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ABSTRACT

On-policy reinforcement learning (RL) algorithms perform policy updates using
i.i.d. trajectories collected by the current policy. However, after observing only
a finite number of trajectories, on-policy sampling may produce data that fails to
match the expected on-policy data distribution. This sampling error leads to noisy
updates and data inefficient on-policy learning. Recent work in the policy evalu-
ation setting has shown that non-i.i.d., off-policy sampling can produce data with
lower sampling error than on-policy sampling can produce (Zhong et al., 2022).
Motivated by this observation, we introduce an adaptive, off-policy sampling
method to improve the data efficiency of on-policy policy gradient algorithms.
Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling
error by collecting data with a behavior policy that increases the probability of
sampling actions that are under-sampled with respect to the current policy. We
empirically evaluate PROPS on both continuous-action MuJoCo benchmark tasks
as well discrete-action tasks and demonstrate that (1) PROPS decreases sampling
error throughout training and (2) improves the data efficiency of on-policy policy
gradient algorithms.

1 INTRODUCTION

One of the most widely used classes of reinforcement learning (RL) algorithms is the class of on-
policy policy gradient algorithms. These algorithms use gradient ascent on the parameters of a
parameterized policy so as to increase the probability of observed actions with high expected returns
under the current policy. The gradient is commonly estimated using the Monte Carlo estimator,
an average computed over i.i.d. samples of trajectories from the current policy. The Monte Carlo
estimator is consistent and unbiased; as the number of sampled trajectories increases, the empirical
distribution of trajectories converges to the true distribution under the current policy, and thus the
empirical gradient converges to the true gradient. However, the expense of environment interactions
forces us to work with finite samples. Thus, the empirical distribution of the trajectories often
differs from the desired on-policy data distribution. We refer to the mismatch between the empirical
distribution of trajectories and the desired on-policy trajectory distribution as sampling error. This
sampling error produces inaccurate gradient estimates, resulting in noisy policy updates, slower
learning, and potentially convergence to suboptimal policies. With i.i.d. on-policy sampling, the
only way to reduce sampling error is to collect more data.

Since on-policy sampling is so widely used to produce on-policy data, on-policy sampling is often
taken to be an essential feature of data collection for on-policy learning (Silver, 2015; Achiam,
2018; Sutton and Barto, 2018). However, on-policy sampling is not explicitly required for on-
policy learning; on-policy learning requires on-policy data – data whose state-conditioned empirical
distribution of actions matches that of the current policy. On-policy sampling is a straightforward
way to acquire on-policy data, though we can obtain such data more efficiently without on-policy
sampling. To better illustrate this concept, consider an MDP with two discrete actions A and B,
and suppose the current policy π places equal probability on both actions in some state s. When
following π, after 10 visits to s, we may observe A 2 times and B 8 times rather than the expected 5
times. Alternatively, if we adaptively select the most under-sampled action upon every visit to s, we
will observe each action an equal number of times. The first scenario illustrates on-policy sampling
but not on-policy data; the second scenario uses off-policy sampling yet produces on-policy data.
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Figure 1: An overview of PROPS for on-policy policy gradient learning. Rather than collecting data
D via on-policy sampling from the agent’s current policy πθ, we collect data with a separate data
collection policy πϕ that we continually adapt to reduce sampling error in D with respect to the
agent’s current policy.

These observations raise the following question: can on-policy policy gradient algorithms learn more
efficiently using on-policy data acquired without on-policy sampling? Recently, Zhong et al. (2022)
showed that adaptive, off-policy sampling can yield data that more closely matches the on-policy
distribution than data produced by i.i.d. on-policy sampling. However, this work was limited to the
policy evaluation setting in which the on-policy distribution remains fixed. Turning from evaluation
to control poses the challenge of a continually changing current policy.

In this work, we address this challenge and show for the first time that on-policy policy gradient
algorithms are more data-efficient learners when they use on-policy data acquired with adaptive,
off-policy sampling. Our method, Proximal Robust On-Policy Sampling (PROPS)1, adaptively cor-
rects sampling error in previously collected data by increasing the probability of sampling actions
that are under-sampled with respect to the current policy. Fig. 1 provides an overview of PROPS.
We empirically evaluate PROPS on continuous-action MuJoCo benchmark tasks as well as discrete
action tasks and show that (1) PROPS reduces sampling error throughout training and (2) improves
the data efficiency of on-policy policy gradient algorithms. In summary, our contributions are

1. We introduce an adaptive sampling algorithm that reduces sampling error in on-policy data
collection.

2. We demonstrate empirically that our method improves the data efficiency of on-policy pol-
icy gradient algorithms and increases the fraction of training runs that converge to high-
return polices.

3. Building off of the theoretical foundation laid by Zhong et al. (2022), this work improves
the RL community’s understanding of a nuance in the on-policy vs off-policy dichotomy:
on-policy learning requires on-policy data, not on-policy sampling.

2 RELATED WORK

Our work focuses on data collection in RL. In RL, data collection is often framed as an exploration
problem, focusing on how an agent should explore its environment to efficiently learn an optimal
policy. Prior RL works have proposed several exploration-promoting methods such as intrinsic mo-
tivation (Pathak et al., 2017; Sukhbaatar et al., 2018), count-based exploration (Tang et al., 2017;
Ostrovski et al., 2017), and Thompson sampling (Osband et al., 2013; Sutton and Barto, 2018). In
contrast, our objective is to learn from the on-policy data distribution; we use adaptive data collection
to more efficiently obtain this data distribution.

Prior works have used adaptive off-policy sampling to reduce sampling error in the policy evaluation
subfield of RL. Most closely related is the work of Zhong et al. (2022) who first proposed that
adaptive off-policy sampling could produce data that more closely matches the on-policy distribution
than on-policy sampling could produce. Mukherjee et al. (2022) use a deterministic sampling rule to
take actions in a particular proportion. Other bandit works use a non-adapative exploration policy to
collect additional data conditioned on previously collected data (Tucker and Joachims, 2022; Wan

1We include our codebase in the supplemental material.
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et al., 2022; Konyushova et al., 2021). Since these works only focus on policy evaluation, they do
not have to contend with a changing on-policy distribution as our work does for the control setting.

Several prior works propose importance sampling methods (Precup, 2000) to reduce sampling error
without further data collection. In the RL setting, Hanna et al. (2021) showed that reweighting off-
policy data according to an estimated behavior policy can correct sampling error and improve policy
evaluation. Similar methods have been studied for temporal difference learning (Pavse et al., 2020)
and policy evaluation in the bandit setting (Li et al., 2015; Narita et al., 2019). Conservative Data
Sharing (Yu et al., 2021) reduces sampling error by selectively integrating offline data from multiple
tasks. Our work instead focuses on using additional data collection to reduce sampling error.

