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Abstract

Diffusion models have been widely explored in protein backbone generation due
to their powerful generation capabilities. However, in today’s Al-driven biological
research, predicting the structure of unknown multi-chain protein aggregates (called
“complexes” in biology) remains an unsolved challenge. This is because existing
static or dynamic protein datasets focus solely on static snapshots or single-entity
trajectories, neglecting the dynamic process of multiple monomers forming com-
plexes. To alleviate this dilemma, we present DynaPPI, a dynamic protein dataset
comprising molecular dynamics (MD) trajectories of protein complex formation
from dissociated chains to the bound state, as a pivotal resource to bridge the gap
between static structural biology and the inherently temporal nature of dynamic
molecular interactions. Benefiting from this dataset, diffusion models can explicitly
learn the dynamic binding trajectories of known complexes and accurately predict
the structures of unknown complexes based on their diverse generative properties,
thereby further catalyzing Al-driven structural biology and protein interactomics.

1 Al Task Definition

The primary Al task associated with our dataset is defined as a conditional generative prediction task,
wherein diffusion models are trained to predict and generate realistic dynamic binding trajectories
conditioned on the initial dissociated state and contextual biophysical parameters. This task amalga-
mates elements of generation—generating novel trajectories that explore diverse binding modes—and
prediction—predicting physically plausible outcomes based on empirical or simulated groundtruths.
Specifically, given the sequences, structures, or representations of these unbound protein chains,
along with environmental conditions (e.g., temperature, ionic strength, or pH), the model predicts the
time-resolved sequence of intermediate states and then generates the final composite structure.

2 Dataset Rationale

Bottleneck: Our dataset addresses a critical unmet need in Al-driven biology, where the transition
from dissociated entities to the bound state remains poorly represented in existing resources. Current
datasets, such as PDB [3]] or Dynamic PDB [16], predominantly focus on static snapshots or single-
entity trajectories, capturing equilibrium structures but failing to elucidate the kinetic pathways,
intermediate states, and non-additive emergent behaviors inherent to complex formation. Our Dy-
naPPI dataset is envisioned as a comprehensive repository of time-resolved recombination trajectories,
encompassing not only multi-chain protein assemblies but also protein-ligand, protein-nucleic acid,
and intra-molecular domain rearrangements. By integrating MD simulations with experimental vali-
dations, this dataset promotes diffusion models to generate unknown-complex structures, ultimately
enabling breakthroughs in fields such as drug design, synthetic biology, and systems pharmacology.

Submitted to Al for Science workshop (NeurIPS 2025).
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Figure 1: Overview of our dataset—input, construction, and applications. We disassemble known
complexes from the PDB as references and record their MD recombination trajectories. Meanwhile,
our dataset covers multiple categories of protein-related complexes, including protein-protein, protein-
ligand, protein-nucleic acid, and intra-molecular rearrangements. We first explore the feasibility and
effectiveness of the protein-protein split and provide a complete construction pipeline in Section [A]

Data types: The dataset encompasses multi-modal data types, including time-series trajectories of
atomic coordinates and physical properties, structural snapshots of clustered intermediate states, and
auxiliary representations such as contact maps and free energy profiles, all formatted for efficient
storage and Al compatibility (e.g., DCD/NetCDF for trajectories and HDFS5 for properties).

Scale: The dataset targets about 10,000 complexes initially, with 5 ~ 20 replicas each spanning
from 10 ns to 1 ms, yielding totally 108 ~ 10! frames, covering diverse biomolecular interactions.
Moreover, the dataset ensures broad coverage across categories like protein-protein (40%), protein-
ligand (30%), protein-nucleic acid (20%), and intra-molecular rearrangements (10%), with low
sequence redundancy (< 30%) and storage in the 10 ~ 100 TB range for scalable open access.

Resolution: Temporal resolution is maintained at 1 ~ 10 ps per frame to capture rapid conformational
changes while controlling data volume, complemented by all-atom spatial precision (sub-A accuracy
in coordinates and forces) for detailed modeling of non-additive interactions, with optional coarser
variants (e.g., Ca-only backbones at 100 ps) for computational efficiency.

