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ABSTRACT

Evaluating large language models (LLMs) in diverse and challenging scenarios
is essential to align them with human preferences. To mitigate the prohibitive
costs associated with human evaluations, utilizing a powerful LLM as a judge
has emerged as a favored approach. Nevertheless, this methodology encounters
several challenges, including substantial expenses, concerns regarding privacy
and security, and reproducibility. In this paper, we propose a straightforward,
replicable, and accurate automated evaluation method by leveraging a lightweight
LLM as the judge, named RocketEval. Initially, we identify that the performance
disparity between lightweight and powerful LLMs in evaluation tasks primarily
stems from their ability to conduct comprehensive analyses, which is not easily
enhanced through techniques such as chain-of-thought reasoning. By reframing
the evaluation task as a multi-faceted Q&A using an instance-specific checklist,
we demonstrate that the limited judgment accuracy of lightweight LLMs is largely
attributes to high uncertainty and positional bias. To address these challenges, we
introduce an automated evaluation process grounded in checklist grading, which
is designed to accommodate a variety of scenarios and questions. This process en-
compasses the creation of checklists, the grading of these checklists by lightweight
LLMs, and the reweighting of checklist items to align with the supervised annota-
tions. Our experiments carried out on the automated evaluation benchmarks, MT-
BENCH and WILDBENCH datasets, reveal that RocketEval, when using Gemma-
2-2B as the judge, achieves a high correlation (0.965) with human preferences,
which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction
exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code
is available at https://github.com/Joinn99/RocketEval-ICLR.

1 INTRODUCTION

Why is automated LLM evaluation necessary? In recent years, the progress in large language
models (LLMs) has been remarkable (Jiang et al., 2024a; Team et al., 2024; Yang et al., 2024), driven
by continuous technological advancements. The rapid emergence of new models and techniques has
broadened their applications, encompassing both general-purpose textual and visual LLMs, as well
as those fine-tuned for specific tasks in various domains. These LLMs exhibit a range of capabili-
ties and performances across different application scenarios. Therefore, evaluating their capabilities
effectively has become crucial for guiding their development. Since most tasks performed by LLMs
involve human interaction, human preferences are often considered the gold standard for LLM eval-
uation (Zheng et al., 2023). Currently, crowd-sourcing platforms like CHATBOT ARENA (Chiang
et al., 2024) collect a significant number of human votes to evaluate LLMs. However, this approach
relies on extensive and long-term human annotation, which is costly and challenging to reproduce
and interpret (Ni et al., 2024). Considering the typical applications of LLM evaluation today, which

∗Equal Contribution.
†Work done during internship at Tencent.
‡Corresponding Authors: Ruizhi Qiao and Jianghong Ma.
1Unless otherwise stated, all names of LLM in this paper refer to their "Instruct" or "Chat" versions.

1

https://github.com/Joinn99/RocketEval-ICLR


Published as a conference paper at ICLR 2025

5 10 15 20 25 30 35 40 45
OpenLLM LeaderBoard 2 Average

30

40

50

60

A
gr

ee
m

en
t 

w
it

h 
hu

m
an

 %

Qwen2-72B

Llama-3-70B

Yi-1.5-34B

Mistral-Nemo

Gemma-2-9B

Yi-1.5-9B

Qwen2-7B
Mistral-7B-v0.3

Qwen1.5-4B

Phi-3-mini-4k
Gemma-2-2B

Llama-3.2-3B

InternLM2.5-1.8B

Qwen2-1.5B
Llama-3.2-1B

Yi-1.5-6B

Llama-3-8B

Qwen1.5-14B

Phi-3.5-mini

Phi-3-small-8k

Phi-3-medium-4k
GLM-4-9B

Qwen2.5-3B

Qwen2.5-1.5B

Qwen2.5-0.5B

InternLM2.5-20B
InternLM2.5-7B

Llama-3.1-8B

Agreement (CoT)
Agreement (Ours)
Human (64.8%)
GPT-4o (66.7%)
Random (33.3%)

Figure 1: Agreements with MT-BENCH HUMAN JUDGMENTS with different LLM 1judges. "CoT"
indicates the judgments derived using the original Chain-of-thought (CoT) prompting, and "Ours"
indicates the judgments derived using our proposed RocketEval framework.

include validating the effectiveness of LLM development and assisting users in selecting the best-
performing models for specific tasks, there is a growing demand for more efficient, reproducible,
and interpretable evaluations of LLMs. This demand has led to the proposal of various methods
(Wang et al., 2024b; Kim et al., 2024a) and benchmarks (Lin et al., 2025; Zheng et al., 2023) aimed
at achieving reliable and efficient automated LLM evaluation.

Pros and cons of the existing automated LLM evaluation paths. Automated LLM evaluation
methods can generally be categorized into three primary types:

Multiple-Choice Questions (MCQ) and Keyword Matching Benchmarks. These methods evaluate
the accuracy of a model’s responses by designing a series of closed-ended questions and comparing
the model’s answers to a predefined standard ground truth. Benchmarks constructed using this
approach have proven effective for quickly assessing a model’s capabilities across several tasks,
such as reasoning (Zellers et al., 2019; Qiu et al., 2020), comprehension (Mihaylov et al., 2018; Liu
et al., 2024), and knowledge retention (Hendrycks et al., 2021; Liang et al., 2023). However, the
requirement for specific response formats limits the comprehensiveness of this evaluation method.
In practice, most LLM applications involve response styles that differ significantly from simple
choices and keywords. Notably, many open-ended tasks cannot be judged by a fixed ground truth,
which strictly limits the applicability of this approach.

LLM-as-a-Judge. Early studies have attempted to adopt language models in automated evaluation
(Zhang* et al., 2020; Yuan et al., 2021). Given the robust generalization capabilities of LLMs,
employing a powerful LLM as an evaluator has emerged as a viable solution. This method typically
involves prompting an LLM to serve as a judge, evaluating the responses from different LLMs to
a set of well-designed queries. A crucial prerequisite for LLM-as-a-Judge is that the LLM must
possess sufficient capability to fully comprehend the queries and discern the quality of different
responses. Consequently, many existing benchmarks (Zheng et al., 2023; Dubois et al., 2023; Li
et al., 2024a; Liu et al., 2023) tend to employ the most powerful proprietary LLMs, such as GPT-4o,
as the judge. However, the use of these models for evaluation not only incurs high costs but also
raises other issues such as reproducibility and data privacy.

Fine-Tuned Judge Models. These models are designed to address the limitations associated with
powerful LLM-as-a-Judge approaches. Fine-tuned judge models, derived from lightweight base
models, are trained with high-quality evaluation data to more closely align with human preferences
(Jiang et al., 2024b; Zhu et al., 2025; Wang et al., 2024b; Kim et al., 2024a). Compared to pro-
prietary LLMs, such fine-tuned judge models exhibit competitive evaluation capabilities in a more
transparent and cost-effective manner. However, simply fine-tuning the model on evaluation task
data may degrade other capabilities of the lightweight model, which are already weaker compared
to those of powerful proprietary LLMs. This degradation can result in the model failing to correctly
understand complex instructions in the queries, thereby deteriorating subsequent evaluation perfor-
mance (Huang et al., 2024). Additionally, as the capabilities of the base models rapidly evolve and
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Figure 2: Illustration of RocketEval framework for automated LLM evaluation. The framework
consists of three components: Checklist Creation, Checklist Grading and Score Prediction.

new data continuously emerges, these judge models may need iterative updates, leading to signifi-
cant cost escalations and reproducibility issues.

RocketEval: Towards efficient automated LLM evaluation. Building on the aforementioned
concepts, we find a pathway that synergizes the language modeling and human preference align-
ment capabilities of the most powerful LLMs with the evaluation efficiency of lightweight models.
Specifically, we conduct a thorough analysis of the evaluation capabilities of various large models
and observe the following:

1. The agreement between LLM judges and humans is significantly influenced by the inherent
capabilities of the LLMs. More powerful LLMs tend to generate evaluation results that
more accurately reflect human preferences.

2. Prompt engineering techniques, such as Chain-of-Thought (CoT), exert minimal impact on
the evaluation capabilities of the model, particularly when a lightweight LLM is employed
as the judge. High uncertainty and positional bias during the decoding process are potential
contributing factors to this phenomenon.

Inspired by these observations, we introduce a novel evaluation framework named RocketEval, de-
signed to meet the demands of evaluation scenarios that require high efficiency, low cost, alignment
with human preferences, reproducibility, and interpretability. As illustrated in Figure 2, RocketE-
val operates through a three-stage framework to generate evaluations. Initially, an instance-level
checklist is created, providing essential knowledge and critical focus areas to overcome the limi-
tations of lightweight LLMs in constructing analyses. Subsequently, lightweight LLMs assess the
quality of responses for each checklist item independently, resulting in a multifaceted and unbi-
ased judgment. The normalized score of each judgment is then collected and aggregated to predict
the final score, aiming to mitigate the uncertainty associated with lightweight LLMs. Considering
the widespread availability of human annotations across various evaluation scenarios, we further
introduce a supervised prediction process to align the scores from lightweight LLMs with these
annotations. Experimental results demonstrate that RocketEval significantly enhances agreement
with human judgments, achieving a remarkable Spearman correlation of 0.965 when utilizing the
Gemma-2-2B model as the judge to rank test models. This offers a comparable solution to GPT-
4o at only 2% of the evaluation cost in large-scale evaluation scenarios, rendering it suitable for
performing efficient, reliable, and reproducible LLM evaluations.