As we will discuss in Section 5, the method we introduce permits data collected in one iteration
of policy optimization to be re-used in future iterations rather than discarded as typically done by
on-policy algorithms. Prior work has attempted to avoid discarding data by combining off-policy
and on-policy updates with separate loss functions or by using alternative gradient estimates (Wang
et al., 2016; Gu et al., 2016; 2017; Fakoor et al., 2020; O’Donoghue et al., 2016; Queeney et al.,
2021). In contrast, our method modifies the sampling distribution at each iteration so that the entire
data set of past and newly collected data matches the expected distribution under the current policy.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

We formalize the RL environment as a finite horizon Markov decision process (MDP) (Puterman,
2014) (S,A, p, r, d0, γ) with state space S , action space A, transition dynamics p : S × A × S →
[0, 1], reward function r : S × A → R, initial state distribution d0, and reward discount factor
γ ∈ [0, 1). The state and action spaces may be discrete or continuous. We write p(· | s,a) to
denote the distribution of next states after taking action a in state s. We consider stochastic policies
πθ : S×A → [0, 1] parameterized by θ, and we write πθ(a|s) to denote the probability of sampling
action a in state s and πθ(·|s) to denote the probability distribution over actions in state s. We
additionally let dπθ

: S × A → [0, 1] denote the state-action visitation distribution, the distribution
over state-action pairs induced by following πθ. The RL objective is to find a policy that maximizes
the expected sum of discounted rewards, defined as:

J(θ) = Eτ∼πθ

[∑H

t=0
γtr(st,at)

]
, (1)

where the horizon H is the random variable representing the time-step when an episode ends.
Throughout this paper, we refer to the policy used for data collection as the behavior policy and
the policy trained to maximize its expected return as the target policy.

3.2 ON-POLICY POLICY GRADIENT ALGORITHMS

Policy gradient algorithms are one of the most widely used methods in RL. These methods perform
gradient ascent over policy parameters to maximize an agent’s expected return J(θ) (Eq. 1). The
gradient of the J(θ) with respect to θ, or policy gradient, is often given as:

∇θJ(θ) = Es∼dγ
πθ

,a∼πθ
[Aπθ (s,a)∇θ log πθ(a|s)] , (2)

where Aπθ (s,a) is the advantage of choosing action a in state s and following πθ thereafter. In
practice, the expectation in Eq. 2 is approximated with Monte Carlo samples collected from πθ and
an estimate of Aπθ used in place of the true advantages (Schulman et al., 2016). After updating the
policy parameters with this estimated gradient, the previously collected trajectories D become off-
policy with respect to the updated policy. To ensure gradient estimation remains unbiased, on-policy
algorithms discard historic data after each update and collect new data with the updated policy.

This foundational idea of policy learning via stochastic gradient ascent was first proposed by
Williams (Williams, 1992) under the name REINFORCE. Since then, a large body of research has fo-
cused on developing more scalable policy gradient methods (Kakade, 2001; Schulman et al., 2015;
Mnih et al., 2016; Espeholt et al., 2018; Lillicrap et al., 2015; Haarnoja et al., 2018). Arguably, the
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most successful variant of policy gradient learning is proximal policy optimization (PPO) (Schul-
man et al., 2017), the algorithm of choice in several high-profile success stories (Berner et al., 2019;
Akkaya et al., 2019; Vinyals et al., 2019). Rather than maximizing the standard RL objective (Eq. 1),
PPO maximizes a surrogate objective:

LPPO(s,a,θ,θold) = min(g(s,a,θ,θold)A
πθold (s,a),

clip(g(s,a,θ,θold), 1− ϵ, 1 + ϵ)Aπθold (s,a)),
(3)

where θold denotes the policy parameters prior to the update, g(s,a,θ,θold) is the policy ratio
g(s,a,θ,θold) = πθ(a|s)

πθold (a|s)
, and the clip function with hyperparameter ϵ clips g(s,a,θ,θold) to

the interval [1 − ϵ, 1 + ϵ]. This objective disincentivizes large changes to πθ(a|s). In contrast to
other policy gradient algorithms which perform a single gradient update per data sample to avoid
destructively large weight updates, PPO’s clipping mechanism allows the agent to perform multiple
epochs of minibatch policy updates.

4 CORRECTING SAMPLING ERROR IN REINFORCEMENT LEARNING

In this section, we illustrate how sampling error can produce inaccurate policy gradient estimates
and then describe how adaptive, off-policy sampling can reduce sampling error. For exposition, we
assume finite state and action spaces. The policy gradient can then be written as:

∇θJ(θ) =
∑

(s,a)∈S×A

dγπθ
(s,a) [Aπθ (s,a)∇θ log πθ(a|s)] . (4)

The policy gradient is thus a linear combination of the gradient for each (s,a) pair ∇θ log πθ(a|s)
weighted by dγπθ

(s,a)Aπθ (s,a). Let D be a dataset of trajectories. It is straightforward to show
that the Monte Carlo estimate of the policy gradient can be written in a similar form as Equa-
tion 4 except with the true state-action visitation distribution replaced with the empirical visita-
tion distribution, dD(s,a) (Hanna et al., 2021). Consequently, when (s,a) is over-sampled (i.e.,
dD(s,a) > dγπθ

(s,a)), then∇θ log πθ(a|s) contributes more to the overall gradient than it should.
Similarly, when (s,a) is under-sampled,∇θ log πθ(a|s) contributes less than it should.

We now provide a concrete example illustrating how small amounts of sampling error can cause the
wrong actions to be reinforced, resulting in sub-optimal convergence. Suppose that in a particular
state s0, an agent places equal probability on two actions a0 and a1 with advantages Aπθ (s0,a0) =
20 and Aπθ (s0,a1) = 15, respectively. Since ∇θ log πθ(a0|s0) = ∇θ log πθ(a1|s0) and
dγπθ

(s0,a0) = dγπθ
(s0,a1), the expected gradient will increase the probability of sampling the

action with the larger advantage (a0). With on-policy sampling, after 10 visits to s0, the agent will
sample both actions 5 times in expectation. However, the agent may actually observe a0 4 times and
a1 6 times. A Monte Carlo estimate of the policy gradient would then place 0.4 · Aπθ (s0,a) = 8
weight on the gradient of a0 and 0.6·Aπθ (s0,a1) = 9 weight on a1, thus decreasing the probability
of sampling the optimal a0 action.

Sampling error in on-policy sampling vanishes as the size of the batch of data used to estimate
the gradient tends toward infinity. However, the preceding example suggests a simple strategy that
would eliminate sampling error with finite data: have the agent adapt its probability on the next
action it takes based on what actions it has already sampled. Continuing with our example, suppose
the agent has visited s0 9 times and sampled a0 4 times and a1 5 times. With on-policy sampling,
the agent may observe a1 again upon the next visit to s0. Alternatively, the agent could sample its
next action from a distribution that puts probability 1 on a0 and consequently produce an aggregate
batch of data that contains both actions in their expected frequency. While this adaptive method is
an off-policy sampling method, it produces data that exactly matches the on-policy distribution and
will thus produce a more accurate gradient.

This example suggests that we can heuristically reduce sampling error by taking the most under-
sampled action at a given state. Under a strong assumption that the MDP had a DAG structure,
Zhong et al. (2022) proved that this heuristic results in the empirical distribution of states and actions
in a fixed-horizon MDP converging to dπθ

(s,a) and moreover converging at a faster rate than on-
policy sampling. We remove this limiting assumption with the following result:

4
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Proposition 1. Assume that data is collected with an adaptive behavior policy that always takes the
most under-sampled action in each state, s, with respect to policy π, i.e, a← argmaxa′(π(a′|s)−
πD(a

′|s)), where πD is the empirical policy after m state-action pairs have been collected. Assume
that S and A are finite and that the Markov chain induced by π is irreducible. Then we have that
the empirical state visitation distribution, dm, converges to the state distribution of π, dπ , with
probability 1:

∀s, lim
m→∞

dm(s) = dπ(s).

