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ABSTRACT

Large language models (LLMs) excel at complex reasoning but remain lim-
ited by static and incomplete parametric knowledge. Retrieval-augmented gen-
eration (RAG) mitigates this by incorporating external knowledge, yet existing
RAGs struggle with knowledge-intensive tasks due to fragmented information
and weak modeling of knowledge structure. Graphs offer a natural way to model
relationships within knowledge, but LLMs are inherently unstructured and can-
not effectively reason over graph-structured data. Recent graph-enhanced RAG
(GraphRAG) attempts to bridge this gap by constructing tailored graphs and en-
abling LLMs to reason on them. However, these methods often depend on ad-hoc
graph designs, heuristic search, or costly agent pipelines, which hinder scalability
and generalization. To address these challenges, we present G-reasoner, a unified
framework that integrates graph and language foundation models for scalable rea-
soning over diverse graph-structured knowledge. Central to our approach is Quad-
Graph, a standardized four-layer abstraction that unifies heterogeneous knowledge
sources into a common graph representation. Building on this, we introduce a
34M-parameter graph foundation model (GFM) that jointly captures graph topol-
ogy and textual semantics, and is integrated with LLMs to enhance reasoning in
downstream applications. To ensure scalability and efficiency, mixed-precision
training and distributed message-passing are implemented to scale GFM with
more GPUs. Extensive experiments on six benchmarks show that G-reasoner
consistently outperforms state-of-the-art baselines, significantly enhances LLM
reasoning, and achieves strong efficiency and cross-graph generalization.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning capabilities and serve as
the foundation model to solve complex tasks across diverse domains (Achiam et al., 2023; Yang
et al., 2025; Liu et al., 2024). However, their effectiveness is often constrained by limitations in
accessing up-to-date and domain-specific knowledge (Mousavi et al., 2024; Song et al., 2025b).
Recently, retrieval-augmented generation (RAG) (Gao et al., 2023) addresses this challenge by en-
abling LLMs to reason over external knowledge sources, thereby enhancing their applicability in
real-world applications, such as legal judgment (Kang et al., 2024) and medical diagnoses (Jin et al.,
2019). While RAG improves the access to external knowledge, current RAG approaches struggle
with knowledge-intensive reasoning due to the scattered nature of related information (Li et al.,
2025b). This requires not only retrieving relevant information but also effectively capturing the
association and structure among knowledge to facilitate reasoning (Jiang et al., 2025).

Graphs provide a natural and flexible representation for modeling the structure and relationships
within knowledge (Hogan et al., 2021; Safavi & Koutra, 2021), making them particularly well-suited
for capturing complex knowledge associations to enhance reasoning. However, due to the unstruc-
tured nature of LLMs, they struggle to handle graph data (Guo et al., 2023; Jin et al., 2024). This
motivates the need for approaches that enhance LLMs to effectively reason over graph-structured
knowledge with graph-enhanced retrieval augmented generation (GraphRAG) (Peng et al., 2024;
Han et al., 2024).

Existing works in GraphRAG have primarily focused on two components. (1) Graph construction
focuses on designing a graph structure to effectively organize and capture relationships within the
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Figure 1: The overall framework of G-reasoner. First, G-reasoner provides a unified graph inter-
face, QuadGraph, that integrates diverse graph-structured knowledge from different domains into a
standard format. Then, it adopts a GNN-powered foundation model to jointly reason over the graph-
structured knowledge and make versatile predictions. Last, we enhance the LLMs with the graph
reasoning results to improve the performance on downstream applications.

knowledge, such as document graphs (Wang et al., 2024), knowledge graphs (Jimenez Gutierrez
et al., 2024), and hierarchical graphs (Edge et al., 2024; Dong et al., 2025). The well-designed
graph structure could enhance the retrieval process by providing more context and relationships
among knowledge. (2) Graph-enhanced reasoning explores to enhance LLMs’ ability to reason
over these graph structures. For example, HippoRAG (Jimenez Gutierrez et al., 2024) adopts the
PageRank algorithm to search over knowledge graphs, ToG (Sun et al., 2024) employs an agent-
based approach with tool calling to interact with the graph for reasoning, GNN-RAG (Mavromatis
& Karypis, 2025b) leverages graph neural networks (GNNs) to facilitate complex reasoning over
graphs.

Despite the effectiveness, existing methods face several limitations. First, they often rely on spe-
cific graph structures, which may not generalize well to diverse domains or tasks (Edge et al., 2024;
Jimenez Gutierrez et al., 2024). This limits their adaptability and generalizability in real-world ap-
plications. Second, intuitive graph search-based methods (Jimenez Gutierrez et al., 2024) may not
fully leverage the power of foundation models for reasoning, while agent-based methods (Sun et al.,
2024) can be computationally expensive and suffer from high latency. Although GFM-RAG (Luo
et al., 2025) proposes a GNN-powered graph foundation model (GFM) with 8M parameters to effi-
ciently reason over graphs, it is still limited to specific knowledge graphs and cannot generalize to
other graph structures. Therefore, it is crucial to develop a unified method that can adapt to various
graph structures and effectively reason over graph-structured knowledge.

In this paper, we propose G-reasoner, which integrates graph and language foundation models
to enable scalable training and generalized reasoning over diverse graph-structured knowledge, as
shown in Figure 1. To reason over diverse graph structures, we first define a novel 4-layer graph
structure, QuadGraph, which unifies heterogeneous graph-structured knowledge into a standard-
ized format. This allows G-reasoner to flexibly adapt to various graph structures. With the unified
QuadGraph, we further unleash the power of graph foundation models (GFM) powered by GNNs
to jointly reason over the topology and text semantics of the graph. To support large-scale training
and reasoning, we implement a mixed-precision training and propose a distributed message-passing
mechanism, allowing G-reasoner to scale effectively across multiple GPUs and datasets.

Finally, we derive a 34M-parameter GFM that efficiently captures complex relationships and depen-
dencies within the knowledge to make versatile predictions on graphs. The graph reasoning results
can be flexibly integrated with LLMs to enhance their reasoning in downstream applications. Exper-
iments on six benchmark datasets demonstrate that G-reasoner achieves superior performance over
state-of-the-art baselines and significantly boosts the performance of LLMs on complex reasoning
tasks. Moreover, G-reasoner exhibits strong efficiency and generalization capabilities across various
graph structures, making it a versatile solution for real-world applications.
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2 RELATED WORK

Graph Construction. Graph construction is key for graph-based reasoning. Early methods like
KGP (Wang et al., 2024) use hyperlinks and KNN similarity, but miss semantic associations.
RAPTOR (Sarthi et al., 2024) builds hierarchical trees via recursive summarization. GraphRAG
(MS) (Edge et al., 2024) use LLMs to extract entities and relations, forming hierarchical graphs
with community detection and summarization. LightRAG (Guo et al., 2024), ArchRAG (Wang et al.,
2025) and Youtu-GraphRAG (Dong et al., 2025) further enrich graph structures with attributes and
documents. HippoRAG 1 & 2 (Jimenez Gutierrez et al., 2024; Gutiérrez et al., 2025) apply Ope-
nIE to induce knowledge graphs capturing factual relationships. Despite their achievements, these
methods are typically tailored for specific graph structures, and thus exhibit limited generalizability
across different types of graphs. For example, the hierarchical graphs constructed by GraphRAG
(MS) (Edge et al., 2024) and LightRAG (Guo et al., 2024) are primarily designed for summarization
tasks, and may not be suitable for multi-hop reasoning tasks compared to the knowledge graphs used
in HippoRAG (Jimenez Gutierrez et al., 2024).

Graph-enhanced Reasoning. Graph-enhanced reasoning seeks to enable LLMs to reason on the
graph-structured knowledge and improve their performance on knowledge-intensive applications.
HippoRAG (Jimenez Gutierrez et al., 2024) adopts personalized PageRank to support efficient re-
trieval on knowledge graphs. LightRAG (Guo et al., 2024) employs a dual-level retrieval strategy
with both the embedding-based retrieval and graph-based neighborhood expansion. However, these
graph search-based methods still fall short of fully exploiting the power of foundation models for
reasoning. Agent-based methods, such as ToG (Sun et al., 2024), KAG (Liang et al., 2025), and
Youtu-GraphRAG (Dong et al., 2025) employ LLM agents to iteratively interact with graphs to con-
duct reasoning. Despite the effectiveness, these methods often incur substantial computational costs
and suffer from high latency due to the multiple invocations of LLMs. More recent efforts leverage
graph neural network (GNNs) to reason over graphs and enhance LLMs Mavromatis & Karypis
(2025b); He et al. (2024); Li et al. (2025a). For example, GFM-RAG (Luo et al., 2025) proposes a
graph foundation model powered by GNNs designed to enable reasoning over different knowledge
graphs. However, these approaches remain tailored for specific graphs and cannot generalize well
across diverse types of graph structure. More detailed related work can be found in Section A.

