

000 001 002 003 004 005 G-REASONER: FOUNDATION MODELS FOR UNIFIED 006 REASONING OVER GRAPH-STRUCTURED KNOWLEDGE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Large language models (LLMs) excel at complex reasoning but remain limited by static and incomplete parametric knowledge. Retrieval-augmented generation (RAG) mitigates this by incorporating external knowledge, yet existing RAGs struggle with knowledge-intensive tasks due to fragmented information and weak modeling of knowledge structure. Graphs offer a natural way to model relationships within knowledge, but LLMs are inherently unstructured and cannot effectively reason over graph-structured data. Recent graph-enhanced RAG (GraphRAG) attempts to bridge this gap by constructing tailored graphs and enabling LLMs to reason on them. However, these methods often depend on ad-hoc graph designs, heuristic search, or costly agent pipelines, which hinder scalability and generalization. To address these challenges, we present G-reasoner, a unified framework that integrates graph and language foundation models for **scalable** reasoning over diverse graph-structured knowledge. Central to our approach is Quad-Graph, a standardized four-layer abstraction that unifies heterogeneous knowledge sources into a common graph representation. Building on this, we introduce a 34M-parameter graph foundation model (GFM) that jointly captures graph topology and textual semantics, and is integrated with LLMs to enhance reasoning in downstream applications. To ensure scalability and efficiency, mixed-precision training and distributed message-passing are implemented to scale GFM with more GPUs. Extensive experiments on six benchmarks show that G-reasoner consistently outperforms state-of-the-art baselines, significantly enhances LLM reasoning, and achieves strong efficiency and cross-graph generalization.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning capabilities and serve as the foundation model to solve complex tasks across diverse domains (Achiam et al., 2023; Yang et al., 2025; Liu et al., 2024). However, their effectiveness is often constrained by limitations in accessing up-to-date and domain-specific knowledge (Mousavi et al., 2024; Song et al., 2025b). Recently, retrieval-augmented generation (RAG) (Gao et al., 2023) addresses this challenge by enabling LLMs to reason over external knowledge sources, thereby enhancing their applicability in real-world applications, such as legal judgment (Kang et al., 2024) and medical diagnoses (Jin et al., 2019). While RAG improves the access to external knowledge, current RAG approaches struggle with knowledge-intensive reasoning due to the scattered nature of related information (Li et al., 2025b). This requires not only retrieving relevant information but also effectively capturing the association and structure among knowledge to facilitate reasoning (Jiang et al., 2025).

Graphs provide a natural and flexible representation for modeling the structure and relationships within knowledge (Hogan et al., 2021; Safavi & Koutra, 2021), making them particularly well-suited for capturing complex knowledge associations to enhance reasoning. However, due to the unstructured nature of LLMs, they struggle to handle graph data (Guo et al., 2023; Jin et al., 2024). This motivates the need for approaches that enhance LLMs to effectively reason over graph-structured knowledge with graph-enhanced retrieval augmented generation (GraphRAG) (Peng et al., 2024; Han et al., 2024).

Existing works in GraphRAG have primarily focused on two components. (1) *Graph construction* focuses on designing a graph structure to effectively organize and capture relationships within the

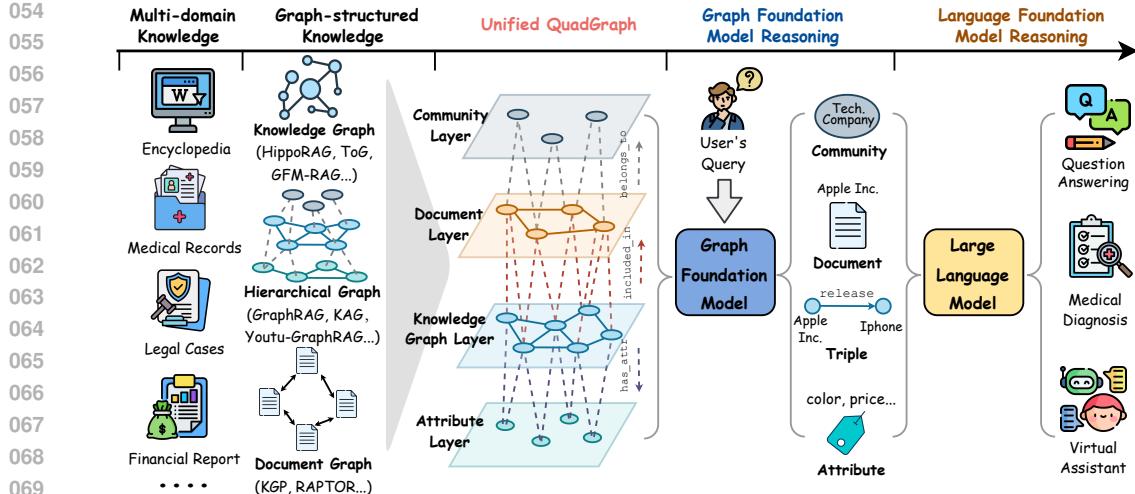


Figure 1: The overall framework of G-reasoner. First, G-reasoner provides a unified graph interface, QuadGraph, that integrates diverse graph-structured knowledge from different domains into a standard format. Then, it adopts a GNN-powered foundation model to jointly reason over the graph-structured knowledge and make versatile predictions. Last, we enhance the LLMs with the graph reasoning results to improve the performance on downstream applications.

knowledge, such as document graphs (Wang et al., 2024), knowledge graphs (Jimenez Gutierrez et al., 2024), and hierarchical graphs (Edge et al., 2024; Dong et al., 2025). The well-designed graph structure could enhance the retrieval process by providing more context and relationships among knowledge. (2) *Graph-enhanced reasoning* explores to enhance LLMs’ ability to reason over these graph structures. For example, HippoRAG (Jimenez Gutierrez et al., 2024) adopts the PageRank algorithm to search over knowledge graphs, ToG (Sun et al., 2024) employs an agent-based approach with tool calling to interact with the graph for reasoning, GNN-RAG (Mavromatis & Karypis, 2025b) leverages graph neural networks (GNNs) to facilitate complex reasoning over graphs.

Despite the effectiveness, existing methods face several limitations. First, they often rely on specific graph structures, which may not generalize well to diverse domains or tasks (Edge et al., 2024; Jimenez Gutierrez et al., 2024). This limits their adaptability and generalizability in real-world applications. Second, intuitive graph search-based methods (Jimenez Gutierrez et al., 2024) may not fully leverage the power of foundation models for reasoning, while agent-based methods (Sun et al., 2024) can be computationally expensive and suffer from high latency. Although GFM-RAG (Luo et al., 2025) proposes a GNN-powered graph foundation model (GFM) with 8M parameters to efficiently reason over graphs, it is still limited to specific knowledge graphs and cannot generalize to other graph structures. Therefore, it is crucial to develop a unified method that can adapt to various graph structures and effectively reason over graph-structured knowledge.

In this paper, we propose G-reasoner, which integrates graph and language foundation models to enable **scalable training and generalized reasoning over diverse graph-structured knowledge**, as shown in Figure 1. To reason over diverse graph structures, we first define a novel 4-layer graph structure, *QuadGraph*, which unifies heterogeneous graph-structured knowledge into a standardized format. This allows G-reasoner to flexibly adapt to various graph structures. With the unified QuadGraph, we further unleash the power of *graph foundation models* (GFM) powered by GNNs to jointly reason over the topology and text semantics of the graph. To support large-scale training and reasoning, we implement a mixed-precision training and propose a *distributed message-passing mechanism*, allowing G-reasoner to scale effectively across multiple GPUs and datasets.

Finally, we derive a 34M-parameter GFM that efficiently captures complex relationships and dependencies within the knowledge to make versatile predictions on graphs. The graph reasoning results can be flexibly integrated with LLMs to enhance their reasoning in downstream applications. Experiments on six benchmark datasets demonstrate that G-reasoner achieves superior performance over state-of-the-art baselines and significantly boosts the performance of LLMs on complex reasoning tasks. Moreover, G-reasoner exhibits strong efficiency and generalization capabilities across various graph structures, making it a versatile solution for real-world applications.

108

2 RELATED WORK

110 **Graph Construction.** Graph construction is key for graph-based reasoning. Early methods like
 111 KGP (Wang et al., 2024) use hyperlinks and KNN similarity, but miss semantic associations.
 112 RAPTOR (Sarthi et al., 2024) builds hierarchical trees via recursive summarization. GraphRAG
 113 (MS) (Edge et al., 2024) use LLMs to extract entities and relations, forming hierarchical graphs
 114 with community detection and summarization. LightRAG (Guo et al., 2024), ArchRAG (Wang et al.,
 115 2025) and Youtu-GraphRAG (Dong et al., 2025) further enrich graph structures with attributes and
 116 documents. HippoRAG 1 & 2 (Jimenez Gutierrez et al., 2024; Gutierrez et al., 2025) apply Open-
 117 nIE to induce knowledge graphs capturing factual relationships. Despite their achievements, these
 118 methods are typically tailored for specific graph structures, and thus exhibit limited generalizability
 119 across different types of graphs. For example, the hierarchical graphs constructed by GraphRAG
 120 (MS) (Edge et al., 2024) and LightRAG (Guo et al., 2024) are primarily designed for summarization
 121 tasks, and may not be suitable for multi-hop reasoning tasks compared to the knowledge graphs used
 122 in HippoRAG (Jimenez Gutierrez et al., 2024).

123 **Graph-enhanced Reasoning.** Graph-enhanced reasoning seeks to enable LLMs to reason on the
 124 graph-structured knowledge and improve their performance on knowledge-intensive applications.
 125 HippoRAG (Jimenez Gutierrez et al., 2024) adopts personalized PageRank to support efficient re-
 126 trieval on knowledge graphs. LightRAG (Guo et al., 2024) employs a dual-level retrieval strategy
 127 with both the embedding-based retrieval and graph-based neighborhood expansion. However, these
 128 graph search-based methods still fall short of fully exploiting the power of foundation models for
 129 reasoning. Agent-based methods, such as ToG (Sun et al., 2024), KAG (Liang et al., 2025), and
 130 Youtu-GraphRAG (Dong et al., 2025) employ LLM agents to iteratively interact with graphs to con-
 131 duct reasoning. Despite the effectiveness, these methods often incur substantial computational costs
 132 and suffer from high latency due to the multiple invocations of LLMs. More recent efforts leverage
 133 graph neural network (GNNs) to reason over graphs and enhance LLMs Mavromatis & Karypis
 134 (2025b); He et al. (2024); Li et al. (2025a). For example, GFM-RAG (Luo et al., 2025) proposes a
 135 graph foundation model powered by GNNs designed to enable reasoning over different knowledge
 136 graphs. However, these approaches remain tailored for specific graphs and cannot generalize well
 137 across diverse types of graph structure. More detailed related work can be found in Section A.