Proof. See Appendix A.

While adaptively sampling the most under-sampled action can reduce sampling error, this heuristic
is difficult to implement in practice. In tasks with continuous states and actions, the argmax often
has no closed-form solution, and the empirical policy can be expensive to compute at every timestep.
Building upon the concepts discussed in this section, the following section presents a scalable adap-
tive sampling algorithm that reduces sampling error in on-policy policy gradient learning.

5 PROXIMAL ROBUST ON-POLICY SAMPLING FOR POLICY GRADIENT
ALGORITHMS

Our goal is to develop an adaptive, off-policy sampling algorithm that reduces sampling error in on-
policy data collection for on-policy policy gradient algorithms. We outline a general framework for
on-policy learning with an adaptive behavior policy in Algorithm 1. In this framework, the behavior
policy πϕ and target policy πθ are initially the same. The behavior policy collects a batch of m
transitions, adds the batch to a data buffer D, and then updates its weights such that the next batch it
collects reduces sampling error in D with respect to the target policy πθ (Lines 7-10). Every n steps
(with n > m), the agent updates its target policy with data from D (Line 11). We refer to m and n
as the behavior batch size and the target batch size, respectively.

Algorithm 1 On-policy policy gradient algorithm
with adaptive sampling

1: Inputs: Target batch size n, behavior batch
size m, buffer size b.

2: Output: Target policy parameters θ.
3: Initialize target policy parameters θ.
4: Initialize behavior policy parameters ϕ← θ.
5: Initialize empty buffer D with capacity bn.
6: for target update i = 1, 2, . . . do
7: for behavior update j = 1, . . . , ⌊n/m⌋ do
8: Collect batch of data B by running πϕ.
9: Append B to buffer D.

10: Update πϕ with D using Algorithm 2.
11: Update πθ with D.
12: return θ

A subtle implication of adaptive sampling is
that it can correct sampling error in any em-
pirical data distribution – even one generated
by a different policy. Rather than discarding
off-policy data from old policies – as is com-
monly done in on-policy learning – we let the
data buffer hold up to b target batches (bn tran-
sitions) and call b the buffer size. If b > 1, then
D will contain historic off-policy data used in
previous target policy updates. Regardless of
how b is set, the role of the behavior policy is to
continually adjust action probabilities for new
samples so that the aggregate data distribution
of D matches the expected on-policy distribu-
tion of the current target policy (Line 10). Im-
plementing Line 10 is the core challenge we
address in the remainder of this section.

To ensure that the empirical distribution of D matches the expected on-policy distribution, up-
dates to πϕ should attempt to increase the probability of actions which are currently under-
sampled with respect to πθ. Zhong et al. (2022) recently developed a simple method called Ro-
bust On-policy Sampling (ROS) for making such updates. In particular, the gradient ∇ϕL :=
−∇ϕ

∑
(s,a)∈D log πϕ(a|s) when evaluated at ϕ = θ provides a direction to change ϕ such that

under-sampled actions have their probabilities increased. Thus a single step of gradient ascent will
increase the probability of under-sampled actions.2 In theory and in simple RL policy evaluation

2To add further intuition for this update, note that it is the opposite of a gradient ascent step on the log
likelihood of D. When starting at θ, gradient ascent on the data log likelihood will increase the probability of
actions that are over-sampled relative to πθ . Hence, the ROS update changes ϕ in the opposite direction.
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tasks, this update was shown to improve the rate at which the empirical data distribution converges
to the on-policy distribution – even when the empirical data distribution contains off-policy data.
Unfortunately, there are two main challenges that render ROS unsuitable for Line 10 in Algorithm 1.

Algorithm 2 PROPS Update

1: Inputs: Target policy parameters θ, bufferD, target
KL δ, clipping coefficient ϵPROPS, regularizer coeffi-
cient λ, n epoch, n minibatch.

2: Output: Behavior policy parameters ϕ.
3: ϕ← θ
4: for epoch i = 1, 2, . . . , n epoch do
5: for minibatch j = 1, 2, . . . , n minibatch do
6: Sample minibatch Dj ∼ D
7: Compute the loss (Eq. 6)

L ← 1

|Dj |
∑

(s,a)∈Dj

LPROPS(s,a,ϕ,θ, ϵPROPS, λ)

8: Update ϕ with a step of gradient ascent on L
9: if DKL(πθ||πϕ) > δPROPS then

10: return ϕ
11: return ϕ

Challenge 1: Destructively large pol-
icy updates. Since the buffer D may
contain data collected from older target
policies, some samples in D may be very
off-policy with respect to the current tar-
get policy such that log πϕ(a|s) is large
and negative. Since ∇ϕ log πϕ(a|s) in-
creases in magnitude as πϕ(a|s) tends
towards zero, ROS incentivizes the agent
to continually decrease the probability
of these actions despite being extremely
unlikely under the current target policy.
Thus, off-policy samples can produce de-
structively large policy updates.

Challenge 2: Improper handling of
continuous actions. In a continuous-
action task, ROS may produce behavior
policies that increase sampling error. A
continuous-action task policy πθ(a|s) is
typically parameterized as a GaussianN (µ(s),Σ(s)) with mean µ(s) and diagonal covariance ma-
trix Σ(s). Since actions in the tail of the Gaussian far from the mean will always be under-sampled,
the ROS update will continually push the components of µ(s) towards±∞ and the diagonal compo-
nents of Σ(s) towards 0 to increase the probability of sampling these actions. The result is a degen-
erate behavior policy that is so far from the target policy that sampling from it increases sampling
error.3 We illustrate this scenario with 1-dimensional continuous actions in Fig. 6 of Appendix B.

To address these challenges, we propose a new behavior policy update. To address Challenge 1, first
observe that the gradient of the ROS loss ∇ϕL = ∇ϕ log πϕ(a|s)|ϕ=θ is equivalent to the policy
gradient (Eq. 2) with Aπθ (s,a) = −1,∀(s,a). Since the clipped surrogate objective of PPO (Eq. 3)
prevents destructively large updates in on-policy policy gradient learning, we use a similar clipped
surrogate objective in place of the ROS objective:

LCLIP(s,a,ϕ,θ, ϵPROPS) = min

[
− πϕ(a|s)

πθ(a|s)
,−clip

(
πϕ(a|s)
πθ(a|s)

, 1− ϵPROPS, 1 + ϵPROPS

)]
. (5)

Table 1 in Appendix B summarizes the behavior of LCLIP. Intuitively, this objective is equivalent
to the PPO objective (Eq. 3) with A(s,a) = −1,∀(s,a) and incentivizes the agent to decrease the
probability of observed actions by at most a factor of 1− ϵPROPS. Let g(s,a,ϕ,θ) = πϕ(a|s)

πθ(a|s) . When
g(s,a,ϕ,θ) < 1 − ϵPROPS, this objective is clipped at −(1 − ϵPROPS). The loss gradient ∇ϕLCLIP

becomes zero, and the (s,a) pair has no effect on the policy update. When g(s,a,ϕ,θ) > 1−ϵPROPS,
clipping does not apply, and the gradient∇ϕLCLIP points in a direction that decreases the probability
of πϕ(a|s). As in the PPO update, this clipping mechanism avoids destructively large policy updates
and permits us to perform many epochs of minibatch updates with the same batch of data.