Labels and metadata needed: Essential labels include state indicators (e.g., unbound/bound
classifications), kinetic parameters, and thermodynamic metrics, supported by metadata such as
source identifiers, environmental conditions, validation benchmarks, and Al-ready annotations like
train/test splits and pre-computed embeddings to achieve robust, physics-informed model training.

3 Acceleration Potential

The far-reaching implications of our proposed dataset will extend to transformative applications
in biomedicine and materials science. In drug discovery, it could rapidly simulate ligand-binding
pathways, effectively identify transient pockets for allosteric inhibitors and accurately predict off-
target interactions in polypharmacology. For synthetic biology, generative predictions could guide the
design of self-assembling nanostructures or engineered enzymes with tunable affinities. Moreover, by
incorporating multi-modal data (e.g., integrating cryo-EM snapshots or fluorescence resonance energy
transfer kinetics), the dataset further fosters interdisciplinary advancements, such as Al-accelerated
virtual screening for pandemic preparedness or the rational engineering of biomolecular machines.

4 Scalability

The dataset exhibits strong scalability via leveraging parallelized MD simulations across distributed
computing frameworks or using neural network potentials to approximate force fields. Key enablers
include modular curation (automated PDB filtering and preprocessing), batch processing for replicas,
and incremental growth by incorporating diverse biomolecular types. At scale, it could encompass
millions of trajectories, akin to the expanded version of Dynamic PDB, supporting broad Al training.
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A Dynamic Recombination Trajectory Dataset for Protein Complexes

Inspired by Dynamic PDB [16]], we propose the construction of a Dynamic Recombination Trajectory
Dataset for Protein Complexes to capture the temporal evolution of protein complexes from separated
chains to the bound state. This innovative dataset extends the pipeline of Dynamic PDB [16] to
multi-chain systems while addressing the non-additivity of the binding process. Specifically, the
dataset focuses on the preliminary feasibility of about 100 to 1,000 complexes, simulated utilizing
all-atom molecular dynamics (MD) simulation with OpenMM [8]] for GPU acceleration and parallel
optimization. Moreover, production runs are set from 10 ns to 1 ms per replica, inconsistent with
Dynamic PDB’s [16] 1 s simulations, since binding events are typically uncertain, but monitored in
real time and dynamically adjustable. Multiple replicas ensure stochastic sampling of binding paths.

In this section, we introduce the proposed dataset, detailing the preparation process, the molecular
dynamics simulation, and the analysis of dynamic behaviors, respectively.

A.1 Source Selection and Data Curation

The original structures for the Dynamic Recombination Trajectory Dataset for Protein Complexes are
sourced from the Protein Data Bank (PDB) [3]], focusing on multi-chain entries with an experimental
resolution of no greater than 2.5A determined via X-ray diffraction to ensure high structural reliability.
And in order to enhance annotation and diversity, we supplement PDB data [3] with specialized
interaction databases, including PDBe-KB [29] for biological assemblies, BioLiP [31] for protein-
protein interfaces (adapted from ligand contexts), and the Protein-Protein Docking Benchmark
(version 5.0) [30], which provides over 230 non-redundant complexes with validated binding modes.

Selection criteria prioritize systems amenable to molecular dynamics (MD) while promoting di-
versity: To maintain computational tractability, protein complexes are restricted to 2 ~ 4 chains,
with individual chain length < 300 residues and a total system size < 50,000 atoms (including
solvent). The dataset composition consists of 40% homo-oligomers (e.g., symmetrical dimers such
as HIV-1 protease), 40% hetero-complexes (e.g., barnase-barstar complex for high-affinity binding),
and 20% transient interactions (e.g., ubiquitin-conjugating enzyme pairs). This balance ensures
representation across interface types, such as hydrophobic cores and electrostatic complementarity, as
well as functional classes like enzyme-inhibitor and signaling interactions. Furthermore, we exclude
transmembrane complexes, large assemblies (> 4 chains), and covalently linked systems to minimize
simulation artifacts, focusing instead on non-covalent, soluble proteins.

For each selected complex, individual chains are first extracted from the bound PDB structure [3]] and
isolated to simulate the unbound state (more details in Section [B). Then these separate chains are
translated 5 ~ 20 nm apart with randomized orientations per replica, employing some toolkits like
MDAnalysis [[18]] or VMD [[10]] for coordinate manipulation. This configuration can effectively mimic
diffusive encounters, achieving clear observation of the approach, collision, and binding phases.

