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Abstract

Diffusion models have been widely explored in protein backbone generation due1

to their powerful generation capabilities. However, in today’s AI-driven biological2

research, predicting the structure of unknown multi-chain protein aggregates (called3

“complexes” in biology) remains an unsolved challenge. This is because existing4

static or dynamic protein datasets focus solely on static snapshots or single-entity5

trajectories, neglecting the dynamic process of multiple monomers forming com-6

plexes. To alleviate this dilemma, we present DynaPPI, a dynamic protein dataset7

comprising molecular dynamics (MD) trajectories of protein complex formation8

from dissociated chains to the bound state, as a pivotal resource to bridge the gap9

between static structural biology and the inherently temporal nature of dynamic10

molecular interactions. Benefiting from this dataset, diffusion models can explicitly11

learn the dynamic binding trajectories of known complexes and accurately predict12

the structures of unknown complexes based on their diverse generative properties,13

thereby further catalyzing AI-driven structural biology and protein interactomics.14

1 AI Task Definition15

The primary AI task associated with our dataset is defined as a conditional generative prediction task,16

wherein diffusion models are trained to predict and generate realistic dynamic binding trajectories17

conditioned on the initial dissociated state and contextual biophysical parameters. This task amalga-18

mates elements of generation—generating novel trajectories that explore diverse binding modes—and19

prediction—predicting physically plausible outcomes based on empirical or simulated groundtruths.20

Specifically, given the sequences, structures, or representations of these unbound protein chains,21

along with environmental conditions (e.g., temperature, ionic strength, or pH), the model predicts the22

time-resolved sequence of intermediate states and then generates the final composite structure.23

2 Dataset Rationale24

Bottleneck: Our dataset addresses a critical unmet need in AI-driven biology, where the transition25

from dissociated entities to the bound state remains poorly represented in existing resources. Current26

datasets, such as PDB [3] or Dynamic PDB [16], predominantly focus on static snapshots or single-27

entity trajectories, capturing equilibrium structures but failing to elucidate the kinetic pathways,28

intermediate states, and non-additive emergent behaviors inherent to complex formation. Our Dy-29

naPPI dataset is envisioned as a comprehensive repository of time-resolved recombination trajectories,30

encompassing not only multi-chain protein assemblies but also protein-ligand, protein-nucleic acid,31

and intra-molecular domain rearrangements. By integrating MD simulations with experimental vali-32

dations, this dataset promotes diffusion models to generate unknown-complex structures, ultimately33

enabling breakthroughs in fields such as drug design, synthetic biology, and systems pharmacology.34

Submitted to AI for Science workshop (NeurIPS 2025).
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Figure 1: Overview of our dataset—input, construction, and applications. We disassemble known
complexes from the PDB as references and record their MD recombination trajectories. Meanwhile,
our dataset covers multiple categories of protein-related complexes, including protein-protein, protein-
ligand, protein-nucleic acid, and intra-molecular rearrangements. We first explore the feasibility and
effectiveness of the protein-protein split and provide a complete construction pipeline in Section A.

Data types: The dataset encompasses multi-modal data types, including time-series trajectories of35

atomic coordinates and physical properties, structural snapshots of clustered intermediate states, and36

auxiliary representations such as contact maps and free energy profiles, all formatted for efficient37

storage and AI compatibility (e.g., DCD/NetCDF for trajectories and HDF5 for properties).38

Scale: The dataset targets about 10, 000 complexes initially, with 5 ∼ 20 replicas each spanning39

from 10 ns to 1 ms, yielding totally 108 ∼ 1011 frames, covering diverse biomolecular interactions.40

Moreover, the dataset ensures broad coverage across categories like protein-protein (40%), protein-41

ligand (30%), protein-nucleic acid (20%), and intra-molecular rearrangements (10%), with low42

sequence redundancy (< 30%) and storage in the 10 ∼ 100 TB range for scalable open access.43

Resolution: Temporal resolution is maintained at 1 ∼ 10 ps per frame to capture rapid conformational44

changes while controlling data volume, complemented by all-atom spatial precision (sub-Å accuracy45

in coordinates and forces) for detailed modeling of non-additive interactions, with optional coarser46

variants (e.g., Cα-only backbones at 100 ps) for computational efficiency.47

Labels and metadata needed: Essential labels include state indicators (e.g., unbound/bound48

classifications), kinetic parameters, and thermodynamic metrics, supported by metadata such as49

source identifiers, environmental conditions, validation benchmarks, and AI-ready annotations like50

train/test splits and pre-computed embeddings to achieve robust, physics-informed model training.51