To address the second challenge and prevent degenerate behavior policies, we introduce an auxiliary
loss that incentivizes the agent to minimize the KL divergence between the behavior policy and target
policy at states in the observed data. The full PROPS objective is then:

LPROPS(s,a,ϕ,θ, ϵPROPS, λ) = LCLIP(s,a,ϕ,θ)− λDKL(πθ(·|s)||πϕ(·|s)) (6)

where λ is a regularization coefficient quantifying a trade-off between maximizing LPROPS and mini-
mizing DKL. We provide full pseudocode for the PROPS update in Algorithm 2. Like ROS, we set the
behavior policy parameters ϕ equal to the target policy parameters at the start of each behavior up-
date, and then make a local adjustment to ϕ to increase the probabilities of under-sampled actions.

3This challenge is specific to continuous-action tasks and does not arise in discrete-action tasks.
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(a) GridWorld (b) Sampling error (c) Gradient accuracy

Figure 2: (a) A GridWorld task in which the agent receives reward +1 upon reaching the bottom
right corner (the optimal goal), a reward of +0.5 upon reaching the top left corner (the suboptimal
goal), and a reward of −0.01. The agent always starts in the center of the grid. Under an initially
uniform policy, the agent visits both goals with equal probability, and thus the true policy gradient
increases the probability of reaching the optimal goal. (b, c) PROPS reduces sampling error and
achieves more accurate gradients faster than on-policy sampling.

We stop the PROPS update when DKL(πθ||πϕ) reaches a chosen threshold δPROPS. This technique
further safeguards against large policy updates and is used in widely adopted implementations of
PPO (Raffin et al., 2021; Liang et al., 2018). The PROPS update allows us to efficiently learn a be-
havior policy that keeps the distribution of data in the buffer close to the expected distribution of the
target policy.

6 EXPERIMENTS

The central goal of our work is to understand whether on-policy policy gradient algorithms are more
data efficient learners when they use on-policy data acquired without on-policy sampling. Towards
this goal, we design experiments to answer the two questions:

Q1: Does PROPS achieve lower sampling error than on-policy sampling during training?
Q2: Does PROPS increase the fraction of training runs that converge to high-return policies and

improve the data efficiency of on-policy policy gradient algorithms?

Our empirical analysis focuses on continuous-state continuous-action MuJoCo benchmark tasks and
a tabular 5x5 GridWorld task (Fig. 2a). We additionally consider three continuous-state discrete-
action tasks: CartPole-v1, LunarLander-v2, and Discrete2D100-v0 – a 2D navigation task with 100
discrete actions. Due to space constraints, we include these tasks in Appendix D.4.

6.1 CORRECTING SAMPLING ERROR FOR A FIXED TARGET POLICY

We first study how quickly PROPS decreases sampling error when the target policy is fixed. This
setting is similar to the policy evaluation setting considered by Zhong et al. (2022). As such, we
provide two baselines for comparison: on-policy sampling and ROS.

Sampling error metrics. In GridWorld, we compute sampling error as the total variation (TV) dis-
tance between the empirical state-action visitation dD(s,a) distribution – denoting the proportion
of times (s,a) appears in bufferD – and the true state-action visitation distribution under the agent’s
policy:

∑
(s,a)∈D |dD(s,a)− dπθ

(s,a)|. In continuous MuJoCo tasks where it is difficult to com-
pute dD(s,a), we follow Zhong et al. (2022) and measure sampling error using the KL-divergence
DKL(πD||πθ) between the empirical policy πD and the target policy πθ. We estimate πD as the
maximum likelihood estimate under data in the buffer via stochastic gradient ascent. Further details
on how we compute πD are in Appendix C.

Since it is straightforward to compute the true policy gradient in the GridWorld task, we additionally
investigate how sampling error reduction affects gradient estimation by measuring the cosine simi-
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larity between the empirical policy gradient ∇θĴ(θ) and the true policy gradient. As the empirical
gradient aligns more closely with the true gradient, the cosine similarity approaches 1.

(a) Fixed target policy. (b) During RL training.

Figure 3: PROPS reduces sampling error faster
than on-policy sampling and ROS. In (a), the
ROS and on-policy sampling curves overlap. Solid
curves denote means over 5 seeds. Shaded regions
denote 95% confidence intervals.

Experimental setup. In all tasks, we use a
buffer with capacity of ⌊T/2⌋ samples, where
T is the total number of samples collected by
the agent. Thus, we expect sampling error to
decrease over the first ⌊T/2⌋ samples and then
remain roughly constant afterwards once the
buffer is full. We use randomly initialized tar-
get policies. Further experimental details such
as hyperparameter tuning are described in Ap-
pendix D.1.

Results. As shown in Fig. 2b and 2c, in Grid-
World, PROPS decreases sampling error faster
than on-policy sampling, resulting in more ac-
curate policy gradient estimates. PROPS and
ROS to perform similarly, though this behavior
is expected; in a tabular setting with a fixed tar-
get policy (i.e. there is no off-policy data in the
buffer), we do not encounter Challenge 1 and 2
described in the previous section. In continu-
ous MuJoCo tasks where Challenge 2 arises, PROPS decreases sampling error faster than on-policy
sampling and ROS (Fig. 3a). In fact, ROS shows little to no improvement over on-policy sampling
in every MuJoCo task. This limitation of ROS is unsurprising, as Zhong et al. (2022) showed that
ROS struggled to reduce sampling error even in low-dimensional continuous-action tasks. Moreover,
PROPS decreases sampling error without clipping and regularization, emphasizing how adaptive off-
policy sampling alone decreases sampling error. Due to space constraints, we include results for the
remaining environments in Appendix D.1. We additionally include experiments using a fixed, ran-
domly initialized target policy as well as ablation studies isolating the effects of PROPS’s objective
clipping and regularization in Appendix D.1. Results with a random target policy are qualitatively
similar to those in Fig. 3a, and we observe that clipping and regularization both individually help
reduce sampling error.

6.2 CORRECTING SAMPLING ERROR DURING RL TRAINING

We are ultimately interested in understanding how replacing on-policy sampling with PROPS affects
the data efficiency of on-policy learning, where the target policy is continually updated. In the
following experiments, we train RL agents with PROPS and on-policy sampling to evaluate (1) the
data efficiency of training, (2) the distribution of returns achieved at the end of training, and (3)
the sampling error throughout training. We use the same sampling error metrics described in the
previous section and measure data efficiency as the return achieved within a fixed training budget.
Since ROS (Zhong et al., 2022) is computationally expensive and fails to reduce sampling error in
MuJoCo tasks even with a fixed policy, we omit it from MuJoCo experiments.

Experimental setup. We use PPO (Schulman et al., 2017) to update the target policy. We consider
two baseline methods for providing data to compute PPO updates: (1) vanilla PPO with on-policy
sampling, and (2) PPO with on-policy sampling and a buffer of size b (PPO-BUFFER). PPO-BUFFER
is a naive method for improving data efficiency of on-policy algorithms by reusing off-policy data
collected by old target policies as if it were on-policy data. Although PPO-BUFFER computes biased
gradients, it has been successfully applied in difficult learning tasks (Berner et al., 2019). Since
PROPS and PPO-BUFFER have access to the same amount of data for each policy update, any per-
formance difference between these two methods can be attributed to differences in how they sample
actions during data collection.