138

3 PRELIMINARY

140 In this section, we formally define the problem of reasoning over graph-structured knowledge
 141 with LLMs, which can be unified into a two-stage framework: (1) *graph structure construction*
 142 and (2) *graph-enhanced retrieval and LLM reasoning*. Specifically, given a set of documents \mathcal{D} ,
 143 we first extract the knowledge and construct a structured graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, such as knowledge
 144 graph (Jimenez Gutierrez et al., 2024) and document graph (Wang et al., 2024). The \mathcal{V} denotes the
 145 set of nodes (e.g., entity and document) and \mathcal{E} denotes the edges that model the connection between
 146 knowledge, facilitating efficient retrieval and reasoning. Based on the constructed graph \mathcal{G} and a
 147 user query q , we aim to retrieve the relevant knowledge from \mathcal{G} and reason the final answer a with
 148 LLMs. The general pipeline can be formulated as:

$$\mathcal{G} = \text{GraphConstructor}(\mathcal{D}), \quad (1)$$

$$a = \text{LLM}(\text{Retriever}(q, \mathcal{G})). \quad (2)$$

153

4 APPROACH

155 The proposed G-reasoner aims to design a foundation model that unifies the reasoning on diverse
 156 graph structures, enabling more effective and efficient reasoning over graph-structured knowledge
 157 with LLMs. The overall framework of G-reasoner is illustrated in Figure 1, which consists of
 158 three main components: (1) a unified graph interface, QuadGraph, that standardizes diverse graph-
 159 structured knowledge from different domains into a unified format; (2) a GNN-powered foundation
 160 model that jointly reasons over the graph-structured knowledge and makes versatile predictions; and
 161 (3) an LLM-enhanced reasoning that incorporates the graph reasoning results to improve perfor-
 162 mance on downstream applications. In the following, we will introduce each component in detail.

162 4.1 UNIFIED GRAPH INTERFACE: QUADGRAPH
163

164 The real-world knowledge is often complex and multi-relational, which can be naturally repre-
165 sented as graph structures (Hogan et al., 2021; Safavi & Koutra, 2021). To effectively leverage
166 graph-structured knowledge for reasoning, existing methods typically construct different types of
167 graphs based on the specific characteristics of knowledge and requirements of downstream tasks.
168 For example, knowledge graphs (Jimenez Gutierrez et al., 2024) are often used to represent factual
169 information between entities, while document graphs (Wang et al., 2024) are used to capture the
170 relationships between documents based on their content similarity or citation links. However, these
171 methods usually focus on a specific type of graph structure, which limits their applicability to other
172 types of graph-structured knowledge and hinders the generalization of reasoning models.

173 To address this limitation, G-reasoner proposes a
174 unified graph interface called *QuadGraph* that stan-
175 dardizes diverse graph-structured knowledge from
176 different domains into a unified format. Speci-
177 fically, we design a 4-layer graph structure that con-
178 sists of the following layers: (1) *attribute layer* that
179 captures the common attributes of the nodes; (2)
180 *knowledge graph layer* that represents the entities
181 and their relationships as triples, which stores the
182 structured factual knowledge; (3) *document layer*
183 that contains the unstructured textual information,
184 such as documents and passages; and (4) *commu-
185 nity layer* that groups related nodes into commu-
186 nities based on their semantic similarity or structural
187 connectivity to provide global level information. As
188 shown in Figure 2, the QuadGraph can effectively unify
189 various types of graph-structured knowl-
190 edge, such as knowledge graphs (Jimenez Gutierrez et al., 2024), document graphs (Wang et al.,
191 2024), and hierarchical graphs (Edge et al., 2024; Liang et al., 2025; Dong et al., 2025), into a
192 standard format, facilitating the design of generalizable reasoning models.

193 **Definition.** The QuadGraph is defined as $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{R}, \mathcal{T}, \mathcal{S})$, where $\mathcal{T} = \{\text{attribute, entity, document, community}\}$ denotes the set of node types, \mathcal{R} denotes the
194 set of edge types that model the relations between nodes, (e.g., `born_in`, `city_of`) and special
195 relations across layers, (e.g., `has_attribute`, `included_in`, `belongs_to`). The edges in the
196 graph are formulated as $\mathcal{E} = \{(v, r, v') | \{t_v, t_{v'}\} \in \mathcal{T}, r \in \mathcal{R}\}$, where t_v denotes the type of node v .
197 The \mathcal{S} denotes the set of node semantic features, such as the name of an entity or the text content of
198 a document.

199 4.2 GRAPH FOUNDATION MODEL REASONING

200 To effectively reason over the unified graph-structured knowledge, G-reasoner proposes a GNN-
201 powered foundation model that jointly reasons over the QuadGraph and makes versatile predictions.
202 Graph neural networks (GNNs) (Mavromatis & Karypis, 2025a; He et al., 2024) have shown great
203 success in reasoning over graph-structured data due to their ability of capturing complex relation-
204 ships and dependencies between nodes. Recently, GFM-RAG (Luo et al., 2025) proposes a graph
205 foundation model (GFM) for reasoning over knowledge graphs, which demonstrates the effective-
206 ness of GNNs in enhancing LLMs with structured knowledge.

207 However, GFM-RAG is specifically designed for knowledge graphs and cannot be directly applied
208 to other types of graph-structured knowledge with versatile node types and rich text semantics, such
209 as document graphs or hierarchical graphs. To address this limitation, G-reasoner further unleashes
210 the power of GNNs by designing a more generalizable GFM that (1) synergizes graph topology and
211 text semantics for reasoning and (2) enables versatile predictions on arbitrary node types.

212 **Synergized Reasoning over Structure and Semantics.** G-reasoner adopts the query-dependent
213 GNN (Galkin et al., 2024; Luo et al., 2025) as the backbone of the GFM, which can capture the
214 complex relationships and dependencies between query and knowledge on the graph. Unlike GFM-
215 RAG (Luo et al., 2025) that only considers the semantics of relations, G-reasoner further incorpo-
216 rates the rich text semantics of nodes \mathcal{S} into the reasoning process.

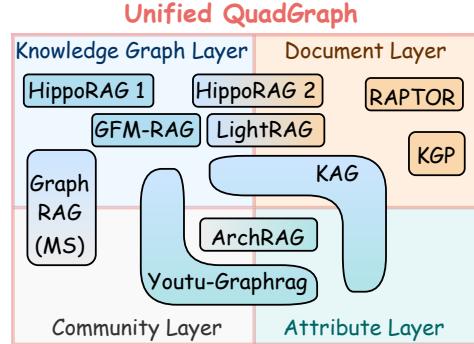


Figure 2: Illustration of QuadGraph for unifying existing graph-structured knowledge.

Figure 2: Illustration of QuadGraph for unifying existing graph-structured knowledge. The diagram shows a 4-layer graph structure: Knowledge Graph Layer (top left), Document Layer (top right), Community Layer (bottom left), and Attribute Layer (bottom right). The Knowledge Graph Layer contains HippoRAG 1, HippoRAG 2, and RAPTOR. The Document Layer contains GFM-RAG and LightRAG. The Community Layer contains KAG and ArchRAG. The Attribute Layer contains Youtu-Graphrag and KGP. A large blue 'U' shape labeled 'QuadGraph' connects the four layers. The 'Community Layer' is highlighted with a red border.

Given a graph \mathcal{G} , we first encode the text features of each node $s_v \in \mathcal{S}$ into node embeddings $\mathbf{h}_v \in \mathbb{R}^d$ using a pre-trained text embedding model (e.g., BGE (Chen et al., 2024), Qwen3 Embedding model (Zhang et al., 2025b)). The relation embeddings $\mathbf{h}_r \in \mathbb{R}^d$ are also initialized using the same text embedding model to encode the text description of each relation $r \in \mathcal{R}$. With the help of text embeddings, we can effectively capture the semantic information in the graph and unify them into the same embedding space, facilitating the following reasoning.

During the reasoning, the graph \mathcal{G} together with the user’s query q are input into the GFM. The model first encodes the query into a query embedding $\mathbf{h}_q \in \mathbb{R}^d$ using the same text embedding model to understand the user’s intent and align it with the graph knowledge. Then, a L -layer query-dependent GNN is applied to jointly reason over the graph topology and text semantics via message-passing and make versatile predictions of each node type, which can be formulated as:

$$\mathbf{h}_v^0 = \text{Init}(\mathbf{h}_v, \mathbf{1}_{v \in \mathcal{V}_q} * \mathbf{h}_q), v \in \mathcal{V}, \quad (3)$$

$$\mathbf{h}_v^l = \text{Update}(\mathbf{h}_v^{l-1}, \text{Agg}(\{\text{Msg}(\mathbf{h}_v^{l-1}, \mathbf{h}_r^l, \mathbf{h}_{v'}^{l-1}) | (v, r, v') \in \mathcal{E}\})), l \in [1, L], \quad (4)$$

$$p(v) = \text{Predictor}_{t_v}(\mathbf{h}_v^L, \mathbf{h}_v, \mathbf{h}_q), \quad (5)$$

where \mathbf{h}_v^l denotes the embedding of node v at the l -th GNN layer, the `Init` function initializes the node embedding by combining the original node embedding \mathbf{h}_v and the query embedding \mathbf{h}_q if the node v is in the query-related nodes \mathcal{V}_q with a single MLP layer.

At each GNN layer, the `Msg` function uses `DistMult` (Yang et al., 2015) to generate the message from the neighbors based on their nodes embeddings \mathbf{h}_v^{l-1} , $\mathbf{h}_{v'}^{l-1}$ and relation embedding \mathbf{h}_r^l , which are then aggregated by the `Agg` function (e.g., sum). The `Update` function updates the target node embedding \mathbf{h}_v^l by combining its previous embedding and the aggregated messages using another MLP, and relation embeddings are also updated with a layer-specific MLP, i.e., $\mathbf{h}_r^l = g^l(\mathbf{h}_r)$.

Finally, a type-specific predictor `Predictor` is applied to make versatile predictions for each node based on its final embedding \mathbf{h}_v^L , original text embedding \mathbf{h}_v , and query embedding \mathbf{h}_q . The predictor can be designed as a binary classifier for arbitrary node types $t \in \mathcal{T}$, such as entity nodes in the knowledge graph layer or document nodes in the document layer, to predict whether the node is relevant to the query.

Optimization. The GFM conducts unified reasoning by integrating the graph topology $(\mathcal{V}, \mathcal{E})$ and text semantics \mathcal{S} in \mathcal{G} to predict the relevance of nodes to the query. The GFM θ is optimized by maximizing the likelihood of the ground-truth relevant nodes \mathcal{V}_q^+ , which can be formulated as:

$$\mathcal{O}(\theta) = \sum_{v \in \mathcal{V}_q^+} \log p_\theta(v|q, \mathcal{G}), \quad (6)$$

where the \mathcal{V}_q^+ denotes the set of labeled relevant nodes for the query q that can be of arbitrary types $t \in \mathcal{T}$. However, the scarcity of labeled nodes $|\mathcal{V}_q^+| \ll |\mathcal{V}|$ makes it difficult to capture the complex relationships between the query and knowledge on the graph.

To mitigate this challenges, we propose to train the GFM on large-scale datasets with weak supervision by leveraging the abundant unlabeled nodes on the graph. The pre-trained text embedding models (Devlin et al., 2019) have shown strong semantic understanding and can effectively capture the relevance between the query and nodes based on their text features \mathcal{S} . Therefore, we propose to leverage the pre-trained text embedding model as a teacher to provide pseudo-labels for all nodes on the graph, which can be formulated as:

$$p_\phi(\mathcal{V}|q, \mathcal{S}) = \text{Sigmoid}(\mathbf{H}_\mathcal{V}^\top \mathbf{h}_q), \quad (7)$$

where \mathbf{h}_q denotes the query embedding and $\mathbf{h}_v \in \mathbf{H}_\mathcal{V}$ denotes the text embeddings of all nodes encoded by the pre-trained text encoder ϕ , which is frozen during training.