2 HOW LIGHTWEIGHT LLMS PERFORM AS A JUDGE?

In this section, we verify the capability of lightweight LLMs in automated evaluation by conducting
a series of experiments employing various LLM judges.

2.1 SETUP

We selected two benchmark datasets for our experiments:
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• MT-BENCH (Zheng et al., 2023) is a classic benchmark that includes 80 multi-round
queries from multiple domains and uses GPT-4 as the judge for multi-round evaluations.

• WILDBENCH (Lin et al., 2025) is a newly released benchmark containing 1,024 real-world
user queries. WildBench first introduces a manually revised checklist as contextual infor-
mation to guide the evaluation and uses GPT-4o as the judge.

Both benchmarks include pairwise comparison and point-wise scoring evaluation methods. Since
the results of pairwise comparisons can be derived from comparing the scores derived from point-
wise scoring, we focus on the point-wise scoring method. In point-wise setting, both benchmarks
prompt the judge to first generate an analysis of the response, followed by a score in 1-10 as the
final judgment. This can be seen as a chain-of-thought (CoT) (Wei et al., 2022) process, aimed at
enhancing the ability of the LLM on the evaluation task that involves a reasoning process.

2.2 HOW DO LIGHTWEIGHT LLM JUDGES PERFORM?

First, we aim to understand the capabilities of different models when they serve as judges. A key
metric for evaluating LLMs’ evaluation capability in aligning user preferences is their agreement
with humans. Here, we measure this agreement using MT-BENCH HUMAN JUDGMENTS (Zheng
et al., 2023), which provides human-annotated results for MT-BENCH across six test models. Each
sample includes a target query, responses from two LLMs, and human-annotated match results (in-
cluding ties). We structure the scores obtained in a point-wise manner into the same format by
comparing the scores of each pair of responses. Unlike the previous study (Kim et al., 2024a) that
uses sampling decoding to derive results without ties, we follow the setting of Lin et al. (2025) and
retain cases with scores difference smaller than 0.1 as ties. We then compared the agreement of
different LLM judges with human annotations. The human-human agreement reported by Zheng
et al. (2023) and the agreement between GPT-4o and human are listed as the baseline. As illus-
trated in Figure 1, agreement between LLMs and humans typically ranges from human-to-human
agreement (64.8%) to lower than random outcomes (33.3%). This suggests that the existing evalua-
tion method using CoT scoring imposes significant demands on the judges’ abilities. The ability of
LLMs, reflected by OPENLLM 2 (Fourrier et al., 2024) scores, significantly impacts its alignment
with human preferences during evaluation, thereby complicating the process of performing efficient
and reliable evaluations with lightweight LLMs.

2.3 WHERE DO LIGHTWEIGHT LLMS UNDERPERFORM AS A JUDGE?

In this part, our objective is to delve deeper and identify the key components that affect the judg-
ment of lightweight LLMs when they serve as judges. We start by conducting an analysis of the two
processes involved in evaluation: analysis generation and scoring. To determine whether a compre-
hensive analysis can boost or degrade the performance of judgment, we instruct the LLM judges to
score the responses under three different settings:

• CoT: The original Chain-of-Thought style, generating the analysis and score step-by-step.

• Direct: The judge is prompted to skip the analysis step and score the response directly.

• CoTGPT-4o: We extract the analysis generated by GPT-4o to replace the part in judge
model’s output, then prompt the judge model to score the response accordingly.

Then, the scores of all responses are averaged to derive the score of the tested model for ranking.
For baselines, we derive the score predicted by GPT-4o and Claude-3.5-Sonnet as judges equipped
with CoT. We use the CHATBOT ARENA ELO RATINGS (Hard-prompt English) (Chiang et al., 2024)
as the ground-truth rankings of human preferences in these models. Figure 3 shows the scores of
12 test models and the Spearman correlation coefficient of ranking lists with GPT-4o when different
LLMs served as judge. Also, we convert the scores into pairwise comparison results and com-
pare the agreement of different LLM judges with strong baselines. The result is shown in Table
1. Compared to direct scoring, the process of lightweight models conducting their own analysis
did not yield significant gains. However, utilizing analysis from powerful LLM as the context sig-
nificantly improves the evaluation performance in terms of instance-level agreement and list-level
correlations. This indicates that lightweight judges are capable of calibrating their judgments with
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Table 1: Agreements of different judges
on WILDBENCH.

Agreement with GPT-4o

Direct CoT CoTGPT-4o

Claude-3.5-Sonnet 60.7%

Qwen2-1.5B 40.1% 36.4% 70.3%
Qwen2-7B 43.1% 45.0% 76.6%
Qwen2-72B 61.0% 61.4% 74.0%
Llama-3-8B 46.7% 48.4% 74.0%
Llama-3-70B 57.2% 59.3% 74.9%

Agreement with Claude-3.5-Sonnet

GPT-4o 60.7%

Qwen2-1.5B 40.6% 36.4% 58.2%
Qwen2-7B 42.8% 45.3% 60.3%
Qwen2-72B 61.5% 62.3% 62.9%
Llama-3-8B 48.2% 49.2% 61.0%
Llama-3-70B 58.3% 62.0% 63.4%

powerful LLM when high-quality and comprehensive analysis is provided. In other words, the abil-
ity of such lightweight LLM judges is limited mostly due to the poor comprehension and analysis
process when they dealing with hard queries and complicated responses.

2.4 WHY DO LIGHTWEIGHT LLMS NOT GOOD AT JUDGING?

In the evaluation scenario, conducting analysis can be viewed as a series of judgments on the target
response. In order to explore the reasons why the lightweight model are struggling in the conducting
analysis, we further conduct a fine-grained level experiments. Specifically, we transform the process
of analyzing into a process of judging on a series of checklist questions. We treat each item in the
checklist provided in WILDBENCH as a independent question, and prompt the LLM judge to make
decisions. Since these questions can be viewed as binary choice questions (for example, "Does the
response correctly identify..."), the judges are asked to simply output "Yes" or "No" for each question
based on the content of the query and response. Then, we obtain judgments of different LLM judges
on the checklist questions through repeated sampling, and calculate the ratio of disagreement in dif-
ferent sampling results among all checklist questions. Figure 4 shows that the ratio of disagreement
varies significantly across different model sizes. Lightweight LLM such as Qwen-2-1.5B, shows an
disagreement ratio exceeding 50% across 3 sampling results. This indicates a high uncertainty in
making decisions on these checklist questions.
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Figure 5: Ratio of disagreement on WILDBENCH
with checklist items in different positions.

When lightweight LLM judges conduct the CoT style analysis, this high uncertainty may lead to
greater deviations in the final scoring results and degrade the performance. Although previous stud-
ies (Li et al., 2024b; Wang et al., 2024a) has demonstrated bias of response order in pairwise compar-
isons, bias in the analytical process remains unexplored. Therefore, we want to understand whether
this form can affect the models’ judgment results. We transform the item-level questions from the
previous step into a multi-turn dialogue format, with the sequence consistent with the original check-
list order. To show the impact of different judgment results, we set all previous judgments to "Yes"
or "No" and then compare the disagreements in the current item’s judgment results under the two
settings. As shown in Figure 5, with an increase in the number of previous questions, the proportion
of inconsistencies in all models shows a growing trend. Interestingly, the Llama-3 series show an
overall higher consistency compared to the Qwen-2 series. Additionally, we notice a correlation
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between model size and consistency, with smaller models tending to produce higher inconsistency.
This suggests that the uncertainty of lightweight LLMs is more likely to be amplified in the process
of setting up sequential analyses with CoT, thus reducing confidence in automated evaluation.

From the above analysis, we demonstrate that lightweight LLM judges exhibit high uncertainty and
position bias, which can lead to difficulties in making reliable judgments. A feasible and efficient
evaluation method should avoid the above defects, which inspired us to propose the RocketEval.

3 METHODOLOGY

In this section, based on the analysis on existing evaluation benchmarks, we introduce a new auto-
mated LLM evaluation framework named RocketEval. As shown in Figure 2, the entire RocketEval
framework can be divided into three stages. First, we employ a powerful LLM such as GPT-4o to
conduct meta-analysis and create a checklist for assessing user query. Subsequently, lightweight
LLMs are employed to evaluate the checklist items for responses from each test model. Finally, the
evaluations for each item are collected to derive the final score, which can be predicted using either
an unsupervised arithmetic mean or a supervised predictor learned from annotations.