The pilot phase targets 500 complexes (e.g., 250 dimers and 250 trimers), with the final dataset
expanding to about 5, 000 entries. To avoid redundancy, complexes are further clustered by sequence
similarity (< 30%) using MMseqs2 [26]. Additionally, metadata, including PDB IDs, chain counts,
and literature-derived affinities, are tracked in a SQLite database. And the original structures can be
downloaded via the PDB API or the official websit with Biopython [5]] for parsing.

A.2 Preprocessing of Protein Data

Prior to simulations, the original structures must undergo rigorous preprocessing to address PDB
limitations such as missing residues and non-standard elements. The specific gap repair scheme is as
follows: for segments < b residues, we utilize MODELLER [23] for homology-based loop modeling,
combined with DOPE scoring [25] for energetic evaluation; for larger gaps (> 5 residues) or entire
loops, AlphaFold-Multimer [9] can provide context-aware predictions, accessible via ColabFold.

Cleaning involves: 1) removing all heteroatoms from the protein structures, including water
molecules, ligands, and metal ions, to focus on the dynamic behavior between proteins; 2) mapping
non-standard residues (e.g., selenomethionine to methionine) with Open Babel [20]]; and 3) protonat-

"https://www.rcsb.org/



211
212

213
214
215
216
217
218
219

220

221
222
223
224
225
226
227
228

229

230
231
232

233

Table 1: Attributes of the proposed dataset.

Name ‘ Data Type ‘ Shape ‘ Description Unit
Structural Information
Replica ID int8 (1) Identifier of Replica -
Position float32 (Nframess Natoms» 3) Trajectory Coordinates A
Distance float32 | (Nframess Nenains * (Nehains —1)/2) | Inter-Chain Distances’] A
Contact Map bool (Nfra,me.97 Nyesiduess Nresidues) Binal’y Contact Map -
Dynamic and Physical Property
Velocity float32 (Nframess Natoms» 3) Trajectory Velocities A /ps
Force float32 (Nframess Natoms> 3) Trajectory Forces kcal/mol - A
Potential Energy float32 (Nframes) System Potential Energy kJ /mol
Kinetic Energy float32 (Nframes) System Kinetic Energy kJ/mol
Total Energy float32 (Nframes) System Total Energy kJ /mol
Temperature float32 (Nframes) System Temperature K
Pressure float32 (Nframes) System pressure bar
Box Volume float32 (Ntramess 3) System Volume Forces nm?
Density float32 (Nframes) System Density g/ml
Binding-Specific Metric
Interaction Energy float32 (Nframess Nehains * (Nenains — 1)/2) Inter-Chain Energ)E] kJ/mol
Hydrogen Bond intl6 (Nframes) Number of Hydrogen Bonds -
Salt Bridge intl6 (Nframes) Number of Salt Bridges -
Binding Status bool (Nframes) Binding Status Flag -
ASAS float32 (Nframas; Nehains) SASA Changes Az
Final Status bool (1) Status for Prolongatiorﬂ -

ing at physiological pH 7 using PROPKA3 [21]] or PDB2PQR [7] for accurate charge assignment.
Moreover, explicit hydrogen atoms are added via MODELLER [23] to achieve all-atom completeness.

We further validate the preprocessing statistics, including completion rates (e.g., percentage relying
on AlphaFold vs. MODELLER) and gap size distributions, aiming for a rejection rate < 10% due
to irreparable issues. After cleaning, isolated chains may undergo a brief energy minimization to
relax strains. And initial configurations for the separated state incorporate random rotations and
translations via PyMOL scripts [6], with clash detection leveraging MolProbity [4] to confirm no
structural overlaps. Structural integrity also need to be validated with PROCHECK [15], ensuring
Ramachandran plot outliers < 1%; structures exceeding 5% issues are discarded.

