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Abstract

This paper proposes a framework to ad-
dress the issue of data scarcity in Document-
Grounded Dialogue Systems(DGDS). Our
model leverages high-resource languages to
enhance the capability of dialogue genera-
tion in low-resource languages. Specifically,
We present a novel pipeline CLEM (Cross-
Lingual Enhanced Model) including adver-
sarial training retrieval (Retriever and Re-
ranker), and Fid (fusion-in-decoder) genera-
tor. To further leverage high-resource lan-
guage, we also propose an innovative architec-
ture to conduct alignment across different lan-
guages with translated training. Extensive ex-
periment results demonstrate the effectiveness
of our model and we achieved 4th place in the
DialDoc 2023 Competition. Therefore, CLEM
can serve as a solution to resource scarcity in
DGDS and provide useful guidance for multi-
lingual alignment tasks.

1 Introduction

Document-Grounded Dialogue System (DGDS) is
a meaningful yet challenging task, which not only
allows content accessible to end users via various
conversational interfaces, but also requires gener-
ating faithful responses according to knowledge
resources.

However, in real-world scenarios, we may not
have abundant resources to construct an effec-
tive dialogue system due to the low resources of
some minority languages such as Vietnamese and
French. Previous works only consider building a
DGDS in high-resource languages with rich docu-
ment resources such as English and Chinese (Feng
et al., 2021; Fu et al., 2022), which is contrary
to real-world situations. Extensive minority lan-
guages struggle to build well-founded chatbots
due to the low resource of documents.

Therefore, how to generate evidential responses
under a scarce resources setting deserves our at-
tention. To address this issue, we propose a

novel architecture to leverage high-resource lan-
guages to supplement low-resource languages, in
turn, build a fact-based dialogue system. Thus,
our model can not only handle high-resource sce-
narios but also generate faithful responses under
low-resource settings.Our key contributions can
be split into three parts:

• We proposed a novel framework, dubbed
as CLEM, including adversarial training
Retriever, Re-ranker and Fid (fusion-in-
decoder) generator.

• We presented the novel architecture of trans-
lated training and three-stage training.

• Extensive results demonstrated the effective-
ness of CLEM. Our team won the 4th place in
the Third DialDoc Shared-task competition.

2 Related Work

Document Grounded Dialogue System is an
advanced dialogue system that requires the abil-
ity to search relevant external knowledge sources
in order to generate coherent and informative re-
sponses. To evaluate and benchmark the perfor-
mance of such systems, existing DGDS datasets
can be broadly classified into three categories
based on their objectives: 1) Chitchat, such as
WoW (Dinan et al., 2019), Holl-E (Moghe et al.,
2018), and CMU-DoG (Zhou et al., 2018). These
datasets typically involve casual and open-ended
conversations on various topics; 2) Conversa-
tional Reading Comprehension (CRC), which
requires the agent to answer questions based on
understanding of a given text passage. Exam-
ples of CRC datasets include CoQA (Reddy et al.,
2019), Abg-CoQA (Guo et al., 2021), and ShARC
(Saeidi et al., 2018); and 3) Information-seeking
Scenarios, such as Doc2dial (Feng et al., 2020),
Multidoc2dial (Feng et al., 2021), and Doc2bot
(Fu et al., 2022), where the agent needs to retrieve



relevant information from one or more documents
to address a user’s query.

Cross-lingual Data Augmentation has
emerged as an effective approach to address
the challenges of multilingual NLP tasks (Zhang
et al., 2019; Singh et al., 2019; Riabi et al.,
2021; Qin et al., 2020; Bari et al., 2021). Par-
ticularly in low-resource language settings, DA
has demonstrated its usefulness (Liu et al., 2021;
Zhou et al., 2022b,a). Explicit DA techniques
mainly involve translation-based templates, such
as word-level adversarial learning (Bari et al.,
2020) and designed translation templates (Liu
et al., 2021; Zhou et al., 2022b). Implicit data
augmentation techniques, on the other hand,
focus on modeling instead of expanding datasets
like representation alignment (Mao et al., 2020),
knowledge distillation (Chen et al., 2021) and
transfer learning (Schuster et al., 2019).

3 Task Description

Formulation. We aim to improve the perfor-
mance of DGDS in low-resource languages (Viet-
namese and French). Formally, given labeled set
D = {xi, pi, ri}, i ∈ [1, ND] , where ND denotes
the number of data and xi, pi, ri denotes the input,
grounding passage and response. Note that the in-
put is obtained by concatenating the current turn
and previous context. In addition, we have access
to some high-resource language labeled datasets
U with size NU , where NU ≫ ND. Our goal is
to explore how to utilize high-resource datasets to
enhance performance in low-resource languages
(Vietnamese and French).