3 PRELIMINARY

In this section, we formally define the problem of reasoning over graph-structured knowledge
with LLMs, which can be unified into a two-stage framework: (1) graph structure construction
and (2) graph-enhanced retrieval and LLM reasoning. Specifically, given a set of documents D,
we first extract the knowledge and construct a structured graph G = (V, E), such as knowledge
graph (Jimenez Gutierrez et al., 2024) and document graph (Wang et al., 2024). The V denotes the
set of nodes (e.g., entity and document) and E denotes the edges that model the connection between
knowledge, facilitating efficient retrieval and reasoning. Based on the constructed graph G and a
user query q, we aim to retrieve the relevant knowledge from G and reason the final answer a with
LLMs. The general pipeline can be formulated as:

G = GraphConstructor(D), (1)
a = LLM(Retriever(q,G)). (2)

4 APPROACH

The proposed G-reasoner aims to design a foundation model that unifies the reasoning on diverse
graph structures, enabling more effective and efficient reasoning over graph-structured knowledge
with LLMs. The overall framework of G-reasoner is illustrated in Figure 1, which consists of
three main components: (1) a unified graph interface, QuadGraph, that standardizes diverse graph-
structured knowledge from different domains into a unified format; (2) a GNN-powered foundation
model that jointly reasons over the graph-structured knowledge and makes versatile predictions; and
(3) an LLM-enhanced reasoning that incorporates the graph reasoning results to improve perfor-
mance on downstream applications. In the following, we will introduce each component in detail.
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4.1 UNIFIED GRAPH INTERFACE: QUADGRAPH

The real-world knowledge is often complex and multi-relational, which can be naturally repre-
sented as graph structures (Hogan et al., 2021; Safavi & Koutra, 2021). To effectively leverage
graph-structured knowledge for reasoning, existing methods typically construct different types of
graphs based on the specific characteristics of knowledge and requirements of downstream tasks.
For example, knowledge graphs (Jimenez Gutierrez et al., 2024) are often used to represent factual
information between entities, while document graphs (Wang et al., 2024) are used to capture the
relationships between documents based on their content similarity or citation links. However, these
methods usually focus on a specific type of graph structure, which limits their applicability to other
types of graph-structured knowledge and hinders the generalization of reasoning models.

Unified QuadGraph

Community Layer

Document LayerKnowledge Graph Layer

Attribute Layer

HippoRAG 1

KGP
LightRAG

Graph
RAG
(MS)

HippoRAG 2

GFM-RAG
RAPTOR

ArchRAG

Youtu-Graphrag

KAG

Figure 2: Illustration of QuadGraph for uni-
fying existing graph-structured knowledge.

To address this limitation, G-reasoner proposes a
unified graph interface called QuadGraph that stan-
dardizes diverse graph-structured knowledge from
different domains into a unified format. Specifi-
cally, we design a 4-layer graph structure that con-
sists of the following layers: (1) attribute layer that
captures the common attributes of the nodes; (2)
knowledge graph layer that represents the entities
and their relationships as triples, which stores the
structured factual knowledge; (3) document layer
that contains the unstructured textual information,
such as documents and passages; and (4) commu-
nity layer that groups related nodes into communi-
ties based on their semantic similarity or structural
connectivity to provide global level information. As
shown in Figure 2, the QuadGraph can effectively unify various types of graph-structured knowl-
edge, such as knowledge graphs (Jimenez Gutierrez et al., 2024), document graphs (Wang et al.,
2024), and hierarchical graphs (Edge et al., 2024; Liang et al., 2025; Dong et al., 2025), into a
standard format, facilitating the design of generalizable reasoning models.

Definition. The QuadGraph is defined as G = (V, E ,R, T ,S), where T =
{attribute,entity,document,community} denotes the set of node types, R denotes the
set of edge types that model the relations between nodes, (e.g., born in,city of) and special
relations across layers, (e.g., has attribute,included in,belongs to). The edges in the
graph are formulated as E = {(v, r, v′)|{tv, tv′} ∈ T , r ∈ R}, where tv denotes the type of node v.
The S denotes the set of node semantic features, such as the name of an entity or the text content of
a document.

4.2 GRAPH FOUNDATION MODEL REASONING

To effectively reason over the unified graph-structured knowledge, G-reasoner proposes a GNN-
powered foundation model that jointly reasons over the QuadGraph and makes versatile predictions.
Graph neural networks (GNNs) (Mavromatis & Karypis, 2025a; He et al., 2024) have shown great
success in reasoning over graph-structured data due to their ability of capturing complex relation-
ships and dependencies between nodes. Recently, GFM-RAG (Luo et al., 2025) proposes a graph
foundation model (GFM) for reasoning over knowledge graphs, which demonstrates the effective-
ness of GNNs in enhancing LLMs with structured knowledge.

However, GFM-RAG is specifically designed for knowledge graphs and cannot be directly applied
to other types of graph-structured knowledge with versatile node types and rich text semantics, such
as document graphs or hierarchical graphs. To address this limitation, G-reasoner further unleashes
the power of GNNs by designing a more generalizable GFM that (1) synergizes graph topology and
text semantics for reasoning and (2) enables versatile predictions on arbitrary node types.

Synergized Reasoning over Structure and Semantics. G-reasoner adopts the query-dependent
GNN (Galkin et al., 2024; Luo et al., 2025) as the backbone of the GFM, which can capture the
complex relationships and dependencies between query and knowledge on the graph. Unlike GFM-
RAG (Luo et al., 2025) that only considers the semantics of relations, G-reasoner further incorpo-
rates the rich text semantics of nodes S into the reasoning process.

4
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Given a graph G, we first encode the text features of each node sv ∈ S into node embeddings hv ∈
Rd using a pre-trained text embedding model (e.g., BGE (Chen et al., 2024), Qwen3 Embedding
model (Zhang et al., 2025b)). The relation embeddings hr ∈ Rd are also initialized using the same
text embedding model to encode the text description of each relation r ∈ R. With the help of text
embeddings, we can effectively capture the semantic information in the graph and unify them into
the same embedding space, facilitating the following reasoning.

During the reasoning, the graph G together with the user’s query q are input into the GFM. The model
first encodes the query into a query embedding hq ∈ Rd using the same text embedding model to
understand the user’s intent and align it with the graph knowledge. Then, a L-layer query-dependent
GNN is applied to jointly reason over the graph topology and text semantics via message-passing
and make versatile predictions of each node type, which can be formulated as:

h0
v = Init(hv,1v∈Vq

∗ hq), v ∈ V, (3)

hl
v = Update

(
hl−1
v ,Agg

(
{Msg(hl−1

v ,hl
r,h

l−1
v′ )|(v, r, v′) ∈ E}

))
, l ∈ [1,L], (4)

p(v) = Predictortv (h
L
v ,hv,hq), (5)

where hl
v denotes the embedding of node v at the l-th GNN layer, the Init function initializes the

node embedding by combining the original node embedding hv and the query embedding hq if the
node v is in the query-related nodes Vq with a single MLP layer.

At each GNN layer, the Msg function uses DistMult (Yang et al., 2015) to generate the message
from the neighbors based on their nodes embeddings hl−1

v , hl−1
v′ and relation embedding hl

r, which
are then aggregated by the Agg function (e.g., sum). The Update function updates the target node
embedding hl

v by combining its previous embedding and the aggregated messages using another
MLP, and relation embeddings are also updated with a layer-specific MLP, i.e., hl

r = gl(hr).

Finally, a type-specific predictor Predictortv is applied to make versatile predictions for each
node based on its final embedding hL

v , original text embedding hv , and query embedding hq . The
predictor can be designed as a binary classifier for arbitrary node types t ∈ T , such as entity nodes
in the knowledge graph layer or document nodes in the document layer, to predict whether the node
is relevant to the query.