A.3 MD Simulation Setup and Execution

The simulation environment is designed to mimic physiological conditions, extending Dynamic
PDB’s setup [16]] for multi-chain mobility. Specifically, all-atom molecular dynamics simulations
are conducted using OpenMM [8]] in conjunction with the Amber-ff14SB force field [17]], which
effectively governs protein interactions and further enhances the accuracy of protein side chain and
backbone parameters. Meanwhile, isolated protein chains are solvated in a truncated octahedral or
cubic periodic box with a padding thickness of > 1.5 nm to prevent self-interaction artifacts during
diffusion. And this box is filled with TIP3P water molecules for hydration accuracy, and subsequently
neutralized and salted with Na™ /C1~ ions at a concentration of 150 mM.

Equilibration begins with an energy minimization process via steepest descent followed by conjugate

gradient, targeting a force tolerance of 2.39 kcal /mol - A (up to 10, 000 steps) to resolve bad contacts.
The canonical ensemble (NVT) phase runs for 1 ns at 300 K using the LangevinMiddlelntegrator
(friction coefficient of 1.0 ps—! and time step of 2 fs with SHAKE constraints [22]] for hydrogen

atoms), initially restraining protein heavy atoms (force constant of 10 kcal/mol - A® with gradual

The distance denotes pairwise center-of-mass distances between chains.

3Binary contact maps (1 if distance < 4.5A, 0 otherwise) for inter- and intra-chain interactions.
“This energy denotes decomposed inter-chain interaction energy via MMPBSA.

SSASA denotes solvent-accessible surface area.

SThis status indicates whether the simulation has extended beyond initial duration.
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release). And the isothermal-isobaric ensemble (NPT) phase follows for 1 ns at 1 bar, employing the
Monte Carlo Barostat (updates every 100 steps) with the same integrator to equilibrate density.

Production runs are set from 10 ns to 1 ms per replica, scaled based on complex size and anticipated
binding timescales (e.g., fast binders like barnase-barstar might stabilize in 10 ns). The hydrogen
mass redistribution in OpenMM [8]] is implemented with a time step of 2 fs to achieve numerical
stability. Moreover, to account for energy barriers during binding and capture non-additive effects
such as induced fit, enhanced sampling techniques are innovatively integrated: umbrella sampling [28]]
applies bias potentials along the center-of-mass distance reaction coordinate, while metadynamics [14]]
(via the PLUMED plugin in OpenMM [8]]) adds history-dependent biases. For diffusion-limited
phases, 5 ~ 20 replicas per complex are seeded with different random seeds, with Temperature
replica-exchange (T-REMD) [27]] performed in the 300 ~ 350 K range to facilitate barrier crossing.

Real-time monitoring detects binding (e.g., > 20 inter-chain contacts) via custom scripts, allowing
for early termination of converged runs to optimize computation. The simulations are run on NVIDIA
A100 GPUs with 80 GB of memory and parallelized with MPI in OpenMM [§]]. During the pilot
phase, the total GPU hours per machine are expected to be 50 ~ 200.

A.4 Data Recording and Physical Properties

Data recording intervals balance resolution and storage: atomic coordinates are recorded every 10 ps
and physical properties are recorded every 1 ps, yielding 1K~ 10K frames per ns (approximately 10
GB per complex). Table[I| provides a detailed overview of the data attributes associated with each
replica, containing structural information, dynamic and physical properties, and binding-specific
metrics. This structured format supports subsequent analyses and interpretations of the inter-chain
binding dynamic behaviors and properties of the complexes within the dataset.

Metadata identifies binding events (e.g., timestamps of stable contacts), replica IDs, and prolongation
status for extended runs. Trajectories are stored in DCD or NetCDF formats, and attributes are stored
in HDFS for efficient access. Ultimately, all data is compressed with gzip.

A.5 Post-Processing, Analysis, and Validation

Post-simulation processing aligns trajectories to reference bound structures using MDAnalysis [18],
thereby correcting periodic boundary artifacts. States (i.e., unbound, transient intermediates, and
bound) are identified via time-lagged independent component analysis (tICA) [19] and k-means
clustering with PYEMMA [24], enabling quantification of transition rates using Markov State Models.

The analysis emphasizes non-additivity: per-chain and complex-wide RMSD/RMSF track confor-
mational changes; evolution of the radius of gyration illustrates compactness shifts; free energy
landscapes are reconstructed via WHAM [[13]] on biased simulations; and interface remodeling is
assessed through variations in residue contact frequency.