Following the knowledge distillation (Hinton et al., 2015), we train the GFM θ as a student to minimize the KL divergence between the pseudo-label distribution $p_\phi(\mathcal{V}|q, \mathcal{S})$ and the prediction distribution $p_\theta(\mathcal{V}|q, \mathcal{G})$ over all nodes. As they both follow the Bernoulli distribution, the KL divergence can be efficiently calculated as:

$$D_{\text{KL}}(p_\phi(\mathcal{V}|q, \mathcal{S}) || p_\theta(\mathcal{V}|q, \mathcal{G})) = \sum_{v \in \mathcal{V}} = p_\phi(v) \log \frac{p_\phi(v)}{p_\theta(v)} + (1 - p_\phi(v)) \frac{1 - p_\phi(v)}{1 - p_\theta(v)}, \quad (8)$$

where $p_\phi(v) = p_\phi(v|q, \mathbf{h}_v)$ and $p_\theta(v) = p_\theta(v|q, \mathcal{G})$.

270 The final unified objective of the GFM training can be formulated as:

$$271 \quad \mathcal{O}(\theta) = \sum_{v \in \mathcal{V}_q^+} \log p_\theta(v|q, \mathcal{G}) - \lambda D_{\text{KL}}(p_\phi(\mathcal{V}|q, \mathcal{S}) || p_\theta(\mathcal{V}|q, \mathcal{G})), \quad (9)$$

274 where λ is a hyper-parameter that balances the two terms. The unified objective not only distill
275 the semantic understanding from the pre-trained text encoder into the GFM but also alleviate the
276 issue of scarce labeled data by leveraging the pseudo-label distribution over the graph. Empirical
277 experiments in Section 5.4 demonstrate the effectiveness of the proposed objectives.

278 **Large-scale Training and Reasoning.** To enable the generalizable reasoning ability over diverse
279 graph-structured knowledge, G-reasoner is trained on large-scale datasets with weak supervision.
280 Specifically, we collect a large number of query-graph pairs $\{(q_i, \mathcal{V}_{q_i}^+, \mathcal{G}_i)\}_{i=1}^N$ from various do-
281 mains (Luo et al., 2025), where graphs \mathcal{G} are constructed with diverse graph constructors (e.g.,
282 knowledge graphs (Jimenez Gutierrez et al., 2024), document graphs (Gutiérrez et al., 2025), hi-
283 erarchical graphs (Dong et al., 2025)) and unified into the QuadGraph interface introduced in Sec-
284 tion 4.1. The weak supervision $\mathcal{V}_{q_i}^+$ is obtained by labeling the relevant nodes for each query q_i , such
285 as answer entities or supporting documents. The GFM is then trained by optimizing the unified ob-
286 jective in eq. (9) over the collected dataset, which can effectively capture the complex relationships
287 between the query and knowledge on the graph and generalize to various types of graph-structured
288 knowledge.

289 To support large-scale training and reasoning, we first enable *mixed precision training*, yielding
290 an 2.1 times increase in training throughput and a 17.5% reduction in GPU memory. To further
291 scale up the model and graph size, we implement a *distributed message-passing* mechanism that
292 enables distributed training and reasoning across multiple GPUs. Specifically, we partition the full
293 graph into balanced subgraphs using the METIS algorithm (Karypis & Kumar, 1997), with each
294 device storing only a subset of the graph in memory. During the message-passing, each device first
295 aggregates information locally and then exchanges messages with other devices to finalize the node
296 embedding updates. Thus, the memory complexity of G-reasoner per device is $O(|\mathcal{V}|/N) * d$,
297 where N denotes the number of devices and d denotes the latent dimension. This design allows
298 G-reasoner to scale effectively to larger graphs and model size by leveraging more GPUs. Detailed
299 implementation and efficiency analysis are provided in Sections C.2 and C.3 and Section 5.5.

300 4.3 LANGUAGE FOUNDATION MODEL REASONING

301 With the unified QuadGraph and GNN-powered foundation model, G-reasoner can efficiently reason
302 over the graph-structured knowledge and provide versatile predictions for arbitrary node types, such
303 as attributes, entities, documents, and communities. This enables G-reasoner to flexibly select the
304 most relevant information from different layers of the graph at varying granularities, enhancing LLM
305 reasoning and boosting performance in downstream applications.

306 Specifically, given a user’s query q , the GFM first reasons over the QuadGraph \mathcal{G} and predicts the
307 relevance score $p(v)$ for each node $v \in \mathcal{V}$. Then, the top- k relevant nodes of each type $\mathcal{V}_q^k =$
308 $\{\mathcal{V}_{q,t}^k | t \in \mathcal{T}\}$ are selected based on the predicted scores to provide the most relevant information
309 and enhance LLM reasoning, which can be formulated as:

$$310 \quad \mathcal{V}_{q,t}^k = \text{Top-}k\{(p(v) | v \in \mathcal{V}, t_v = t)\}, \quad (10)$$

$$312 \quad a = \text{LLM}(\text{Prompt}(q, \mathcal{V}_q^k)), \mathcal{V}_q^k = \{\mathcal{V}_{q,t}^k | t \in \mathcal{T}\}. \quad (11)$$

313 where $\text{Prompt}(\cdot)$ denotes the prompt template that formats the query and information from the
314 selected nodes \mathcal{V}_q^k into a prompt, which is then input into the LLM (e.g., GPT-4 (Achiam et al.,
315 2023), DeepSeek (Liu et al., 2024)) to generate the final answer a . Detailed prompt templates are
316 provided in Figure 9.

317 5 EXPERIMENT

320 In experiments, we aim to answer the following research questions: **RQ1**: Can G-reasoner achieve
321 state-of-the-art performance on reasoning over graph-structured knowledge? **RQ2**: Can G-reasoner
322 effectively generalize across different graph structures? **RQ3**: How do the key components of G-
323 reasoner contribute to its overall performance? **RQ4**: How efficient is G-reasoner in terms of training
324 and inference?

324 Table 2: QA reasoning performance comparison. GPT-4o-mini is used as the LLM for reasoning.
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339	Method	HotpotQA		MuSiQue		2Wiki		G-bench (Novel)	G-bench (Medical)	G-bench (CS)
		EM	F1	EM	F1	EM	F1	ACC	ACC	ACC
Non-structure Methods										
None (GPT-4o-mini) (OpenAI, 2024)		28.6	41.0	11.2	36.3	30.2	36.3	51.4	67.1	70.7
BM25 (Robertson & Walker, 1994)		52.0	63.4	20.3	28.8	47.9	51.2	56.5	68.7	71.7
ColBERTv2 (Santhanam et al., 2022)		43.4	57.7	15.5	26.4	33.4	43.3	56.2	71.8	71.9
Qwen3-Emb (8B) (Zhang et al., 2025b)		53.4	67.6	31.9	44.1	57.2	63.2	56.2	70.4	73.5
Graph-enhanced Methods										
RAPTOR (Sarthi et al., 2024)		50.6	64.7	27.7	39.2	39.7	48.4	43.2	57.1	73.6
GraphRAG (MS) (Edge et al., 2024)		51.4	67.6	27.0	42.0	34.7	61.0	50.9	45.2	72.5
LightRAG (Guo et al., 2024)		9.9	20.2	2.0	9.3	2.5	12.1	45.1	63.9	71.2
KAG (Liang et al., 2025)		59.5	72.2	33.8	46.0	67.3	75.1	-	-	-
HippoRAG 1 (Jimenez Gutierrez et al., 2024)		46.3	60.0	24.0	35.9	59.4	67.3	44.8	59.1	72.6
HippoRAG 2 (Gutiérrez et al., 2025)		56.3	71.1	35.0	49.3	60.5	69.7	56.5	64.9	-
SubgraphRAG (Li et al., 2025a)		44.5	57.0	25.1	35.7	62.7	69.0	-	-	-
G-retriever (He et al., 2024)		41.4	53.4	23.6	34.3	33.5	39.6	-	-	69.8
GFM-RAG (Luo et al., 2025)		56.2	69.5	30.2	49.2	69.8	77.7	58.6	72.2	72.1
G-reasoner		61.4	76.0	38.5	52.5	74.9	82.1	58.9	73.3	73.9

340 5.1 EXPERIMENTAL SETUP

341 **Datasets.** We first evaluate the effectiveness of G-
342 reasoner on three widely-used multi-hop QA datasets, in-
343 cluding HotpotQA (Yang et al., 2018), MuSiQue (Trivedi
344 et al., 2022), and 2WikiMultiHopQA (2Wiki) (Ho et al.,
345 2020), following the settings used in Jimenez Gutierrez
346 et al. (2024); Gutiérrez et al. (2025); Luo et al. (2025)
347 for a fair comparison. To further assess the generalization
348 ability of G-reasoner across domains, we employ three GraphRAG benchmarks: G-bench (Novel)
349 (Xiang et al., 2025), G-bench (Medical) (Xiang et al., 2025), and G-bench (CS) (Xiao et al., 2025)
350 to evaluate G-reasoner on complex reasoning across medical, novel, and computer science (CS)
351 knowledge. The statistics of the datasets are summarized in Table 1. More details about datasets can
352 be found in Section B.

353 **Baselines.** We compare with two groups of baselines: (1) *Non-structure methods*: BM25 (Robertson
354 & Walker, 1994), ColBERTv2 (Santhanam et al., 2022), Qwen3-Emb-8B (Zhang et al., 2025b); (2)
355 *Graph-enhanced methods*: RAPTOR (Sarthi et al., 2024), GraphRAG (MS) (Edge et al., 2024),
356 LightRAG (Guo et al., 2024), KAG (Liang et al., 2025), HippoRAG 1 & 2 (Jimenez Gutierrez et al.,
357 2024; Gutiérrez et al., 2025), SubgraphRAG (Li et al., 2025a), G-retriever (He et al., 2024), and
358 GFM-RAG¹ (Luo et al., 2025).

359 **Metrics.** For QA reasoning performance, we use the exact match (EM) and F1 score on multi-hop
360 QA following previous works (Jimenez Gutierrez et al., 2024; Luo et al., 2025) and accuracy (ACC)
361 on G-benchs following their settings (Xiang et al., 2025; Xiao et al., 2025). For retrieval performance,
362 we use document recall@2 (R@2) and recall@5 (R@5) for multi-hop QA and evidence
363 recall (Recall) for G-benchs (Xiang et al., 2025) as evaluation metrics.

364 **Implementation Details.** We gather the training data from Luo et al. (2025), which consists of
365 277,839 query samples and 2,972,931 documents, and we construct diverse graph structures using
366 Jimenez Gutierrez et al. (2024); Gutiérrez et al. (2025); Guo et al. (2024); Dong et al. (2025) to train
367 our GFM. We use GPT-4o-mini as the reasoning LLM. More training and implementation details
368 can be found in Section C.