Optimization. The GFM conducts unified reasoning by integrating the graph topology (V, E) and
text semantics S in G to predict the relevance of nodes to the query. The GFM θ is optimized by
maximizing the likelihood of the ground-truth relevant nodes V+

q , which can be formulated as:

O(θ) =
∑
v∈V+

q

log pθ(v|q,G), (6)

where the V+
q denotes the set of labeled relevant nodes for the query q that can be of arbitrary types

t ∈ T . However, the scarcity of labeled nodes |V+
q | ≪ |V| makes it difficult to capture the complex

relationships between the query and knowledge on the graph.

To mitigate this challenges, we propose to train the GFM on large-scale datasets with weak super-
vision by leveraging the abundant unlabeled nodes on the graph. The pre-trained text embedding
models (Devlin et al., 2019) have shown strong semantic understanding and can effectively capture
the relevance between the query and nodes based on their text features S. Therefore, we propose to
leverage the pre-trained text embedding model as a teacher to provide pseudo-labels for all nodes on
the graph, which can be formulated as:

pϕ(V|q,S) = Sigmoid(H⊤
V hq), (7)

where hq denotes the query embedding and hv ∈ HV denotes the text embeddings of all nodes
encoded by the pre-trained text encoder ϕ, which is frozen during training.

Following the knowledge distillation (Hinton et al., 2015), we train the GFM θ as a student to mini-
mize the KL divergence between the pseudo-label distribution pϕ(V|q,S) and the prediction distri-
bution pθ(V|q,G) over all nodes. As they both follow the Bernoulli distribution, the KL divergence
can be efficiently calculated as:

DKL(pϕ(V|q,S)||pθ(V|q,G)) =
∑
v∈V

= pϕ(v) log
pϕ(v)

pθ(v)
+ (1− pϕ(v))

1− pϕ(v)

1− pθ(v)
, (8)

where pϕ(v) = pϕ(v|q,hv) and pθ(v) = pθ(v|q,G).
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The final unified objective of the GFM training can be formulated as:

O(θ) =
∑
v∈V+

q

log pθ(v|q,G)− λDKL(pϕ(V|q,S)||pθ(V|q,G)), (9)

where λ is a hyper-parameter that balances the two terms. The unified objective not only distill
the semantic understanding from the pre-trained text encoder into the GFM but also alleviate the
issue of scarce labeled data by leveraging the pseudo-label distribution over the graph. Empirical
experiments in Section 5.4 demonstrate the effectiveness of the proposed objectives.

Large-scale Training and Reasoning. To enable the generalizable reasoning ability over diverse
graph-structured knowledge, G-reasoner is trained on large-scale datasets with weak supervision.
Specifically, we collect a large number of query-graph pairs {(qi,V+

qi ,Gi)}Ni=1 from various do-
mains (Luo et al., 2025), where graphs G are constructed with diverse graph constructors (e.g.,
knowledge graphs (Jimenez Gutierrez et al., 2024), document graphs (Gutiérrez et al., 2025), hi-
erarchical graphs (Dong et al., 2025)) and unified into the QuadGraph interface introduced in Sec-
tion 4.1. The weak supervision V+

qi is obtained by labeling the relevant nodes for each query qi, such
as answer entities or supporting documents. The GFM is then trained by optimizing the unified ob-
jective in eq. (9) over the collected dataset, which can effectively capture the complex relationships
between the query and knowledge on the graph and generalize to various types of graph-structured
knowledge.

To support large-scale training and reasoning, we first enable mixed precision training, yielding
an 2.1 times increase in training throughput and a 17.5% reduction in GPU memory. To further
scale up the model and graph size, we implement a distributed message-passing mechanism that
enables distributed training and reasoning across multiple GPUs. Specifically, we partition the full
graph into balanced subgraphs using the METIS algorithm (Karypis & Kumar, 1997), with each
device storing only a subset of the graph in memory. During the message-passing, each device first
aggregates information locally and then exchanges messages with other devices to finalize the node
embedding updates. Thus, the memory complexity of G-reasoner per device is O((|V|/N) ∗ d),
where N denotes the number of devices and d denotes the latent dimension. This design allows
G-reasoner to scale effectively to larger graphs and model size by leveraging more GPUs. Detailed
implementation and efficiency analysis are provided in Sections C.2 and C.3 and Section 5.5.

4.3 LANGUAGE FOUNDATION MODEL REASONING

With the unified QuadGraph and GNN-powered foundation model, G-reasoner can efficiently reason
over the graph-structured knowledge and provide versatile predictions for arbitrary node types, such
as attributes, entities, documents, and communities. This enables G-reasoner to flexibly select the
most relevant information from different layers of the graph at varying granularities, enhancing LLM
reasoning and boosting performance in downstream applications.

Specifically, given a user’s query q, the GFM first reasons over the QuadGraph G and predicts the
relevance score p(v) for each node v ∈ V . Then, the top-k relevant nodes of each type Vk

q =

{Vk
q,t|t ∈ T } are selected based on the predicted scores to provide the most relevant information

and enhance LLM reasoning, which can be formulated as:
Vk
q,t = Top-k{(p(v)|v ∈ V, tv = t)}, (10)

a = LLM(Prompt(q,Vk
q )),Vk

q = {Vk
q,t|t ∈ T }. (11)

where Prompt(·) denotes the prompt template that formats the query and information from the
selected nodes Vk

q into a prompt, which is then input into the LLM (e.g., GPT-4 (Achiam et al.,
2023), DeepSeek (Liu et al., 2024)) to generate the final answer a. Detailed prompt templates are
provided in Figure 9.

5 EXPERIMENT

In experiments, we aim to answer the following research questions: RQ1: Can G-reasoner achieve
state-of-the-art performance on reasoning over graph-structured knowledge? RQ2: Can G-reasoner
effectively generalize across different graph structures? RQ3: How do the key components of G-
reasoner contribute to its overall performance? RQ4: How efficient is G-reasoner in terms of training
and inference?

6
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Table 2: QA reasoning performance comparison. GPT-4o-mini is used as the LLM for reasoning.

HotpotQA MuSiQue 2Wiki
G-bench
(Novel)

G-bench
(Medical)

G-bench
(CS)

Method EM F1 EM F1 EM F1 ACC ACC ACC

Non-structure Methods
None (GPT-4o-mini) (OpenAI, 2024) 28.6 41.0 11.2 36.3 30.2 36.3 51.4 67.1 70.7
BM25 (Robertson & Walker, 1994) 52.0 63.4 20.3 28.8 47.9 51.2 56.5 68.7 71.7
ColBERTv2 (Santhanam et al., 2022) 43.4 57.7 15.5 26.4 33.4 43.3 56.2 71.8 71.9
Qwen3-Emb (8B) (Zhang et al., 2025b) 53.4 67.6 31.9 44.1 57.2 63.2 56.2 70.4 73.5

Graph-enhanced Methods
RAPTOR (Sarthi et al., 2024) 50.6 64.7 27.7 39.2 39.7 48.4 43.2 57.1 73.6
GraphRAG (MS) (Edge et al., 2024) 51.4 67.6 27.0 42.0 34.7 61.0 50.9 45.2 72.5
LightRAG (Guo et al., 2024) 9.9 20.2 2.0 9.3 2.5 12.1 45.1 63.9 71.2
KAG (Liang et al., 2025) 59.5 72.2 33.8 46.0 67.3 75.1 - - -
HippoRAG (Jimenez Gutierrez et al., 2024) 46.3 60.0 24.0 35.9 59.4 67.3 44.8 59.1 72.6
HippoRAG 2 (Gutiérrez et al., 2025) 56.3 71.1 35.0 49.3 60.5 69.7 56.5 64.9 -
SubgraphRAG (Li et al., 2025a) 44.5 57.0 25.1 35.7 62.7 69.0 - - -
G-retriever (He et al., 2024) 41.4 53.4 23.6 34.3 33.5 39.6 - - 69.8
GFM-RAG (Luo et al., 2025) 56.2 69.5 30.2 49.2 69.8 77.7 58.6 72.2 72.1

G-reasoner 61.4 76.0 38.5 52.5 74.9 82.1 58.9 73.3 73.9

5.1 EXPERIMENTAL SETUP
Table 1: Statistics of the evaluation
datasets.
Dataset # Query # Document

HotpotQA (Yang et al., 2018) 1,000 9,221
MuSiQue (Trivedi et al., 2022) 1,000 6,119
2Wiki (Ho et al., 2020) 1,000 11,656
G-bench (Novel) (Xiang et al., 2025) 2,010 461
G-bench (Medical) (Xiang et al., 2025) 2,062 2,406
G-bench (CS) (Xiao et al., 2025) 1,018 24,534

Datasets. We first evaluate the effectiveness of G-
reasoner on three widely-used multi-hop QA datasets, in-
cluding HotpotQA (Yang et al., 2018), MuSiQue (Trivedi
et al., 2022), and 2WikiMultiHopQA (2Wiki) (Ho et al.,
2020), following the settings used in Jimenez Gutierrez
et al. (2024); Gutiérrez et al. (2025); Luo et al. (2025)
for a fair comparison. To further assess the generalization
ability of G-reasoner across domains, we employ three GraphRAG benchmarks: G-bench (Novel)
(Xiang et al., 2025), G-bench (Medical) (Xiang et al., 2025), and G-bench (CS) (Xiao et al., 2025)
to evaluate G-reasoner on complex reasoning across medical, novel, and computer science (CS)
knowledge. The statistics of the datasets are summarized in Table 1. More details about datasets can
be found in Section B.

