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ABSTRACT

Real-world tasks consist of multiple inter-dependent subtasks (e.g., a dirty pan
needs to be washed before cooking). In this work, we aim to model the causal de-
pendencies between such subtasks from instructional videos describing the task.
This is a challenging problem since complete information about the world is of-
ten inaccessible from videos, which demands robust learning mechanisms to un-
derstand the causal structure of events. We present Multimodal Subtask Graph
Generation (MSG2), an approach that constructs a Subtask Graph defining the
dependency between subtasks relevant to a task from noisy web videos. Graphs
generated by our multimodal approach are closer to human-annotated graphs com-
pared to prior approaches. MSG2 further performs the downstream task of next
subtask prediction 85% and 30% more accurately than recent video transformer
models in the ProceL and CrossTask datasets, respectively.

1 INTRODUCTION
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Figure 1: Given video instances describing a task such as perform CPR, along with noisy subtask annotations,
we attempt to extract causal dependencies between the subtasks. Data noise presents a major challenge in
identifying these dependencies – (i) subtask A is omitted in videos 1 and 3 (ii) even though subtask E is present
in video 1 (frame highlighted in red outline) it is missing from the annotations. We predict such missing steps
(dotted boxes) by leveraging visual and text signals (Section 3.1) and generate a subtask graph based on the
updated subtask sequences (Section 3.2).

We aim to infer subtask dependencies from multi-modal video-text data and generate a concise
graph representation of the subtasks that shows these dependencies. In particular, we focus on
instructional videos describing how to perform real-world activities such as jump-starting a car or
replacing an iPhone’s battery. We consider a subtask graph representation that is more expressive at
modeling subtask dependencies (e.g., AND nodes allow modeling multiple preconditions) compared
to representations considered in the literature such as partial order graphs or dataflow graphs.

Instructional videos present a unique set of challenges in understanding task structure due to data
noise, as in Figure 1. To tackle these challenges, we present Multimodal Subtask Graph Genera-
tion (MSG2) in order to robustly learn task structure from online real-world instructional videos.
As identifying dependencies between the subtasks is challenging due to the data noise, MSG2 first
present a multimodal subtask state prediction module that makes use of video and text data to in-
fer the missing subtasks (Section 3.1). We then adopt a complexity-regularized inductive logic
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Figure 2: Architecture of subtask state prediction module. We denote subtask state labels as N (not started),
I (in progress), C (completed), and labels in red represent ongoing subtask. We train the model to predict each
subtask’s state and use it to predict missing subtask labels in the data, which in turn contributes to more accurate
graph generation.

programming (ILP) method to generate a graph from the noise-reduced subtask state predictions
(Section 3.2). Lastly, we demonstrate the utility of MSG2 by employing predicted subtask graphs in
a downstream task of predicting the next subtask in a video.

2 PROBLEM SETTING

Our work builds on the subtask graph framework (Sohn et al., 2018; 2020), which describes the
causal dependency structure of a complex task τ consisting of Nτ subtasks. Each subtask has a
precondition that must be satisfied before the subtask can be completed. For instance, the precon-
dition of subtask H in Figure 1 is fH = &(D,E) (i.e., subtasks D and E must be completed before
performing H). The subtask graph visualizes the preconditions f1, . . . , fNτ of the subtasks.

Problem. We are given a set of instructional videos Vτ (i.e., task instances) describing a task τ (e.g.,
perform CPR, jump car). Each video consists of video frame F = (f1, f2, . . . , fT ), text transcript
X = (x1,x2, . . . ,xT ), and subtask state labels S = (s1, s2, . . . , sT ), which are time-aligned with
respect to the video frames F. Specifically, the state of the nth subtask at frame t can have the
following values: st[n] ∈ {not started, in progress, completed}. Our goal is to predict the subtask
graph G of task τ by extracting accurate subtask state from the given videos Vτ .

3 METHOD

3.1 SUBTASK STATE PREDICTION FROM NOISY ANNOTATIONS

Based on the intuition that visual and textual data provide complementary information, we train a
network by providing both visual and text signals to predict which of the three states (ŝt[n] ∈ {not
started, in progress, completed}) a subtask n is at any given time t. These predictions are used as
inputs for subtask graph generation as described in Section 3.2.

Architecture. Given visual information F and sentences from corresponding text transcript X, we
first obtain frame embeddings Fe and sentence embeddings Xe using a pre-trained CLIP (Radford
et al., 2021) model. We enrich the obtained visual representations with information from the text
transcript through a Multi-Head Attention (Vaswani et al., 2017), followed by a residual layer. We
subsample frames within each labeled subtask segment and predict subtask states at the beginning
and the end of each subtask (instead of predicting for every time step, which can be noisy) by
appending special delimiter symbols ([start] and [end], respectively) as shown in Figure 2.

Training Objective for Subtask State Prediction. We consider an ordinal regression loss (Niu
et al., 2016; Cao et al., 2020) to model subtask states, noting that a subtask cannot directly transition
from not started to completed without going through the intermediate in progress state. Our objec-
tive is based on two binary classification losses corresponding to the two decision boundaries (i.e.,
ŝt[n] = −b and ŝt[n] = b) as shown in Equation (1). σ denotes the sigmoid function, CE is the
binary cross-entropy loss and the expectation is taken over time-steps t corresponding to the special
delimiter tokens and subtasks n that appear in the video.