369 5.2 MAIN RESULTS (RQ1)

370 **QA Reasoning Results.** Table 2 shows QA results on six datasets requiring complex reasoning.
371 G-reasoner consistently outperforms all baselines across these datasets, proving its effectiveness
372 in reasoning over graph-structured knowledge in various domains. Non-structure methods (e.g.,
373 BM25, ColBERTv2, Qwen3-Emb) perform poorly on multi-hop QA due to their inability to cap-
374 ture knowledge structure. Graph-enhanced methods (e.g., HippoRAG) generally outperform non-
375 structure methods by leveraging graph structures. However, some approaches relying on specifically
376 designed graphs and heuristic searches (e.g., GraphRAG, LightRAG) struggle to generalize across
377

378 Table 1: Statistics of the evaluation
379 datasets.

Dataset	# Query	# Document
HotpotQA (Yang et al., 2018)	1,000	9,221
MuSiQue (Trivedi et al., 2022)	1,000	6,119
2Wiki (Ho et al., 2020)	1,000	11,656
G-bench (Novel) (Xiang et al., 2025)	2,010	461
G-bench (Medical) (Xiang et al., 2025)	2,062	2,406
G-bench (CS) (Xiao et al., 2025)	1,018	24,534

¹We fixed a bug of GFM-RAG in R@k calculation and re-evaluate it in our experiments.

378 Table 3: Retrieval performance comparison. Recall@ k (R@ k) is used for multi-hop QA datasets,
 379 and evidence recall (Recall) is used for G-bench (Xiang et al., 2025).

Method	HotpotQA		MuSiQue		2Wiki		G-bench (Novel)	G-bench (Medical)
	R@2	R@5	R@2	R@5	R@2	R@5	Recall	Recall
Non-structure Methods								
BM25 (Robertson & Walker, 1994)	55.4	72.2	32.3	41.2	51.8	61.9	82.1	87.9
ColBERTv2 (Santhanam et al., 2022)	64.7	79.3	37.9	49.2	59.2	68.2	82.4	89.5
Qwen3-Emb (8B) (Zhang et al., 2025b)	74.1	88.8	46.8	62.1	66.2	74.1	82.6	92.7
Graph-enhanced Methods								
RAPTOR (Sarthy et al., 2024)	58.1	71.2	35.7	45.3	46.3	53.8	66.1	84.2
GraphRAG (MS) (Edge et al., 2024)	58.3	76.6	35.4	49.3	61.6	77.3	67.4	56.4
LightRAG (Guo et al., 2024)	38.8	54.7	24.8	34.7	45.1	59.1	79.6	82.6
KAG (Liang et al., 2025)	59.4	86.1	42.2	62.4	61.4	88.3	-	-
HippoRAG (Jimenez Gutierrez et al., 2024)	60.1	78.5	41.2	53.2	68.4	87.0	81.2	84.0
HippoRAG 2 (Gutiérrez et al., 2025)	80.5	95.7	53.5	74.2	80.5	95.7	66.2	73.6
SubgraphRAG (Li et al., 2025a)	58.1	71.7	40.6	48.1	70.2	85.3	-	-
G-retriever (He et al., 2024)	51.8	63.6	35.6	43.5	60.9	66.5	-	-
GFM-RAG (Luo et al., 2025)	75.6	89.6	43.5	57.6	79.1	92.4	75.9	82.2
G-reasoner	85.9	97.7	54.8	74.9	81.2	98.2	87.7	93.8

393 Table 4: Generalization of G-reasoner across different graph structures.

Retriever	Graph Structure	QuadGraph Layer				HotpotQA		MuSiQue		2Wiki	
		KG	Doc.	Attr.	Com.	EM	F1	EM	F1	EM	F1
Personalized PageRank	HippoRAG	✓	-	-	-	46.3	60.0	24.0	35.9	59.4	67.3
Embedding+Graph Search	LightRAG	✓	✓	-	-	9.9	20.2	2.0	9.3	2.5	12.1
G-reasoner	HippoRAG	✓	-	-	-	54.0	68.3	28.9	41.0	72.0	80.0
	LightRAG	✓	✓	-	-	49.7	62.0	25.3	35.9	59.4	64.4
	Youtu-GraphRAG	✓	✓	✓	✓	52.3	65.9	30.3	42.5	69.7	77.7

402 different datasets and tasks (e.g., G-bench). While the GNN-based GFM-RAG performs well on
 403 multi-hop QA, it also underperforms on G-bench datasets, likely due to limited generalization of
 404 GNNs across diverse graph structures. In contrast, G-reasoner achieves the best performance across
 405 all datasets, demonstrating superior reasoning and generalization capabilities.

406 **Retrieval Results.** Table 3 shows retrieval results on multi-hop QA and G-bench datasets. G-
 407 reasoner consistently delivers the best performance across all datasets, demonstrating its effec-
 408 tiveness in retrieving relevant information from graph-structured knowledge. Although advanced
 409 embedding-based methods (e.g., Qwen3-Emb) perform well by leveraging large-scale pre-training
 410 to capture semantic similarity, they still fall short of graph-enhanced approaches on some datasets.
 411 This underscores the importance of utilizing graph topology for effective retrieval in complex rea-
 412 soning tasks beyond text semantics. Notably, G-reasoner significantly outperforms existing meth-
 413 ods, highlighting the superior ability of our GFM to integrate graph topology and text semantics for
 414 efficient retrieval.

416 5.3 GENERALIZATION ACROSS GRAPH STRUCTURES (RQ2)

417 To evaluate the generalization ability of G-reasoner across different graph structures, we conduct ex-
 418 periments using various graph constructors, including HippoRAG (Jimenez Gutierrez et al., 2024),
 419 LightRAG (Guo et al., 2024), and Youtu-GraphRAG (Dong et al., 2025), whose statistics are pre-
 420 sented in Table 8. The G-reasoner is directly tested on graphs generated by each constructor without
 421 further fine-tuning. As shown in Table 4, G-reasoner shows strong generalization ability across
 422 different graph structures, consistently outperforming the retrievers specifically designed for each
 423 graph type. This demonstrates the robustness and adaptability of G-reasoner in handling diverse
 424 graph-structured knowledge for reasoning tasks.

426 5.4 ABLATION STUDY (RQ3)

427 In this section, we conduct an ablation study to
 428 assess the contributions of key components in G-
 429 reasoner. We evaluate the impact of (1) *distillation*
 430 *loss* (Distill), (2) *node text semantics* (Text), and (3)
 431 *graph foundation model* (GFM) on the performance

425 Table 5: Ablation studies of G-reasoner.

Variant	HotpotQA		MuSiQue		2Wiki	
	R@2	R@5	R@2	R@5	R@2	R@5
G-reasoner	81.1	96.9	52.1	72.4	75.6	96.1
w/o Distill	77.4	96.1	50.7	71.9	75.9	96.0
w/o Text	79.4	96.3	50.0	71.9	74.6	95.2
w/o GFM	11.6	19.7	3.8	7.1	4.9	9.0

432 of G-reasoner. The results are presented in Table 5.
 433 Removing the distillation loss leads to the performance drops on all datasets, indicating its impor-
 434 tance in enhancing the GFM’s ability under weak supervision. Excluding node text semantics also
 435 results in performance degradation, highlighting the crucial role of textual information in reasoning
 436 tasks. Notably, removing the GFM causes a drastic drop in performance, underscoring its essential
 437 role in effectively integrating graph topology and text semantics for reasoning over graph-structured
 438 knowledge.

440 5.5 EFFICIENCY ANALYSIS (RQ4)

442 **Inference Efficiency.** We compare the inference
 443 efficiency (time per sample) of G-reasoner on
 444 G-bench (CS) (Xiao et al., 2025) with (1)
 445 *agent-based*, (2) *graph search*, and (3) *GNN-
 446 based methods*. As shown in Table 6, G-
 447 reasoner achieves the lowest latency and high-
 448 est performance among all methods. This
 449 demonstrates the efficiency of our method for
 450 reasoning over graph-structured knowledge.

451 **Training Efficiency.** *Mixed precision training*
 452 enables G-reasoner to significantly reduce
 453 memory usage and improve training through-
 454 put. As shown in Figure 4, mixed precision
 455 training reduces memory consumption from
 456 80GB to 66GB (-17.5%) and increases through-
 457 put from 1.29 to 2.72 samples/s (+111%) on
 458 a single A100 GPU. This allows G-reasoner
 459 to be trained efficiently on large-scale graph-
 460 structured knowledge with limited computa-
 461 tional resources.

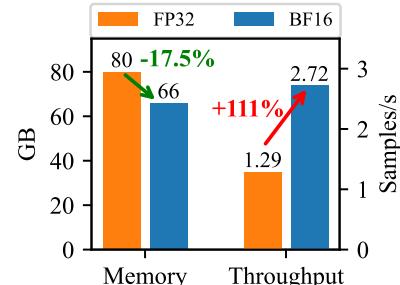
462 **Compute Scaling.** The compute cost of G-
 463 reasoner is defined as $|\mathcal{V}| \times d$ which linearly
 464 grows with both the *graph node size* $|\mathcal{V}|$ and
 465 the model’s hidden dimension d . Thanks to
 466 the *distributed message-passing* mechanism, as
 467 shown in Figure 6, G-reasoner can efficiently
 468 scale to large graphs and larger model sizes
 469 with more computational resources. Detailed
 470 analysis of compute scaling can be found in
 471 Section D.4.

472 6 CONCLUSION

473 In this paper, we present **G-reasoner**, a novel
 474 framework that synergizes graph foundation
 475 model and language foundation model for rea-
 476 soning over graph-structured knowledge. With
 477 the proposed QuadGraph, G-reasoner unifies
 478 diverse graph types into a standardized four-
 479 layer graph structure. A GNN-powered graph
 480 foundation model is further developed to jointly
 481 reason over graph topology and text semantics,
 482 enabling versatile prediction on graphs and enhanc-
 483 ing LLM reasoning. Extensive experiments on six
 484 complex reasoning benchmarks demonstrate that G-reasoner consistently outperforms state-of-the-
 485 art baselines, substantially improves LLM reasoning, and exhibits strong efficiency and cross-graph
 486 generalization. We believe G-reasoner would pave the road for future research in integrating graph
 487 and language foundation models for knowledge-intensive applications.