Baselines. We compare with two groups of baselines: (1) Non-structure methods: BM25 (Robertson
& Walker, 1994), ColBERTv2 (Santhanam et al., 2022), Qwen3-Emb-8B (Zhang et al., 2025b); (2)
Graph-enhanced methods: RAPTOR (Sarthi et al., 2024), GraphRAG (MS) (Edge et al., 2024),
LightRAG (Guo et al., 2024), KAG (Liang et al., 2025), HippoRAG 1 & 2 (Jimenez Gutierrez et al.,
2024; Gutiérrez et al., 2025), SubgraphRAG (Li et al., 2025a), G-retriever (He et al., 2024), and
GFM-RAG1 (Luo et al., 2025).

Metrics. For QA reasoning performance, we use the exact match (EM) and F1 score on multi-hop
QA following previous works (Jimenez Gutierrez et al., 2024; Luo et al., 2025) and accuracy (ACC)
on G-benchs following their settings (Xiang et al., 2025; Xiao et al., 2025). For retrieval perfor-
mance, we use document recall@2 (R@2) and recall@5 (R@5) for multi-hop QA and evidence
recall (Recall) for G-benchs (Xiang et al., 2025) as evaluation metrics.

Implementation Details. We gather the training data from Luo et al. (2025), which consists of
277,839 query samples and 2,972,931 documents, and we construct diverse graph structures using
Jimenez Gutierrez et al. (2024); Gutiérrez et al. (2025); Guo et al. (2024); Dong et al. (2025) to train
our GFM. We use GPT-4o-mini as the reasoning LLM. More training and implementation details
can be found in Section C.

5.2 MAIN RESULTS (RQ1)

QA Reasoning Results. Table 2 shows QA results on six datasets requiring complex reasoning.
G-reasoner consistently outperforms all baselines across these datasets, proving its effectiveness
in reasoning over graph-structured knowledge in various domains. Non-structure methods (e.g.,
BM25, ColBERTv2, Qwen3-Emb) perform poorly on multi-hop QA due to their inability to cap-
ture knowledge structure. Graph-enhanced methods (e.g., HippoRAG) generally outperform non-
structure methods by leveraging graph structures. However, some approaches relying on specifically
designed graphs and heuristic searches (e.g., GraphRAG, LightRAG) struggle to generalize across

1We fixed a bug of GFM-RAG in R@k calculation and re-evaluate it in our experiments.
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Table 3: Retrieval performance comparison. Recall@k (R@k) is used for multi-hop QA datasets,
and evidence recall (Recall) is used for G-bench (Xiang et al., 2025).

HotpotQA MuSiQue 2Wiki
G-bench
(Novel)

G-bench
(Medical)

Method R@2 R@5 R@2 R@5 R@2 R@5 Recall Recall

Non-structure Methods
BM25 (Robertson & Walker, 1994) 55.4 72.2 32.3 41.2 51.8 61.9 82.1 87.9
ColBERTv2 (Santhanam et al., 2022) 64.7 79.3 37.9 49.2 59.2 68.2 82.4 89.5
Qwen3-Emb (8B) (Zhang et al., 2025b) 74.1 88.8 46.8 62.1 66.2 74.1 82.6 92.7

Graph-enhanced Methods
RAPTOR (Sarthi et al., 2024) 58.1 71.2 35.7 45.3 46.3 53.8 66.1 84.2
GraphRAG (MS) (Edge et al., 2024) 58.3 76.6 35.4 49.3 61.6 77.3 67.4 56.4
LightRAG (Guo et al., 2024) 38.8 54.7 24.8 34.7 45.1 59.1 79.6 82.6
KAG (Liang et al., 2025) 59.4 86.1 42.2 62.4 61.4 88.3 - -
HippoRAG (Jimenez Gutierrez et al., 2024) 60.1 78.5 41.2 53.2 68.4 87.0 81.2 84.0
HippoRAG 2 (Gutiérrez et al., 2025) 80.5 95.7 53.5 74.2 80.5 95.7 66.2 73.6
SubgraphRAG (Li et al., 2025a) 58.1 71.7 40.6 48.1 70.2 85.3 - -
G-retriever (He et al., 2024) 51.8 63.6 35.6 43.5 60.9 66.5 - -
GFM-RAG (Luo et al., 2025) 75.6 89.6 43.5 57.6 79.1 92.4 75.9 82.2

G-reasoner 85.9 97.7 54.8 74.9 81.2 98.2 87.7 93.8

Table 4: Generalization of G-reasoner across different graph structures.

Retriever Graph Structure QuadGraph Layer HotpotQA MuSiQue 2Wiki

KG Doc. Attr. Com. EM F1 EM F1 EM F1

Personalized
PageRank HippoRAG ✓ - - - 46.3 60.0 24.0 35.9 59.4 67.3

Embedding+
Graph Search LightRAG ✓ ✓ - - 9.9 20.2 2.0 9.3 2.5 12.1

G-reasoner
HippoRAG ✓ - - - 54.0 68.3 28.9 41.0 72.0 80.0
LightRAG ✓ ✓ - - 49.7 62.0 25.3 35.9 59.4 64.4

Youtu-GraphRAG ✓ ✓ ✓ ✓ 52.3 65.9 30.3 42.5 69.7 77.7

different datasets and tasks (e.g., G-bench). While the GNN-based GFM-RAG performs well on
multi-hop QA, it also underperforms on G-bench datasets, likely due to limited generalization of
GNNs across diverse graph structures. In contrast, G-reasoner achieves the best performance across
all datasets, demonstrating superior reasoning and generalization capabilities.

Retrieval Results. Table 3 shows retrieval results on multi-hop QA and G-bench datasets. G-
reasoner consistently delivers the best performance across all datasets, demonstrating its effec-
tiveness in retrieving relevant information from graph-structured knowledge. Although advanced
embedding-based methods (e.g., Qwen3-Emb) perform well by leveraging large-scale pre-training
to capture semantic similarity, they still fall short of graph-enhanced approaches on some datasets.
This underscores the importance of utilizing graph topology for effective retrieval in complex rea-
soning tasks beyond text semantics. Notably, G-reasoner significantly outperforms existing meth-
ods, highlighting the superior ability of our GFM to integrate graph topology and text semantics for
efficient retrieval.

5.3 GENERALIZATION ACROSS GRAPH STRUCTURES (RQ2)

To evaluate the generalization ability of G-reasoner across different graph structures, we conduct ex-
periments using various graph constructors, including HippoRAG (Jimenez Gutierrez et al., 2024),
LightRAG (Guo et al., 2024), and Youtu-GraphRAG (Dong et al., 2025), whose statistics are pre-
sented in Table 8. The G-reasoner is directly tested on graphs generated by each constructor without
further fine-tuning. As shown in Table 4, G-reasoner shows strong generalization ability across
different graph structures, consistently outperforming the retrievers specifically designed for each
graph type. This demonstrates the robustness and adaptability of G-reasoner in handling diverse
graph-structured knowledge for reasoning tasks.

5.4 ABLATION STUDY (RQ3) Table 5: Ablation studies of G-reasoner.

Variant HotpotQA MuSiQue 2Wiki

R@2 R@5 R@2 R@5 R@2 R@5

G-reasoner 81.1 96.9 52.1 72.4 75.6 96.1
w/o Distill 77.4 96.1 50.7 71.9 75.9 96.0
w/o Text 79.4 96.3 50.0 71.9 74.6 95.2
w/o GFM 11.6 19.7 3.8 7.1 4.9 9.0

In this section, we conduct an ablation study to
assess the contributions of key components in G-
reasoner. We evaluate the impact of (1) distillation
loss (Distill), (2) node text semantics (Text), and (3)
graph foundation model (GFM) on the performance
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of G-reasoner. The results are presented in Table 5.
Removing the distillation loss leads to the performance drops on all datasets, indicating its impor-
tance in enhancing the GFM’s ability under weak supervision. Excluding node text semantics also
results in performance degradation, highlighting the crucial role of textual information in reasoning
tasks. Notably, removing the GFM causes a drastic drop in performance, underscoring its essential
role in effectively integrating graph topology and text semantics for reasoning over graph-structured
knowledge.

