable code prediction,
but also produces reconstructions that are consistently closer to the original figures. Importantly, the
failures of both closed-source large models and open-source expert models further underscore the
necessity of developing a new converter tailored to this task.
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Table 3: Comparing our code-driven paradigm
against text-only reasoning. Qwen-2.5VL-3B-
Text-Tune is fine-tuned on text-only CoT, while
CodePlot-CoT-3B is trained with our paradigm.
The results demonstrate the significant perfor-
mance gain from enabling code-based visual
reasoning.

Table 4: Comparing our code-driven paradigm
against direct image generation VCoT. Bagel-
Thinking-with-image is fine-tuned to generate
direct image outputs in reasoning steps, while
CodePlot-CoT-Bagel uses our code-generation
paradigm. This validates the efficacy of our
paradigm.

Ablation Setting | Text | Multimodal | Overall Ablation Setting | Text | Multimodal | Overall

| PS AC | PS AC | PS AC | PS AC | PS AC | PS AC

Qwen-2.5VL-3B 334 79 | 236 36 |275 53 X B?EM o 329 85 | 240 70 |276 76
Qwen-2.5VL-3B-Text-Tune | 343 127 | 274 58 | 30.1 84 Bagel-Thinking-with-image | 40.3 10.1 | 284 83 | 332 9.0
CodePlot-CoT-3B 355 13.6 | 29.3 7.4 31.8 99 CodePlot-CoT-Bagel 431 119 | 31.1 102 | 359 109

5.4 ANALYSIS ON INFERENCE COST

In this section, we analyze the inference cost of our code-driven visual reasoning paradigm. On the
2,500 test problems, our model generates an average of 820.9 tokens per image and 3,416 rendered
images in total, or 1.37 images per problem in average. From the perspective of token usage, this
cost is lower than many autoregressive “thinking with image” models, which typically consume
1,024 or even up to 4,096 tokens per image. Moreover, each image can be rendered locally in less
than one second, making it negligible when evaluating overall computational efficiency. We further
measure the total number of output tokens. On average, our model produces 567.2 text tokens,
and together with the code tokens for rendered images, the overall output is 1,691.8 tokens per
problem. In comparison, Qwen2.5-VL-32B generates substantially more content, averaging 3,847.3
tokens. This significant reduction in output length highlights the efficiency of our code-driven visual
reasoning paradigm on Math-VR.

5.5 ABLATION STUDIES

To better understand the contribution of each design choice in our framework, we conduct two sets
of ablation experiments.

Text-only vs. Code-driven Visual Reasoning. We first compare our code-driven paradigm
against text-only reasoning using Qwen-2.5VL-3B as the base model. To establish a text-only fine-
tuned baseline, we remove all images from the solutions in our dataset and fine-tune the model
exclusively on textual reasoning, resulting in Qwen-2.5VL-3B-Text-Tune. This model shows only
marginal improvement over the vanilla baseline because it remains fundamentally constrained by its
inability to incorporate visual information. In contrast, our CodePlot-CoT-3B achieves substantial
gains, clearly demonstrating the advantage of introducing executable code for visual reasoning.

Code-driven vs. Direct Image Generation. We further investigate whether code-based visual
reasoning is more effective than direct image generation in reasoning. Since Qwen2.5-VL does
not support image generation, we perform this comparison on the unified model Bagel. The Bagel-
Thinking-with-image is fine-tuned to directly produce interleaved text—image outputs on our dataset.
Although this approach provides some improvements, it underperforms our CodePlot-CoT-Bagel,
which leverages structured executable code. These results validate that code-driven reasoning offers
a more precise and controllable representation of visual thoughts than direct pixel-level generation.

6 CONCLUSION

In this work, we introduce CodePlot-CoT, a code-driven chain-of-thought paradigm that enables
VLMs to “think with images” in mathematical reasoning. By representing visual reasoning as ex-
ecutable snippets of plotting code, our approach circumvents the limitations of pixel-level image
generation, achieving precise and controllable visual thought. To achieve this paradigm, we con-
struct Math-VR, the first large-scale bilingual dataset benchmark for mathematical visual reasoning,
and develope MatplotCode, a high-fidelity image-to-code converter. Extensive experiments demon-
strate that our model consistently outperforms baseline models with improvements of up to 21%.
We have used GPT-5 to help refine grammar in this paper.
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7 ETHICS AND REPRODUCIBILITY STATEMENT

All data used in this study are collected from publicly available websites, ensuring that no private or
sensitive information is involved in the dataset construction. The details on dataset, benchmark con-
struction and evaluation are presented in Section [3.2]and Section [3.3] Training and implementation
details are described in Section Additional information, including evaluation templates, manual
verification processes, and further dataset construction details, is provided in the Appendix. These
resources are made available to facilitate transparent assessment and to support reproducibility of
our results.
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