Lssp = Et,n[CE(σ(ŝt[n] + b), I[st[n] ̸= not started]) + CE(σ(ŝt[n]− b), I[st[n] = completed])] (1)

2



Published as a conference paper at ICLR 2023

Search Iteration 1 2 3

Candidates
(Best one at each 

depth circled)

D D&B

A D&A (D&B)&A

⋮ D|A (D&B)|A

D D&B ⋮

⋮ ⋮

Current Best D D&B D&B

(a) Construct training data for each subtask 

E

D

A C B

&

⋮

A B C D E
0 0 1 0 0 1
1 0 0 0 0 1

A B C D E
0 1 1 1 0 1
1 1 0 1 0 1

D

A C

D B

&

E

Search Iteration 1 2 3

Candidates
(Best one at each 

depth circled)

A A|C

A A&B (A|C)&B

B ⋮ (A|C)|B

C A|C ⋮

⋮ ⋮

Current Best A A|C A|C

t A B C D E A B C D E
0 0 0 0 0 0 1
1 1 0 0 0 0 1
2 1 0 0 1 0 1
3 1 1 0 1 0 1
4 1 1 0 1 1 1

t A B C D E A B C D E
0 0 0 0 0 0 1
1 0 0 1 0 0 1
2 0 0 1 1 0 1
3 0 1 1 1 0 1

(b) Search for optimal precondition for each subtask (c) Subtask Graph 

: C→D→B→E

: A→D→B→E→C

⋮

Inferred 
precondition 
for subtask D

Inferred 
precondition 
for subtask E

Training data 
for subtask D

Training data 
for subtask E

No better candidate found 
Terminate search

No better candidate found 
Terminate search

Figure 3: Overview of subtask graph generation. (a) Given the subtask state labels Ŝ, we extract training data
D for precondition inference for each subtask. (b) We use a greedy algorithm to find the precondition for each
subtask that maximizes the objective in Equation (4). At each iteration, the algorithm adds a Boolean operation
and variable to construct new hypotheses. The optimal hypothesis is chosen and advanced to the next iteration.
The search terminates either when there is no better solution at the current iteration or maximum number of
iterations is reached. (c) All preconditions are consolidated into a single subtask graph.

3.2 GRAPH GENERATION FROM SUBTASK STATE LABELS

Learning to Model Preconditions. Given the noise-reduced subtask state labels Ŝ, we infer the
precondition for each subtask to construct the subtask graph. The precondition learning problem can
be stated as learning a function en = fn(c) where c ∈ {0, 1}Nτ represents the completion status
of each subtask (i.e., c[i] denotes whether ith subtask was completed), and en ∈ {0, 1} represents
whether the precondition of nth subtask is satisfied.

The dataset Dn for inferring the precondition for nth subtask needs to be constructed from the noise-
reduced subtask state labels ŝt[n]. This is non-trivial as the ŝt[n] only provides partial information
about the preconditions. We can infer that the precondition of the nth subtask is satisfied whenever
ŝt[n] = in progress, since a subtask can only be performed if its precondition is satisfied. However,
in all other cases (i.e., ŝt[n] ∈{not started, completed}) it is unknown whether the precondition for
the subtask is met. Based on the instances where the subtask state is in progress, we construct the
training dataset as Dn = {(ĉt, 1) | êt[n] = 1}, where we define ĉt[n] = I(ŝt[n] = completed) and
êt[n] = I(ŝt[n] = in progress). Figure 3 (a) illustrates the data construction process.

Learning Objective. Conventional ILP algorithms that optimize Jacc in Equation (2) (Muggleton,
1991; Sohn et al., 2020) produce a trivial solution where there is no precondition; i.e., Jacc is maxi-
mized by simply predicting fn(c) = 1 for all c since en is always 1 in the data Dn.

Jacc = P (en = fn(c)) = E(c,en)[I [en = fn(c)]] ≃ E(c,en)∈Dn
[I [en = fn(c)]] (2)

To overcome these challenges, we modify Equation (2) and maximize the precision as follows:

Jprec = P (en = 1 | fn(c) = 1) =
E(c,en) [en · fn(c)]

Ec [fn(c)]
≃

E(c,en)∈Dn
[en · fn(c)]

Ec [fn(c)]
. (3)

Note that Jprec ≃ Jacc/Ec [fn(c)] since our dataset only consists of instances with en = 1. The
denominator penalizes the precondition being overly optimistic (i.e., predicting fn(c) = 1 more
often than fn(c) = 0 will increase the denominator Ec [fn(c)]), which helps mitigate the effect of
positive label bias in the data (i.e., having no data with en = 0). Our final optimization objective
is given by Equation (4) where α is a regularization weight and C(fn) measures the complexity of
the precondition fn in terms of the number of Boolean operations. The regularization term handles
the data noise since the noise often adds extra dependency between subtasks and results in overly
complicated (i.e., large number of Boolean operations) precondition. See Appendix B.b for details.

max
fn

Jours(fn) = max
fn

Jprec(fn)− αC(fn) (4)

Optimization. We consider a greedy search algorithm to optimize Jours. Starting from the null pre-
condition, at each iteration of the search, we construct candidate preconditions by adding a Boolean
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Model Acc ↑ SPOC ↑
ProScript 57.50 62.34

MSGI 54.23 64.62
MSGI+ 73.59 72.39

MSG2-noSSP 81.62 88.35
MSG2 (Ours) 83.16 89.91

Table 1: Graph generation results in Pro-
ceL. We report the average percentage (%)
across all tasks (See Appendix B.c for task-
level performance).

