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Abstract

Understanding user intent is essential for effec-
tive planning in conversational assistants, par-
ticularly those powered by large language mod-
els (LLMs) coordinating multiple agents. How-
ever, real-world dialogues are often ambiguous,
underspecified, or dynamic, making intent un-
derstanding a persistent challenge. Traditional
classification-based approaches struggle to gen-
eralize in open-ended settings, leading to brit-
tle interpretations and poor downstream plan-
ning. We propose RECAP (REwriting Conver-
sations for Agent Planning), a new benchmark
designed to evaluate and advance intent rewrit-
ing, reframing user-agent dialogues into con-
cise representations of user goals. RECAP cap-
tures diverse challenges such as ambiguity, in-
tent drift, vagueness, and mixed-goal conversa-
tions. Alongside the dataset, we introduce an
LLM-based evaluator that compares planning
utility given a user-agent dialogue. Using RE-
CAP, we develop a prompt-based rewriting ap-
proach that outperforms baselines. We further
demonstrate that fine-tuning two DPO-based
rewriters yields additional utility gains. Our
results highlight intent rewriting as a critical
and tractable component for improving agent
planning in open-domain dialogue systems.

1 Introduction

Understanding user intent is a foundational chal-
lenge in building effective conversational assistants,
particularly in systems powered by large language
models (LLMs) coordinating multiple agents to
complete complex tasks (Xu et al., 2024b; Song
et al., 2023a; Wang et al., 2024a). In such sys-
tems, accurate intent detection is crucial for effec-
tive planning, where the system must determine
what action to take and how best to delegate or ex-
ecute it across agents. Misinterpreting user intent
can lead to planning errors, degraded user experi-
ence, and failure to complete tasks efficiently.

In real-world multi-turn conversations, user in-
tent is rarely static or perfectly stated (Zhou et al.,

2024). Users may revise goals mid-conversation,
introduce ambiguous or incomplete commands, or
digress into side topics. These natural phenom-
ena of user-agent dialogue, such as vagueness, in-
tent drift, and ellipsis, pose significant challenges
for current planning modules that rely on a clear
and up-to-date understanding of user goals. Tradi-
tional approaches to intent understanding, such as
intent classification, often rely on a fixed schema
of predefined intents and slots (Goo et al., 2018;
Budzianowski et al., 2018). While effective in
narrow domains, these approaches struggle with
open-ended or evolving conversations common in
LLM-powered assistants (Arora et al., 2024). Such
methods are susceptible to intent drift within con-
versation, fail to generalize to unseen or out-of-
domain queries, and often force user inputs into
rigid categories that do not reflect their actual goals.
These limitations make it difficult for downstream
planning modules to act on user input with the
necessary flexibility and accuracy. More adaptive
strategies are, hence, needed to handle the fluid,
underspecified, and dynamic nature of real human
intent in open-domain systems.

One promising strategy is intent rewriting: in-
troducing a module that rephrases the user-agent
dialogue into a concise, clarified representation of
the user’s most recent intent (Galimzhanova et al.,
2023). This rewritten intent distills the relevant
context, removes distractions, resolves ambiguity,
and refocuses the system on the core user goal. By
providing a cleaner target for action, intent rewrites
enable downstream planners to make better deci-
sions with less reliance on the full dialogue history.

Despite the growing interest in task-oriented dia-
logue and agent planning (King and Flanigan, 2024;
Xu et al., 2024a; Gan et al., 2025; Qiao et al., 2024),
there remains a lack of benchmarks specifically
designed to evaluate intent rewriting in this con-
text. Existing datasets either focus narrowly on slot-
filling and task completion (Budzianowski et al.,
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Figure 1: Comparing Agent Planning with explicit modeling of User Intent and Planning based on raw dialogue.