5.5 EFFICIENCY ANALYSIS (RQ4) Table 6: Efficiency and performance comparison
on G-bench (CS) (Xiao et al., 2025).

G-bench (CS)
Method Time (s) ACC

Agent-based Methods
KGP (Wang et al., 2024) 89.4 71.9
ToG (Sun et al., 2024) 70.5 71.7
DALK (Li et al., 2024) 26.8 69.3

Graph Search Methods
GraphRAG (MS) (Edge et al., 2024) 44.9 72.5
LightRAG (Guo et al., 2024) 14.0 71.2
HippoRAG (Jimenez Gutierrez et al., 2024) 2.4 72.6

GNN-based Methods
G-retriever (He et al., 2024) 23.8 69.8
GFM-RAG (Luo et al., 2025) 2.0 72.1

G-reasoner 0.2 73.9
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by mixed precision training.

100k×1024 200k×2048 400k×4096 800k×8192
Compute Cost | | × d

40

160

640

2560

To
ta

l G
PU

 M
em

or
y 

R
eq

ui
re

d 
(G

B
)

Compute Scaling
#GPU = (| | × d) × 2.56 1 × 10 6

MGPU

GPU Memory (GB)
# GPU (80GB)

0

10

20

30

# 
G

PU
 (8

0G
B

)

Figure 6: Compute scaling of G-reasoner.

Inference Efficiency. We compare the infer-
ence efficiency (time per sample) of G-reasoner
on G-bench (CS) (Xiao et al., 2025) with (1)
agent-based, (2) graph search, and (3) GNN-
based methods. As shown in Table 6, G-
reasoner achieves the lowest latency and high-
est performance among all methods. This
demonstrates the efficiency of our method for
reasoning over graph-structured knowledge.

Training Efficiency. Mixed precision train-
ing enables G-reasoner to significantly reduce
memory usage and improve training through-
put. As shown in Figure 4, mixed precision
training reduces memory consumption from
80GB to 66GB (-17.5%) and increases through-
put from 1.29 to 2.72 samples/s (+111%) on
a single A100 GPU. This allows G-reasoner
to be trained efficiently on large-scale graph-
structured knowledge with limited computa-
tional resources.

Compute Scaling. The compute cost of G-
reasoner is defined as |V| × d which linearly
grows with both the graph node size |V| and
the model’s hidden dimension d. Thanks to
the distributed message-passing mechanism, as
shown in Figure 6, G-reasoner can efficiently
scale to large graphs and larger model sizes
with more computational resources. Detailed
analysis of compute scaling can be found in
Section D.4.

6 CONCLUSION

In this paper, we present G-reasoner, a novel
framework that synergizes graph foundation
model and language foundation model for rea-
soning over graph-structured knowledge. With
the proposed QuadGraph, G-reasoner unifies
diverse graph types into a standardized four-
layer graph structure. A GNN-powered graph
foundation model is further developed to jointly
reason over graph topology and text semantics,
enabling versatile prediction on graphs and enhancing LLM reasoning. Extensive experiments on six
complex reasoning benchmarks demonstrate that G-reasoner consistently outperforms state-of-the-
art baselines, substantially improves LLM reasoning, and exhibits strong efficiency and cross-graph
generalization. We believe G-reasoner would pave the road for future research in integrating graph
and language foundation models for knowledge-intensive applications.
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vironmentally sensitive materials. Therefore, we anticipate no ethical risks or conflicts of interest.
We are committed to upholding the highest standards of scientific integrity and ethics to ensure the
validity and reliability of our findings.

REPRODUCIBILITY STATEMENT

Our model is clearly formalized in the main text for clarity and thorough understanding. Detailed
implementation, including dataset information, baselines, experimental settings, and model config-
urations, are provided in Sections B, C and 5.1. Experimental settings and baselines have been
rigorously verified to ensure fair comparison. Code and pre-trained model weights will be released
upon acceptance.

USAGE OF LLMS

LLMs are used to proofread and polish the writing of this paper. We have carefully reviewed and
verified all content generated by LLMs to ensure accuracy and integrity. Any errors or inaccuracies
in the final manuscript are solely our responsibility.
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A DETAILED RELATED WORK

A.1 GRAPH CONSTRUCTION

Recently, graph retrieval-augmented generation (GraphRAG) has emerged as a promising approach
to leverage structured knowledge to enhance the reasoning capabilities of large language models
(LLMs). Nevertheless, suitable graphs are often unavailable for supporting complex multi-hop rea-
soning task that span across scattered documents. To address this limitation, prior work has explored
diverse graph construction strategies tailored to different types of reasoning tasks.
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Document Graph. KGP (Wang et al., 2024) constructs document graphs using existing hyperlinks
and KNN-based similarity, yet the resulting graphs fail to capture the nuanced semantic associations.
RAPTOR (Sarthi et al., 2024) builds a hierarchical tree through recursive summarization based on
similarities of documents, and SiReRAG (Zhang et al., 2025a) further integrates relatedness with
similarity to build tree-like indexing structures for documents.

Hierarchical Graph. To better model hierarchical structure, Microsoft GraphRAG (GraphRAG
(MS)) (Edge et al., 2024) utilizes LLMs to extract entities and relations from raw texts, and fur-
ther incorporates community detection with summarization to generate hierarchical graph structure.
Building on this line of work, LightRAG (Guo et al., 2024) employs dual-level graph indexing pro-
cess to facilitate efficient retrieval, whereas Youtu-GraphRAG (Dong et al., 2025) introduces a ver-
tically unified framework that exploits the graph schema to guide the graph construction. Similarly,
ArchRAG (Wang et al., 2025) leverages attributed communities (ACs) and introduces an efficient
hierarchical retrieval strategy.

Knowledge Graph. Beyond document graphs and hierarchical graphs, HippoRAG (Jimenez Gutier-
rez et al., 2024) and HippoRAG 2 (Gutiérrez et al., 2025) leverage OpenIE techniques to induce
knowledge graphs (KGs) that capture the relationships among factual knowledge. To mitigate the
noise induced by OpenIE, KAG (Liang et al., 2025) introduces the conceptual semantic reasoning
and human-annotated schemas to curate domain expert knowledge.

Despite their achievements, these methods are typically tailored for specific graph structures, and
thus exhibit limited generalizability across different types of graphs. For example, the hierarchical
graphs constructed by GraphRAG (MS) (Edge et al., 2024) and LightRAG (Guo et al., 2024) are
primarily designed for summarization tasks, and may not be suitable for multi-hop reasoning tasks
compared to the knowledge graphs used in HippoRAG (Jimenez Gutierrez et al., 2024).

A.2 GRAPH-ENHANCED REASONING

Graph-enhanced reasoning seeks enable LLMs to reason on the graph-structured knowledge to im-
prove their performance on knowledge-intensive applications.

Graph Search. Inspired by hippocampal memory indexing theory, HippoRAG (Jimenez Gutier-
rez et al., 2024) combines open knowledge graphs with personalized PageRank to support efficient
knowledge retrieval on knowledge graphs. Extending on this, HippoRAG2 (Gutiérrez et al., 2025)
further incorporates documents into the knowledge graphs, thereby enabling deeper contextual un-
derstanding. LightRAG (Guo et al., 2024) employs a dual-level retrieval strategy with both the
embedding-based retrieval and graph-based neighborhood expansion to enhance the retrieval per-
formance. However, these graph search-based methods still fall short of fully exploiting the power
of foundation models for reasoning.

Agent-based Reasoning. Another line of research explores the agent-driven graph reasoning and
retrieval. For example, ToG (Sun et al., 2024) employs LLM agents to sequentially interact with
graphs and expands relevant reasoning paths for given queries, while ToG2 (Ma et al., 2025) en-
hances this process by interactively retrieving from both knowledge graphs and documents, thereby
achieving context-aware retrieval for reasoning. KAG (Liang et al., 2025) integrates the logical
query solver during the agent-based reasoning, which will be called with the query generated by
LLMs to perform symbolic reasoning on knowledge graphs. Youtu-GraphRAG (Dong et al., 2025)
further proposes an agentic framework that leverages graph schema to guide the LLMs to inter-
act with the graph for reasoning. Despite the effectiveness, these methods often incur substantial
computational costs and suffer from high latency due to the multiple invocations of LLMs.