3.1 CHECKLIST CREATION

Evaluating LLM responses is challenging for both human evaluators and LLM judges. Human
evaluations can be subjective, while LLM judges may struggle with query understanding, detailed
analysis, and interpretation, especially when the lightweight LLMs are employed as the judge. Ex-
isting methods improve the accuracy of LLM judgments by providing additional information to the
LLM Judge’s analytical process, such as reference answers (Zheng et al., 2023; Dubois et al., 2023)
and hand-crafted rubrics (Kim et al., 2024a). However, reference answers are of limited use in open-
ended queries, while hand-crafted rubrics face a trade-off between labor cost, generalizability, and
accuracy. Therefore, here we follow WILDBENCH (Lin et al., 2025) to create a instance-specific
checklist, guiding judge LLMs in evaluation. The checklist items are expected to have the follow-
ing characteristics: 1) Relevance to the topic of the query. 2) Capability to effectively distinguish
between different responses. 3) Independence from each other, as independent questions can ensure
a complete evaluation of the response’s quality. Essentially, checklist questions can be considered
as a distillation of knowledge from powerful LLMs to prompt the lightweight judges. A question
like "Does the response include the correct reasoning steps/final answer as X?" can be helpful when
lightweight LLMs are struggling to identify all key factors or solve the problem by itself. We em-
ploy GPT-4o as the checklist creator, with 5-10 questions created for each instance. This process
only needs to be executed once, while the checklist can be leveraged by lightweight LLM judge to
evaluate any number of responses. The prompts used are shown in Appendix A.1.

3.2 CHECKLIST GRADING

In Section 2.3, we examine the limitations of employing lightweight LLMs as judges, particularly
the issues of high uncertainty and positional bias. To address these challenges, we propose the
following two evaluation procedures when using lightweight LLMs as the judge.

Independent Checklist Item Judgment. To avoid interference from the judgments on other check-
list questions, we prompt the LLM judge to evaluate each question in the checklist independently.
While this method requires multiple queries per instance, the computational cost can be significantly
reduced by leveraging prefix caching (Zheng et al., 2024) since they share the same prefix.

Normalized Score. Given the high uncertainty associated with lightweight LLMs, relying solely
on binary outcomes such as "Yes" or "No" can result in significant errors in the final judgment. To
mitigate this error, we introduce the conditional normalized score as the basis for judgment, which
accounts for the certainty of the result. Assuming the probability of output token t from judge
LLM parameterized by θ with context x is pθ(t|x), with the target query with context x and the
corresponding response y. Then the conditional normalized score on checklist item c is defined as:

p̂(x,y, c) =
pθ(Yes|x,y, c)

pθ(Yes|x,y, c) + pθ(No|x,y, c)
. (1)

In this manner, the judgments with low certainty have less significant impact on the final judgment.

6



Published as a conference paper at ICLR 2025

3.3 SCORE PREDICTION

After obtaining all judgments for a single query-response instance, we can predict the final score
by the normalized scores of all checklist items. Given the checklist c = [c1, c2, ..., cN ] ∈ C and
the normalized scores p = [p̂(x,y, c1), p̂(x,y, c2), ..., p̂(x,y, cN )] ∈ P . The score predictor f :
S → R can predict the score s by s = f(p). This methodology ensures a more reliable and accurate
evaluation by addressing the inherent uncertainties and biases in lightweight LLM judgments. The
score predictor can be any statistical method, hand-crafted rules, or machine learning models. For
simplicity, here we use the arithmetic mean of all normalized scores as the score sunsup:

sunsup =

N∑
i=1

p̂(x,y, ci). (2)

This method does not require additional data or effort to obtain the predictor. However, checklist
items may have varying impacts on the final results. In many LLM evaluation scenarios, such as
LLM development, the benchmark data often comes with annotations from humans and powerful
LLMs that serve as the gold standard for evaluation. In this context, we can utilize these annotations
to align our checklist judgment results with supervised learning. Specifically, we consider the judg-
ments on the checklist items as features and the annotations as labels. Given a judgment set with
N samples, with features P ∈ PN and labels r ∈ RN , a predictor fsup = minθL(θ;P, r) can
be derived by minimizing any loss function L. The predictor can be any classification or regression
model, depending on the type of annotations. In this case, we select the Extremely Randomized
Tree (Geurts et al., 2006) as estimator to learn a robust ensemble predictor with a limited number of
annotations and unknown distributions of the judgment results.

Meanwhile, we have observed that queries may not always yield ideal separable annotations for
predictor learning. Some queries may be too easy, too hard, or have vague descriptions, resulting
in similar good or bad performance across all test models. This can cause significant performance
degradation when learning a supervised predictor. Therefore, we propose a strategy to adjust the im-
pact of the scores predicted by the supervised predictor based on the distribution of the annotations.
Specifically, given the annotations r ∈ R|P|, we define the weight factor αr as

αr =
ϵ−KL(Pr∥Pideal)

ϵ
, ϵ = max

X∼RN
KL(X∥Pideal), (3)

where ϵ is the maximum Kullback–Leibler (KL) divergence of any distribution X from the ideal
distribution Pideal. In existing work (Kim et al., 2024a; Murugadoss et al., 2024), rubrics have
been used as a reference in evaluation, including examples or standards for different rating levels.
Therefore, we expect the annotated scores to be varied at different levels, providing the rubrics for
the predictor. Hence, we use the uniform distribution across the score range (for example, 1-10) as
Pideal ∼ UN .

After deriving the weight factor αr and a fitted predictor fsup for each query, the final score assigned
to the corresponding response is

ssup = (1− αr)sunsup + αrfsup(p). (4)

This methodology ensures a more reliable and accurate evaluation by addressing the inherent uncer-
tainties and biases in the supervised learning process.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of the RocketEval framework for automated evaluation
of LLMs. Initially, we analyze how well RocketEval aligns with human preferences at both the in-
stance and the list levels. Next, we investigate the expenses associated with the evaluation procedure.
Lastly, we perform an analysis of the checklist’s content and its impact on the evaluation.
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4.1 HUMAN AGREEMENT ON THE EVALUATION

The initial step involves comparing the proposed RocketEval framework with the traditional evalu-
ation method, both with and without the inclusion of Chain of Thought (CoT). The idea of adapting
checklist or aspect to enhance the robustness in LLM evaluation has been widely adopted in existing
works (Lee et al., 2024; Zhou et al., 2024; Fu et al., 2024), where most of them come with a fixed
human-curated lists to evaluate responses. To further validate the impact of the instance-level check-
list, we introduce a baseline employing six fixed questions as the checklist. These questions, derived
by analyzing the MT-BENCH (Zheng et al., 2023) evaluation prompt, encompass dimensions such
as helpfulness, relevance, accuracy, depth, creativity, and detail. This baseline is henceforth referred
to as the "Fixed". Details of the experimental setup are provided in Appendix A.3.

Instance-level Agreement. To measure the agreement ratio of different automated evaluation meth-
ods with MT-BENCH HUMAN JUDGMENTS, we adhere to the settings outlined in Section 2.2. As
illustrated in Table 2, the proposed method consistently enhances agreement with human judgment
across various LLMs acting as evaluators. Notably, the latest 7-12B parameter lightweight LLMs,
such as Llama-3-8B and Mistral-Nemo, achieve over 64% agreement with human judgments and at-
taining a similar level of agreement as 70B open-source LLMs and human-to-human agreement. For
smaller-sized LLMs, which initially exhibit agreement accuracy close to random choice, RocketE-
val significantly improves performance to over 60%, outperforming GPT-4. Conversely, the fixed
checklist shows no notable performance enhancement and may even degrade performance. This
suggests that checklist questions tailored to the specific query topic can better provide a knowledge
context, thereby enhancing the performance of lightweight LLMs as judges.

Table 2: Agreement ratios of different LLM judges with
MT-BENCH HUMAN JUDGMENTS.

Method CoT Direct Fixed Ours (Unsup.) Ours (Sup.)

Baseline
GPT-4 (Pairwise): 65.8% GPT-4 (Single): 59.6%
Human-to-human: 64.7% GPT-4o: 66.6%
Prometheus-7B-v2.0: 55.7%

Llama-3-70B 60.4% 64.8% - - -
Qwen2-72B 63.6% 64.0% - - -

Mistral-Nemo 57.8% 53.0% 53.1% 63.2% 64.2%
Llama-3-8B 55.6% 51.4% 46.9% 63.8% 62.9%
Qwen2-7B 54.7% 47.6% 42.1% 58.6% 59.8%
Mistral-7B-v0.3 55.3% 54.4% 42.8% 58.8% 58.3%

Phi-3-mini-4k 52.8% 33.8% 42.1% 61.2% 60.9%
Qwen2.5-3B 49.8% 52.2% 35.6% 57.4% 58.7%
Llama-3.2-3B 53.2% 26.6% 54.1% 58.6% 58.8%
Gemma-2-2B 37.9% 39.2% 43.9% 57.9% 57.3%
InternLM2.5-1.8B 29.2% 22.3% 38.4% 51.7% 48.4%

Qwen2.5-1.5B 31.1% 25.1% 46.5% 60.7% 60.2%
Qwen2-1.5B 30.4% 21.7% 41.0% 56.2% 55.6%
Llama-3.2-1B 32.6% 22.5% 36.5% 33.6% 41.9%
Qwen2.5-0.5B 24.9% 25.1% 40.8% 54.3% 50.9%
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Figure 6: Spearman correlation
(in percentage) of test model
rankings on WILDBENCH across
different LLM judges.