2018) or treat rewriting as a standalone summariza-
tion problem (Li et al., 2023), without grounding it
in agent behavior or planning effectiveness. As a
result, there is limited empirical understanding of
what makes a rewrite effective for agent planning.
To bridge this gap, we introduce RE-
CAP (REwriting Conversations for Agent
Planning), a new benchmark that systematically
captures diverse intent rewriting challenges across
domains, including under-specified, drifted intent
and multi-intent conversations. Alongside this
dataset, we provide an effective LLM-based evalu-
ator that judges the quality of agent plans given
dialogue history and rewrites. Using RECAP , we
develop a prompt-based intent rewriter that consis-
tently outperforms baseline approaches. Building
on this, we fine-tune two DPO-based rewriters
starting from our best-performing zero-shot model,
achieving further gains in planning utility.

2 Explicit Intent Modeling for Planning

Many task-oriented applications, such as virtual as-
sistants, engage users through dialogue interfaces
and increasingly rely on multi-agent collaboration
behind the scenes to decompose and execute com-
plex tasks. This architecture demands accurate and
adaptable intent understanding, as well as effec-
tive agent planning. As illustrated in Figure 1, we
assume the presence of a base chat agent that con-
ducts multi-turn conversations with the user, main-
taining a trajectory of USER-AGENT dialogue.
Notably, the chat agent does not directly solve the
task itself, but instead keeps the conversation flow-
ing by presenting intermediate results generated by
the underlying multi-agent system.
Complementing the chat agent is a planner that

interprets user intent from the dialogue history up
to the current point and generates a plan to coor-
dinate action agents in order to complete the task
(e.g., searching the web, drafting an email, creat-
ing a file). The planner produces a structured plan
represented as a Directed Acyclic Graph (DAG),
which captures the sequence and dependencies of
sub-tasks required to achieve the user’s goal. Each
node in the DAG represents a sub-task, while edges
define the logical flow between them. The plan-
ner is implemented using state-of-the-art LLMs,
enabling flexible, context-aware plan generation.

While it may seem straightforward to feed the
entire conversation history directly to the planner
and rely on it to infer the implicit user intent, this
approach can be problematic, particularly in real-
world settings where User—Agent interactions are
often noisy and include irrelevant or ambiguous
turns. Specifically, we identify four common chal-
lenges in everyday User—Agent conversations that
can lead to confusion or failure in planning: un-
derspecified intent, where the user’s goal lacks
sufficient detail; noisy input, where irrelevant or
off-topic dialogue turns obscure the main objective;
shifted intent, where the user changes their goal
mid-conversation; and multi-intent, where multi-
ple distinct goals are presented simultaneously or
sequentially without clear separation.

Table 1 presents qualitative examples of short
dialogues with complex intents that confuse plan-
ners when processed in raw form. In the first di-
alogue, the user initially mentions an interest in
Italian restaurants but later shifts to searching for a
Mexican restaurant. The plan generated from the
raw dialogue incorrectly interprets the chat agent’s
suggestions (e.g., pizza and pasta) as user requests



Example dialogue

Problematic plan from raw dialogue

Underspecified and Shifted Intent

USER: I'm looking for a restaurant that serves Italian food,
AGENT: Are you looking for pasta or pizza

USER: Actually, I think I'd rather have Mexican food instead

Multi-Intent

USER: I want to book a flight from Denver to Seattle and also
get information about hotels in Seattle’,

AGENT: Are you looking for a specific type of hotel, such as
luxury or budget-friendly?

USER: Yes, I'm looking for something mid-range

Switch to Mexican
restaurant

l

list
recommendation

TIdentify Italian search for pizza

restaurant

search for pasta

Search for flights Search for mid range
(Denver-Seattle) hotels in Seattle

l l

Book flight Book hotel

Table 1: Qualitative examples of short dialogues with complex intents that confuse the planners when provided in
raw form. Red nodes highlight issues in the generated plans.

and fails to recognize that the user’s original intent
is no longer relevant. In the second example, the
user wants to book a flight but only seeks infor-
mation about hotels. The planner, given the full
dialogue without explicit intent modeling, mistak-
enly proceeds to book both the flight and a hotel.
With explicit intent modeling, the correct interpre-
tation would be: ''search for a Mexican restau-
rant'' and "book a flight from Denver to Seattle and
gather information about mid-range hotels in Seat-
tle." While these examples are brief due to space
constraints, such confusion is far more frequent in
longer, more complex dialogues.