3 Acceleration Potential52

The far-reaching implications of our proposed dataset will extend to transformative applications53

in biomedicine and materials science. In drug discovery, it could rapidly simulate ligand-binding54

pathways, effectively identify transient pockets for allosteric inhibitors and accurately predict off-55

target interactions in polypharmacology. For synthetic biology, generative predictions could guide the56

design of self-assembling nanostructures or engineered enzymes with tunable affinities. Moreover, by57

incorporating multi-modal data (e.g., integrating cryo-EM snapshots or fluorescence resonance energy58

transfer kinetics), the dataset further fosters interdisciplinary advancements, such as AI-accelerated59

virtual screening for pandemic preparedness or the rational engineering of biomolecular machines.60

4 Scalability61

The dataset exhibits strong scalability via leveraging parallelized MD simulations across distributed62

computing frameworks or using neural network potentials to approximate force fields. Key enablers63

include modular curation (automated PDB filtering and preprocessing), batch processing for replicas,64

and incremental growth by incorporating diverse biomolecular types. At scale, it could encompass65

millions of trajectories, akin to the expanded version of Dynamic PDB, supporting broad AI training.66
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A Dynamic Recombination Trajectory Dataset for Protein Complexes162

Inspired by Dynamic PDB [16], we propose the construction of a Dynamic Recombination Trajectory163

Dataset for Protein Complexes to capture the temporal evolution of protein complexes from separated164

chains to the bound state. This innovative dataset extends the pipeline of Dynamic PDB [16] to165

multi-chain systems while addressing the non-additivity of the binding process. Specifically, the166

dataset focuses on the preliminary feasibility of about 100 to 1, 000 complexes, simulated utilizing167

all-atom molecular dynamics (MD) simulation with OpenMM [8] for GPU acceleration and parallel168

optimization. Moreover, production runs are set from 10 ns to 1 ms per replica, inconsistent with169

Dynamic PDB’s [16] 1 µs simulations, since binding events are typically uncertain, but monitored in170

real time and dynamically adjustable. Multiple replicas ensure stochastic sampling of binding paths.171

In this section, we introduce the proposed dataset, detailing the preparation process, the molecular172

dynamics simulation, and the analysis of dynamic behaviors, respectively.173

A.1 Source Selection and Data Curation174

The original structures for the Dynamic Recombination Trajectory Dataset for Protein Complexes are175

sourced from the Protein Data Bank (PDB) [3], focusing on multi-chain entries with an experimental176

resolution of no greater than 2.5Å determined via X-ray diffraction to ensure high structural reliability.177

And in order to enhance annotation and diversity, we supplement PDB data [3] with specialized178

interaction databases, including PDBe-KB [29] for biological assemblies, BioLiP [31] for protein-179

protein interfaces (adapted from ligand contexts), and the Protein-Protein Docking Benchmark180

(version 5.0) [30], which provides over 230 non-redundant complexes with validated binding modes.181

Selection criteria prioritize systems amenable to molecular dynamics (MD) while promoting di-182

versity: To maintain computational tractability, protein complexes are restricted to 2 ∼ 4 chains,183

with individual chain length ≤ 300 residues and a total system size ≤ 50, 000 atoms (including184

solvent). The dataset composition consists of 40% homo-oligomers (e.g., symmetrical dimers such185

as HIV-1 protease), 40% hetero-complexes (e.g., barnase-barstar complex for high-affinity binding),186

and 20% transient interactions (e.g., ubiquitin-conjugating enzyme pairs). This balance ensures187

representation across interface types, such as hydrophobic cores and electrostatic complementarity, as188

well as functional classes like enzyme-inhibitor and signaling interactions. Furthermore, we exclude189

transmembrane complexes, large assemblies (> 4 chains), and covalently linked systems to minimize190

simulation artifacts, focusing instead on non-covalent, soluble proteins.191

For each selected complex, individual chains are first extracted from the bound PDB structure [3] and192

isolated to simulate the unbound state (more details in Section B). Then these separate chains are193

translated 5 ∼ 20 nm apart with randomized orientations per replica, employing some toolkits like194