Model ProceL CrossTask

STAM 29.86 40.17
ViViT 26.98 41.96

ProScript 18.86 36.78
MSGI 17.42 32.31

MSGI+ 26.54 32.72
MSG2-noSSP 48.39 53.39
MSG2 (Ours) 55.38 54.42

Table 2: Next subtask prediction results. Average sub-
task prediction accuracy (%) across tasks on ProceL and
CrossTask datasets (Please check Appendix C.c for task-level
performance).

operation (e.g., & and |) and a variable (e.g., A, B, etc) to the best precondition of the previous
iteration. We choose the candidate precondition that maximizes Equation (4) and continue until ei-
ther when a maximum number of iterations is reached or no better solution is found in the current
iteration. See Figure 3 (b) for an illustration of the search algorithm.

4 EXPERIMENTS

4.1 GRAPH GENERATION

Baselines. MSGI (Sohn et al., 2020): An inductive logic programming (ILP) method that maxi-
mizes the objective in Equation (2). MSGI+: A variant of MSGI which assumes the precondition
is not met until the subtask is performed (i.e., et[n] = 0 if ŝt[n] = not started) similar to prior
work (Hayes and Scassellati, 2016; Xu et al., 2018)). MSG2-noSSP: Generate graph (Section 3.2)
from human-annotated subtask state labels S. In other words, this is our method without the mul-
timodal subtask state inference module in Section 3.1. ProScript (Sakaguchi et al., 2021): A T5
model (Raffel et al., 2020) fine-tuned to predict a partially-ordered script from scenario descriptions
(e.g., baking a cake) with unordered subtask descriptions.

We use T5-Large (Raffel et al., 2020) as the transformer in our state prediction module. During
training we randomly omit video frames corresponding to 25% of subtasks for data augmentation.
See Appendix A.b for further details and ablations regarding choice of model and architecture.

Metrics. We consider the following metrics to evaluate predicted graphs G = (f1, . . . , fNτ ). Ac-
curacy (Equation (5)) measures how often predicted and ground-truth preconditions agree (Sohn
et al., 2020), where f∗

n is the ground-truth precondition of the nth subtask. Strict Partial Order
Consistency (SPOC): We define a strict partial order relation RG imposed by graph G on subtasks
a, b ∈ S as: (a, b) ∈ RG iff a is an ancestor of b in graph G (i.e., in matrix notation, RG[a][b] ≜ I[a
is an ancestor of b in G]). SPOC is defined as in Equation (6), where G∗ is the ground-truth graph.

Accuracy =

∑Nτ

n=1 Ec [I [fn(c) = f∗
n(c)]]

Nτ
(5) SPOC =

∑
a̸=b I [RG[a][b] = RG∗ [a][b]]

Nτ (Nτ − 1)
(6)

Results. We measure the graph generation performance over ProceL (Elhamifar and Naing, 2019)
dataset (See Appendix A.a for the details about preprocessing). Table 1 summarizes the performance
of different graph generation methods. First, the complexity regularization term (Equation (3)) helps
our method be more robust to incomplete and noisy data compared to the MSGI and MSGI+ base-
lines. When using subtask states predicted by our state prediction module (MSG2) instead of human
annotations (MSG2-noSSP), we observe consistent improvements for all metrics, which shows the
benefit of predicting missing subtasks by exploiting multimodal vision-text data. See Figure A for
examples of subtask state prediction. Our method also outperforms proScript (Sakaguchi et al.,
2021), which relies on a web-scale pretrained text model (Raffel et al., 2020).

Qualitative Evaluation. Figure 4 shows predicted graphs for the perform CPR task.
The MSG2 graph (Figure 4.(c)) is closer to the ground-truth graph (Figure 4.(a)) compared to our
model without subtask state prediction (Figure 4.(b)). This is because the predicted subtask states
provide additional clues about subtask completion. For instance, consider the subtask D, which is
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Figure 4: Illustration of subtask graphs generated by each method for perform CPR task. For the predicted
graphs ((b) MSG2 without Subtask State Prediction and (c) MSG2), redundant edges (i.e., false positive) are
colored in blue and missing edges (i.e., false negative) are colored in red.

a prerequisite for subtasks F, G and H in the ground truth graph. Since D is sparsely annotated in
the data (does not appear in 29% of the sequences), the baseline model assumes that the presence
of other subtasks (e.g., C) explains subtasks F, G and H (the redundant outgoing arrows from C). By
recovering some of the missing annotations for D based on visual and text signals (e.g., it is clearly
visible), our method resolves some of these cases (e.g., C is no longer a precondition for H). How-
ever, the recovery is not perfect, and our model still mistakenly assumes that C is a precondition for
F. Further improvements in multimodal subtask state modeling can help address these errors.