In MuJoCo experiments, we set b = 2 such that agents retain a batch of data for one extra iteration
before discarding it. In GridWorld, we use b = 1 and discard all historic data. Since PROPS and
PPO-BUFFER compute target policy updates with b times as much learning data as PPO, we integrate
this extra data by increasing the minibatch size for target and behavior policy updates by a factor

8
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(a) Training curves. (b) Performance profiles.

Figure 4: (a) IQM returns over 50 seeds. Shaded regions denote 95% bootstrap confidence intervals.
(b) Performance profiles over 50 seeds. Higher values correspond to more reliable convergence to
high-return policies. Shaded regions denote 95% bootstrap confidence intervals.

of b. Further experimental details including hyperparameter tuning are described in Appendix E.
For MuJoCo tasks, we plot the interquartile mean (IQM) return throughout training as well as the
distribution of returns achieved at the end of training (i.e., the performance profile) (Agarwal et al.,
2021). For GridWorld, we plot the agent’s success rate, the fraction of times it finds the optimal
goal.

Results. As shown in Fig. 5a, on-policy sampling has approximately a 77% success rate on Grid-
World, whereas PROPS and ROS achieve 100% success rate. In Fig. 4a, PROPS achieves higher return
than both PPO and PPO-BUFFER throughout training in all MuJoCo tasks except Ant-v4 where PROPS
dips slightly below PPO’s return near the end of training. Moreover, in Fig. 4b, the performance pro-
file of PROPS almost always lies above the performance profiles of PPO and PPO-BUFFER, indicating
that any given run of PROPS is more like to obtain a higher return than PPO-BUFFER. Thus, we
affirmatively answer Q2 posed at the start of this section: PROPS increases the fraction of training
runs with high return and increases data efficiency.

(a) Success rate. (b) Sampling error.

Figure 5: GridWorld RL experiments over 50
seeds.

In Appendix D.4, we provide additional experi-
ments demonstrating that PROPS improves data
efficiency in discrete-action tasks. We addition-
ally ablate the buffer size b in Appendix D.2.
We find that data efficiency may decrease with
a larger buffer size. Intuitively, the more his-
toric data kept around, the more data that must
be collected to impact the aggregate data distri-
bution.

Having established that PROPS improves data
efficiency, we now investigate if PROPS is ap-
propriately adjusting the data distribution of
the buffer by comparing the sampling error
achieved throughout training with PROPS and
PPO-BUFFER. Training with PROPS produces a different sequence of target policies than training
with PPO-BUFFER produces. To provide a fair comparison, we compute sampling error for PPO-
BUFFER using the target policy sequence produced by PROPS. More concretely, we fill a second
buffer with on-policy samples collected by the target policies produced while training with PROPS
and then compute the sampling error using data in this buffer.

As shown in Fig. 5b, PROPS achieves lower sampling error than on-policy sampling with a buffer
in Humanoid-v4. Due to space constraints, we provide sampling error curves for the remaining
MuJoCo environments in Appendix D.2. In GridWorld, PROPS and ROS reduce sampling error in

9
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the first 300 steps and closely matches on-policy sampling afterwards. We use a batch size of 80
in these experiments, and as the target policy becomes more deterministic, larger batch sizes are
needed to observe differences between PROPS and on-policy sampling.4

We additionally ablate the effects of the clipping coefficient ϵPROPS and regularization coefficient λ in
Appendix D.2. Without clipping or without regularization, PROPS often achieves greater sampling
error than on-policy sampling, indicating that both help to keep sampling error low. Moreover,
data efficiency generally decreases when we remove clipping or regularization, showing both are
essential to PROPS. Thus, we affirmatively answer Q1 posed at the start of this section: PROPS
achieves lower sampling error than on-policy sampling when the target policy is fixed and during
RL training.

7 DISCUSSION

This work has shown that adaptive, off-policy sampling can be used to reduce sampling error in
data collected throughout RL training and improve the data efficiency of on-policy policy gradient
algorithms. We have introduced an algorithm that scales adaptive off-policy sampling to continuous
control RL benchmarks and enables tracking of the changing on-policy distribution. By integrating
this data collection procedure into the popular PPO algorithm, the main conclusion of our analysis is
that on-policy learning algorithms learn most efficiently with on-policy data, not on-policy sampling.
In this section, we discuss limitations of our work and present opportunities for future research.

PROPS builds upon the ROS algorithm of Zhong et al. (2022). While Zhong et al. (2022) focused on
theoretical analysis and policy evaluation in small scale domains, we chose to focus on empirical
analysis with policy learning in standard RL benchmarks. An important direction for future work
would be theoretical analysis of PROPS, in particular whether PROPS also enjoys the same faster
convergence rate that was shown for ROS relative to on-policy sampling.

A limitation of PROPS is that the update indiscriminately increases the probability of under-sampled
actions without considering their importance in gradient computation. For instance, if an under-
sampled action has zero advantage, it has no impact on the gradient and need not be sampled. An
interesting direction for future work could be to prioritize correcting sampling error for (s,a) that
have the largest influence on the gradient estimate, i.e., large advantage (positive or negative).

Beyond these more immediate directions, our work opens up other opportunities for future research.
A less obvious feature of the PROPS behavior policy update is that it can be used track the empir-
ical data distribution of any desired policy, not only that of the current policy. This feature means
PROPS has the potential to be integrated into off-policy RL algorithms and used so that the empirical
distribution more closely matches a desired exploration distribution.f Thus, PROPS could be used to
perform focused exploration without explicitly tracking state and action counts.

8 CONCLUSION

In this paper, we ask whether on-policy policy gradient methods are more data efficient using on-
policy sampling or on-policy data acquired without on-policy sampling. To answer this question, we
introduce an adaptive, off-policy sampling method for on-policy policy gradient learning that collects
data such that the empirical distribution of sampled actions closely matches the expected on-policy
data distribution at observed states. Our method, Proximal Robust On-policy Sampling (PROPS),
periodically updates the data collecting behavior policy so as to increase the probability of sampling
actions that are currently under-sampled with respect to the on-policy distribution. Furthermore,
rather than discarding collected data after every policy update, PROPS permits more data efficient
on-policy learning by using data collection to adjust the distribution of previously collected data to
be approximately on-policy. We replace on-policy sampling with PROPS to generate data for the
widely-used PPO algorithm and empirically demonstrate that PROPS produces data that more closely
matches the expected on-policy distribution and yields more data efficient learning compared to
on-policy sampling.

4When the target policy is deterministic, we always have zero sampling error, and PROPS will exactly match
on-policy sampling.
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A THEORETICAL RESULTS

In this section, we present the proof of Proposition 2. We use dm, πm, and pm as the empirical state
visitation distribution, empirical policy, and empirical transition probabilities after m state-action
pairs have been taken, respectively. That is, dm(s) is the proportion of the m states that are s,
πm(a|s) is the proportion of the time that action a was observed in state s, and pm(s′|s, a) is the
proportion of the time that the state changed to s′ after action a was taken in state s.

Proposition 2. Assume that data is collected with an adaptive behavior policy that always takes the
most under-sampled action in each state, s, with respect to policy π, i.e, a← argmaxa′(π(a′|s)−
πm(a′|s)). We further assume that S and A are finite. Then we have that the empirical state
visitation distribution, dm, converges to the state distribution of π, dπ , with probability 1:

∀s, lim
m→∞

dm(s) = dπ(s).