MDAnalysis [18] or VMD [10] for coordinate manipulation. This configuration can effectively mimic195

diffusive encounters, achieving clear observation of the approach, collision, and binding phases.196

The pilot phase targets 500 complexes (e.g., 250 dimers and 250 trimers), with the final dataset197

expanding to about 5, 000 entries. To avoid redundancy, complexes are further clustered by sequence198

similarity (< 30%) using MMseqs2 [26]. Additionally, metadata, including PDB IDs, chain counts,199

and literature-derived affinities, are tracked in a SQLite database. And the original structures can be200

downloaded via the PDB API or the official website1, with Biopython [5] for parsing.201

A.2 Preprocessing of Protein Data202

Prior to simulations, the original structures must undergo rigorous preprocessing to address PDB203

limitations such as missing residues and non-standard elements. The specific gap repair scheme is as204

follows: for segments ≤ 5 residues, we utilize MODELLER [23] for homology-based loop modeling,205

combined with DOPE scoring [25] for energetic evaluation; for larger gaps (> 5 residues) or entire206

loops, AlphaFold-Multimer [9] can provide context-aware predictions, accessible via ColabFold.207

Cleaning involves: 1) removing all heteroatoms from the protein structures, including water208

molecules, ligands, and metal ions, to focus on the dynamic behavior between proteins; 2) mapping209

non-standard residues (e.g., selenomethionine to methionine) with Open Babel [20]; and 3) protonat-210

1https://www.rcsb.org/
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Table 1: Attributes of the proposed dataset.

Name Data Type Shape Description Unit

Structural Information

Replica ID int8 (1) Identifier of Replica -
Position float32 (Nframes, Natoms, 3) Trajectory Coordinates Å
Distance float32 (Nframes, Nchains ∗ (Nchains − 1)/2) Inter-Chain Distances2 Å

Contact Map bool (Nframes, Nresidues, Nresidues) Binary Contact Maps3 -

Dynamic and Physical Property

Velocity float32 (Nframes, Natoms, 3) Trajectory Velocities Å/ps
Force float32 (Nframes, Natoms, 3) Trajectory Forces kcal/mol · Å

Potential Energy float32 (Nframes) System Potential Energy kJ/mol
Kinetic Energy float32 (Nframes) System Kinetic Energy kJ/mol
Total Energy float32 (Nframes) System Total Energy kJ/mol
Temperature float32 (Nframes) System Temperature K

Pressure float32 (Nframes) System pressure bar
Box Volume float32 (Nframes, 3) System Volume Forces nm3

Density float32 (Nframes) System Density g/ml

Binding-Specific Metric

Interaction Energy float32 (Nframes, Nchains ∗ (Nchains − 1)/2) Inter-Chain Energy4 kJ/mol
Hydrogen Bond int16 (Nframes) Number of Hydrogen Bonds -

Salt Bridge int16 (Nframes) Number of Salt Bridges -
Binding Status bool (Nframes) Binding Status Flag -

∆SASA5 float32 (Nframes, Nchains) SASA Changes Å
2

Final Status bool (1) Status for Prolongation6 -

ing at physiological pH 7 using PROPKA3 [21] or PDB2PQR [7] for accurate charge assignment.211

Moreover, explicit hydrogen atoms are added via MODELLER [23] to achieve all-atom completeness.212

We further validate the preprocessing statistics, including completion rates (e.g., percentage relying213

on AlphaFold vs. MODELLER) and gap size distributions, aiming for a rejection rate < 10% due214

to irreparable issues. After cleaning, isolated chains may undergo a brief energy minimization to215

relax strains. And initial configurations for the separated state incorporate random rotations and216

translations via PyMOL scripts [6], with clash detection leveraging MolProbity [4] to confirm no217

structural overlaps. Structural integrity also need to be validated with PROCHECK [15], ensuring218

Ramachandran plot outliers < 1%; structures exceeding 5% issues are discarded.219

A.3 MD Simulation Setup and Execution220

The simulation environment is designed to mimic physiological conditions, extending Dynamic221