4.2 NEXT SUBTASK PREDICTION

Baselines. We first choose two open-sourced end-to-end video-based Transformer models (STAM
(Sharir et al., 2021), ViViT (Arnab et al., 2021)) for comparison. To keep the input the same for all
models used in this experiment, we replace 16× 16 patch embeddings from each model implemen-
tation with the CLIP embedding used in our model. We train the methods to predict the next subtask
from the history of previous subtasks using a multi-class subtask classification loss, where a linear
projection of the final transformer hidden state is used as the subtask prediction. In addition to these
end-to-end neural baselines, we also tested the graph-based methods introduced in Table 1. For all
graph-based methods, we first generated the graph from the train split. We then use the generated
subtask graph to predict whether the precondition is satisfied or not from the subtask completion in
test split, using the GRProp policy (Sohn et al., 2018). Please check Appendix C.a for details.

Metric. For each test video, we measure the accuracy of predicting the next subtask correctly, given
previous subtasks and corresponding ASR sentences.

Results. Table 2 shows the next subtask prediction performance. Compared to the end-to-end neural
baselines, MSG2 achieves 85% and 30% higher prediction performance in ProceL (Elhamifar and
Naing, 2019) and CrossTask (Zhukov et al., 2019) datasets, respectively. In addition, we observe
that end-to-end neural baselines are competitive with some of the graph generation baselines. This
indicates that the higher quality of graphs predicted by our approach is responsible for the significant
performance improvement over all baselines.

5 CONCLUSION

We present MSG2, a method for generating subtask graphs from instructional videos on the web. We
first predict accurate subtask state labels from noisily annotated instructional videos. We additionally
propose a novel complexity-constrained ILP method to deal with noisy and incomplete data. We
demonstrate that our method produces more accurate subtask graphs than baselines. In addition, our
method achieves better performance than recent video transformer approaches in predicting the next
subtask, demonstrating the usefulness of our subtask graph.

ACKNOWLEDGEMENTS

We thank Jae-Won Chung, Junhyug Noh, Dongsub Shim and Anthony Liu for constructive feedback
on the manuscript. This work was supported in part by grants from LG AI Research and NSF
CAREER IIS-1453651.

5



Published as a conference paper at ICLR 2023

REFERENCES
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A SUBTASK STATE PREDICTION

A.A TRAINING DETAILS

Preprocessing. We employ ProceL dataset (Elhamifar and Naing, 2019), which includes twelve
task with 54.5 videos and 13.1 subtasks per task on average with subtask label and timing anno-
tations (start and end times). We first convert all videos in ProceL (Elhamifar and Naing, 2019)
to 30 fps. Then, we extract the verb phrases of verb+(prt)+dobj +(prep+pobj)1 from Automated
Speech Recognition (ASR) output, using the implementation in SOPL (Shen et al., 2021). For both
vision and text data, we extract the frame and verb phrases features from the ‘ViT-B/32’ variant
of CLIP (Radford et al., 2021). We extract the features with each subtask’s start and end position
and load the CLIP features, instead of video frames, for faster data reading. We choose the first
label of each subtask in a video and convert the temporal segment labels to not started, in progress,
and completed for the existing subtasks.

Training. We set the hidden dimension of each feedforward dimension in 16-head modality fusion
attention to be the same as the CLIP representation embedding size of 512 and use a single fully-
connected layer when projecting to the status prediction. During training, we randomly drop up
to 25% of subtasks from each task sequence and then subsample at least three frames from each
subtask region, but no more than 190 frames in total. On the other hand, for testing, we did not
drop any subtask and sample 3 frames per subtask in an equidistance manner (no randomness).
For all the language features, because the length of the ASR varies from video to video, we use
three consecutive sentences per frame while setting the center of the sentence closest to the selected
frame, inspired by Miech et al. (2020). We train all models with a learning rate of 3e-4 with the
Adam (Kingma and Ba, 2015) optimizer with cosine scheduling, following BERT (Devlin et al.,
2019). We set the batch size as 32 and trained each model for 600 epochs, with 100 steps of warm-
up. Each model is trained on an 18.04 LTS Ubuntu machine with a single NVIDIA A100 GPU on
CUDA 11.3, cuDNN 8.2, and PyTorch 1.11.