439 Table 6: Efficiency and performance comparison
 440 on G-bench (CS) (Xiao et al., 2025).

Method	G-bench (CS)	
	Time (s)	ACC
Agent-based Methods		
KGP (Wang et al., 2024)	89.4	71.9
ToG (Sun et al., 2024)	70.5	71.7
DALK (Li et al., 2024)	26.8	69.3
Graph Search Methods		
GraphRAG (MS) (Edge et al., 2024)	44.9	72.5
LightRAG (Guo et al., 2024)	14.0	71.2
HippoRAG (Jimenez Gutierrez et al., 2024)	2.4	72.6
GNN-based Methods		
G-retriever (He et al., 2024)	23.8	69.8
GFM-RAG (Luo et al., 2025)	2.0	72.1
G-reasoner	0.2	73.9



472 Figure 4: Memory and throughput gain brought
 473 by mixed precision training.



472 Figure 6: Compute scaling of G-reasoner.

486 ETHICS STATEMENT
487488 Our research addresses only scientific questions and involves no human subjects, animals, or en-
489 vironmentally sensitive materials. Therefore, we anticipate no ethical risks or conflicts of interest.
490 We are committed to upholding the highest standards of scientific integrity and ethics to ensure the
491 validity and reliability of our findings.
492493 REPRODUCIBILITY STATEMENT
494495 Our model is clearly formalized in the main text for clarity and thorough understanding. Detailed
496 implementation, including dataset information, baselines, experimental settings, and model config-
497 urations, are provided in Sections B, C and 5.1. Experimental settings and baselines have been
498 rigorously verified to ensure fair comparison. Code and pre-trained model weights will be released
499 upon acceptance.
500501 USAGE OF LLMs
502503 LLMs are used to proofread and polish the writing of this paper. We have carefully reviewed and
504 verified all content generated by LLMs to ensure accuracy and integrity. Any errors or inaccuracies
505 in the final manuscript are solely our responsibility.
506507 REFERENCES
508509 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
510 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
511 report. *arXiv preprint arXiv:2303.08774*, 2023.512 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
513 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
514 tillation. *arXiv preprint arXiv:2402.03216*, 2024.
515516 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
517 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
518 *the North American chapter of the association for computational linguistics: human language*
519 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.520 Junnan Dong, Siyu An, Yifei Yu, Qian-Wen Zhang, Linhao Luo, Xiao Huang, Yunsheng Wu, Di Yin,
521 and Xing Sun. Youtu-graphrag: Vertically unified agents for graph retrieval-augmented complex
522 reasoning. *arXiv preprint arXiv:2508.19855*, 2025.523 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
524 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
525 graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.
526527 Matthias Fey, Jinu Sunil, Akihiro Nitta, Rishi Puri, Manan Shah, Blaz Stojanovic, Ramona Bendias,
528 Barghi Alexandria, Vid Kocijan, Zecheng Zhang, Xinwei He, Jan E. Lenssen, and Jure Leskovec.
529 Pyg 2.0: Scalable learning on real world graphs. In *Temporal Graph Learning Workshop @ KDD*,
530 2025.531 Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
532 models for knowledge graph reasoning. In *The Twelfth International Conference on Learning*
533 *Representations*, 2024.534 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
535 Haofen Wang. Retrieval-augmented generation for large language models: A survey. *arXiv*
536 *preprint arXiv:2312.10997*, 2023.
537538 Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
539 language models understand graph structured data? an empirical evaluation and benchmarking.
540 *arXiv preprint arXiv:2305.15066*, 2023.

540 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
 541 augmented generation. 2024.

542

543 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
 544 Non-parametric continual learning for large language models, 2025. URL <https://arxiv.org/abs/2502.14802>.

545

546 Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halap-
 547 panavar, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented gen-
 548 eration with graphs (graphrag). *arXiv preprint arXiv:2501.00309*, 2024.

549

550 Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
 551 and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
 552 question answering. *Advances in Neural Information Processing Systems*, 37:132876–132907,
 553 2024.

554

555 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
 556 preprint arXiv:1503.02531*, 2015.

557

558 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 559 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th Interna-
 560 tional Conference on Computational Linguistics*, pp. 6609–6625, 2020.

561

562 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutier-
 563 rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al.
 Knowledge graphs. *ACM Computing Surveys (Csur)*, 54(4):1–37, 2021.

564

565 Pengcheng Jiang, Siru Ouyang, Yizhu Jiao, Ming Zhong, Runchu Tian, and Jiawei Han. Retrieval
 566 and structuring augmented generation with large language models. In *Proceedings of the 31st
 567 ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2*, pp. 6032–6042, 2025.

568

569 Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
 570 ologically inspired long-term memory for large language models. *Advances in Neural Information
 571 Processing Systems*, 37:59532–59569, 2024.

572

573 Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
 graphs: A comprehensive survey. *IEEE Transactions on Knowledge and Data Engineering*, 2024.

574

575 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 576 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 577 learning. *COLM*, 2025.

578

579 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A
 580 dataset for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and
 581 Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
 582 guage Processing and the 9th International Joint Conference on Natural Language Processing
 583 (EMNLP-IJCNLP)*, pp. 2567–2577, Hong Kong, China, November 2019. Association for Com-
 putational Linguistics. doi: 10.18653/v1/D19-1259. URL <https://aclanthology.org/D19-1259/>.

584

585 Xiaoxi Kang, Lizhen Qu, Lay-Ki Soon, Zhuang Li, and Adnan Trakic. Bridging law and data:
 586 Augmenting reasoning via a semi-structured dataset with irac methodology. *arXiv preprint
 587 arXiv:2406.13217*, 2024.

588

589 George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs,
 590 partitioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

591

592 Dawei Li, Shu Yang, Zhen Tan, Jae Baik, Sukwon Yun, Joseph Lee, Aaron Chacko, Bojian Hou,
 593 Duy Duong-Tran, Ying Ding, et al. Dalk: Dynamic co-augmentation of llms and kg to answer
 alzheimer’s disease questions with scientific literature. In *Findings of the Association for Com-
 putational Linguistics: EMNLP 2024*, pp. 2187–2205, 2024.

594 Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language mod-
 595 els in knowledge-graph-based retrieval-augmented generation. In *The Thirteenth International*
 596 *Conference on Learning Representations*, 2025a.

597

598 Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xianpei
 599 Han, Le Sun, and Yongbin Li. Structrag: Boosting knowledge intensive reasoning of llms via
 600 inference-time hybrid information structurization. In *The Thirteenth International Conference on*
 601 *Learning Representations*, 2025b.

602 Lei Liang, Zhongpu Bo, Zhengke Gui, Zhongshu Zhu, Ling Zhong, Peilong Zhao, Mengshu Sun,
 603 Zhiqiang Zhang, Jun Zhou, Wenguang Chen, Wen Zhang, and Huajun Chen. Kag: Boosting
 604 llms in professional domains via knowledge augmented generation. In *Companion Proceedings*
 605 *of the ACM on Web Conference 2025*, WWW '25, pp. 334–343, New York, NY, USA, 2025.
 606 Association for Computing Machinery. ISBN 9798400713316. doi: 10.1145/3701716.3715240.
 607 URL <https://doi.org/10.1145/3701716.3715240>.

608

609 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 610 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 611 *arXiv:2412.19437*, 2024.

612 Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Dinh Phung, Chen Gong, and Shirui Pan. Gfm-rag:
 613 graph foundation model for retrieval augmented generation. *NeurIPS*, 2025.

614

615 Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
 616 Guo. Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-
 617 guided retrieval augmented generation. In *The Thirteenth International Conference on Learning*
 618 *Representations*, 2025.

619 Costas Mavromatis and George Karypis. GNN-RAG: Graph neural retrieval for efficient large
 620 language model reasoning on knowledge graphs. In Wanxiang Che, Joyce Nabende, Ekaterina
 621 Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational*
 622 *Linguistics: ACL 2025*, pp. 16682–16699, Vienna, Austria, July 2025a. Association for Compu-
 623 *tational Linguistics*. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.856. URL
 624 <https://aclanthology.org/2025.findings-acl.856/>.

625 Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for efficient large lan-
 626 guage model reasoning on knowledge graphs. In *Findings of the Association for Computational*
 627 *Linguistics: ACL 2025*, pp. 16682–16699, 2025b.

628

629 Seyed Mahed Mousavi, Simone Alghisi, and Giuseppe Riccardi. Dyknow: dynamically verifying
 630 time-sensitive factual knowledge in llms. *arXiv preprint arXiv:2404.08700*, 2024.

631

632 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.

633

634 Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and
 635 Siliang Tang. Graph retrieval-augmented generation: A survey. *arXiv preprint arXiv:2408.08921*,
 636 2024.

637 Stephen E Robertson and Steve Walker. Some simple effective approximations to the 2-poisson
 638 model for probabilistic weighted retrieval. In *SIGIR'94: Proceedings of the Seventeenth Annual*
 639 *International ACM-SIGIR Conference on Research and Development in Information Retrieval*,
 640 *organised by Dublin City University*, pp. 232–241. Springer, 1994.

641

642 Tara Safavi and Danai Koutra. Relational world knowledge representation in contextual language
 643 models: A review. In *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 644 *Language Processing*, pp. 1053–1067, 2021.

645 Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Col-
 646 bertv2: Effective and efficient retrieval via lightweight late interaction. In *Proceedings of the*
 647 *2022 Conference of the North American Chapter of the Association for Computational Linguis-
 648 tics: Human Language Technologies*, pp. 3715–3734, 2022.

648 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
 649 ning. Raptor: Recursive abstractive processing for tree-organized retrieval. In *The Twelfth Inter-*
 650 *national Conference on Learning Representations*, 2024.

651

652 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 653 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 654 learning. *arXiv preprint arXiv:2503.05592*, 2025a.

655

656 Zirui Song, Bin Yan, Yuhang Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting
 657 domain-specific knowledge into large language models: a comprehensive survey. *arXiv preprint*
 658 *arXiv:2502.10708*, 2025b.

659

660 Jiahuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
 661 Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
 662 language model on knowledge graph. In *The Twelfth International Conference on Learning Rep-*
 663 *resentations*, 2024.

664

665 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 666 questions via single-hop question composition. *Transactions of the Association for Computational*
 667 *Linguistics*, 10:539–554, 2022.

668

669 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 670 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *Pro-*
 671 *ceedings of the 61st annual meeting of the association for computational linguistics (volume 1:*
 672 *long papers*), pp. 10014–10037, 2023.

673

674 Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
 675 Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
 676 Deep graph library: A graph-centric, highly-performant package for graph neural networks. *arXiv*
 677 *preprint arXiv:1909.01315*, 2019.

678

679 Shu Wang, Yixiang Fang, Yingli Zhou, Xilin Liu, and Yuchi Ma. Archrag: Attributed community-
 680 based hierarchical retrieval-augmented generation. *arXiv preprint arXiv:2502.09891*, 2025.

681

682 Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
 683 prompting for multi-document question answering. In *Proceedings of the AAAI conference on*
 684 *artificial intelligence*, volume 38, pp. 19206–19214, 2024.

685

686 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 687 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and*
 688 *learning systems*, 32(1):4–24, 2020.

689

690 Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong, Xiao Huang, and
 691 Jinsong Su. When to use graphs in rag: A comprehensive analysis for graph retrieval-augmented
 692 generation. *arXiv preprint arXiv:2506.05690*, 2025.

693

694 Yilin Xiao, Junnan Dong, Chuang Zhou, Su Dong, Qian-wen Zhang, Di Yin, Xing Sun, and Xiao
 695 Huang. Graphrag-bench: Challenging domain-specific reasoning for evaluating graph retrieval-
 696 augmented generation. *arXiv preprint arXiv:2506.02404*, 2025.

697

698 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 699 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 700 *arXiv:2505.09388*, 2025.

701

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
 702 and relations for learning and inference in knowledge bases. In *Proceedings of the International*
 703 *Conference on Learning Representations (ICLR) 2015*, 2015.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 704 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 705 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language*
 706 *Processing*, pp. 2369–2380, 2018.

702 Nan Zhang, Prafulla Kumar Choube, Alexander Fabbri, Gabriel Bernadett-Shapiro, Rui Zhang,
 703 Prasenjit Mitra, Caiming Xiong, and Chien-Sheng Wu. Sirerag: Indexing similar and related
 704 information for multi-hop reasoning. In *The Thirteenth International Conference on Learning
 705 Representations*, 2025a.

706 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 707 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
 708 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025b.

710 Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael Bronstein, and Jian Tang.
 711 Fully-inductive node classification on arbitrary graphs. *arXiv preprint arXiv:2405.20445*, 2024.