GNN-based Reasoning. More recent efforts leverage graph neural network (GNNs) Wu et al.
(2020) to reasoning over graph and enhance LLMs. GNN-RAG (Mavromatis & Karypis, 2025b)
firstly applies a GNN-based retriever to identify candidate entities for a given question, and then
verbalizes entities-induced reasoning paths to support LLMs reasoning. G-retriever (He et al., 2024)
combines GNNs with LLMs to enhance the structure understanding of LLMs for reasoning over
knowledge graphs. SubgraphRAG (Li et al., 2025a) employs GNNs to encode the graph structure
into the node representations, which are then used to retrieve relevant information for LLMs. More
recently, GFM-RAG (Luo et al., 2025) proposes a graph foundation model designed to enable rea-
soning over different knowledge graphs. However, these approaches remain tailored for specific
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Table 7: Statistics of the training datasets.

# Query # Document # Node # Relation # Edge

277,839 2,972,931 18,785,120 3,920,541 77,336,005

graphs and cannot generalize well across diverse types of graph structure. Although some GFMs
have been designed, they primarily focus on graph-related tasks (e.g., node classification (Zhao
et al., 2024) and link prediction (Galkin et al., 2024)), making them unsuitable for GraphRAG tasks.

B DATASETS DETAILS

We first evaluate the effectiveness of G-reasoner on three widely-used multi-hop QA datasets, in-
cluding HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al., 2022), and 2WikiMultiHopQA
(2Wiki) (Ho et al., 2020) and three GraphRAG benchmarks: G-bench (Novel) (Xiang et al., 2025),
G-bench (Medical) (Xiang et al., 2025), and G-bench (CS) (Xiao et al., 2025). We provide a brief
description of each dataset below.

• HotpotQA (Yang et al., 2018) is a multi-hop QA dataset that requires reasoning over mul-
tiple documents to answer questions. The dataset consists of 97k question-answer pairs,
where each question is associated with up to 2 supporting and several distracting docu-
ments. The questions are designed to be answerable using multiple pieces of information
from the supporting documents.

• MuSiQue (Trivedi et al., 2022) is a challenging multi-hop QA dataset with 25k 2-4 hop
questions. It requires coherent multi-step reasoning to answer questions that span multiple
documents.

• 2WikiMultiHopQA (2Wiki) (Ho et al., 2020) is a multi-hop QA dataset that requires
reasoning over multiple Wikipedia articles to answer questions. The dataset consists of
192k questions, which are designed to be answerable using information from 2 or 4 articles.

• G-bench (Novel) & G-bench (Medical) (Xiang et al., 2025) are two domain-specific
datasets that are specially designed to evaluate GraphRAG models on both hierarchical
knowledge retrieval and deep contextual reasoning. They feature comprehensive datasets
with tasks of increasing difficulty, covering fact retrieval, complex reasoning, contextual
summarization, and creative generation. G-bench (Medical) collects both domain data from
NCCN medical guidelines to provide dense conceptual relationships (e.g., treatment pro-
tocols linking symptoms, drugs, and outcomes). G-bench (Novel) collects novels from
Gutenberg library to simulate real-world documents with implicit, non-linear narratives.

• G-bench (CS) (Xiao et al., 2025) is a dataset that focuses on college-level, domain-specific
questions that demand multi-hop reasoning. G-bench (CS) provides comprehensive assess-
ment across the entire GraphRAG pipeline, knowledge retrieval, answer generation, and
logical coherence of the reasoning process. It contains 1018 questions in 5 question types
spanning 16 topics and a corpus of 7 million words from 20 computer science (CS) text-
books.

In experiments, for multi-hop QA datasets, we adhere existing methods (Jimenez Gutierrez et al.,
2024; Luo et al., 2025) to use the same 1,000 samples from each validation set to avoid data leakage.
We merge the supporting and distractor passages as the document corpus for graph construction and
retrieval. This setup allows us to evaluate the model’s ability to retrieve relevant information from a
challenging yet controlled environment, reflecting practical scenarios where the model must discern
relevant knowledge from a large pool of documents. For G-bench datasets, we follow (Xiang et al.,
2025; Xiao et al., 2025) to use the provided test sets and document corpus for evaluation. The
statistics of the datasets are summarized in Table 1.
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C IMPLEMENTATION DETAILS

C.1 TRAINING DETAILS

Training Data. We gather the training data from Luo et al. (2025), which is based on the training
sets of HotpotQA, MuSiQue, and 2Wiki, and construct diverse graph structures to train our GFM.
Specifically, the training data consists of 277,839 query samples and 2,972,931 document corpus.
Each query is labeled with 2-4 supporting documents. We construct three types of graphs from
documents, including knowledge graphs (KG) using HippoRAG (Gutiérrez et al., 2025), knowledge
graph + document graph using LightRAG (Guo et al., 2024), and hierarchical graphs using Youtu-
GraphRAG (Dong et al., 2025).

The proposed QuadGraph presents a comprehensive schema that integrates four layers: Community,
Document, Knowledge Graph, and Attribute, which enables the representation of various graph
types within a single framework for training. The construction steps for HippoRAG, LightRAG, and
Youtu-GraphRAG are as follows:

• HippoRAG Graph Construction (Jimenez Gutierrez et al., 2024; Gutiérrez et al., 2025):
HippoRAG contains the knowledge graph layer. We follow the original HippoRAG method
to first extract entities, relations, and triples from the document corpus using an LLM-based
information extraction approach. Then, we build a knowledge graph layer by connecting
entities based on the extracted triples.

• LightRAG Graph Construction (Guo et al., 2024): LightRAG employs a dual-level graph
indexing process with knowledge graph and document graph. It also first extracts entities
and relations from the documents to build a knowledge graph layer. The document layer is
constructed by linking documents to the entities they mention.

• Youtu-GraphRAG Graph Construction (Dong et al., 2025): Youtu-GraphRAG proposes
a hierarchical graph structure with community, document, knowledge graph, and attribute
layers, which cover all four layers of QuadGraph. We follow their method to build each
layer and connect them accordingly. The knowledge graph is first constructed with schema-
bound extraction, and then documents are linked to the entities they mention. Communities
are formed by clustering entities with the consideration of both their topographical connec-
tivity and semantic similarity. Attributes are extracted from documents and linked to the
corresponding entities.

To ensure efficiency, we split large graphs into smaller subgraphs with around 100k nodes and
group the relevant queries for each subgraph during training. The statistics of the training data are
summarized in Table 7.

Model Settings. The GFM used in G-reasoner is implemented with a 6-layer query-dependent GNN
with a hidden dimension of 1024, DistMult message function, and sum aggregation. The relation
update function gl(·) is implemented as a 2-layer MLP. We use the Qwen3-Embedding-0.6B as the
sentence embedding model with a dimension of 1024. The total training parameters of the GFM is
34M.

Training Settings. The GFM is trained with 16 A100 GPUs (80G) for 10 epochs with a batch size
of 2. We use AdamW optimizer with learning rate set to 5e-4. The λ for KL divergence is set
to 0.01. We also include the ranking loss used in GFM-RAG (Luo et al., 2025) to improve training
stability. We apply BFloat16 mixed precision training to reduce memory usage and improve training
throughput. The training takes around 7 days to complete. The detailed hyperparameter settings are
summarized in Table 9.

Evaluation Settings. During the evaluation, for multi-hop QA datasets, we merge the supporting
and distractor passages for each query as the document corpus for graph construction and retrieval.
We use the trained GFM to predict the relevance scores of nodes for each query and select the top-k
nodes from each node type to construct the prompt for LLMs. We set k = 5 for multi-hop QA
datasets, and k = 10 for G-bench datasets for fair comparison with existing results. To test the
generalizability of G-reasoner across different graph structures, we evaluate G-reasoner on three
graph constructors (HippoRAG, LightRAG, Youtu-GraphRAG) for each evaluation dataset. The
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Table 8: Statistics of graphs constructed by different graph constructor.