A.B ABLATION STUDY

Since a subtask sequence S in video stores the start and end frame numbers, we can directly com-
pare the completion prediction result of all subtasks by checking I[ŝt[n] ≥ 1]. However, because
the label for S only covers the labeled part of the sequence, we first split 15% of the data as the
validation set and hand-annotated the subtask state of all subtask labels for the videos in the val-
idation set. For both the ground-truth subtask graph and the subtask state labels, we asked three
people to manually annotate after watching all videos in the task. We choose the majority answer
among three as the label for the subtask state labels, and we iterate multiple rounds of ground-truth
subtask graph labeling until the label converges among three people. We performed an ablation
study with the VisionOnly (train without Xe), our model without having first binary cross entropy
loss in Equation (1) (denoted as w/o in progress state), as well as our model with the skip con-
nection (adding +Fe after multihead attention before feeding to the transformer model, following
Transformer (Vaswani et al., 2017). We denote this as ‘Vision+ASR’) by measuring the binary
completion prediction accuracy per task with the hand-annotated labels. In addition to this, we
performed additional experiments with the pretrained ViT (Dosovitskiy et al., 2021) and Visual-
BERT (Li et al., 2019) models from Huggingface (Wolf et al., 2019), replacing the T5 (Raffel et al.,
2020) model. Specifically, we use ‘google/vit-large-patch16-224’, ‘uclanlp/visualbert-vqa-coco-
pre’, and ‘google/t5-v1 1-large’ pretrained weights for this ablation. We also tried a variation of
VisualBERT (indicated as VisualBERT†) where we directly feed the frames Fe and sentences Xe,
instead of our multihead attention layer in Section 4.2, as input. We set b in Equation (1) as 1 for all
of the models.

The results are shown in Table A. First of all, we can see that our model with the skip connection
could lead the model to be overfitted to the train set, which is the reason behind our decision not
to add a skip connection to the MSG2 model. Also, we found inferior performance when we train
without ASR or in progress state information, so we perform subtask state prediction with both

1parenthesis denotes optional component, prt: particle, dobj: direct object, prep: preposition, pobj: prepo-
sition object.
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Table A: Ablation Result on Subtask State Prediction in ProceL (Elhamifar and Naing, 2019). We denote
video-input only case as “VisionOnly”, video with the narration text data, but with skip connection as “Vision
+ ASR”, and our subtask state prediction model as “Ours” and measure the performance of completion predic-
tion. We denote the pretrained transformer model as “ViT” and “VisualBERT”, following the pretrained model
names (Dosovitskiy et al., 2021; Li et al., 2019). Task label indexes are (a) Assemble Clarinet (b) Change
Tire (c) Perform CPR (d) Setup Chromecast (e) Change Toilet Seat (f) Make Peanut Butter and Jelly Sandwich
(g) Jump Car (h) Tie Tie (i) Change iPhone Battery (j) Make Coffee, (k) Repot Plant and (l) Make Salmon
Sandwich, respectively.

Module (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) Avg

VisionOnly 72.41 74.91 80.21 93.68 72.94 91.11 85.58 93.65 89.52 88.93 79.45 70.90 82.77
Vision + ASR 71.83 74.76 83.12 89.42 69.05 91.07 83.80 90.08 86.36 87.78 78.16 72.64 81.51
Ours (from scratch) 63.56 68.93 74.73 90.36 66.61 79.02 71.54 87.76 69.54 80.47 72.42 65.97 74.24
Ours (w/o in progress state) 70.67 74.42 82.72 93.28 72.41 89.95 85.56 93.94 88.01 88.85 79.59 74.63 82.84
Ours 71.25 74.93 83.51 94.56 73.42 89.76 85.94 94.71 91.14 89.54 79.44 75.58 83.65

VisualBERT (Li et al., 2019) 69.09 73.84 79.63 69.59 58.45 91.68 84.01 90.40 83.18 83.83 62.07 67.73 76.13
VisualBERT† 59.01 59.99 72.98 71.07 64.66 78.93 77.69 72.33 75.52 75.33 63.43 68.10 69.92
ViT (Dosovitskiy et al., 2021) 58.69 59.92 74.11 68.84 59.69 79.09 78.29 70.39 74.90 78.17 70.03 67.45 69.96

vision and language modality with in progress for the rest of the paper. We additionally found that
the model predicts completed for the unlabeled tasks more clearly one subtask after the original
prediction timing. We conjecture that the end-time of a subtask, which is annotated by a human
annotator, is often noisy and annotated to a slightly earlier time step where subtask is still in progress.
Thus, we grab the states from the next subtask timing and use completed if ŝ[n] ≥ 0 instead in graph
generation. We also trained our model from scratch instead of finetuning a pretrained T5 encoder-
based model. We believe the performance gap between ‘Ours’ and ‘Ours (from scratch)’ shows
the effectiveness of finetuning from the pretrained weights. In addition to this, we tested with other
pretrained Transformers and found that the pretrained T5 encoder-based model performs best among
all the transformer models. Interestingly, ViT and VisualBERT were worse than T5, which seems to
indicate that language priors are more useful for modeling subtask progression.

A.C VISUALIZATION OF SUBTASK COMPLETION

We present predicted subtask completion in Figure A. Our model predicts completed states from
missing subtasks (labeled in red). Such predicted subtask states help generate better graphs.