713 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonoux, and Jian Tang. Neural bellman-ford net-
 714 works: A general graph neural network framework for link prediction. *Advances in Neural Infor-
 715 mation Processing Systems*, 34:29476–29490, 2021.

720 Appendix

723 Table of Contents

A Detailed Related Work	14
A.1 Graph Construction	14
A.2 Graph-enhanced Reasoning	15
B Datasets Details	16
C Implementation Details	17
C.1 Training Details	17
C.2 Mixed Precision Training	18
C.3 Distributed Message-passing	19
D Additional Experiment	19
D.1 Comparison with Multi-step RAG methods	19
D.2 Comparison on the Full Musique Dataset	20
D.3 Reasoning Explanation	20
D.4 Model Scaling Case Study	22
D.5 G-reasoner Case Study	22
E Prompts	24
F Limitations and Future Work	24

748 A DETAILED RELATED WORK

750 A.1 GRAPH CONSTRUCTION

752 Recently, graph retrieval-augmented generation (GraphRAG) has emerged as a promising approach
 753 to leverage structured knowledge to enhance the reasoning capabilities of large language models
 754 (LLMs). Nevertheless, suitable graphs are often unavailable for supporting complex multi-hop rea-
 755 soning task that span across scattered documents. To address this limitation, prior work has explored
 diverse graph construction strategies tailored to different types of reasoning tasks.

756 **Document Graph.** KGP (Wang et al., 2024) constructs document graphs using existing hyperlinks
 757 and KNN-based similarity, yet the resulting graphs fail to capture the nuanced semantic associations.
 758 RAPTOR (Sarthi et al., 2024) builds a hierarchical tree through recursive summarization based on
 759 similarities of documents, and SiReRAG (Zhang et al., 2025a) further integrates relatedness with
 760 similarity to build tree-like indexing structures for documents.

761 **Hierarchical Graph.** To better model hierarchical structure, Microsoft GraphRAG (GraphRAG
 762 (MS)) (Edge et al., 2024) utilizes LLMs to extract entities and relations from raw texts, and fur-
 763 ther incorporates community detection with summarization to generate hierarchical graph structure.
 764 Building on this line of work, LightRAG (Guo et al., 2024) employs dual-level graph indexing pro-
 765 cess to facilitate efficient retrieval, whereas Youtu-GraphRAG (Dong et al., 2025) introduces a ver-
 766 tically unified framework that exploits the graph schema to guide the graph construction. Similarly,
 767 ArchRAG (Wang et al., 2025) leverages attributed communities (ACs) and introduces an efficient
 768 hierarchical retrieval strategy.

769 **Knowledge Graph.** Beyond document graphs and hierarchical graphs, HippoRAG (Jimenez Gutier-
 770 rez et al., 2024) and HippoRAG 2 (Gutiérrez et al., 2025) leverage OpenIE techniques to induce
 771 knowledge graphs (KGs) that capture the relationships among factual knowledge. To mitigate the
 772 noise induced by OpenIE, KAG (Liang et al., 2025) introduces the conceptual semantic reasoning
 773 and human-annotated schemas to curate domain expert knowledge.

774 Despite their achievements, these methods are typically tailored for specific graph structures, and
 775 thus exhibit limited generalizability across different types of graphs. For example, the hierarchical
 776 graphs constructed by GraphRAG (MS) (Edge et al., 2024) and LightRAG (Guo et al., 2024) are
 777 primarily designed for summarization tasks, and may not be suitable for multi-hop reasoning tasks
 778 compared to the knowledge graphs used in HippoRAG (Jimenez Gutierrez et al., 2024).

780 A.2 GRAPH-ENHANCED REASONING

781 Graph-enhanced reasoning seeks enable LLMs to reason on the graph-structured knowledge to im-
 782 prove their performance on knowledge-intensive applications.

783 **Graph Search.** Inspired by hippocampal memory indexing theory, HippoRAG (Jimenez Gutier-
 784 rez et al., 2024) combines open knowledge graphs with personalized PageRank to support efficient
 785 knowledge retrieval on knowledge graphs. Extending on this, HippoRAG2 (Gutiérrez et al., 2025)
 786 further incorporates documents into the knowledge graphs, thereby enabling deeper contextual un-
 787 derstanding. LightRAG (Guo et al., 2024) employs a dual-level retrieval strategy with both the
 788 embedding-based retrieval and graph-based neighborhood expansion to enhance the retrieval per-
 789 formance. However, these graph search-based methods still fall short of fully exploiting the power
 790 of foundation models for reasoning.

791 **Agent-based Reasoning.** Another line of research explores the agent-driven graph reasoning and
 792 retrieval. For example, ToG (Sun et al., 2024) employs LLM agents to sequentially interact with
 793 graphs and expands relevant reasoning paths for given queries, while ToG2 (Ma et al., 2025) en-
 794 hances this process by interactively retrieving from both knowledge graphs and documents, thereby
 795 achieving context-aware retrieval for reasoning. KAG (Liang et al., 2025) integrates the logical
 796 query solver during the agent-based reasoning, which will be called with the query generated by
 797 LLMs to perform symbolic reasoning on knowledge graphs. Youtu-GraphRAG (Dong et al., 2025)
 798 further proposes an agentic framework that leverages graph schema to guide the LLMs to inter-
 799 act with the graph for reasoning. Despite the effectiveness, these methods often incur substantial
 800 computational costs and suffer from high latency due to the multiple invocations of LLMs.

801 **GNN-based Reasoning.** More recent efforts leverage graph neural network (GNNs) Wu et al.
 802 (2020) to reasoning over graph and enhance LLMs. GNN-RAG (Mavromatis & Karypis, 2025b)
 803 firstly applies a GNN-based retriever to identify candidate entities for a given question, and then
 804 verbalizes entities-induced reasoning paths to support LLMs reasoning. G-retriever (He et al., 2024)
 805 combines GNNs with LLMs to enhance the structure understanding of LLMs for reasoning over
 806 knowledge graphs. SubgraphRAG (Li et al., 2025a) employs GNNs to encode the graph structure
 807 into the node representations, which are then used to retrieve relevant information for LLMs. More
 808 recently, GFM-RAG (Luo et al., 2025) proposes a graph foundation model designed to enable rea-
 809 soning over different knowledge graphs. However, these approaches remain tailored for specific

810
811
812 Table 7: Statistics of the training datasets.
813
814
815
816

# Query	# Document	# Node	# Relation	# Edge
277,839	2,972,931	18,785,120	3,920,541	77,336,005

817 graphs and cannot generalize well across diverse types of graph structure. Although some GFMs
818 have been designed, they primarily focus on graph-related tasks (e.g., node classification (Zhao
819 et al., 2024) and link prediction (Galkin et al., 2024)), making them unsuitable for GraphRAG tasks.
820
821

B DATASETS DETAILS

824 We first evaluate the effectiveness of G-reasoner on three widely-used multi-hop QA datasets, in-
825 cluding HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al., 2022), and 2WikiMultiHopQA
826 (2Wiki) (Ho et al., 2020) and three GraphRAG benchmarks: G-bench (Novel) (Xiang et al., 2025),
827 G-bench (Medical) (Xiang et al., 2025), and G-bench (CS) (Xiao et al., 2025). We provide a brief
828 description of each dataset below.
829

- 830 • **HotpotQA** (Yang et al., 2018) is a multi-hop QA dataset that requires reasoning over mul-
831 tiple documents to answer questions. The dataset consists of 97k question-answer pairs,
832 where each question is associated with up to 2 supporting and several distracting docu-
833 ments. The questions are designed to be answerable using multiple pieces of information
834 from the supporting documents.
- 835 • **MuSiQue** (Trivedi et al., 2022) is a challenging multi-hop QA dataset with 25k 2-4 hop
836 questions. It requires coherent multi-step reasoning to answer questions that span multiple
837 documents.
- 838 • **2WikiMultiHopQA (2Wiki)** (Ho et al., 2020) is a multi-hop QA dataset that requires
839 reasoning over multiple Wikipedia articles to answer questions. The dataset consists of
840 192k questions, which are designed to be answerable using information from 2 or 4 articles.
841
- 842 • **G-bench (Novel) & G-bench (Medical)** (Xiang et al., 2025) are two domain-specific
843 datasets that are specially designed to evaluate GraphRAG models on both hierarchical
844 knowledge retrieval and deep contextual reasoning. They feature comprehensive datasets
845 with tasks of increasing difficulty, covering fact retrieval, complex reasoning, contextual
846 summarization, and creative generation. G-bench (Medical) collects both domain data from
847 NCCN medical guidelines to provide dense conceptual relationships (e.g., treatment pro-
848 tocols linking symptoms, drugs, and outcomes). G-bench (Novel) collects novels from
849 Gutenberg library to simulate real-world documents with implicit, non-linear narratives.
850
- 851 • **G-bench (CS)** (Xiao et al., 2025) is a dataset that focuses on college-level, domain-specific
852 questions that demand multi-hop reasoning. G-bench (CS) provides comprehensive assess-
853 ment across the entire GraphRAG pipeline, knowledge retrieval, answer generation, and
854 logical coherence of the reasoning process. It contains 1018 questions in 5 question types
855 spanning 16 topics and a corpus of 7 million words from 20 computer science (CS) text-
856 books.
857

In experiments, for multi-hop QA datasets, we adhere existing methods (Jimenez Gutierrez et al., 2024; Luo et al., 2025) to use the same 1,000 samples from each validation set to avoid data leakage. We merge the supporting and distractor passages as the document corpus for graph construction and retrieval. This setup allows us to evaluate the model’s ability to retrieve relevant information from a challenging yet controlled environment, reflecting practical scenarios where the model must discern relevant knowledge from a large pool of documents. For G-bench datasets, we follow (Xiang et al., 2025; Xiao et al., 2025) to use the provided test sets and document corpus for evaluation. The statistics of the datasets are summarized in Table 1.

864 **C IMPLEMENTATION DETAILS**
865866 **C.1 TRAINING DETAILS**
867868 **Training Data.** We gather the training data from Luo et al. (2025), which is based on the training
869 sets of HotpotQA, MuSiQue, and 2Wiki, and construct diverse graph structures to train our GFM.
870 Specifically, the training data consists of 277,839 query samples and 2,972,931 document corpus.
871 Each query is labeled with 2-4 supporting documents. We construct three types of graphs from
872 documents, including knowledge graphs (KG) using HippoRAG (Gutiérrez et al., 2025), knowledge
873 graph + document graph using LightRAG (Guo et al., 2024), and hierarchical graphs using Youtu-
874 GraphRAG (Dong et al., 2025).875 The proposed QuadGraph presents a comprehensive schema that integrates four layers: Community,
876 Document, Knowledge Graph, and Attribute, which enables the representation of various graph
877 types within a single framework for training. The construction steps for HippoRAG, LightRAG, and
878 Youtu-GraphRAG are as follows:
879880

- **HippoRAG Graph Construction** (Jimenez Gutierrez et al., 2024; Gutiérrez et al., 2025):
881 HippoRAG contains the knowledge graph layer. We follow the original HippoRAG method
882 to first extract entities, relations, and triples from the document corpus using an LLM-based
883 information extraction approach. Then, we build a knowledge graph layer by connecting
884 entities based on the extracted triples.
- **LightRAG Graph Construction** (Guo et al., 2024): LightRAG employs a dual-level graph
885 indexing process with knowledge graph and document graph. It also first extracts entities
886 and relations from the documents to build a knowledge graph layer. The document layer is
887 constructed by linking documents to the entities they mention.
- **Youtu-GraphRAG Graph Construction** (Dong et al., 2025): Youtu-GraphRAG proposes
888 a hierarchical graph structure with community, document, knowledge graph, and attribute
889 layers, which cover all four layers of QuadGraph. We follow their method to build each
890 layer and connect them accordingly. The knowledge graph is first constructed with schema-
891 bound extraction, and then documents are linked to the entities they mention. Communities
892 are formed by clustering entities with the consideration of both their topographical connec-
893 tivity and semantic similarity. Attributes are extracted from documents and linked to the
894 corresponding entities.