PDB’s setup [16] for multi-chain mobility. Specifically, all-atom molecular dynamics simulations222

are conducted using OpenMM [8] in conjunction with the Amber-ff14SB force field [17], which223

effectively governs protein interactions and further enhances the accuracy of protein side chain and224

backbone parameters. Meanwhile, isolated protein chains are solvated in a truncated octahedral or225

cubic periodic box with a padding thickness of ≥ 1.5 nm to prevent self-interaction artifacts during226

diffusion. And this box is filled with TIP3P water molecules for hydration accuracy, and subsequently227

neutralized and salted with Na+/Cl− ions at a concentration of 150 mM .228

Equilibration begins with an energy minimization process via steepest descent followed by conjugate229

gradient, targeting a force tolerance of 2.39 kcal/mol ·Å (up to 10, 000 steps) to resolve bad contacts.230

The canonical ensemble (NVT) phase runs for 1 ns at 300 K using the LangevinMiddleIntegrator231

(friction coefficient of 1.0 ps−1 and time step of 2 fs with SHAKE constraints [22] for hydrogen232

atoms), initially restraining protein heavy atoms (force constant of 10 kcal/mol · Å
2

with gradual233

2The distance denotes pairwise center-of-mass distances between chains.
3Binary contact maps (1 if distance ≤ 4.5Å, 0 otherwise) for inter- and intra-chain interactions.
4This energy denotes decomposed inter-chain interaction energy via MMPBSA.
5SASA denotes solvent-accessible surface area.
6This status indicates whether the simulation has extended beyond initial duration.
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release). And the isothermal-isobaric ensemble (NPT) phase follows for 1 ns at 1 bar, employing the234

Monte Carlo Barostat (updates every 100 steps) with the same integrator to equilibrate density.235

Production runs are set from 10 ns to 1 ms per replica, scaled based on complex size and anticipated236

binding timescales (e.g., fast binders like barnase-barstar might stabilize in 10 ns). The hydrogen237

mass redistribution in OpenMM [8] is implemented with a time step of 2 fs to achieve numerical238

stability. Moreover, to account for energy barriers during binding and capture non-additive effects239

such as induced fit, enhanced sampling techniques are innovatively integrated: umbrella sampling [28]240

applies bias potentials along the center-of-mass distance reaction coordinate, while metadynamics [14]241

(via the PLUMED plugin in OpenMM [8]) adds history-dependent biases. For diffusion-limited242

phases, 5 ∼ 20 replicas per complex are seeded with different random seeds, with Temperature243

replica-exchange (T-REMD) [27] performed in the 300 ∼ 350 K range to facilitate barrier crossing.244

Real-time monitoring detects binding (e.g., > 20 inter-chain contacts) via custom scripts, allowing245

for early termination of converged runs to optimize computation. The simulations are run on NVIDIA246

A100 GPUs with 80 GB of memory and parallelized with MPI in OpenMM [8]. During the pilot247

phase, the total GPU hours per machine are expected to be 50 ∼ 200.248

A.4 Data Recording and Physical Properties249

Data recording intervals balance resolution and storage: atomic coordinates are recorded every 10 ps250

and physical properties are recorded every 1 ps, yielding 1K∼ 10K frames per ns (approximately 10251

GB per complex). Table 1 provides a detailed overview of the data attributes associated with each252

replica, containing structural information, dynamic and physical properties, and binding-specific253

metrics. This structured format supports subsequent analyses and interpretations of the inter-chain254

binding dynamic behaviors and properties of the complexes within the dataset.255

Metadata identifies binding events (e.g., timestamps of stable contacts), replica IDs, and prolongation256

status for extended runs. Trajectories are stored in DCD or NetCDF formats, and attributes are stored257

in HDF5 for efficient access. Ultimately, all data is compressed with gzip.258

A.5 Post-Processing, Analysis, and Validation259

Post-simulation processing aligns trajectories to reference bound structures using MDAnalysis [18],260

thereby correcting periodic boundary artifacts. States (i.e., unbound, transient intermediates, and261

bound) are identified via time-lagged independent component analysis (tICA) [19] and k-means262

clustering with PyEMMA [24], enabling quantification of transition rates using Markov State Models.263

The analysis emphasizes non-additivity: per-chain and complex-wide RMSD/RMSF track confor-264

mational changes; evolution of the radius of gyration illustrates compactness shifts; free energy265

landscapes are reconstructed via WHAM [13] on biased simulations; and interface remodeling is266

assessed through variations in residue contact frequency.267

Further quantitative validation ensures the dataset’s internal quality (e.g., energy drift < 1%, RMSF268

alignment with Dynamic PDB single-chain benchmarks), as well as external quality (e.g., bound-269

state RMSD < 3Å vs. experimental PDBs; binding affinities from MMPBSA correlating > 0.7 vs.270

experimental values from literature; and association rates from Markov State Models vs. experimental271

values from literature). And subsets are benchmarked against CAPRI [11] and Docking Benchmark272