B GRAPH GENERATION

B.A BACKGROUND: SUBTASK GRAPH INFERENCE USING LAYER-WISE INDUCTIVE LOGIC
PROGRAMMING

For a task τ that consists of Nτ subtasks, we define the completion vector c ∈ {0, 1}Nτ and eligi-
bility vector e ∈ {0, 1}Nτ where cn indicates if the n-th subtask has completed and en indicates if
the n-th subtask is eligible (i.e., its precondition is satisfied). Given D = {(cj , ej)}|D|

j=1 as training
data, Sohn et al. (2020) proposed an Inductive Logic Programming (ILP) algorithm which finds the
subtask graph G that maximizes the binary classification accuracy (Equation (A)):

Ĝ = argmax
G

P (fG(c) = e) (A)

= argmax
G

|D|∑
j=1

I[ej = fG(c
j)] (B)

=

argmax
G1

|D|∑
j=1

I
[
ej1 = f1(c

j)
]
, . . . , argmax

GNτ

|D|∑
j=1

I
[
ejNτ

= fNτ (c
j)
] , (C)

where I[·] is the element-wise indicator function, fG : c 7→ e is the precondition function defined by
the subtask graph G, which predicts whether subtasks are eligible (i.e., the precondition is satisfied)
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adjust length
adjust tie

collar down
collar up

grab tie at center of cross
make a cross

pass tie behind cross
pass tie behind cross, through the hole
pass tie behind knot, through the hole

pass tie in front of cross, through the hole
pass tie in front of knot

pass tie through knot
put on neck
tighten knot

(a) Tie Tie

unpack package
try streaming

switch tv-hdmi
setup chromecast-network

setup chromecast-name
see ready-to-cast

search chromecast-wifi
plugin chromecast-tv

plugin chromecast-power
download chromecast-app

connect chromecast-wifi
check code

(b) Setup Chromecast

Figure A: Completion Prediction Examples. We plot predicted subtask completions from (a) Tie Tie and (b)
Setup Chromecast. The missing labels in the original dataset are colored red, and each colored row represents
the completion of a subtask at the matched frame on top. The presence of a horizontal bar at a particular time-
step indicates the subtask is in completed state at the time-step. Bars in red show subtask completion states that
were inferred by our model but were missing in the dataset.
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Figure B: The inductive logic programming (ILP) module takes all the completion and eligibility vectors
({(cj , ej)}|D|

j=1) as input, and builds a binary decision tree to infer the precondition G. For example, in case

of subtask E (the bottom row in the Figure), it takes ({(cj , ej [E])}|D|
j=1) as (input, output) pairs of training

dataset, and constructs a decision tree by choosing a variable (i.e., component of completion vector c, which
corresponds to each subtask) at each step that best splits the true (i.e., e[E] = 1) and false (i.e., e[E] = 0)-
labeled data samples. Then, the decision tree is represented as a logic expression (i.e., precondition), simplified,
transformed to a subtask graph form, and merged together to form a subtask graph. The figure was adopted
from Sohn et al. (2020) and modified to match our notation style.

from the subtask completion vector c, and fn : c 7→ en is the precondition function of n-th subtask
defined by the precondition Gn.

Figure B illustrates the detailed process of subtask graph inference in Sohn et al. (2020) from the
completion and eligibility data. The precondition function fn is modeled as a binary decision tree
where each branching node chooses the best subtask (e.g., subtask B in the first branching in the
bottom row of Figure B) to predict whether the n-th subtask is eligible or not based on Gini impu-
rity Breiman (1984). Each binary decision tree constructed in this manner is then converted into a
logical expression (e.g., BA + BĀC in the bottom row of Figure B) that represents precondition.
Finally, we build the subtask graph by consolidating the preconditions of all subtasks.
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B.B SUBTASK GRAPH INFERENCE FROM REAL-WORLD DATA

Layer-wise Precondition Inference. One major problem of inferring the precondition indepen-
dently for each subtask is the possibility of forming a cycle in the resulting subtask graph, which
leads to a causality paradox (i.e., subtask A is a precondition of subtask B and subtask B is a pre-
condition of subtask A). To avoid this problem, we perform precondition inference in a layer-wise
fashion similar to Sohn et al. (2020).

To this end, we first infer the layer of each subtask from the (noise reduced) subtask state labels
{Si}|Vτ |

i=1 for the task τ . Sohn et al. (2020) infer the layer of each subtask by finding the minimal set
of subtask completions to perfectly discriminate the eligibility of a subtask. However, this approach
is not applicable to our setting due to a lack of data points with ineligible subtasks; i.e., we can
perfectly discriminate the eligibility by predicting a subtask to be always eligible. Instead, we
propose to extract the parent-child relationship from the subtask state labels S. Intuitively speaking,
we consider subtask n to be the ancestor of subtask m if subtask n (almost) always precedes subtask
m in the videos, and assign at least one greater depth to subtask m than subtask n. Specifically, we
count the (long-term) transitions between all pairs of subtasks and compute the transition purity as
follows:

purityn→m =
# occurences subtask n preceds subtask m in the video

# occurences subtask n and subtask m appears together in the video
(D)

We consider subtask n to be the ancestor of subtask m if the transition purity is larger than a thresh-
old δ (i.e., purityn→m > δ). Intuitively, when the data has higher noise, we should use lower δ.
We used δ = 0.96 for ProceL and δ = 0.55 for CrossTask in the experiment. Note that this is
only a necessary condition, and it cannot guarantee to extract all of the parent-child relationships,
especially when the precondition involves OR (|) relationship. Thus, we use this information only
for deciding the layer of each subtask and do not use it for inferring the precondition.