Further quantitative validation ensures the dataset’s internal quality (e.g., energy drift < 1%, RMSF
alignment with Dynamic PDB single-chain benchmarks), as well as external quality (e.g., bound-
state RMSD < 3A vs. experimental PDBs; binding affinities from MMPBSA correlating > 0.7 vs.
experimental values from literature; and association rates from Markov State Models vs. experimental
values from literature). And subsets are benchmarked against CAPRI [11] and Docking Benchmark
5.0 [30] to assess pose accuracy. Additionally, unstable runs (e.g., DSSP [12] secondary structure
loss > 20%) are filtered, with a target success rate of > 80%.

The compiled dataset is split into train/validation/test (80/10/10), including raw trajectories, pro-
cessed states, and access APIs, and will be hosted on Zenodo or Dryad with a DOL.

A.6 Preliminary Timetable and Rough Budget

The implementation unfolds in phases: selection and preprocessing (6 ~ 8 weeks, emphasizing
manual curation), MD simulations (8 ~ 16 weeks, via automated batching), and analysis/validation
(4 ~ 6 weeks, iterative refinement). The rough budget ranges from 9,000 $ ~ 15,000 $ for cloud
computing (e.g., AWS p3.2xlarge at 3 § per hour), with open tools minimizing additional expenses;
academic resources (e.g., NSF/NIH clusters with SLURM) could further reduce this for scale-up.
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B Initial Separation of Reference Complexes

The initial separation of protein chains from bound complex structures in the PDB [3]] is critical for
simulating realistic recombination dynamics. However, direct extraction from bound PDB entries
retains conformational biases induced by inter-chain interactions, such as interface remodeling or
induced-fit changes, which deviate from the native unbound (apo) states. This can underestimate
energy barriers and non-additive effects during binding, leading to artificially accelerated or biased
trajectories. To mitigate this, we prioritize or approximate unbound conformations, ensuring starting
structures more accurately reflect free-chain dynamics. The procedure comprises three sequential
steps: (1) chain extraction, (2) unbound state approximation, and (3) geometric separation.

Step 1: Chain Extraction. First, load the bound PDB structure into a molecular analysis framework.
After that, parse and isolate individual chains by selecting atoms based on chain identifiers (e.g., ‘A,
‘B’). Then export each chain as a separate PDB file, preserving atomic coordinates, residues, and
any existing hydrogen atoms. Finally, validate completeness by checking for gaps or clashes using
stereochemical assessment tools, rejecting structures with > 5% unresolved residues.

Step 2: Unbound State Approximation. Approximate native unbound conformations to remove
bound-state bias: First, query databases (e.g., PDBe-KB [29]], UniProt [[1]) for experimental unbound
structures of each chain (sequence identity > 95%). If available, align to the bound reference using
TM-align structural superposition [32]] and adopt as the starting model. If unbound structures are
unavailable, extract chains from the bound PDB and relax via short molecular dynamics (MD)
simulations: Solvate each chain individually in a TIP3P water box with 150 mM NaCl, minimize
energy (tolerance 2.39 kcal /mol-A), equilibrate (NVT /NPT, 1 ns each at 300 K), and run production
for 5 ~ 10 ns with Langevin integration (2 fs timestep). Cluster resulting frames (e.g., using tICA [19]
and k-means) and select the dominant conformation (RMSD > 1A from bound state). Moreover, as
an alternative or augmentation for incomplete chains, predict unbound models from sequences using
AlphaFold3 [2] in monomer mode, aligning outputs to bound equivalents for coordinate consistency.

Step 3: Geometric Separation. Following the previous step, recombine approximated unbound
chains into a single structure and compute centers of mass for each chain. After that, apply random
rotations (Euler angles uniformly sampled from 0 ~ 360°) and translations (vectors yielding 5 ~ 20
nm inter-chain separation, randomized per replica) to mimic diffusive encounters. Then assign initial
velocities from a Maxwell-Boltzmann distribution at 300 K. Ultimately, validate final configurations
for clashes (minimum distance >0.5 nm) and export as a merged PDB file for solvation.

In conclusion, this elaborately designed process of complex separation effectively enhances simulation
fidelity by starting from unbound-like states, better capturing non-additive binding effects, at a modest
computational cost (1 ~ 2 GPU-hours per chain for relaxation/prediction).
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