List-level Correlation. A critical objective of LLM evaluation is to compare the performance of
LLM in specific or general scenarios, which makes the final ranking of LLM essential. Therefore,
we conduct the experiment to compare the LLM rankings derived from different approaches. The de-
tailed setup and results are elaborated in Appendix A.3. Table 3 presents the correlation coefficients
of the score rankings on WILDBENCH with the CHATBOT ARENA ELO RATING (Hard Prompt - En-
glish). The table clearly indicates that RocketEval significantly improves the quality of by achieving
a higher correlation with human annotations. Specifically, when Mistral-Nemo is used as a judge, the
Spearman correlation reaches 0.986, surpassing GPT-4o. The smaller Gemma-2-2B also achieves
a correlation of 0.965, surpassing Qwen2-72B and the fine-tuned judge model Prometheus-7B-v2.0
(Kim et al., 2024b). Furthermore, the supervised version of RocketEval achieves higher correlations
compared to the unsupervised version. Compared to instance-level agreement, the supervised score
data provides more significant improvements in list-level correlation. In addition to the agreement
with humans, we compare the correlations between different lightweight LLM judges. As shown in
Figure 6, RocketEval brings significant improvements in cross-judge correlation, especially on the
lightweight LLMs. It suggests RocketEval exhibits high consistency and reliability in evaluation.
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Table 3: Correlation of ranking with CHATBOT ARENA ELO RATING (Hard prompts-English) on
WILDBENCH dataset. "Kend." and "Spea." are denoted as Kendall’s Tau and Spearman correlation
coefficient respectively.

Method CoT Direct Fixed Ours (Unsup.) Ours (Sup.)
Coefficient Kend. Spea. Kend. Spea. Kend. Spea. Kend. Spea. Kend. Spea.

GPT-4o 0.909 0.979 - - - - - - - -
Prometheus-7B-v2.0 0.848 0.949 - - - - - - - -
Llama-3-70B 0.909 0.979 0.787 0.923 - - - - - -
Qwen2-72B 0.848 0.958 0.848 0.958 - - - - - -

Mistral-Nemo 0.870 0.956 0.788 0.909 0.879 0.958 0.939 0.986 0.939 0.986
Llama-3-8B 0.818 0.923 0.848 0.944 0.879 0.972 0.909 0.979 0.909 0.979
Qwen2-7B 0.788 0.909 0.545 0.727 0.636 0.804 0.758 0.895 0.818 0.930
Mistral-7B-v0.3 0.727 0.895 0.545 0.699 0.515 0.678 0.758 0.874 0.818 0.930
Phi-3-mini-4k 0.424 0.587 0.576 0.762 0.182 0.273 0.788 0.916 0.848 0.958
Qwen2.5-3B 0.697 0.839 0.848 0.951 0.727 0.895 0.848 0.944 0.848 0.944
Llama-3.2-3B 0.606 0.797 0.848 0.951 0.818 0.937 0.848 0.944 0.848 0.944
Gemma-2-2B 0.636 0.818 0.758 0.888 0.727 0.867 0.879 0.965 0.879 0.965
InternLM2.5-1.8B 0.121 0.175 0.273 0.357 0.273 0.427 0.576 0.748 0.606 0.769
Qwen2.5-1.5B 0.394 0.517 0.273 0.364 0.606 0.727 0.818 0.923 0.848 0.944
Qwen2-1.5B -0.061 0.035 0.303 0.420 -0.061 -0.014 0.455 0.622 0.667 0.825
Llama-3.2-1B 0.091 0.133 0.152 0.182 -0.273 -0.357 -0.273 -0.357 0.697 0.846
Qwen2.5-0.5B -0.212 -0.315 0.424 0.503 0.394 0.587 0.667 0.811 0.758 0.895

4.2 EVALUATION COST ESTIMATION

In this section, we analyze the costs of various evaluation methods when different LLMs serve as
judges. For the purpose of this analysis, we assume that all responses required for evaluation are
pre-generated, thereby excluding the inference costs for generating these responses.

In RocketEval, the evaluation process is comprised of two primary components: checklist genera-
tion and checklist grading. The supervised evaluation method incorporates an additional fitting and
prediction process, whose costs are minimal since no LLM inference is involved. For proprietary
LLMs serving as judges, we calculate the number of input and output tokens required for a single
evaluation and derive the cost based on the official pricing 2. For open-source LLMs, we deploy
them on NVIDIA RTX A5000 GPUs using vLLM (Kwon et al., 2023), and the cost is calculated
based on the average execution time and the rental price of the GPU. We reference the pricing on
RunPod 3 at $0.36 per hour. To maximize efficiency, experiments are conducted in batch mode.

In practical evaluation scenarios, various LLMs, each with distinct tuning options, decoding settings,
and prompting techniques, can yield numerous versions of responses. Consequently, evaluations on
the same benchmark can be performed hundreds or even thousands of times across different models
and their respective versions. We therefore compare the cost of LLM evaluation methods with
different number of tests N . As shown in Table 4, the cost incurred for generating a checklist for
each question is equivalent to the expense of running a single test using GPT-4o. Since the checklist
generation is a one-time process, the cost of the checklist grading process becomes increasingly
significant as the number of tests escalates. For instance, conducting 1000 tests on the WILDBENCH
would incur a cost of $3400 when using GPT-4o as the evaluator, whereas employing Llama-3-8B
would only require $71, with achieving a higher correlation with human preferences.
4.3 QUALITATIVE ANALYSIS

Checklist Statistical Analysis. To discern the distribution of checklist items, we extracted the re-
lationships within the knowledge graphs associated with each checklist item, including the subject,
predicate, and object, in a format consistent with the methodology introduced by Sun et al. (2024).
We conducted a statistical analysis of all predicates in the checklist items generated from WILD-
BENCH (all predicates have been lemmatized). Further statistics are provided in Appendix A.5. As
shown in Figure 7, the predicate distribution within checklist items reflects the intrinsic demands
of various original questions. Predominant predicates such as "Include" and "Provide" underscore
the necessity for comprehensive and supportive responses, ensuring that all pertinent information is
considered. This is crucial for addressing the complex and multifaceted nature of questions across
various general tasks. Meanwhile, predicates such as "Calculate" and "Specify" highlight the pre-

2https://openai.com/api/pricing/
3https://www.runpod.io/pricing
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Table 4: Evaluation cost on WILDBENCH with different LLM judges.

Method LLM Judge Deploying
Environment Price Usage for

Single Test
Extra
Cost

Total Cost for N Tests

N=10 N=100 N=1000

CoT
GPT-4o
(20240806) proprietary

I/O: $1.25 / $5.00
/ 1M Tokens I/O:

1.84M/220k
tokens

N/A
$34.0 $340 $3400

GPT-4o-mini
(20240718)

I/O: $0.075 / $0.30
/ 1M Tokens $2.00 $20.0 $200

RocketEval
Llama-3-70BAWQ 4 x A5000 $1.44 / hours 3760s

$2.87*
$15.1 $125 $1224

Llama-3-8B 1 x A5000 $0.36 / hours 685s $3.55 $9.72 $71.4
Gemma-2-2B 1 x A5000 $0.36 / hours 248s $3.12 $5.35 $27.7
Qwen2.5-1.5B 1 x A5000 $0.36 / hours 165s $3.04 $4.52 $19.4

*The checklist generation process on WILDBENCH consumes 1.38M input tokens and 228k output tokens on GPT-4o.

cision required in quantitative and advisory responses. This distribution pattern not only guides the
assessment of answer quality but also ensures that responses meet the specific criteria of each ques-
tion type, thereby enhancing the overall reliability and applicability of the information conveyed.

Checklist Item Reweighting. Adjusting the weights of checklist items is crucial for accurately
assessing the effectiveness of responses to the original question, especially when a gold standard is
available. Initially, each checklist item was given equal weight, assuming an equal impact on the
overall assessment. However, this does not accurately reflect the true importance of each item in
validating the response’s accuracy and completeness. As shown in Figure 8, Assigning the value
of radial stress in item 1 (0.296) is critical, being a core part of the answer, significantly impacts
subsequent calculations and the overall analysis. In contrast, item 3 (0.069), which calculates the
inner radius, is fundamental but simple, less prone to error, and less critical than stress calculations,
thus bearing a lower weight. By reweighting, we emphasize the steps that are the most crucial to
the accurate responses, ensuring that the evaluation process is both rigorous and reflective of the
actual importance of each component, which leads to more reliable and credible results, ultimately
enhancing the overall validity and consistency with the gold standard of the assessment.