We have access to two large datasets, namely
Multidoc2dial (Feng et al., 2021) for English and
Doc2bot for Chinese(Fu et al., 2022). To fully take
advantage of these high-resource datasets to en-
hance the performance in French and Vietnamese,
we conducted translated training and generated
pseudo-labeled training sets in Vietnamese and
French. Specifically, we utilized the Baidu API1

and Tencent API2 to translate English and Chinese
into French and Vietnamese, separately. Notably,
English and French are Indo-European languages,
indicating a common ancestral language, and Chi-
nese and Vietnamese share historical and cultural
connections and have influenced each other. Our
methodology involved augmenting the training set

1https://fanyi-api.baidu.com/api/trans/product/index
2https://www.tencentcloud.com/products/tmt

data number of turns

Chinese corpus 5760
English corpus 26506
Shared-Task/train 3446 (Vi) and 3510(Fr)
Zh-Vi 4908
En-Fr 4980
Shared-Task/dev 95(Vi) and 99(Fr)
Shared-Task/test 94(Vi) and 100(Fr)

Table 1: Statistics of provided datasets. Chinese and
English corpus is provided by the third workshop com-
mittee of DialDoc. Zh-Vi and En-Fr means the number
of translated data from Chinese to Vietnamese and from
English to French respectively.

by translating 5000 English examples into French
and 5000 Chinese examples into Vietnamese. Af-
ter filtering out instances of poor quality and ex-
cessive length, we ultimately derived 4980 En-Fr
and 4908 Zh-Vi pseudo examples.

Now we have three training data, cross-lingual
training data D, translated pseudo data D

′
and

downstream fine-tuning data Dt. We will show
how to use these data in Section 4.4. And the
statistics are presented in Table 1.

4 Methodology

We adopt the Retrieve-Rerank-Generation archi-
tecture (Glass et al., 2022; Zhang et al., 2023) and
incorporate adversarial training into both the Re-
triever and Re-ranker components. To address the
low-resource DGDS scenario, we propose a novel
three-stage training approach.

4.1 Passage-Retriever With FGM
Given an input x, the retriever aims to retrieve the
most relevant top-k documents {zi}ki from a large
candidate pool. We follow the schema of conven-
tional Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020) for passage retrieval:

s(q) = XLM-R1(q)

s(z) = XLM-R2(z)

pϕ(z|q) ∝ dot[s(q)⊤s(z)]

To improve multi-lingual performance further,
where the encoder is initialized from XLM-
RoBERTa (Conneau et al., 2019) denote as
XLM-R which are used to convert question tem-
plates into dense embedding vectors for passage
retrieval. Sub-linear time search can be achieved

https://fanyi-api.baidu.com/api/trans/product/index
https://www.tencentcloud.com/products/tmt


with a Maximum Inner Product Search (MIPS)
(Shrivastava and Li, 2014).

In addition, inspired by FGM (Miyato et al.,
2017), we extend the adversarial training to doc-
ument retrieval. We apply infinitesimal perturba-
tions on word embeddings to increase the learn-
ing difficulty by constructing adversarial exam-
ples. Based on this, the passage retriever is regu-
larized and has better generalization performance
since it has to retrieve the correct relevant docu-
ments under the attack of adversarial examples.

4.2 Passage-Reranker with FGM

Given a shortlist of candidates, the goal of
Reranker is to capture deeper interactions between
a query x and a candidate passage p. Specifi-
cally, the query x and passage p are concatenated
to form the input for XLM-RoBERTa (Conneau
et al., 2019). And the pooler output of XLM-
RoBERTa is considered as similarity score:

P (p|q) = SoftMax (Linear (XLM-R([p, q])))

As in the previous stage, we still employed FGM
(Miyato et al., 2017) to add perturbations to word
embeddings.

4.3 Knowledge-Enhancement Generation

The generator aims to generate correct and fac-
tual responses according to the candidates of pas-
sages. The key problem is how to leverage the
knowledge of passage candidates as much as pos-
sible. we adopt Fusion-in-Decoder(FiD) (Izacard
and Grave, 2021) as our response generator. Dur-
ing generation, FiD will first encodes every input
with multiple passages independently through en-
coder, and then decodes all encoded feature jointly
to generate final response. Concisely, the decoder
has extra Cross Attention on more passages fea-
ture. This is significant because it is equivalent to
improve grounding passage accuracy from top-k
to top-n. Note that k ≪ n due to the CUDA mem-
ory limitation.

Since prompt-learning is effective in generation
proved by previous work (Wei et al., 2021), we
also adopt this way by adding the prompt to the
front of input query. We choose "please generate
the response:" as our prompt, so the final input of
generator is "prompt <query> query <passage>
passage", where <prompt> and <passage> are
special tokens.

Model Total

Baseline 156.42
CLEM 201.0913

Table 2: Performance of CLEM on Test set

4.4 Training Process

Our training process consists of three stages. In
the first stage, we use all available Chinese and En-
glish training corpora to pre-train the model, aim-
ing to develop its primary cross-lingual percep-
tion capability. We incorporate downstream fine-
tuning data in this stage as well. We denote this
stage as T (D +Dt), where T represents training.

In the second stage, we train the model using
translated pseudo data, which includes both noisy
data and downstream fine-tuning data. We denote
this stage as T (D

′
+Dt).

Finally, we fine-tune the model from the second
stage on downstream low-resource training data.
We denote this stage as F (Dt), where F repre-
sents fine-tuning.