Proof. The proof of this theorem builds upon Lemma 1 and 2 by Zhong et al. (2022). Note that
these lemmas superficially concern the ROS method whereas we are interested in data collection by
taking the most under-sampled action at each step. However, as stated in the proof by Zhong et al.
(2022), these methods are equivalent under an assumption they make about the step-size parameter
of the ROS method. Thus, we can immediately adopt these lemmas for this proof.

Under Lemma 1 of Zhong et al. (2022), we have that limm→∞ πm(a|s) = π(a|s) for any state s
under this adaptive data collection procedure. We then have the following ∀s:

lim
m→∞

dm(s)
(a)
= lim

m→∞

∑
s̃

∑
ã

pm(s|s̃, ã)πm(ã|s̃)dm(s̃)

=
∑
s̃

∑
ã

lim
m→∞

pm(s|s̃, ã)πm(ã|s̃)dm(s̃)

=
∑
s̃

∑
ã

lim
m→∞

pm(s|s̃, ã) lim
m→∞

πm(ã|s̃) lim
m→∞

dm(s̃)

(b)
=

∑
s̃

∑
ã

p(s|s̃, ã)π(ã|s̃) lim
m→∞

dm(s̃).
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Here, (a) follows from the fact that the empirical frequency of state s can be obtained by considering
all possible transitions that lead to s. The last line, (b), holds with probability 1 by the strong law of
large numbers and Lemma 2 of Zhong et al. (2022).

We now have a system of |S| variables and |S| linear equations. Define variables x(s) :=
limm→∞ dm(s) and let x ∈ R|S| be the vector of these variables. We then have x = Pπx where
Pπ ∈ R|S|×|S| is the transition matrix of the Markov chain induced by running policy π. Assuming
that this Markov chain is irreducible, dπ is the unique solution to this system of equations and hence
limm→∞ dm(s) = dπ(s),∀s.

Next, we provide additional theory to describe the relationship between different hyperparameters
in PROPS:

1. The amount of sampling error in previously collected data and the size of behavior policy
updates.

2. The amount of historic data retained by an agent and the amount of additional data the
behavior policy must collect to reduce sampling error.

For simplicity, we first focus on a simple bandit setting and then extend to a tabular RL setting.

Suppose we have already collected m state-action pairs and these have been observed with empirical
distribution πm(a). From what distribution should we sample an additional k state-action pairs so
that the empirical distribution over the m+ k samples is equal in expectation to πθ?

Proposition 3. Assume that m actions have been collected by running some policy πθ(a) and
πm(a) is the empirical distribution on this dataset. If we collect an additional k state-action pairs
using the following distribution, and if (m + k)πθ(a) ≥ m · πm(a), then the aggregate empirical
distribution over the m+ k pairs is equal to πθ(a) in expectation:

πb(a) :=
1

Z

[
πθ(a) +

m

k
(πθ(a)− πm(a))

]
where Z =

∑
a∈A

[
πθ(a) +

m
k (πθ(a)− πm(a))

]
is a normalization coefficient.

Proof. Observe that (m + k)πθ(a) is the expected number of times a is sampled under πθ after
m + k steps, m · πm(a) is the number of times each a was sampled thus far, and k · πb(a) is the
expected number of times a is sampled under our behavior policy after k steps. We want to choose
πb(a) such that (m+ k)πθ(a) = m · πm(a) + k · πb(a) in expectation.

(m+ k)πθ(a) = k · πb(a) +m · πm(a)

−k · πb(a) = m · πm(a)− (m+ k)πθ(a)

πb(a) = −
m

k
πm(a) +

(m
k

+ 1
)
πθ(a)

= πθ(a) +
m

k
(πθ(a)− πm(a))

Note that πb(a) will be a valid probability distribution after normalizing only if

πθ(a) +
m

k
(πθ(a)− πm(a)) ≥ 0(m

k
+ 1

)
πθ(a) ≥

m

k
πm(a)

(m+ k)πθ(a) ≥ m · πm(a).

If (m+ k)πθ(a) < m · πm(a), then prior to collecting additional data with our behavior policy, a
already appears in our data more times in our data than it would in expectation after m + k steps
under πθ. In other words, we would need to collect more than k additional samples to achieve zero
sampling error (or discard some previously collected samples).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

When sampling error is large, behavior policy updates must also be large. Intuitively, the
difference πθ(a) − πm(a) is the mismatch between the true and empirical visitation distributions,
so adding this term to dπθ

adjusts dπθ
to reduce this mismatch. If πθ(a)−πm(a) < 0, then a is over-

sampled w.r.t πθ, and πb will decrease the probability of sampling a. If πθ(a)−πm(a) > 0, then a is
under-sampled w.r.t πθ, and πb will increase the probability of sampling a. When |πθ(a)− πm(a)|
is small, the optimal πb(a) requires only a small adjustment from πθ (i.e., a small update to the
behavior policy is sufficient to reduce sampling error). When |πθ(a)− πm(a)| is large, the optimal
πb(a) requires a large adjustment from πθ (i.e., a large to the behavior policy is needed to reduce
sampling error).

When we retain large amounts of historic data, the behavior policy must collect a large amount
of additional data to reduce sampling error in the aggregate distribution. The m

k factor implies
that how much we adjust dπθ

depends on how much data we have already collected (m) and how
much additional data we will collect (k). If the k additional samples to collect represent a small
fraction of the aggregate m+ k samples (i.e. k << m), then m

k is large, and the adjustment to dπθ

is large. This case generally arises when we retain more and more historic data. If the k additional
samples to collect represent a large fraction of the aggregate m+ k samples (i.e. k >> m), then m

k
is small, and the adjustment to dπθ

is small. This case generally arises when we retain little to no
historic data.

The next proposition extends this analysis to the tabular RL setting.

Proposition 4. Assume that m state-action pairs have been collected by running some policy and
dm(s,a) is the empirical distribution on this dataset. If we collect an additional k state-action
pairs using the following distribution, and if (m+ k)dπθ

(s,a) ≥ m · dm(s,a), then the aggregate
empirical distribution over the m+ k pairs is equal to dπθ

(s,a) in expectation:

db(s,a) :=
1

Z

[
dπθ

(s,a) +
m

k
(dπθ

(s,a)− dm(s,a))
]

where Z =
∑

(s,a)∈S×A
[
dπθ

(s,a) + m
k (dπθ

(s,a)− dm(s,a))
]

is a normalization coefficient.

Proof. The proof is identical to the proof of Proposition 3, replacing πθ(a), πm(a), and πb(a) with
dπθ

(s,a), dm(s,a), and db(s,a).

In practice, we cannot sample directly from the visitation distribution db(s,a) in Proposition 4
and instead approximate sampling from this distribution by sampling from its corresponding policy
πb(a|s) = db(s,a)/

∑
(s′,a′)∈S×A db(s

′,a′).

B PROPS IMPLEMENTATION DETAILS

In this appendix, we describe two relevant implementation details for the PROPS update (Algo-
rithm 2). We additionally summarize the behavior of PROPS’s clipping mechanism in Table 1.