15%
15%

9%

8%

6%
5%

5% 5% 3%
3%

3%
3%
2%

18%

Include
Provide

Explain

Mention

Describe
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Address Discuss

Maintain
Use
Suggest
Calculate
Specify

Others

Figure 7: The predicates used in
checklist items on WILDBENCH.

1
 Does  the response  calculate  the radial stress ( r)

using the correct formula \( \sigma_r = -P \) and provide
the correct value of -5 MPa?

2
 Does  the  response  calculate  the tangential stress

( t) using the correct formula \( \sigma_t = \frac{Pr}{t}
\) and provide the correct value of 375 MPa?

3 Does  the response  correctly identify  and use the inner
radius as 150 mm (half of the diameter)?

4 Does the  response  apply the principle correctly to find
the tangential strain ( t)?

5
 Does the response include the correct Poisson's ratio ( )

and modulus of elasticity (E) in relevant strain
calculations?

6
 Does the response mention the necessary calculation for

the initial volume of the cylinder \( V_0 \) in terms of
the unspecified height (h)?

7

 Does the response correctly calculate the volumetric
strain ( v) by  summing individual strains and use that to

express the change in volume ( V) in reference to the
initial volume?

 A thin-walled cylinder has a diameter
of 300 mm and a wall thickness of 2 mm.
The cylinder is subjected to an internal
pressure of 5 MPa. The material of the
cylinder has a Poisson's ratio (v) of
0.3 and a modulus of elasticity of 200
GPa. Determine:
a. The radial stress and tangential
stress in the cylinder.
b. The volumetric strain and the change
in volume of the cylinder due to the
internal pressure

0.296

0.272

0.069

0.146

0.064

0.094

0.059

Figure 8: Visualization of checklist item reweighting. (De-
fault weight is the reciprocal of the number of checklists)

5 CONCLUSION

In this paper, we introduce RocketEval, an innovative evaluation framework that uses lightweight
LLMs to achieve high efficiency, low cost, interpretability, and alignment with human preferences.
By reframing the evaluation task as a multi-faceted Q&A using instance-specific checklists, we ad-
dressed the challenges of high uncertainty and positional bias inherent in lightweight LLMs. Our
method demonstrated a high correlation with human preferences, achieving a Spearman correla-
tion of 0.965 with the Gemma-2-2B model, comparable to GPT-4o, but at a fraction of the cost.
This significant cost reduction makes RocketEval a feasible solution for large-scale evaluation and
comparison scenarios.
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A APPENDIX

A.1 PROMPTS USED IN ROCKETEVAL

Prompts for Checklist Creation. The following prompt is designed to generate an instance-level
checklist.

Prompt for Checklist Creation

# Instruction
You are an helpful assistant who identifies and summarizes key factors in large

↪→ language models (LLMs) evaluation to help humans evaluate LLMs
↪→ efficiently.

Feed any query into different LLMs, I will get various responses. I need to
↪→ know in quick whether these responses follows the instructions and
↪→ answers the question in the user query better.

I’ll provide you with a user query. Your task is to identify those key factors
↪→ that will affect my judgment and summarize them into a list to improve
↪→ the efficiency of my evaluation.

# Conversation between User and AI
<|begin_of_history|>

{history}

<|end_of_history|>

## Current User Query
<|begin_of_query|>

{user_query}

<|end_of_query|>

## Reference Response
<|begin_of_reference_response|>

{reference_response}

<|end_of_reference_response|>

# Task
Given the above information, I need you to create a binary question list, so

↪→ that I can perform an efficient and accurate evaluation through
↪→ answering several questions.

Your question should be concise and include any necessary key content and
↪→ information (such as keywords, formats, correct counts and values) in
↪→ the user query or expected to be shown in responses. Your questions
↪→ should not only consider evaluating the reference response, but all
↪→ possible responses. Avoid creating duplicate, cumbersome or vague
↪→ questions. For example, you should ask "Is this response contain the
↪→ correct answer ..." instead of "Is this response’s answer correct?". Ask
↪→ fewer questions by aggregating questions with repeated contexts into
↪→ one question.

## Output Format
Please provide your outputs in the following markdown format by filling in the

↪→ placeholders in {{}}:
‘‘‘
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1. {{question1}}
2. {{question2}}
...
‘‘‘

Prompts for Response Judgment. To keep the consistency with the previous work, we adopt the
prompt in Lin et al. (2025) and make several modifications to adapt to different settings.

• For MT-BENCH, to keep consistent with the original paper which utilizes the reference
answer to guide the judgment, we replace the part of the checklist with the reference answer
and modify the prompt correspondingly.

• For other benchmarks that utilize pairwise comparison, we use the same prompt as WILD-
BENCH, and create the checklist using GPT-4o for each instance in those benchmarks.

• When prompting LLM to output the score directly without conducting analysis, we modify
the output format part in the prompt and change the score range from 1-10 to 0-9. This
aims to avoid the ambiguity of scoring 1 or 10 when only the first token is captured.

The prompts with different versions of the modification are listed as follows.

Prompts for Response Judgment

# Instruction
You are an expert evaluator. Your task is to evaluate the quality of the

↪→ responses generated by AI models.
We will provide you with the user query and an AI-generated responses.
You should first read the user query and the conversation history carefully for

↪→ analyzing the task, and then evaluate the quality of the responses
↪→ based on and rules provided below.

# Conversation between User and AI
## History
<|begin_of_history|>
{history}
<|end_of_history|>
## Current User Query
<|begin_of_query|>
{user_query}
<|end_of_query|>

Checklist disabled

## Reference Response
<|begin_of_reference_response|>
{ref_answer}
<|end_of_reference_response|>

## AI Response
<|begin_of_response|>
{model_output}
<|end_of_response|>

# Evaluation
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Checklist disabled

## Rules
You should first compare the AI response and reference response based on

↪→ your analysis of the user queries and the conversation history,
↪→ and then provide your assessment by scoring the AI response.

Checklist enabled

## Checklist
<|begin_of_checklist|>
{checklist}
<|end_of_checklist|>
Please use this checklist to guide your evaluation, but do not limit your

↪→ assessment to the checklist.
## Rules
You should compare the above response based on your analysis of the user

↪→ queries and the conversation history.
You should first write down your analysis and the checklist that you used

↪→ for the evaluation, and then provide your assessment according to
↪→ the checklist.

CoT enabled

The scores are in the range of 1~10, where 1 means the response is very
↪→ poor and 10 means the response is perfect.

Here are more detailed criteria for the scores:

- Score 1~2: The response is very poor and does not make sense at all.
- Score 3~4: The response is poor and does help user solve the problem in

↪→ a meaningful way.
- Score 5~6: The response is fair but has some issues (e.g., factual

↪→ errors, hallucinations, missing key information).
- Score 7~8: The response is good enough but could be improved in some

↪→ ways.
- Score 9~10: The response is perfect and provides helpful information

↪→ that can help user solve the problem.

## Output Format
First, please output your analysis for the model response, and then

↪→ summarize your assessment to two aspects: "strengths" and "
↪→ weaknesses"; Finally, please write down your rating for the
↪→ assessment.

Please provide your evaluation results in the following json format by
↪→ filling in the placeholders in []:

‘‘‘
{

"strengths": "[analysis for the strengths of the response]",
"weaknesses": "[analysis for the weaknesses of the response]",
"score": "[1~10]"

}
‘‘‘
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CoT disabled

The scores are in the range of 0~9, where 0 means the response is very
↪→ poor and 9 means the response is perfect.

Here are more detailed criteria for the scores:

- Score 0~1: The response is very poor and does not make sense at all.
- Score 2~3: The response is poor and does help user solve the problem in

↪→ a meaningful way.
- Score 4~5: The response is fair but has some issues (e.g., factual

↪→ errors, hallucinations, missing key information).
- Score 6~7: The response is good enough but could be improved in some

↪→ ways.
- Score 8~9: The response is perfect and provides helpful information

↪→ that can help user solve the problem.

## Output Format
Please output the score directly as a digit from 0-9. Do not output other

↪→ text.
Your score:

Prompts for Checklist Grading. The prompt for grading checklist items is shown below.

Prompts for Response Judgment

# Instruction

You are an expert evaluator. Your task is to evaluate the quality of the
↪→ responses generated by AI models.

We will provide you with the user query and an AI-generated responses.
You should first read the user query and the conversation history carefully for

↪→ analyzing the task, and then evaluate the quality of the responses by
↪→ answer the question provided below.