895 To ensure efficiency, we split large graphs into smaller subgraphs with around 100k nodes and
896 group the relevant queries for each subgraph during training. The statistics of the training data are
897 summarized in Table 7.901 **Model Settings.** The GFM used in G-reasoner is implemented with a 6-layer query-dependent GNN
902 with a hidden dimension of 1024, DistMult message function, and sum aggregation. The relation
903 update function $g^l(\cdot)$ is implemented as a 2-layer MLP. We use the Qwen3-Embedding-0.6B as the
904 sentence embedding model with a dimension of 1024. The total training parameters of the GFM is
905 34M.906 **Training Settings.** The GFM is trained with 16 A100 GPUs (80G) for 10 epochs with a batch size
907 of 2. We use AdamW optimizer with learning rate set to 5e-4. The λ for KL divergence is set
908 to 0.01. We also include the ranking loss used in GFM-RAG (Luo et al., 2025) to improve training
909 stability. We apply BFfloat16 mixed precision training to reduce memory usage and improve training
910 throughput. The training takes around 7 days to complete. The detailed hyperparameter settings are
911 summarized in Table 9.912 **Evaluation Settings.** During the evaluation, for multi-hop QA datasets, we merge the supporting
913 and distractor passages for each query as the document corpus for graph construction and retrieval.
914 We use the trained GFM to predict the relevance scores of nodes for each query and select the top-k
915 nodes from each node type to construct the prompt for LLMs. We set $k = 5$ for multi-hop QA
916 datasets, and $k = 10$ for G-bench datasets for fair comparison with existing results. To test the
917 generalizability of G-reasoner across different graph structures, we evaluate G-reasoner on three
918 graph constructors (HippoRAG, LightRAG, Youtu-GraphRAG) for each evaluation dataset. The

918
919
920 Table 8: Statistics of graphs constructed by different graph constructor.
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

Graph Constructor		HippoRAG	LightRAG	Youtu-GraphRAG
HotpotQA	# Node	105,256	85,130	200,533
	# Relation	24,117	54,725	7,317
	# Edge	447,131	186,922	556,055
MusiQue	# Node	112,504	92,637	219,408
	# Relation	27,973	65,404	8,471
	# Edge	464,638	210,456	636,276
2Wiki	# Node	54,898	47,361	90,258
	# Relation	10,375	101,987	2,259
	# Edge	227,628	25,237	265,287
G-bench (Novel)	# Node	29,825	-	-
	# Relation	11,244	-	-
	# Edge	108,221	-	-
G-bench (Medical)	# Node	10,515	-	-
	# Relation	3,373	-	-
	# Edge	61,056	-	-
G-bench (CS)	# Node	217,071	-	-
	# Relation	36,797	-	-
	# Edge	1,750,491	-	-

941
942 Table 9: The detailed implementation and training settings of G-reasoner.
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

GFM	# Layer	6
	Hidden dim	1024
	Message	DistMult
	Aggregation	Sum
	$g^l(\cdot)$	2-layer MLP
	Sentence embedding model	Qwen3-Embedding-0.6B
Training	λ	0.01
	Optimizer	AdamW
	Learning rate	5e-4
	Batch size	3
	Precision	BFloat16
	Training epochs	10

statistics of the constructed graphs are summarized in Table 8. The results reported in Table 2 and Table 3 are obtained with the graph constructed by HippoRAG.

C.2 MIXED PRECISION TRAINING

We apply BFloat16 mixed precision training to reduce memory usage and improve training throughput. Mixed precision training executes compute-heavy operations (e.g., message-passing) in lower precision while keeping numerically sensitive operation (e.g., reductions) in float32, which typically boosts throughput and reduces memory footprint. This allows us to train larger models or use larger batch sizes without running out of memory on the available GPUs. However, enabling mixed precision training for graph foundation models is non-trivial as we need to carefully handle the numerical stability issues during the gradient calculation of message-passing. To address this and maximize the acceleration from the hardware, we implement customized message-passing CUDA backward kernels. During the gradient backward, it accumulates the gradients in float32 to avoid precision loss and benefit from hardware acceleration.

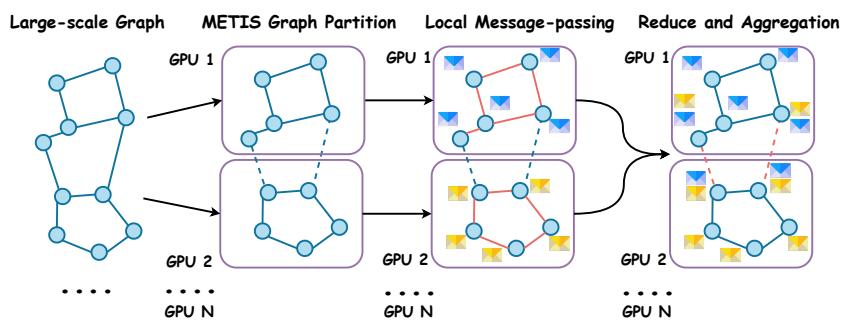


Figure 7: The illustration of distributed message passing in G-reasoner.

Table 10: Performance and efficiency comparison with multi-step RAG methods.

Method	HotpotQA			MuSiQue			2Wiki		
	EM	F1	Time / sample (s)	EM	F1	Time / sample (s)	EM	F1	Time / sample (s)
IRCoT	45.5	58.4	1.146	19.1	30.5	1.152	35.4	45.1	2.095
R1-searcher	61.2	73.8	0.532	34.7	48.4	0.588	58.3	71.1	0.713
Search-R1	60.8	74.3	0.496	37.4	53.2	0.603	54.6	68.7	0.652
G-reasoner	61.4	76.0	0.114	38.5	52.5	0.125	74.9	82.1	0.058

C.3 DISTRIBUTED MESSAGE-PASSING

With the customized message-passing CUDA kernels, the memory complexity of GFM is reduced to $O(|\mathcal{V}| * d)$ (Zhu et al., 2021). According to the neural scaling law observed for GFM (Luo et al., 2025) the performance of GFM improves as we increase the model size (i.e., hidden dimension) and the training data size (i.e., number of nodes in graphs). However, the memory consumption of GFM still grows linearly with the number of nodes and hidden dimension, which limits the scalability of GFM on a single GPU. To address this, we implement a distributed message-passing algorithm that partitions the graph across multiple GPUs and performs message-passing in parallel. As shown in Figure 7, we partition the nodes of the graph into N disjoint sets using the METIS algorithm (Karypis & Kumar, 1997) and assign each set to a different GPU. During the message-passing, each GPU computes the messages for its assigned nodes and exchanges the messages with other GPUs as needed. This allows us to scale GFM to larger graphs and model sizes by leveraging more GPU resources. Different from the existing distributed GNN training methods (e.g., PyG (Fey et al., 2025), DGL (Wang et al., 2019)) that use graph sampling, our distributed message-passing algorithm enables full-graph training. This is crucial for preserving the graph structure and ensuring effective reasoning with GFM by passing messages across the entire graph.

D ADDITIONAL EXPERIMENT

D.1 COMPARISON WITH MULTI-STEP RAG METHODS

To demonstrate the effectiveness of G-reasoner, we compare the performance with advanced multi-step RAG methods (e.g., IRCoT (Trivedi et al., 2023), ReSearcher (Song et al., 2025a), and Search-R1 (Jin et al., 2025)). From the results in Table 10, we observe that G-reasoner outperforms these advanced RAG systems across all three datasets, demonstrating its effectiveness in multi-hop question answering tasks. While these RAG systems, powered by powerful LLM agents, are designed for iterative retrieval and reasoning, they often lack the ability to effectively capture and leverage the rich relational structure present in graph-structured knowledge. In contrast, G-reasoner's integration of GFM-based graph reasoning allows it to better utilize this structure, leading to improved performance. Moreover, the iterative nature of these RAG systems can be computationally expensive due to multiple rounds of retrieval and LLM reasoning, whereas G-reasoner achieves efficient end-to-end reasoning in a single forward pass.

1026 Table 11: Dataset Statistics of MuSiQue-Full dataset.
1027

1028 Dataset	1029 # Test	1029 # Document	1029 # Node	1029 # Relation	1029 # Edge
1030 MuSiQue-Full	1030 2,417	1030 21,100	1030 19,4817	1030 45,437	1030 3,024,388

1031 Table 12: Evaluation of G-reasoner on MuSiQue-Full dataset.
1032

1034	1035 MuSiQue-Full	1035 EM	1035 F1
1036	1036 Qwen3-Emb-8B	1036 29.21	1036 42.04
1037	1037 HippoRAG	1037 24.62	1037 36.16
1038	1038 GFM-RAG	1038 23.4	1038 33.87
1039	1039 G-reasoner	1039 33.64	1039 47.89

1042 D.2 COMPARISON ON THE FULL MUSIQUE DATASET

1044 To further validate the effectiveness of G-reasoner in real-world scenarios with a larger and noisier
 1045 document corpus, we conducted additional experiments on the full dev set of the MuSiQue dataset
 1046 using an expanded corpus that includes all supporting and distractor passages. The dataset statistics
 1047 are summarized in Table 11. From the results in Table 12, we can observe that with the larger corpus,
 1048 the performance of previous graph-based baselines (HippoRAG, GFM-RAG) drops significantly due
 1049 to the increased retrieval difficulty and are even worse than conventional embedding-based methods
 1050 (Qwen3-emb-8B). In contrast, G-reasoner maintains strong performance, demonstrating its robust-
 1051 ness and effectiveness in handling larger, more complex graphs. This validates our claim that G-
 1052 reasoner is applicable to real-world scenarios where knowledge is vast and diverse. Moreover, in
 1053 real-world applications, G-reasoner can be further integrated with some pre-filtering retrieval meth-
 1054 ods (e.g., dense retrieval) to first narrow down the candidate documents before graph construction,
 1055 making it scalable to even larger corpora.

1056 D.3 REASONING EXPLANATION

1059 In addition to achieving high accuracy in final answers, G-reasoner also excels at generating reason-
 1060 ing explanations, as shown in Table 13. Following Xiao et al. (2025), we evaluate each method’s
 1061 reasoning explanations using the reasoning score (Avg R) to measure semantic alignment and con-
 1062 sistency with ground-truth explanations, along with the Avg AR metric to assess whether the model
 1063 provides correct reasoning when it answers questions accurately.

1064 The results in Table 13 demonstrate that G-reasoner outperforms existing methods in both Avg R
 1065 and Avg AR, indicating its superior ability to generate coherent and accurate reasoning explanations,
 1066 reducing the hallucination of LLMs and enhancing the interpretability of the reasoning process. The
 1067 case studies of the generated reasoning explanations are presented in Table 14.