Graph Constructor HippoRAG LightRAG Youtu-GraphRAG

HotpotQA
# Node 105,256 85,130 200,533
# Relation 24,117 54,725 7,317
# Edge 447,131 186,922 556,055

MusiQue
# Node 112,504 92,637 219,408
# Relation 27,973 65,404 8,471
# Edge 464,638 210,456 636,276

2Wiki
# Node 54,898 47,361 90,258
# Relation 10,375 101,987 2,259
# Edge 227,628 25,237 265,287

G-bench (Novel)
# Node 29,825 - -
# Relation 11,244 - -
# Edge 108,221 - -

G-bench (Medical)
# Node 10,515 - -
# Relation 3,373 - -
# Edge 61,056 - -

G-bench (CS)
# Node 217,071 - -
# Relation 36,797 - -
# Edge 1,750,491 - -

Table 9: The detailed implementation and training settings of G-reasoner.

GFM

# Layer 6
Hidden dim 1024

Message DistMult
Aggregation Sum

gl(·) 2-layer MLP
Sentence embedding model Qwen3-Embedding-0.6B

Training

λ 0.01
Optimizer AdamW

Learning rate 5e-4
Batch size 3
Precision BFloat16

Training epochs 10

statistics of the constructed graphs are summarized in Table 8. The results reported in Table 2 and
Table 3 are obtained with the graph constructed by HippoRAG.

C.2 MIXED PRECISION TRAINING

We apply BFloat16 mixed precision training to reduce memory usage and improve training through-
put. Mixed precision training executes compute-heavy operations (e.g., message-passing) in lower
precision while keeping numerically sensitive operation (e.g., reductions) in float32, which typically
boosts throughput and reduces memory footprint. This allows us to train larger models or use larger
batch sizes without running out of memory on the available GPUs. However, enabling mixed preci-
sion training for graph foundation models is non-trivial as we need to carefully handle the numerical
stability issues during the gradient calculation of message-passing. To address this and maximize
the acceleration from the hardware, we implement customized message-passing CUDA backward
kernels. During the gradient backward, it accumulates the gradients in float32 to avoid precision
loss and benefit from hardware acceleration.
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Figure 7: The illustration of distributed message passing in G-reasoner.

Table 10: Performance and efficiency comparison with multi-step RAG methods.

Method HotpotQA MuSiQue 2Wiki

EM F1 Time / sample (s) EM F1 Time / sample (s) EM F1 Time / sample (s)

IRCoT 45.5 58.4 1.146 19.1 30.5 1.152 35.4 45.1 2.095
R1-searcher 61.2 73.8 0.532 34.7 48.4 0.588 58.3 71.1 0.713
Search-R1 60.8 74.3 0.496 37.4 53.2 0.603 54.6 68.7 0.652
G-reasoner 61.4 76.0 0.114 38.5 52.5 0.125 74.9 82.1 0.058

C.3 DISTRIBUTED MESSAGE-PASSING

With the customized message-passing CUDA kernels, the memory complexity of GFM is reduced
to O(|V| ∗ d) (Zhu et al., 2021). According to the neural scaling law observed for GFM (Luo et al.,
2025) the performance of GFM improves as we increase the model size (i.e., hidden dimension)
and the training data size (i.e., number of nodes in graphs). However, the memory consumption
of GFM still grows linearly with the number of nodes and hidden dimension, which limits the
scalability of GFM on a single GPU. To address this, we implement a distributed message-passing
algorithm that partitions the graph across multiple GPUs and performs message-passing in parallel.
As shown in Figure 7, we partition the nodes of the graph into N disjoint sets using the METIS
algorithm (Karypis & Kumar, 1997) and assign each set to a different GPU. During the message-
passing, each GPU computes the messages for its assigned nodes and exchanges the messages with
other GPUs as needed. This allows us to scale GFM to larger graphs and model sizes by leveraging
more GPU resources. Different from the existing distributed GNN training methods (e.g., PyG (Fey
et al., 2025), DGL (Wang et al., 2019)) that use graph sampling, our distributed message-passing
algorithm enables full-graph training. This is crucial for preserving the graph structure and ensuring
effective reasoning with GFM by passing messages across the entire graph.

D ADDITIONAL EXPERIMENT

D.1 COMPARISON WITH MULTI-STEP RAG METHODS

To demonstrate the effectiveness of G-reasoner, we compare the performance with advanced multi-
step RAG methods (e.g., IRCoT (Trivedi et al., 2023), ReSearcher (Song et al., 2025a), and Search-
R1 (Jin et al., 2025)). From the results in Table 10, we observe that G-reasoner outperforms these
advanced RAG systems across all three datasets, demonstrating its effectiveness in multi-hop ques-
tion answering tasks. While these RAG systems, powered by powerful LLM agents, are designed
for iterative retrieval and reasoning, they often lack the ability to effectively capture and leverage
the rich relational structure present in graph-structured knowledge. In contrast, G-reasoner ’s inte-
gration of GFM-based graph reasoning allows it to better utilize this structure, leading to improved
performance. Moreover, the iterative nature of these RAG systems can be computationally expen-
sive due to multiple rounds of retrieval and LLM reasoning, whereas G-reasoner achieves efficient
end-to-end reasoning in a single forward pass.
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Table 11: Dataset Statistics of MuSiQue-Full dataset.

Dataset # Test # Document # Node # Relation # Edge

MuSiQue-Full 2,417 21,100 19,4817 45,437 3,024,388

Table 12: Evaluation of G-reasoner on MuSiQue-Full dataset.

MuSiQue-Full EM F1

Qwen3-Emb-8B 29.21 42.04
HippoRAG 24.62 36.16
GFM-RAG 23.4 33.87
G-reasoner 33.64 47.89

D.2 COMPARISON ON THE FULL MUSIQUE DATASET

To further validate the effectiveness of G-reasoner in real-world scenarios with a larger and noisier
document corpus, we conducted additional experiments on the full dev set of the MuSiQue dataset
using an expanded corpus that includes all supporting and distractor passages. The dataset statistics
are summarized in Table 11. From the results in Table 12, we can observe that with the larger corpus,
the performance of previous graph-based baselines (HippoRAG, GFM-RAG) drops significantly due
to the increased retrieval difficulty and are even worse than conventional embedding-based methods
(Qwen3-emb-8B). In contrast, G-reasoner maintains strong performance, demonstrating its robust-
ness and effectiveness in handling larger, more complex graphs. This validates our claim that G-
reasoner is applicable to real-world scenarios where knowledge is vast and diverse. Moreover, in
real-world applications, G-reasoner can be further integrated with some pre-filtering retrieval meth-
ods (e.g., dense retrieval) to first narrow down the candidate documents before graph construction,
making it scalable to even larger corpora.

D.3 REASONING EXPLANATION

In addition to achieving high accuracy in final answers, G-reasoner also excels at generating reason-
ing explanations, as shown in Table 13. Following Xiao et al. (2025), we evaluate each method’s
reasoning explanations using the reasoning score (Avg R) to measure semantic alignment and con-
sistency with ground-truth explanations, along with the Avg AR metric to assess whether the model
provides correct reasoning when it answers questions accurately.

The results in Table 13 demonstrate that G-reasoner outperforms existing methods in both Avg R
and Avg AR, indicating its superior ability to generate coherent and accurate reasoning explanations,
reducing the hallucination of LLMs and enhancing the interpretability of the reasoning process. The
case studies of the generated reasoning explanations are presented in Table 14.

Table 13: Comparison of reasoning explanation on G-bench (CS) (Xiao et al., 2025).

Method Avg R Avg AR

GPT-4o-mini (OpenAI, 2024) 55.5 39.8
BM-25 (Robertson & Walker, 1994) 59.2 44.2
DALK (Li et al., 2024) 58.9 42.1
KGP (Wang et al., 2024) 58.7 43.3
GraphRAG (Edge et al., 2024) 59.4 43.3
ToG (Sun et al., 2024) 60.1 44.0

G-reasoner 60.2 44.7
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Table 14: Case studies for reasoning explanation of G-reasoner on G-bench (CS) (Xiao et al., 2025).

Query An upper ontology is named for its position at the top of hierarchical
graphs, where it includes general concepts, with more specific concepts
placed below.

Answer True

Ground-truth Rational An upper ontology is a framework for general concepts placed at the top
of hierarchical graphs, with more specific concepts arranged beneath it.

Retrieved Document The general framework of concepts is called an upper ontology because
of the convention of drawing graphs with the general concepts at the top
and the more specific concepts below them.