# Conversation between User and AI

## History
<|begin_of_history|>

{history}

<|end_of_history|>

## Current User Query
<|begin_of_query|>

{user_query}

<|end_of_query|>

## AI Response
<|begin_of_response|>

{$model_output}

<|end_of_response|>

# Evaluation
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## Question
<|begin_of_question|>

{checklist_item}

<|end_of_question|>

Please answer the given question based on the conversation history and the AI
↪→ response. You can only answer ’Yes’ or ’No’.

Your answer (Yes/No):

A.2 DATASETS AND BASELINES

In addition to the results reported by Zheng et al. (2023) on instance-level agreement and Lin et al.
(2025) on list-level correlation, we add more baselines with the following setup:

• GPT-4o: We replace GPT-4 with GPT-4o as judge and rerun the experiments using the
publicly available code provided by Zheng et al. (2023). For WILDBENCH, we use the
judgment of GPT-4o provided by Lin et al. (2025) as the baseline results. All baseline
results are produced following the template of scoring from WILDBENCH to keep the con-
sistency.

• Prometheus-2: We add the state-of-the-art fine-tuned judge model Prometheus-7B-v2.0
(Kim et al., 2024b) as the baseline. This model introduces custom scoring criteria and
rubrics to conduct the evaluation. For simplicity, we use the rubrics in WILDBENCH (Lin
et al., 2025), and set the criteria as "The response is in high quality and provides correct,
relevant, and helpful information that focuses on the user query.". The complete prompt is
shown below.

Prompts for Prometheus-2 judge

###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a

↪→ reference answer that gets a score of 5, and a score rubric representing
↪→ a evaluation criteria are given.

1. Write a detailed feedback that assess the quality of the response strictly
↪→ based on the given score rubric, not evaluating in general.

2. After writing a feedback, write a score that is an integer between 1 and 5.
↪→ You should refer to the score rubric.

3. The output format should look as follows: "Feedback: (write a feedback for
↪→ criteria) [RESULT] (an integer number between 1 and 5)"

4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{user_query}

###Response to evaluate:
{model_output}

###Reference Answer (Score 5):
{ref_answer}

###Score Rubrics:
[The response is in high quality and provides correct, relevant, and helpful

↪→ information that focuses on the user query.]
Score 1: The response is very poor and does not make sense at all.
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Score 2: The response is poor and does help user solve the problem in a
↪→ meaningful way.

Score 3: The response is fair but has some issues (e.g., factual errors,
↪→ hallucinations, missing key information).

Score 4: The response is good enough but could be improved in some ways.
Score 5: The response is perfect and provides helpful information that can help

↪→ user solve the problem.

###Feedback:

A.3 DETAILS OF EXPERIMENTS ON LIST-LEVEL CORRELATION

To comprehensively assess the performance of RocketEval, we conduct the experiments by adding
two additional benchmark datasets, ALPACAEVAL (Dubois et al., 2023) and ARENA-HARD (Li et al.,
2024a). The statistics of all benchmarks are listed in Table 5.

Table 5: Statistics of benchmark datasets.

Dataset #Instances Turns QueryLen PromptLen

MT-BENCH (Zheng et al., 2023) 160* 1-2 202.2 1123.4
WILDBENCH (Lin et al., 2025) 1024 1-5 978.5 3402.1
ALPACAEVAL (Dubois et al., 2023) 805 1 164.9 164.9
ARENA-HARD (Li et al., 2024a) 500 1 406.4 406.4

*Here we treat each 2-turn dialogues as 2 instances.

A.3.1 EXPERIMENTAL SETUP

We draw inspiration from the study by Lin et al. (2025), where 12 models 4 were selected for a
correlation analysis between their rankings in the CHATBOT ARENA ELO RATING (Hard prompts-
English) and WILDBENCH. However, upon closer inspection, we notice that some of the chosen
models have overlapping elo rating confidence intervals, which may compromise the reliability of
the correlation results. To address this issue, we revise the model selection to ensure that there is
no overlap in the 95% CI. Similarly, when selecting test models for other benchmarks, we take into
account the availability of model responses in the official released data and the elo ratings of the test
models. The elo ratings of the selected models are presented in Figure 9.

A.3.2 RESULTS

Score Distribution. We visualize the distribution of the scores from all instances in a single bench-
mark. Figure 10 shows when lightweight LLMs are employed as the judge and using CoT to grade
the responses, the distribution of scores are highly skewed, which indicates the poor ability of such
models in distinguish the responses with different qualities. Meanwhile, the scores graded by the
same judge under RocketEval are highly distinguishable and close to the distribution of GPT-4o.
Also, the supervised scorer shows the strong ability to reduce the score deviation, making the score
distribution closer to the ideal distribution like GPT-4o. This suggests the proposed method can
provide valuable context information via checklist and guide the LLM to give differential judgment.

Elo Ratings. Given that the scores assigned by the same LLM judge can be utilized to establish
pairwise comparisons between different test model responses, we follow the approach of (Chiang
et al., 2024) by introducing a match simulator and importing all pairwise comparison results from
an LLM judge. Specifically, we convert the scores of two responses to determine the winner, with
considering differences in scores smaller than 0.1 as ties. For each pair of test models, we derive the

4The selected models are gpt-4-turbo-2024-04-09, claude-3-opus-20240229, Meta-Llama-3-70B-Instruct,
Qwen1.5-72B-Chat, claude-3-sonnet-20240229, mistral-large-2402, dbrx-instruct@together, Mixtral-8x7B-
Instruct-v0.1, Meta-Llama-3-8B-Instruct, tulu-2-dpo-70b, Llama-2-70b-chat-hf, Llama-2-7b-chat-hf, gemma-
7b-it and gemma-2b-it.
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Figure 9: The scores of selected test models on CHATBOT ARENA ELO RATING (Hard prompts
English, 2024-09-17).
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Figure 10: Distribution of scores on WILDBENCH dataset.

pairwise comparison results as the match data. Subsequently, the Elo rating is calculated based on all
match results. We employ the same Bradley-Terry model-based Maximum Likelihood Estimation
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Table 6: Correlation of ranking with CHATBOT ARENA ELO RATING (Hard prompts-English) on
different benchmarks.

MT-BENCH

Method CoT Direct Ours (Unsup.) Ours (Sup.)

Coefficient Kend. Spea. Kend. Spea. Kend. Spea. Kend. Spea.

GPT-4o Kendall’s Tau (Kend.): 1.0 : Spearman (Spea.): 1.0

Llama-3-70B 1.000 1.000 0.944 0.985 - - - -
Qwen2-72B 1.000 1.000 0.956 0.988 - - - -

Mistral-Nemo 0.911 0.976 0.867 0.964 0.867 0.952 0.911 0.976
Llama-3-8B 0.867 0.952 0.867 0.964 0.822 0.927 0.911 0.976
Qwen2-7B 0.867 0.952 0.867 0.952 0.778 0.927 0.911 0.976
Mistral-7B-v0.3 0.733 0.903 0.822 0.927 0.822 0.939 0.822 0.939
Phi-3-mini-4k 0.778 0.915 0.822 0.939 0.867 0.952 0.956 0.988
Qwen2.5-3B 0.764 0.912 0.644 0.867 0.822 0.927 0.822 0.927
Llama-3.2-3B 0.867 0.952 0.422 0.600 0.822 0.927 0.956 0.988
Gemma-2-2B 0.556 0.721 0.629 0.796 0.778 0.915 0.822 0.927
InternLM2.5-1.8B 0.378 0.430 -0.296 -0.451 0.644 0.794 0.689 0.855
Qwen2.5-1.5B 0.556 0.745 -0.068 -0.128 0.778 0.915 0.911 0.976
Qwen2-1.5B 0.511 0.745 0.523 0.665 0.822 0.927 0.822 0.939
Llama-3.2-1B 0.511 0.697 0.114 0.146 -0.067 -0.200 0.733 0.879
Qwen2.5-0.5B 0.333 0.394 0.422 0.479 0.600 0.733 0.600 0.806

ALPACAEVAL

Method CoT Direct Ours (Unsup.) Ours (Sup.)

Coefficient Kend. Spea. Kend. Spea. Kend. Spea. Kend. Spea.

GPT-4o Kendall’s Tau (Kend.): 0.879 : Spearman (Spea.): 0.972

Mistral-Nemo 0.848 0.958 0.779 0.900 0.848 0.951 0.848 0.951
Llama-3-8B 0.758 0.895 0.818 0.923 0.758 0.916 0.758 0.916
Qwen2-7B 0.667 0.825 0.606 0.734 0.788 0.923 0.818 0.937
Mistral-7B-v0.3 0.636 0.804 0.515 0.692 0.727 0.881 0.788 0.923
Phi-3-mini-4k 0.606 0.762 0.565 0.708 0.818 0.937 0.818 0.944
Qwen2.5-3B 0.697 0.811 0.667 0.783 0.727 0.888 0.788 0.923
Llama-3.2-3B 0.606 0.804 0.515 0.699 0.909 0.979 0.909 0.979
Gemma-2-2B 0.636 0.818 0.848 0.951 0.939 0.986 0.909 0.979
InternLM2.5-1.8B 0.182 0.371 0.455 0.587 0.636 0.804 0.667 0.818
Qwen2.5-1.5B 0.303 0.483 0.333 0.469 0.879 0.965 0.879 0.965
Qwen2-1.5B 0.273 0.420 0.303 0.406 0.545 0.706 0.818 0.909
Llama-3.2-1B 0.000 -0.063 -0.061 -0.007 0.515 0.720 0.727 0.867
Qwen2.5-0.5B 0.182 0.287 0.485 0.636 0.606 0.769 0.636 0.818

ARENA-HARD

Method CoT Direct Ours (Unsup.) Ours (Sup.)