1. PROPS update: The PROPS update adapts the behavior policy to reduce sampling error in
the buffer D. When performing this update with a full buffer, we exclude the oldest batch
of data collected by the behavior policy (i.e., the m oldest transitions inD); this data will be
evicted from the buffer before the next behavior policy update and thus does not contribute
to sampling error in D.

2. Behavior policy class: We compute behavior policies from the same policy class used for
target policies. In particular, we consider Gaussian policies which output a mean µ(s) and
a variance σ2(s) and then sample actions a ∼ π(·|s) ≡ N (µ(s), σ2(s)). In principle, the
target and behavior policy classes can be different. However, using the same class for both
policies allows us to easily initialize the behavior policy equal to the target policy at the
start of each update. This initialization is necessary to ensure the PROPS update increases
the probability of sampling actions that are currently under-sampled with respect to the
target policy.
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Figure 6: In this example, π(·|s) = N (0, 1). After several visits to s, all sampled actions (blue)
satisfy a > 0 so that actions a < 0 are under-sampled. Without regularization, PROPS will attempt
to increase the probabilities of under-sampled action in the tail of target policy distribution (green).
The regularization term in the PROPS objective ensures the behavior policy remains close to target
policy.

g(sa,ϕ,θ) > 0 Is the objective clipped? Return value of min Gradient
g(sa,ϕ,θ) ∈ [1− ϵPROPS, 1 + ϵPROPS] No −g(s,a,ϕ,θ) ∇ϕLCLIP

g(s,a,ϕ,θ) > 1 + ϵPROPS No −g(s,a,ϕ,θ) ∇ϕLCLIP

g(s,a,ϕ,θ) < 1− ϵPROPS Yes −(1− ϵPROPS) 0

Table 1: Behavior of PROPS’s clipped surrogate objective (Eq. 5).

C COMPUTING SAMPLING ERROR

We claim that PROPS improves the data efficiency of on-policy learning by reducing sampling error
in the agent’s bufferD with respect to the agent’s current (target) policy. To measure sampling error,
we use the KL-divergence DKL(πD||πθ) between the empirical policy πD and the target policy πθ

which is the primary metric Zhong et al. (2022) used to show ROS reduces sampling error:

DKL(πD||πθ) = Es∼D,a∼πD(·|s)

[
log

(
πD(a|s)
πθ(a|s)

)]
. (7)

We compute a parametric estimate of πD by maximizing the log-likelihood of D over the same
policy class used for πθ. More concretely, we let θ′ be the parameters of neural network with the
same architecture as πθ train and then compute:

θMLE = argmax
θ′

∑
(s,a)∈D

log πθ′(a|s) (8)

using stochastic gradient ascent. After computing θMLE, we then estimate sampling error using the
Monte Carlo estimator:

DKL(πD||πθ) ≈
∑

(s,a)∈D

(log πθMLE(a|s)− log πθ(a|s)) . (9)

D ADDITIONAL EXPERIMENTS

In this appendix, we include additional experiments and ablations.

Figure 7: Sampling error with a fixed, expert target policy. Solid curves denote the mean over 5
seeds. Shaded regions denote 95% confidence belts.
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Figure 8: Sampling error with a fixed, randomly initialized target policy. Solid curves denote the
mean over 5 seeds. Shaded regions denote 95% confidence belts.

Figure 9: Sampling error ablations with a fixed, expert target policy. Here, “no clipping” refers to
setting ϵPROPS = ∞, and “no regularization” refers to setting λ = 0. Solid curves denote the mean
over 5 seeds, and shaded regions denote 95% bootstrap confidence intervals.

D.1 CORRECTING SAMPLING ERROR FOR A FIXED TARGET POLICY

In this appendix, we expand upon results presented in Section 6.1 of the main paper and provide
additional experiments investigating the degree to which PROPS reduces sampling error with respect
to a fixed target policy. We include empirical results for all six MuJoCo benchmark tasks as well as
ablation studies investigating the effects of clipping and regularization.

We tune PROPS and ROS using a hyperparameter sweep. For PROPS, we consider learning rates in
{10−3, 10−4}, regularization coefficients λ ∈ {0.01, 0.1, 0.3}, and PROPS target KLs in δPROPS ∈
{0.05, 0.1}. We fix ϵPROPS = 0.3 across all experiments. For ROS, we consider learning rates in
{10−3, 10−4, 10−5}. We report results for the hyperparameters yielding the lowest sampling error.

Fig. 7 and 8 show sampling error computed with a fixed expert and randomly initialized target
policy, respectively. We see that PROPS achieves lower sampling error than both ROS and on-policy
sampling across all tasks. ROS shows little to no improvement over on-policy sampling, highlighting
the difficulty of applying ROS to higher dimensional tasks with continuous actions.

Fig. 9 ablates the effects of PROPS’s clipping mechanism and regularization on sampling error re-
duction. We ablate clipping by setting ϵPROPS = ∞, and we ablate regularization by setting λ = 0.
We use a fixed expert target policy and use the same tuning procedure described earlier in this ap-
pendix. In all tasks, PROPS achieves higher sampling error without clipping nor regularization than
it does with clipping and regularization. However, it nevertheless outperforms on-policy sampling
in all tasks except Hopper where it matches the performance of on-policy sampling. Only including
regularization slightly decreases sampling error, whereas clipping alone produces sampling error
only slightly higher than that achieved by PROPS with both regularization and clipping. These ob-
servations indicate that while regularization in is helpful, clipping has a stronger effect on sampling
error reduction than regularization when the target policy is fixed.
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Figure 10: Sampling error throughout RL training. Solid curves denote the mean over 5 seeds.
Shaded regions denote 95% confidence belts.

Figure 11: Sampling error throughout RL training without clipping the PROPS objective. Solid
curves denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.

D.2 CORRECTING SAMPLING ERROR DURING RL TRAINING

In this appendix, we include additional experiments investigating the degree to which PROPS reduces
sampling error during RL training, expanding upon results presented in Section 6.2 of the main paper.
We include sampling error curves for all six MuJoCo benchmark tasks and additionally provide
ablation studies investigating the effects of clipping and regularization on sampling error reduction
and data efficiency in the RL setting.

As shown in Fig 10, PROPS achieves lower sampling error than on-policy sampling throughout train-
ing in 5 out of 6 tasks. We observe that PROPS increases sampling error but nevertheless improves
data efficiency in HalfCheetah as shown in Fig. 4a. This result likely arises from our tuning pro-
cedure in which we selected hyperparameters yielding the largest return. Although lower sampling
error intuitively correlates with increased data efficiency, it is nevertheless possible to achieve high
return without reducing sampling error.

In our next set of experiments, we ablate the effects of PROPS’s clipping mechanism and regulariza-
tion on sampling error reduction and data efficiency. We ablate clipping by tuningRL agents with
ϵPROPS =∞, and we ablate regularization by tuning RL agents with λ = 0. Fig. 11 and Fig. 12 show
sampling error curves without clipping and without regularization, respectively. Without clipping,
PROPS achieves larger sampling than on-policy sampling in all tasks except Humanoid. Without
regularization, PROPS achieves larger sampling error in 3 out of 6 tasks. These observations indicate
that while clipping and regularization both help reduce sampling during RL training, clipping has a
stronger effect on sampling error reduction. As shown in Fig. 13 PROPS data efficiency generally
decreases when we remove clipping or regularization.