Therefore, the complete training process can
be represented as T (D +Dt)T (D

′
+Dt)F (Dt).

In the Experiment section, we also explore other
training processes, such as two-stage training and
direct fine-tuning.

5 Experiments and Results

In this section, we will introduce our datasets and
baseline system. Additionally, we will demon-
strate the effectiveness of each component in our
methodology, such as adversarial training and the
novel training process.

5.1 Datasets

We train CLEM on the given shared task datasets,
containing Vietnamese (3,446 turns), 816 dia-
logues in French (3,510 turns) and a corpus of
17272 paragraphs in ModelScope3, where each di-
alogue turn is grounded in a paragraph from the
corpus. Moreover, we also utilize Chinese (5760
turns) and English (26,506 turns) as additional
training data.

5.2 Baseline System

The baseline follows the pipeline of Retrieval,
Re-rank and Generation. It simply uses DPR

3https://modelscope.cn/

https://modelscope.cn/


CLEM F1 BLEU ROUGE Total

CLEM-Full 66.51 57.45 64.38 188.34
CLEM(two-stage) 65.52 55.23 63.15 183.9
CLEM(fine-tune) 63.76 53.41 61.47 178.64
CLEM(two-stage w/o Zh-Vi) 64.24 54.51 62.18 180.93
CLEM(two-stage w/o En-Fr) 61.99 51.21 60.28 173.48
CLEM(w/o prompt) 64.34 55.12 62.31 181.77

Table 3: Ablation results of Modelon Development set. Here, the best are marked with Bold. Two-stage means we
do not use original Chinese and English data. Fine-tune means we just use downstream training data.

CLEM R@1 R@5 R@20 MRR@5

retrieval 0.57 0.78 0.87 0.65
retrieval† 0.62 0.77 0.87 0.68
re-rank 0.74 0.84 0.87 0.78
re-rank † 0.76 0.85 0.87 0.79

Table 4: Effect of FGM on Development set, where
†means we use adversarial training

(Karpukhin et al., 2020) as retriever and Trans-
former Encoder (Vaswani et al., 2017) with a lin-
ear layer as re-ranker.

5.3 Result and Analysis

We evaluate the generation results based on to-
ken level F1, SacreBLEU and Rouge-L. The fi-
nal result is the sum of them. As shown in Table
2, CLEM has a significant improvement by 28%
on total result compared to strong baseline, which
demonstrates the effectiveness of our method.

5.3.1 Ablation Study
We study the impact of different components of-
CLEM, where the results are given in Table 3.

Training process we compare CLEM with two-
stage training and fine-tuning directly. The former
only contains translated corpus without original
Chinese and English data, which can be denoted
by T (D

′
+Dt)F (Dt). While the latter means we

only use downstream fine-tuning data denoted by
F (Dt). From the first three lines of Table 3, we
can observe that CLEM has superior performance
than two-stage training which means CLEM can
leverage cross-lingual corpus to do a better lan-
guage alignment for downstream training and get
a better initialization. Not surprisingly, two-stage
training outperforms fine-tuning directly which
echos the Translated Training (Singh et al., 2019)

Different pseudo corpus As described in sec-
tion 3, we leverage two translated pseudo corpus
Zh-Vi and En-Fr. We also study the impact of
each set with two-stage training. From 4th and
5th line of Table 3, the performance without Zh-
Vi(Chinese to Vietnamese) and En-Fr(English to
French) will decrease, which proved that the trans-
lated corpus is useful for shared task.

Without prompt We also run the experiments
without prompt to explore the impact of prompt.
From the last line of Table 3, the performance of
CLEM will decrease sharply.

Without FGM We also explore the effective-
ness of FGM (Miyato et al., 2017) at retriever and
re-ranker. Results are listed in Table 4. We can
observe significant improvements from retrieval to
re-rank which prove the effectiveness of re-rank.

6 Conclusion

This paper introduces CLEM, a novel pipeline for
document-grounded dialogue systems that uses a
"retrieve, re-rank, and generate" approach. To ad-
dress the issue of low performance due to lim-
ited training data, we extend the adversarial train-
ing to the document Retriever and Re-ranker com-
ponents. Additionally, CLEM leverages high-
resource languages to improve low-resource lan-
guages and develops a new training process under
data-scarce settings.

Experimental results demonstrate that CLEM
outperforms the strong, competitive baseline and
achieved 4th place on the leaderboard of the third
DialDoc competition. These findings provide a
promising approach for generating grounded dia-
logues in multilingual settings with limited train-
ing data and further demonstrate the effectiveness
of leveraging high-resource languages for low-
resource language enhancement.
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epochs=20
train_batch_size=1
accumulation_steps=32
weight_decay=0.1
warmup_steps=1000
max_input_length=512
passages=20
preKturns=2

A.3 Hyper-parameters for generator
learning_rate=2e-4
dropout=0.1
epochs=20
accumulation_steps=16
max_grad_norm=1
train_batch_size=1
accumulation_steps=1
weight_decay=0.1
warmup_steps=1000
max_input_length=1024
max_output_length=128
beam_size=3
passages4gen=5
preKturns=2