Coefficient Kend. Spea. Kend. Spea. Kend. Spea. Kend. Spea.

GPT-4o Kendall’s Tau (Kend.): 0.939 : Spearman (Spea.): 0.986

Mistral-Nemo 1.000 1.000 0.939 0.986 1.000 1.000 0.970 0.993
Llama-3-8B 0.909 0.972 0.939 0.986 1.000 1.000 0.970 0.993
Qwen2-7B 0.901 0.974 0.879 0.965 0.970 0.993 0.970 0.993
Mistral-7B-v0.3 0.818 0.937 0.818 0.930 0.970 0.993 0.939 0.986

Phi-3-mini-4k 0.879 0.958 0.758 0.881 1.000 1.000 1.000 1.000
Qwen2.5-3B 0.962 0.988 0.939 0.979 0.970 0.993 0.970 0.993
Llama-3.2-3B 0.818 0.937 0.333 0.392 0.970 0.993 1.000 1.000
Gemma-2-2B 0.545 0.692 0.879 0.958 0.939 0.986 0.970 0.993
InternLM2.5-1.8B 0.424 0.559 0.504 0.666 0.818 0.937 0.909 0.972
Qwen2.5-1.5B 0.394 0.476 0.515 0.545 0.970 0.993 0.939 0.986
Qwen2-1.5B 0.121 0.224 0.636 0.748 0.879 0.965 0.939 0.979
Llama-3.2-1B -0.121 -0.147 0.321 0.522 -0.606 -0.727 0.909 0.979
Qwen2.5-0.5B 0.091 0.098 0.769 0.902 0.576 0.811 0.939 0.986

(MLE), as used by (Chiang et al., 2024), to fit the Elo rating and use bootstrap to estimate confidence
intervals.

Figure 11 illustrates the elo rating from CHATBOT ARENA, ARENA-HARD (Li et al., 2024a) and the
results of judges Gemma-2-2B, Llama-3.2-3B, Qwen2.5-3B, and the ensemble result on the ARENA-
HARD benchmark dataset. We utilize the average score and the elo ratings derived by combining all
matches from the three judges. We conduct an experiment on all available responses from Li et al.
(2024a) and exclude 10 models used to fit the predictor in RocketEval and the GPT-4o-2024-05-13,
which is used as the judge to produce labels, resulting in 50 test models. It is evident that the scores
and elo ratings produced by the LLM judge follow similar trends and are more closely aligned with
the results derived from human preferences. Meanwhile, we notice that the test models that exhibit
a large deviation from human judgments belong to the same Llama series, indicating the potential
bias on different patterns of responses.
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Figure 11: Scores and elo ratings on ARENA-HARD benchmark dataset. We use the CHATBOT
ARENA ELO RATING (Hard-En, 2024-09-27) and reproduce the result of ARENA-HARD-AUTO
using the official implementation with the default setting (Judge: GPT-4-1106-preview, Baseline:
GPT-4-0314). ARENA-HARD-AUTO Elo, RocketEval elo rating and CoT score are adjusted by
scaling and adding a constant value for better visualization.

Table 7: Ablation study on instance-level agreement with MT-BENCH HUMAN JUDGMENTS.

Method RocketEval (Unsup.) w/o Norm Score w/o Indep. Judgment w/o Weight Factor RocketEval (Sup.)

Mistral-Nemo 63.2% 62.6% 63.0% 63.0% 64.2%
Llama-3-8B 63.8% 57.5% 60.8% 59.9% 62.9%
Qwen2-7B 58.6% 49.3% 59.0% 57.8% 59.8%
Mistral-7B-v0.3 58.8% 47.4% 57.5% 52.9% 58.3%

Phi-3-mini-4k 61.2% 55.5% 60.5% 57.4% 60.9%
Qwen2.5-3B 57.4% 51.3% 59.2% 55.7% 58.7%
Llama-3.2-3B 58.6% 48.7% 57.6% 56.5% 58.8%
Gemma-2-2B 57.9% 49.6% 55.9% 56.5% 57.3%
InternLM2.5-1.8B 51.7% 39.7% 42.3% 37.4% 48.4%

Qwen2.5-1.5B 60.7% 46.3% 55.7% 57.5% 60.2%
Qwen2-1.5B 56.2% 31.2% 54.3% 52.7% 55.6%
Llama-3.2-1B 33.6% 23.4% 40.9% 42.0% 41.9%
Qwen2.5-0.5B 54.3% 33.4% 49.4% 47.2% 50.9%

A.4 ABLATION STUDY

To validate the effectiveness of strategies adopted in RocketEval, we conduct ablation study by
testing the performance on the following variants:

• w/o Norm Score: It removes the conditional normalized score and simply use the decoding
result as the judgment.

• w/o Indep. Judgment: It inputs the checklist into the LLM judge in a multi-turn format, so
that the LLM can see its previous judgment result when judging on the current checklist
item.

• w/o Weight Factor: It sets the weight factor αr to the constant 1.

The results, presented in Tables 7 and 8, demonstrate that incorporating conditional normalized
score consistently enhances the performance of LLM judges, particularly for smaller-sized LLMs.
This observation confirms the high uncertainty associated with lightweight LLMs and supports the
inference that introducing conditional normalized score can increase their reliability when serving
as judges. Simultaneously, setting the weight factor αr to 1 causes the final score to be entirely
determined by the supervised predictor. Predictors trained on a limited number of annotations may
struggle to provide accurate scoring results but exhibit superior performance in aligning with human
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Table 8: Ablation study on list-level correlation with CHATBOT ARENA ELO RATING (Hard-En) on
WILDBENCH dataset.

Method RocketEval (Unsup.) w/o Norm Score w/o Indep. Judgment w/o Weight Factor RocketEval (Sup.)

Coefficient Kend. Spea. Kend. Spea. Kend. Spea. Kend. Spea. Kend. Spea.

Mistral-Nemo 0.939 0.986 0.909 0.979 0.879 0.965 0.939 0.986 0.939 0.986
Llama-3-8B 0.909 0.979 0.909 0.979 0.848 0.958 0.939 0.986 0.909 0.979
Qwen2-7B 0.758 0.895 0.758 0.895 0.788 0.916 0.909 0.979 0.818 0.930
Mistral-7B-v0.3 0.758 0.874 0.758 0.874 0.788 0.881 0.879 0.965 0.818 0.930

Phi-3-mini-4k 0.788 0.916 0.758 0.902 0.818 0.930 0.909 0.979 0.848 0.958
Qwen2.5-3B 0.848 0.944 0.848 0.944 0.848 0.944 0.909 0.979 0.848 0.944
Llama-3.2-3B 0.848 0.944 0.848 0.944 0.818 0.930 0.939 0.979 0.848 0.944
Gemma-2-2B 0.879 0.965 0.879 0.965 0.879 0.965 0.939 0.986 0.879 0.965
InternLM2.5-1.8B 0.576 0.748 0.576 0.748 0.545 0.700 0.636 0.790 0.606 0.769

Qwen2.5-1.5B 0.818 0.923 0.788 0.916 0.697 0.867 0.879 0.951 0.848 0.944
Qwen2-1.5B 0.455 0.622 0.515 0.643 0.636 0.804 0.758 0.874 0.667 0.825
Llama-3.2-1B -0.273 -0.357 -0.212 -0.231 0.606 0.755 0.848 0.923 0.697 0.846
Qwen2.5-0.5B 0.667 0.811 0.667 0.811 0.697 0.839 0.848 0.951 0.758 0.895

preferences at the list level. In such scenarios, the weight factor αr proves to be effective in miti-
gating the negative influences of biased annotations, thereby achieving strong performance in both
instance-level agreement and list-level ranking correlation. Meanwhile, although there is a perfor-
mance drop in the variant without independent checklist item judgment, the drop is not significant.
This may be due to the fact that the position bias exists in all tests and is further alleviated in sub-
sequent score prediction stage. Although the position bias has limited impact on the final prediction
results, the form of multi-round dialogue prevents batch processing during LLM inference, thereby
reducing efficiency. In conclusion, we believe that independent checklist judgment in RocketEval
remains an optimal choice.