Figure 12: Sampling error throughout RL training without regularizing the PROPS objective. Solid
curves denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.
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Figure 13: IQM return over 50 seeds of PROPS with and without clipping or regularizing the PROPS
objective. Shaded regions denote 95% bootstrap confidence intervals.

Figure 14: IQM return over 50 seeds for PROPS with different buffer sizes. We exclude b = 8
for Humanoid-v4 due to the expense of training and tuning. Shaded regions denote 95% bootstrap
confidence intervals.

Lastly, we consider training with larger buffer sizes b in Fig. 14. We find that data efficiency may
decrease with a larger buffer size. Intuitively, the more historic data kept around, the more data that
must be collected to impact the aggregate data distribution.

D.3 BIAS AND VARIANCE OF PROPS

In Fig. 15, we investigate the bias and variance of the empirical state-action visitation distribution
dD(s,a) under PROPS, ROS, and on-policy sampling. We report the bias and variance averaged over
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(a) Sampling error bias (b) Sampling error variance

Figure 15: Sampling error bias and variance estimates of different sampling methods. Empirically,
PROPS is unbiased and lower variance than on-policy sampling.

Figure 16: IQM return for discrete action tasks over 50 seeds. Shaded regions denote 95% bootstrap
confidence intervals.

all (s,a) ∈ S ×A computed as follows:

bias =
1

|S × A|
∑

(s,a)∈S×A

(
E
[
dD(s,a)

]
− dπθ

(s,a)
)

(10)

variance =
1

|S × A|
∑

(s,a)∈S×A

E
[(
dD(s,a)− dπθ

(s,a)
)2]

(11)

As shown in Fig. 15, the visitation distribution under PROPS and ROS empirical have near zero bias
(note that the vertical axis has scale 10−18) and have lower variance than on-policy sampling.

D.4 DISCRETE-ACTION TASKS

We include 3 additional discrete-action domains of varying complexity. The first two are the widely
used OpenAI gym domains CartPole-v1 and LunarLander-v2 (Brockman et al., 2016). The third
is a 2D navigation task, Discrete2D100-v0, in which the agent must reach a randomly sampled
goal. There are 100 actions, each action corresponding to different directions in which the agent can
move. From Fig. 16 and 17 we observe that PROPS with b = 2 achieves larger returns than PPO and
PPO-BUFFER all throughout training in all three tasks. PROPS with b = 1 (no historic data) achieves
larger returns than PPO all throughout training in all three tasks and even outperforms PPO-BUFFER
in CartPole-v1 and Discrete2D100-v0 even though PPO-BUFFER learns from twice as much data.
Thus, PROPS can improve data efficiency without historic data.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 17: Performance profiles for discrete-action tasks over 50 seeds. Higher values correspond to
more reliable convergence to high-return policies. Shaded regions denote 95% bootstrap confidence
intervals.

Figure 18: Runtimes for PROPS, PPO-BUFFER, and PPO. We report means and standard errors over
3 independent runs.

D.5 RUNTIME COMPARISONS

Figure 18 shows runtimes for PROPS, PPO-BUFFER, and PPO averaged over 3 runs. We trained all
agents on a MacBook Air with an M1 CPU and use the same tuned hyperparameters used throughout
the paper. PROPS takes at most twice as long as PPO-BUFFER; intuitively, both PROPS and PPO-
BUFFER learn from the same amount of data but PROPS learns two policies.

We note that PPO-BUFFER is faster than PPO is HalfCheetah-v4 because, with our tuned hyperpa-
rameters, PPO-BUFFER performs fewer target policy updates than PPO. In particular, PPO-BUFFER
is updating its target policy every 4096 steps, whereas PPO is updating the target policy every 1024
steps.

E HYPERPARAMETER TUNING FOR RL TRAINING

For all RL experiments in Section 6.2 and Appendix D.2, we tune PROPS, PPO-BUFFER, and PPO
separately using a hyperparameter sweep over parameters listed in Table 2 and fix the hyperparam-
eters in Table 5 across all experiments. Since we consider a wide range of hyperparameter values,
we ran 10 independent training runs for each hyperparameter setting. We then performed 50 in-
dependent training runs for the hyperparameters settings yielding the largest returns at the end of
RL training. We report results for these hyperparameters in the main paper. Fig. 19 shows training
curves obtained from a subset of our hyperparameter sweep.
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PPO learning rate 10−3, 10−4, linearly annealed to 0 over training
PPO batch size n 1024, 2048, 4096, 8192
PROPS learning rate 10−3, 10−4 (and 10−5 for Swimmer)
PROPS behavior batch size m 256, 512, 1024, 2048, 4096 satisfying m ≤ n
PROPS KL cutoff δPROPS 0.03, 0.05, 0.1
PROPS regularizer coefficient λ 0.01, 0.1, 0.3

Table 2: Hyperparameters used in our hyperparameter sweep for RL training.

Environment Batch Size Learning Rate
Swimmer-v4 4096 10−3

Hopper-v4 2048 10−3

HalfCheetah-v4 1024 10−4

Walker2d-v4 4096 10−4

Ant-v4 1024 10−3

Humanoid-v4 8192 10−4

Table 3: Tuned PPO hyperparameters

PPO PPO PROPS PROPS PROPS PROPS
Environment Batch Size Learning Rate Batch Size Learning Rate KL Cutoff Regularization λ
Swimmer-v4 2048 10−3 1024 10−5 0.03 0.1
Hopper-v4 2048 10−3 256 10−3 0.05 0.3
HalfCheetah-v4 1024 10−4 512 10−3 0.05 0.3
Walker2d-v4 2048 10−3 256 10−3 0.1 0.3
Ant-v4 2048 10−4 256 10−3 0.03 0.1
Humanoid-v4 8192 10−4 256 10−4 0.1 0.1

Table 4: Hyperparameters used in our hyperparameter sweep for RL training.
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(a) PROPS KL cutoff values δPROPS.

(b) Regularization coefficients λ.

(c) Behavior batch sizes m (i.e. the number of steps between behavior policy updates).

Figure 19: A subset of results obtained from our hyperparameter sweep. Default hyperparameter
values are as follows: PROPS KL cutoff δPROPS = 0.03; regularization coefficient λ = 0.1; behavior
batch size m = 256. Darker colors indicate larger hyperparameter values. Solid and dashed lines
have the PROPS learning rate set to 1 · 10−3 and 1 · 10−4, respectively. Curves denote averages over
10 seeds, and shaded regions denote 95% confidence intervals.
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PPO number of update epochs 10
PROPS number of update epochs 16
Buffer size b 2 target batches (also 3, 4, and 8 in Fig. 14)
PPO minibatch size for PPO update bn/16
PROPS minibatch size for PROPS update bn/16
PPO and PROPS networks Multi-layer perceptron

with hidden layers (64,64)
PPO and PROPS optimizers Adam (Kingma and Ba, 2015)
PPO discount factor γ 0.99
PPO generalized advantage estimation (GAE) 0.95
PPO advantage normalization Yes
PPO loss clip coefficient 0.2
PPO entropy coefficient 0.01
PPO value function coefficient 0.5
PPO and PROPS gradient clipping (max gradient norm) 0.5
PPO KL cut-off 0.03
Evaluation frequency Every 10 target policy updates
Number of evaluation episodes 20

Table 5: Hyperparameters fixed across all experiments. We use the PPO implementation provided
by CleanRL (Huang et al., 2022).
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