After each subtask is assigned to its depth, we perform precondition inference at each depth in
order of increasing depth. By definition, the subtasks at depth= 0 do not have any precondition.
When inferring the precondition of a subtask in depth l, we use the completion of subtasks in depth
1, . . . , (l− 1). This ensures that the edge in the subtask graph is formed from the lower depth to the
higher depth, which prevents the cycle.

Recency Weighting. To further improve the graph generation, we propose to take the temporal
information into account. In fact, the conventional ILP does not need to take the time step into
account since it assumes eligibility data to be available at every time step. However, in our case,
we are only given a single data point with positive eligibility per video clip per subtask, where
incorporating the temporal information can be very helpful. Motivated by this, we propose to assign
the weight to each data sample according to the recency; i.e., we assign higher weight if a subtask
has become eligible more recently. We first rewrite Equation (3) as follows:

f̂n = argmax
fn

{P (en = 1|fn(c) = 1)− αC (fn)} (E)

≃ argmax
fn

1
|Dn|

∑|Dn|
j=1 I

(
fn(c

j) = 1, ejn = 1
)

1
2N

∑
c I (fn(c) = 1)

− αC (fn) (F)

= argmax
fn

1
|Xτ |

∑|Xτ |
i=1

1
T

∑T
t=1 I

(
fn(c

i
t) = 1, eit,n = 1

)
1
2N

∑
c I (fn(c) = 1)

− αC (fn) (G)

Then, we add the recency weight wt,n and modify Equation (G) as follows:

f̂n ≃ argmax
fn

1
|Xτ |

∑|Xτ |
i=1

1
T

∑T
t=1 wt,n I

(
fn(c

i
t) = 1, eit,n = 1

)
1
2N

∑
c I (fn(c) = 1)

− αC (fn) , (H)

where

wt,n = max(0.1, λtn−t), (I)

0 < λ < 1 is the discount factor, tn is the time step when the precondition for subtask n became
satisfied.
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Hyperparameters. We used α = 0.2 and λ = 0.7 in our experiments.

B.C TASK-LEVEL GRAPH GENERATION RESULTS

We present graph generation metrics for each task separately in Table B.

Table B: Task-level Graph Generation Result in ProceL (Elhamifar and Naing, 2019). Task label indexes
(a-l) are identical to Table A.

Metric Method (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) Avg

A
cc

ur
ac

y proScript 54.69 55.56 62.50 63.54 53.57 62.50 58.93 57.14 57.14 54.17 55.00 55.21 57.50
MSGI 50.00 55.56 53.12 55.21 48.81 52.50 58.93 55.36 51.79 58.33 50.00 61.11 54.23
MSGI+ 57.03 66.67 53.12 60.42 57.74 68.75 61.61 67.86 64.29 63.54 58.44 64.58 62.00
MSG2-noSSP 73.44 80.56 81.25 84.38 88.69 90.00 76.79 98.21 85.71 81.25 72.50 66.67 81.62
MSG2 (Ours) 87.50 79.17 90.62 84.38 83.33 85.00 67.86 100.00 87.50 83.33 82.50 66.67 83.16

SP
O

C

proScript 72.08 65.03 57.14 60.61 64.52 70.00 65.38 62.09 58.24 47.73 60.00 65.28 62.34
MSGI 83.33 66.34 69.64 58.33 60.00 61.11 57.69 50.55 59.89 67.42 74.44 66.67 64.62
MSGI+ 77.92 70.59 69.64 62.12 64.76 82.22 69.23 84.07 72.53 65.91 73.33 76.39 72.39
MSG2-noSSP 87.92 92.48 91.07 93.18 86.90 90.00 82.97 93.41 89.56 90.15 77.78 84.72 88.35
MSG2 (Ours) 95.83 88.89 92.86 93.18 90.00 92.22 89.01 100.00 90.11 87.12 83.33 76.39 89.91

B.D GENERATED GRAPHS

To evaluate the performance of our graph generation approach, we hand-annotate subtask graphs
for each task in the ProceL dataset, and we plot the subtask graphs for two tasks in Fig-
ure C. In addition to the hand-annotated graphs, we also plot the subtask graphs generated
from MSG2 and MSG2 without Subtask State Prediction. When we compare the ground-truth
with MSG2, our predictions closely resemble the ground-truth graphs, compared with MSG2 with-
out Subtask State Prediction. These results show that our subtask state prediction improves subtask
labels in the data, which leads to more accurate generated graphs.

C NEXT STEP PREDICTION WITH SUBTASK GRAPH

C.A DETAILS ABOUT NEXT STEP PREDICTION WITH GRAPHS

From the subtask label st and predicted subtask state ŝt, we first obtain the subtask completion ct by
checking whether each subtask state is completed. Then, we compute the subtask eligibility et from
the completion ct and subtask graph G as et = fG(ct). When predicting the next step subtask, we
exploit the fact that a subtask can be completed only if 1) it is eligible and 2) it is incomplete. Thus,
we compute the subtask prediction mask mt as mt = et ⊙ (1− ct), where ⊙ denotes element-wise
multiplication. Lastly, among the eligible and incomplete subtasks, we assign a higher probability
if a subtask has been eligible more recently: pt+1[n] ∝ mt[n] · ρ∆telig

n , where pt[n] is the probability
that n-th subtask is (or will be) completed at time t, ∆telig

n is the time steps elapsed since the n-th
subtask has been eligible, and 0 < ρ < 1 is the discount factor. We used ρ = 0.9 in the experiment.