5.0 [30] to assess pose accuracy. Additionally, unstable runs (e.g., DSSP [12] secondary structure273

loss > 20%) are filtered, with a target success rate of > 80%.274

The compiled dataset is split into train/validation/test (80/10/10), including raw trajectories, pro-275

cessed states, and access APIs, and will be hosted on Zenodo or Dryad with a DOI.276

A.6 Preliminary Timetable and Rough Budget277

The implementation unfolds in phases: selection and preprocessing (6 ∼ 8 weeks, emphasizing278

manual curation), MD simulations (8 ∼ 16 weeks, via automated batching), and analysis/validation279

(4 ∼ 6 weeks, iterative refinement). The rough budget ranges from 9, 000 $ ∼ 15, 000 $ for cloud280

computing (e.g., AWS p3.2xlarge at 3 $ per hour), with open tools minimizing additional expenses;281

academic resources (e.g., NSF/NIH clusters with SLURM) could further reduce this for scale-up.282
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B Initial Separation of Reference Complexes283

The initial separation of protein chains from bound complex structures in the PDB [3] is critical for284

simulating realistic recombination dynamics. However, direct extraction from bound PDB entries285

retains conformational biases induced by inter-chain interactions, such as interface remodeling or286

induced-fit changes, which deviate from the native unbound (apo) states. This can underestimate287

energy barriers and non-additive effects during binding, leading to artificially accelerated or biased288

trajectories. To mitigate this, we prioritize or approximate unbound conformations, ensuring starting289

structures more accurately reflect free-chain dynamics. The procedure comprises three sequential290

steps: (1) chain extraction, (2) unbound state approximation, and (3) geometric separation.291

Step 1: Chain Extraction. First, load the bound PDB structure into a molecular analysis framework.292

After that, parse and isolate individual chains by selecting atoms based on chain identifiers (e.g., ‘A’,293

‘B’). Then export each chain as a separate PDB file, preserving atomic coordinates, residues, and294

any existing hydrogen atoms. Finally, validate completeness by checking for gaps or clashes using295

stereochemical assessment tools, rejecting structures with > 5% unresolved residues.296

Step 2: Unbound State Approximation. Approximate native unbound conformations to remove297

bound-state bias: First, query databases (e.g., PDBe-KB [29], UniProt [1]) for experimental unbound298

structures of each chain (sequence identity > 95%). If available, align to the bound reference using299

TM-align structural superposition [32] and adopt as the starting model. If unbound structures are300

unavailable, extract chains from the bound PDB and relax via short molecular dynamics (MD)301

simulations: Solvate each chain individually in a TIP3P water box with 150 mM NaCl, minimize302

energy (tolerance 2.39 kcal/mol·Å), equilibrate (NVT/NPT, 1 ns each at 300K), and run production303

for 5 ∼ 10 ns with Langevin integration (2 fs timestep). Cluster resulting frames (e.g., using tICA [19]304

and k-means) and select the dominant conformation (RMSD > 1Å from bound state). Moreover, as305

an alternative or augmentation for incomplete chains, predict unbound models from sequences using306

AlphaFold3 [2] in monomer mode, aligning outputs to bound equivalents for coordinate consistency.307

Step 3: Geometric Separation. Following the previous step, recombine approximated unbound308

chains into a single structure and compute centers of mass for each chain. After that, apply random309

rotations (Euler angles uniformly sampled from 0 ∼ 360◦) and translations (vectors yielding 5 ∼ 20310

nm inter-chain separation, randomized per replica) to mimic diffusive encounters. Then assign initial311

velocities from a Maxwell-Boltzmann distribution at 300K. Ultimately, validate final configurations312

for clashes (minimum distance >0.5 nm) and export as a merged PDB file for solvation.313

In conclusion, this elaborately designed process of complex separation effectively enhances simulation314

fidelity by starting from unbound-like states, better capturing non-additive binding effects, at a modest315

computational cost (1 ∼ 2 GPU-hours per chain for relaxation/prediction).316
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