A.5 CHECKLIST ANALYSIS

As mentioned in Section 4.3 , we undertake a more detailed examination of the checklists generated
by RocketEval on the WILDBENCH. This benchmark can be categorized into five major task types:
Math & Data Analysis, Coding & Debugging, Creative Tasks, Information/Advice Seeking, and
Planning & Reasoning.

In this section, we focus on extracting knowledge graph relationships from all the checklists and
conducting a comprehensive analysis of these relationships. Furthermore, we investigate instances
of checklist item reweighting across a broader spectrum of tasks to provide a more extensive under-
standing of the underlying dynamics.

Subject Distribution. As shown in Figure 12, the distribution of subject keywords in validat-
ing original question responses ensures a universal, compatible, and effective checklist for various
tasks. High-frequency keywords like "explanation", and "code" are crucial for Coding & Debug-
ging, aiding in verifying code functionality and clarity. Keywords like "essay", "example", and
"story" are vital for Creative Tasks and Information/Advice seeking, ensuring creativity, relevance,
and clarity. For Planning & Reasoning, keywords such as "strategy", "method" and "process" en-
sure comprehensive and practical solutions. In Math & Data Analysis, keywords like "calculation",
"algorithm", and "solution" validate mathematical logic and data analysis. Universally applicable
keywords like "response", "explanation", and "example" consistently evaluate clarity, relevance,
and accuracy across all tasks. This multifaceted approach ensures a robust, flexible, and thorough
evaluation process, enhancing the overall effectiveness and reliability of the responses.

Task-Predicate Relationship. We categorized the checklist items according to the types of tasks
and conducted a statistical analysis of the corresponding predicates. As shown in Figure 13, the
distribution of predicate keywords within checklists mirrors the distinct demands inherent to dif-
ferent task categories, such as Coding & Debugging, Planning & Reasoning, Mathematical & Data
Analysis, Information/Advice Seeking, and Creative Tasks. Predicate keywords that are exclusive
to certain domains, such as "handle" within the context of Coding & Debugging or "calculate" in
Mathematical & Data Analysis, denote actions that are specific and pertinent to those respective
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Figure 12: Distribution of Subjects in checklist items which generated from WILDBENCH.
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Figure 13: Visualization of Task-Predicate Relationship.

fields. Conversely, common predicates like "explain" and "describe" are universally applicable,
serving general verification objectives across all question types.

These predicate keywords augment the verification process by imparting explicit and goal-oriented
directives. Specifically, exclusive keywords concentrate on criteria that are specific to each task
type, ensuring a detailed and contextually relevant assessment. Meanwhile, common keywords
ensure uniformity and exhaustiveness in the evaluation of responses. This dual strategy ensures
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1 Does  the  response  correctly import necessary PyTorch components such as `torch`,
`nn`, `optim`, `DataLoader`, and other relevant libraries?

2 Is there a GRU-based Encoder class with the `__init__`, `forward`, and `init_hidden`
methods implemented?

3 Is  there a GRU-based  Decoder class with `__init__`, `forward`, and an output layer
using `LogSoftmax` or equivalent?

4 Does the response set up a comprehensive character-to-index mapping and word pair
handling, specifically through a custom dataset class?

5 Is there  an   explanation or  implementation showing  how padding and batching are
managed in mini-batch training?

6 Does the response show a complete training function that includes initializing hidden
states, zeroing gradients, and executing forward and backward passes?

7 Are  start  and  end of sequence token indices correctly implemented and used within
input handling in the training function?

8 Does  the  response  correctly set  up the training infrastructure including the dataset,
DataLoader, model instantiation, and the optimizer?

9 Are there clear details of a training loop with epoch iterations, batch processing from
a DataLoader, and intermediate loss outputs?

10 Is the loss  function for  sequence-to-sequence learning in NLP, like CrossEntropy or
NLLLoss, clearly explained or demonstrated in the training loop?

using pytorch, implement a character
level sequence to sequence encoder-
decoder model with GRU . Trained the
model on a dataset of word pairs with
minibatch training.
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Figure 14: Visualization of checklist item reweighting in Coding & Debugging.

that each answer is evaluated comprehensively and from multiple perspectives, thereby significantly
enhancing the efficacy of the verification process.

Checklist Item Reweighting Analysis. Here we present more reweighted case examples under a
variety of tasks. As shown in Figure 14, the checklist generated for Coding & Debugging tasks
ensures the complete generation of the code for the target problem. After reweighting, there is a
greater emphasis on critical steps within the code, such as the structures of the forward, backward,
and loss function in a neural network. For Planning & Reasoning tasks, reweighting makes key
reasoning items more prominent. For example, As shown in Figure 17, based on the symptoms
described in the problem, the response needs to deduce diabetic ketoacidosis (DKA) to provide a
correct and reasonable treatment in subsequent answers. For other Creative Tasks, see Figure 15,
and for Information/Advice seeking tasks, see Figure 16. By reweighting checklist items, we can
reasonably focus on critical steps or results across different types of tasks, ensuring effectiveness
when using lightweight LLM as judges.

1 Does the response include dialogue that effectively develops the story and character
interactions?

2 Is   the  setting,  Luther's old residence, described to contribute an eerie atmosphere
appropriate for a mystery story?

3 Is    the   central   mystery   (Luther's murder by suffocation) introduced clearly and
maintained as the focus of the story?

4 Do  all suspects  have  distinct  roles or characteristics that contribute to the story's
depth?

5 Are the  series  of  murders integrated into the story in a way that escalates tension
and drives the narrative forward?

6 Does the narrative  convey  an increasing sense of urgency to solve the mystery as
the story progresses?

7 Does  the  resolution  of  the  mystery   logically  follow from the clues and events
described in the story?

8 Is the murderer's identity revealed in a manner consistent with the development of
the plot and character motivations?

9 Is  emotional  tension  and  suspicion  among the suspects effectively conveyed to
engage the reader?

10 Are clues  and  red herrings  integrated within the narrative to challenge the reader
while keeping the solution attainable and fair?

Write an intricate mystery story,
including dialogue, about the murder of
Luther Watson. All five suspects,
Christian Vaughn, Selina Morano, Ted
Mosley, Blii Paxrott and Samntha
Williams, are gathered at Luther's old
residence. One of them is the murderer
and they have to find out who it is. The
only thing they know, is that Luther was
suffocated. Each night one of the
suspects gets killed by the murderer and
the pressure to solve the case
increases.
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Figure 15: Visualization of checklist item reweighting in Creative Tasks.
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1
 Does the response provide a  clear and detailed explanation of how mining

engineering can connect to renewable energy resources, including future
potential?

2 Does the response mention the importance of renewable energy for climate
change mitigation and reducing dependence on fossil fuels?

3
 Does the response specify essential skills for mining engineering

graduates to integrate  with renewable energy fields, such as understanding
of raw materials, sustainable practices, and technical skills?

4 Does the response  describe  some academic or career positions relevant to
mining engineering and renewable energy?

5 Does the response include examples of renewable energy technologies like
wind turbines, solar panels, and energy storage systems?

6
 Is the response structured  in a clear and well-organized manner, breaking
down different topics such as connection, importance, required skills, and

career opportunities?

 how to connect mining engineering to
renewable energy resources and future of
this connection, importance of renewable
energy and its future and what skills of
a graduate student in mining engineering
does need to this connection and carrier
job and academic positions
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Figure 16: Visualization of checklist item reweighting in Information/Advice seeking.

1 Does   the   response correctly  identify  the  most   likely
diagnosis as diabetic ketoacidosis (DKA)?

2
 Does the response  mention a relevant  test  for

proving DKA, specifically mentioning blood ketone levels
or beta-hydroxybutyrate?

3 Does the response correctly calculate the anion gap using
the  formula: Na+ - (Cl- + HCO3-) and provide the value?

4
 Does the  response  outline  appropriate lines of treatment

for DKA covering fluid resuscitation, insulin therapy,
electrolyte management, and acidosis correction?

5
 Does the response address the patient's infected foot ulcer
as a possible secondary infection and suggest appropriate

interventions like antibiotics?

6
 Does the response  mention additional  patient

education on diabetes management and foot care as part of
the treatment plan or prevention of future episodes?

7 Is the  response  clear, concise, and appropriately detailed
in addressing each part of the original query?

A 25-year-old man with type-1 diabetes
mellitus on insulin presents to ED with
fever,cough, vomiting and abdominal
pain. Examination reveals tachypnia, dry
mucosa,decreased skin turgor, a
temperature of 37.8 °C and infected
ulcer in the left foot.Investigations
show RPG of 350 mg/dl, Na+ 130 mmol/l,
K+ 5.7 mmol/l, Bicarbonate
12 mmol/L, Chloride 105 mmol/L, urea 60
mg/dl.
A. What is the most likely diagnosis?
B. Mention one test to prove the
diagnosis.
C. What is the value of anion gap in
this patient?
D. What are the lines of treatment?
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Figure 17: Visualization of checklist item reweighting in Planning & Reasoning.
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