1070 Table 13: Comparison of reasoning explanation on G-bench (CS) (Xiao et al., 2025).
1071

1072 Method	1072 Avg R	1072 Avg AR
1073 GPT-4o-mini (OpenAI, 2024)	1073 55.5	1073 39.8
1074 BM-25 (Robertson & Walker, 1994)	1074 59.2	1074 44.2
1075 DALK (Li et al., 2024)	1075 58.9	1075 42.1
1076 KGP (Wang et al., 2024)	1076 58.7	1076 43.3
1077 GraphRAG (Edge et al., 2024)	1077 59.4	1077 43.3
1078 ToG (Sun et al., 2024)	1078 60.1	1078 44.0
1079 G-reasoner	1079 60.2	1079 44.7

1080

1081

1082 Table 14: Case studies for reasoning explanation of G-reasoner on G-bench (CS) (Xiao et al., 2025).

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Query	An upper ontology is named for its position at the top of hierarchical graphs, where it includes general concepts, with more specific concepts placed below.
Answer	True
Ground-truth Rational	An upper ontology is a framework for general concepts placed at the top of hierarchical graphs, with more specific concepts arranged beneath it.
Retrieved Document	The general framework of concepts is called an upper ontology because of the convention of drawing graphs with the general concepts at the top and the more specific concepts below them.
Generated Rational	The statement describes the structure of an upper ontology accurately. An upper ontology is indeed characterized by its hierarchical organization, where general concepts are positioned at the top, and more specific concepts are placed below them. This aligns with the provided context, which explains that the upper ontology serves as a framework for categorizing knowledge. The use of hierarchical graphs to represent these relationships further supports the truth of the statement. ANSWER: True
Query	Which methods are effective for preventing SQL Injection? A: Parameterized queries B: Input sanitization C: Disabling HTTP methods D: Web Application Firewalls (WAF)
Answer	ABD
Ground-truth Rational	Parameterized queries, input sanitization, and WAFs are effective strategies to prevent SQL Injection by ensuring safe data handling and filtering malicious requests.
Retrieved Document	1. Use of a prepared statement would prevent this problem because the input string would have escape characters inserted. 2. To avoid this kind of SQL injection, the application should ensure that the <code>orderAttribute</code> variable value is one of the allowed values. 3. Programmers must pass user-input strings to the database only through parameters of prepared statements; creating SQL queries by concatenating strings with user-input values is an extremely serious security risk and should never be done in any program.
Generated Rational	To determine the effective methods for preventing SQL Injection, we can analyze each option: A: Parameterized queries — This is a well-known and effective method for preventing SQL injection. By using parameterized queries (or prepared statements), user input is treated as data rather than executable code, which prevents attackers from injecting malicious SQL. B: Input sanitization — This method involves cleaning and validating user input to ensure it does not contain harmful characters or patterns. While it can help reduce the risk of SQL injection, it is not foolproof on its own, as it can be difficult to cover all edge cases. However, it is still a useful practice when combined with other methods. C: Disabling HTTP methods — This option is not directly related to preventing SQL injection. Disabling certain HTTP methods (like PUT or DELETE) can enhance security in general but does not specifically address SQL injection vulnerabilities. D: Web Application Firewalls (WAF) — A WAF can help detect and block SQL injection attempts by filtering out malicious requests before they reach the application. While it is not a substitute for secure coding practices, it is an effective layer of defense against SQL injection attacks. Based on this analysis, the correct answers are A, B, and D. C is not relevant to SQL injection prevention. ANSWER: ABD

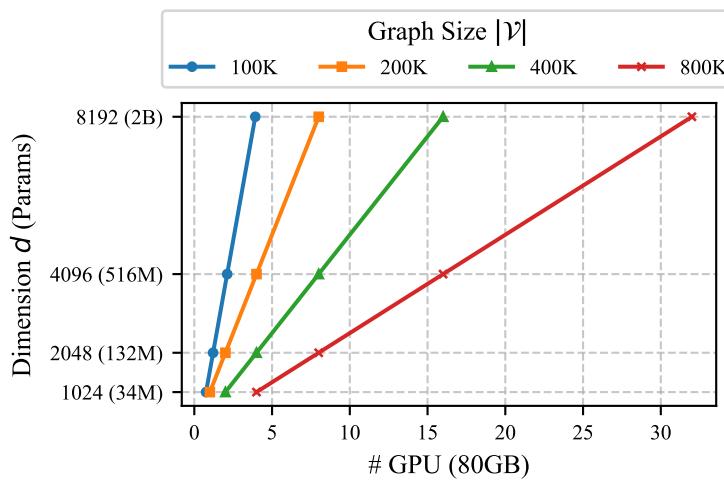
1134 D.4 MODEL SCALING CASE STUDY
1135

1136 With the implemented mixed precision training and distributed message-passing, G-reasoner can
1137 efficiently scale to larger graphs and model sizes with more computational resources. The number
1138 of required GPUs can be empirically estimated as

$$1139 \#GPU = \frac{(|\mathcal{V}| * d) * 2.56^{-1} * 10^{-6}}{\text{GPU Memory}}, \quad (12)$$

1142 where $|\mathcal{V}|$ is the number of nodes in the graph, d is the hidden dimension of GFM. It can be helpful
1143 to estimate the required GPUs for using G-reasoner on different graph sizes and model sizes.

1144 We illustrate some example configurations in Figure 8. From the results, with 32 A100 GPUs (80G),
1145 G-reasoner can scale to graphs with 800k nodes and a hidden dimension of 8192, which is around
1146 2B parameters. With more GPUs, G-reasoner can further scale to larger graphs and model sizes and
1147 achieve better performance as suggested by the neural scaling law (Luo et al., 2025).



1167 Figure 8: Scaling of G-reasoner with different model sizes and graph sizes.

1170 D.5 G-REASONER CASE STUDY
1171

1172 In this section, we first illustrate the versatile prediction results of G-reasoner. As shown in Table 15,
1173 given a query, G-reasoner can not only retrieve relevant documents to support the reasoning of
1174 LLMs, but also predict relevant entities that can be used to guide the reasoning process of LLMs.
1175 The G-reasoner exhibits great interpretability by quantifying the importance of reasoning paths. The
1176 paths' importance to the final prediction can be quantified by the partial derivative of the prediction
1177 score with respect to the triples at each layer (hop), defined as:

$$1178 \quad s_1, s_2, \dots, s_L = \arg \text{top-} k \frac{\partial p_e(q)}{\partial s_l}. \quad (13)$$

1180 The top- k paths are selected based on the product of gradient scores over triples forming the path,
1181 which approximates the contribution of that path to the final prediction via the chain rule. This
1182 allows us to identify influential multi-hop reasoning chains and interpret the model's behavior. We
1183 illustrate the top-2 path interpretations in the Table 16. In the first example, the GFM identifies the
1184 path from the film entity to the director entity through the "created by" relation, and then links to the
1185 document mentioning the director. In the second example, it traces from Lady Dorothy Macmillan
1186 to her father through the "is the daughter of" relation, and then to the document mentioning him.
1187 These paths illustrate how the GFM leverages graph structure to connect entities and documents,
1188 providing interpretable reasoning chains that lead to the final answer.

1188

1189

1190 Table 15: Case studies for versatile prediction of G-reasoner. Relevant predictions are highlighted
1191 in **bold**.

1192

1193	Query	In which county is the town in which Raymond Robertsen was
1194		born ?
1195	Answer	Finnmark county,
1196	Supporting Documents (Title)	1. Raymond Robertsen 2. Hammerfest
1197		
1198	Entity Prediction (Top-3)	1. cumberland county 2. finnmark 3. pacific county
1199		
1200	Document Prediction (Top-3)	1. Raymond Robertsen 2. Hammerfest 3. Raymond, Maine
1201		
1202		
1203		
1204		
1205	Query	Who is the president of the newly declared independent country
1206		that formed the Timor Leste Commission of Truth and Friend-
1207		ship with the country where Pantar is found?
1208	Answer	Francisco Guterres
1209	Supporting Documents (Title)	1. Blagar language 2. Indonesia Timor Leste Commission of Truth and Friendship 3. East Timor
1210		
1211	Entity Prediction (Top-3)	1. indonesia timor leste commission of truth and friendship 2. francisco guterres 3. democratic republic of timor leste
1212		
1213	Document Prediction (Top-3)	1. Indonesia Timor Leste Commission of Truth and Friendship 2. East Timor 3. Blagar language
1214		
1215		
1216		
1217		
1218		
1219		
1220		
1221		
1222	Table 16: Path interpretations of G-reasoner for multi-hop reasoning, where r^{-1} denotes the inverse	
1223	of the original relation, and bold highlights the supporting documents occurred in the paths.	

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1221 Table 16: Path interpretations of G-reasoner for multi-hop reasoning, where r^{-1} denotes the inverse
1222 of the original relation, and **bold** highlights the supporting documents occurred in the paths.

1224	Question	Where was the director of <i>film Flags And Waves</i> born?
1225	Answer	Toronto
1226	Supporting Docs.	[“William Reeves (animator)”, “Flags and Waves”]
1227	Paths	2.1465: [flags and waves (entity), is_mentioned_in, Flags and Waves (document)] 1.3665: [flags and waves (entity), created by, bill reeves (entity)] → [bill reeves (entity), equivalent, william reeves (entity)] → [william reeves (entity), is_mentioned_in, William Reeves (animator) (document)]
1228	Question	Where was the place of death of <i>Lady Dorothy Macmillan</i> ’s father?
1229	Answer	Derbyshire
1230	Supporting Docs.	[“Victor Cavendish, 9th Duke of Devonshire”, “Lady Dorothy Macmillan”]
1231	Paths	1.4286: [lady dorothy evelyn macmillan (entity), is the daughter of, victor cavendish (entity),] → [victor cavendish (entity), is_mentioned_in, Victor Cavendish, 9th Duke of Devonshire (document)] 0.7685: [lady dorothy evelyn macmillan (entity), is_mentioned_in, Lady Dorothy Macmillan (document)] → [Lady Dorothy Macmillan (document) , is_mentioned_in $^{-1}$, 9th duke of devonshire (entity)] → [9th duke of devonshire (entity), holds the title of $^{-1}$, Victor Cavendish, 9th Duke of Devonshire (entity)] → [9th duke of devonshire (entity), is_mentioned_in, Victor Cavendish, 9th Duke of Devonshire (document)]
1232		
1233		
1234		
1235		
1236		
1237		
1238		
1239		
1240		
1241		

1242
1243

E PROMPTS

1244
1245
1246

The prompts used in our experiments are presented in Figure 9. We feed the versatile predictions of G-reasoner (i.e., supporting documents and entities) to the LLMs to guide the reasoning process.

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

LLM Reasoning Prompt

As an advanced reading comprehension assistant, your task is to analyze text passages and corresponding questions meticulously. Your response start after "Thought: ", where you will methodically break down the reasoning process, illustrating how you arrive at conclusions. Conclude with "Answer: " to present a concise, definitive response, devoid of additional elaborations.'

```
### Document:
<Document 1>
<Document 2>
...
<Document n>

### Entity:
<Entity 1>
<Entity 2>
...
<Entity m>

### Question:
<Question>
Thought:
```

Figure 9: The prompt template for LLM Reasoning .

1275

F LIMITATIONS AND FUTURE WORK

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295