Generated Rational The statement describes the structure of an upper ontology accurately.
An upper ontology is indeed characterized by its hierarchical organiza-
tion, where general concepts are positioned at the top, and more specific
concepts are placed below them. This aligns with the provided context,
which explains that the upper ontology serves as a framework for cate-
gorizing knowledge. The use of hierarchical graphs to represent these
relationships further supports the truth of the statement.
ANSWER: True

Query

Which methods are effective for preventing SQL Injection?
A: Parameterized queries
B: Input sanitization
C: Disabling HTTP methods
D: Web Application Firewalls (WAF)

Answer ABD

Ground-truth Rational Parameterized queries, input sanitization, and WAFs are effective strate-
gies to prevent SQL Injection by ensuring safe data handling and filtering
malicious requests.

Retrieved Document 1. Use of a prepared statement would prevent this problem because the
input string would have escape characters inserted.
2. To avoid this kind of SQL injection, the application should ensure that
the orderAttribute variable value is one of the allowed values.
3. Programmers must pass user-input strings to the database only through
parameters of prepared statements; creating SQL queries by concatenat-
ing strings with user-input values is an extremely serious security risk
and should never be done in any program.

Generated Rational To determine the effective methods for preventing SQL Injection, we can
analyze each option:
A: Parameterized queries — This is a well-known and effective method
for preventing SQL injection. By using parameterized queries (or pre-
pared statements), user input is treated as data rather than executable
code, which prevents attackers from injecting malicious SQL.
B: Input sanitization — This method involves cleaning and validating
user input to ensure it does not contain harmful characters or patterns.
While it can help reduce the risk of SQL injection, it is not foolproof on
its own, as it can be difficult to cover all edge cases. However, it is still a
useful practice when combined with other methods
C: Disabling HTTP methods — This option is not directly related to
preventing SQL injection. Disabling certain HTTP methods (like PUT
or DELETE) can enhance security in general but does not specifically
address SQL injection vulnerabilities.
D: Web Application Firewalls (WAF) — A WAF can help detect and
block SQL injection attempts by filtering out malicious requests before
they reach the application. While it is not a substitute for secure coding
practices, it is an effective layer of defense against SQL injection attacks.
Based on this analysis, the correct answers are A, B, and D. C is not
relevant to SQL injection prevention.
ANSWER: ABD
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D.4 MODEL SCALING CASE STUDY

With the implemented mixed precision training and distributed message-passing, G-reasoner can
efficiently scale to larger graphs and model sizes with more computational resources. The number
of required GPUs can be empirically estimated as

#GPU =
(|V| ∗ d) ∗ 2.56−1 ∗ 10−6

GPU Memory
, (12)

where |V| is the number of nodes in the graph, d is the hidden dimension of GFM. It can be helpful
to estimate the required GPUs for using G-reasoner on different graph sizes and model sizes.

We illustrate some example configurations in Figure 8. From the results, with 32 A100 GPUs (80G),
G-reasoner can scale to graphs with 800k nodes and a hidden dimension of 8192, which is around
2B parameters. With more GPUs, G-reasoner can further scale to larger graphs and model sizes and
achieve better performance as suggested by the neural scaling law (Luo et al., 2025).
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Figure 8: Scaling of G-reasoner with different model sizes and graph sizes.

D.5 G-REASONER CASE STUDY

In this section, we first illustrate the versatile prediction results of G-reasoner. As shown in Table 15,
given a query, G-reasoner can not only retrieve relevant documents to support the reasoning of
LLMs, but also predict relevant entities that can be used to guide the reasoning process of LLMs.
The G-reasoner exhibits great interpretability by quantifying the importance of reasoning paths. The
paths’ importance to the final prediction can be quantified by the partial derivative of the prediction
score with respect to the triples at each layer (hop), defined as:

s1, s2, . . . , sL = arg top- k
∂pe(q)

∂sl
. (13)

The top-k paths are selected based on the product of gradient scores over triples forming the path,
which approximates the contribution of that path to the final prediction via the chain rule. This
allows us to identify influential multi-hop reasoning chains and interpret the model’s behavior. We
illustrate the top-2 path interpretations in the Table 16. In the first example, the GFM identifies the
path from the film entity to the director entity through the ”created by” relation, and then links to the
document mentioning the director. In the second example, it traces from Lady Dorothy Macmillan
to her father through the ”is the daughter of” relation, and then to the document mentioning him.
These paths illustrate how the GFM leverages graph structure to connect entities and documents,
providing interpretable reasoning chains that lead to the final answer.
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Table 15: Case studies for versatile prediction of G-reasoner. Relevant predictions are highlighted
in bold.

Query In which county is the town in which Raymond Robertsen was
born ?

Answer Finnmark county,

Supporting Documents (Title) 1. Raymond Robertsen
2. Hammerfest

Entity Prediction (Top-3)
1. cumberland county
2. finnmark
3. pacific county

Document Prediction (Top-3)
1. Raymond Robertsen
2. Hammerfest
3. Raymond, Maine

Query Who is the president of the newly declared independent country
that formed the Timor Leste Commission of Truth and Friend-
ship with the country where Pantar is found?

Answer Francisco Guterres

Supporting Documents (Title)
1. Blagar language
2. Indonesia Timor Leste Commission of Truth and Friendship
3. East Timor

Entity Prediction (Top-3)
1. indonesia timor leste commission of truth and friendship
2. francisco guterres
3. democratic republic of timor leste

Document Prediction (Top-3)
1. Indonesia Timor Leste Commission of Truth and Friendship
2. East Timor
3. Blagar language

Table 16: Path interpretations of G-reasoner for multi-hop reasoning, where r−1 denotes the inverse
of the original relation, and bold highlights the supporting documents occurred in the paths.

Question Where was the director of film Flags And Waves born?

Answer Toronto

Supporting Docs. [“William Reeves (animator)”, “Flags and Waves”]

Paths

2.1465: [flags and waves (entity), is mentioned in, Flags and Waves (document)]
1.3665: [flags and waves (entity), created by, bill reeves (entity)] → [bill reeves (entity),
equivalent, william reeves (entity)] → [william reeves (entity), is mentioned in, William
Reeves (animator) (document) ]

Question Where was the place of death of Lady Dorothy Macmillan’s father?

Answer Derbyshire

Supporting Docs. [ “Victor Cavendish, 9th Duke of Devonshire”, “Lady Dorothy Macmillan”]

Paths

1.4286: [lady dorothy evelyn macmillan (entity), is the daughter of, victor cavendish (en-
tity),] → [victor cavendish (entity), is mentioned in, Victor Cavendish, 9th Duke of De-
vonshire (document) ]
0.7685: [ lady dorothy evelyn macmillan (entity), is mentioned in, Lady Dorothy Macmil-
lan (document) ] → [ Lady Dorothy Macmillan (document), is mentioned in −1, 9th
duke of devonshire (entity) ] → [ 9th duke of devonshire (entity), holds the title of−1,
Victor Cavendish, 9th Duke of Devonshire (entity) ] → [ 9th duke of devonshire (entity),
is mentioned in, Victor Cavendish, 9th Duke of Devonshire (document) ]
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E PROMPTS

The prompts used in our experiments are presented in Figure 9. We feed the versatile predictions of
G-reasoner (i.e., supporting documents and entities) to the LLMs to guide the reasoning process.

LLM Reasoning Prompt

As an advanced reading comprehension assistant, your task is to
analyze text passages and corresponding questions meticulously.
Your response start after "Thought: ", where you will methodically
break down the reasoning process, illustrating how you arrive at
conclusions. Conclude with "Answer: " to present a concise,
definitive response, devoid of additional elaborations.’

### Document:
<Document 1>
<Document 2>
...
<Document n>

### Entity:
<Entity 1>
<Entity 2>
...
<Entity m>

### Question:
<Question>
Thought:

Figure 9: The prompt template for LLM Reasoning .

F LIMITATIONS AND FUTURE WORK

The limitations of G-reasoner are as follows: (1) The current framework is single-modality focused
on text-based graphs. However, real-world knowledge often contains multi-modal data (e.g., images,
audio). Extending G-reasoner to handle multi-modal graphs is an important future direction. (2) The
GFM and LLMs used are integrated as separate modules. Despite the flexibility, tighter end-to-end
integration may yield further performance gains, where the GFM and LLM can be co-trained to
better identify and utilize graph-structured knowledge to support reasoning. (3) The G-reasoner
currently focuses on question answering tasks. Extending it to other reasoning tasks (e.g., agent
planning) is an interesting direction for future work.
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