C.B TRAINING DETAILS

We apply our subtask graph generation method to the next subtask prediction task in Section 4.2.
For both ProceL (Elhamifar and Naing, 2019) and CrossTask (Zhukov et al., 2019), we first convert
all videos to 30 fps, obtain the verb phrases, and extract CLIP features, following Appendix A.a. We
split 15% of the data as the test set. During training, we randomly select a subtask and feed the data
up to the selected subtask with subsampling at least three frames from each subtask region but no
more than 190 frames in total for all models. For evaluation, we provide all previous subtasks in the
dataset and sample 3 frames per subtask in an equidistant manner (without any random sampling).
All the other settings are the same as subtask state prediction.
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(b) Assemble Clarinet

Figure C: Ground Truth and Generated Graphs. We plot the subtask graphs for (a) Perform CPR and (b) As-
semble Clarinet. In each subfigure, the three graphs correspond to 1. Human-annotated graph, 2. MSG2 without
Subtask State Prediction, and 3. MSG2 from the ProceL dataset, respectively.

C.C TASK-LEVEL NEXT STEP PREDICTION RESULTS

We share task-level next step prediction results in Table C. All the method labels correspond to Ta-
ble 2.
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Table C: Task-level Next Step Prediction Results. We perform next subtask prediction on ProceL (Elhamifar
and Naing, 2019) and CrossTask (Zhukov et al., 2019) datasets and measure the accuracy(%). Task label
indexes (a-l) in ProceL task are the same as Table A. Task labels (i-x) in CrossTask task are (i) Add Oil to Your
Car, (ii) Build Simple Floating Shelves, (iii) Change a Tire, (iv) Grill Steak, (v) Jack Up a Car, (vi) Make a
Latte, (vii) Make Banana Ice Cream, (viii) Make Bread and Butter Pickles, (ix) Make French Strawberry Cake,
(x) Make French Toast, (xi) Make Irish Coffee, (xii) Make Jello Shots, (xiii) Make Kerala Fish Curry, (xiv)
Make Kimchi Fried Rice, (xv) Make Lemonade, (xvi) Make Meringue, (xvii) Make Pancakes and (xviii) Make
Taco Salad.

Model (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) Avg

Pr
oc

eL

STAM 23.61 23.81 21.43 46.88 25.00 63.04 57.14 34.29 4.88 24.53 27.50 6.25 29.86
ViViT 26.39 20.24 19.05 50.00 25.00 28.26 55.36 40.00 4.88 32.08 22.50 0.00 26.98
proScript 15.57 10.34 37.50 36.17 10.62 32.76 21.05 28.06 13.19 8.33 12.70 0.00 18.86
MSGI 10.66 13.10 32.81 25.53 7.96 25.86 14.74 24.46 13.19 13.54 7.94 19.23 17.42
MSGI+ 22.13 36.55 32.81 26.60 25.66 37.93 20.00 34.53 16.48 27.08 7.94 30.77 26.54
MSG2-noSSP 31.97 56.55 43.75 73.40 51.33 51.72 46.32 69.06 50.55 48.96 30.16 26.92 48.39
MSG2 (Ours) 40.16 51.72 56.25 73.40 62.83 68.97 44.21 69.06 59.34 48.96 39.68 50.00 55.38

Model (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) Avg(x) (xi) (xii) (xiii) (xiv) (xv) (xvi) (xvii) (xviii)

C
ro

ss
Ta

sk

STAM 30.77 58.82 48.21 38.82 27.27 26.98 34.00 21.31 15.69 40.1747.91 78.57 48.94 34.83 38.60 36.90 54.93 42.86 37.63

ViViT 34.62 43.14 49.11 34.12 63.64 34.92 60.00 13.11 11.76 41.9648.37 82.14 50.00 32.58 38.60 35.71 46.48 43.57 33.33

proScript 21.37 50.65 37.93 20.07 90.62 33.33 48.15 22.52 34.12 36.7833.44 45.54 33.78 26.36 33.72 38.89 42.57 24.49 24.40

MSGI 30.77 32.47 23.45 14.60 71.88 33.33 39.51 18.02 18.82 32.3122.51 33.04 36.49 33.33 45.35 32.54 34.65 34.69 26.19

MSGI+ 30.77 32.47 22.76 14.60 71.88 33.33 39.51 27.93 18.82 32.7220.58 33.04 36.49 33.33 45.35 32.54 34.65 34.69 26.19

MSG2-noSSP 67.52 72.73 64.83 45.99 90.62 44.74 48.15 32.43 37.65 53.3963.99 50.89 52.03 47.29 48.84 36.51 58.42 63.78 34.52

MSG2 (Ours) 67.52 72.73 68.28 41.24 90.62 46.49 48.15 32.43 37.65 54.4263.99 55.36 57.43 48.06 48.84 46.03 58.42 64.80 31.55
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