Quantitatively, we observe notable differences in
preference, semantics, and structure between plans
generated from raw conversation history and those
generated from rewritten inputs. These discrepan-
cies are consistent across multiple planning mod-
els, including the reasoning-capable 03-mini, high-
lighting the importance of clear and well-structured
intent representations for effective agent planning.
We present detailed results in Section 5.2.

3 RECAP Benchmark

Existing agent planning benchmarks either assume
clearly defined tasks with well-specified require-
ments (e.g., TravelPlanner (Xie et al.)) or focus
solely on vague or underspecified intent (e.g., IN3
(Qian et al.)). As demonstrated in Section 2, addi-
tional challenges such as intent shifts and nuanced
details can lead to suboptimal downstream plan-
ning. To enable a deeper understanding of how to
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Figure 2: RECAP Dataset Characteristics

effectively represent complex user intent, we intro-
duce RECAP , a benchmark designed to evaluate
the ability of conversational rewriters to capture ac-
curate, unambiguous, up-to-date, and comprehen-
sive intent for downstream multi-agent planning.

3.1 Dataset Construction

Our goal is to construct a diverse and challenging
dataset of user-agent conversations for intent un-
derstanding in planning tasks. We synthetically
generate two-way dialogues that reflect realistic
user-agent interactions. Specifically, we create con-
versations that span a variety of topics (cooking,
programming, health, flights, restaurants), conver-
sation lengths (short, medium, and long), and in-
tent understanding categories (shifted intent, noisy
input, underspecified intent, multi-intent, perfect in-
tent), as illustrated in Figure 2. This design allows
our dataset to capture a wide range of scenarios
relevant to planning tasks based on understanding
complex user intent.

We adopt a prompt-based generation approach
(see Appendix A.2) using LLMs (GPT-40 OpenAl



(2024) and LLaMA 3.3-70B Meta (2024)) to simu-
late a back-and-forth conversation on a given topic
between a user and a chat agent. Conversations are
also designed to be challenging in at least one of
the predefined categories.

The generated dialogues undergo careful human
vetting to ensure they are coherent, adhere to the
assigned topic and challenge type, and follow the
specified conversation-length constraints. We also
filter out any dialogues in which the chat agent hal-
lucinates or attempts to solve the user’s task. Ad-
ditionally, since intent analysis is performed only
on user utterances, we require each conversation to
end with a user turn, and discard any that violate
this constraint. In total, RECAP comprises 750
validated conversation instances (see Appendix F).

3.2 Evaluation Metrics

Having constructed a set of challenging user-agent
conversations, we apply various rewriters to each
conversation and feed the resulting rewritten intent
into a planner to generate the final task plans. We
evaluate the quality of these plans in a pair-wise
method using three main categories of metrics.

Structural Metrics To capture structural differ-
ences between the plan DAGs, we compute the
following metrics:

Node and Edge Count Differences: Ajoges =
Ni — Na,  Acgges = E1 — Eo, where N; and
FE; denote the number of nodes and edges in plan
P;, respectively.

Graph Edit Distance (Sanfeliu and Fu, 1983)
GED(Py, P,) , which measures the minimum cost
of edit path to transform plan P; to P such that
they are isomorphic.

These metrics provide a quantitative view of how
structurally similar or divergent two plans are.

Semantic Metrics We assess the semantic dis-
tance between generated plans using BERTScore
(Zhang et al., 2019). Specifically, we compute
Semantic Distance as: 1 — BERTScore( Py, P),
where P and P, are the two plans being compared.

Preference Metric As the ultimate measure of
utility, we assess whether the planner produces the
most effective plan given a rewritten intent. In
this work, we employ human annotators as well
as utilize LLM-based evaluators, who are asked to
judge plan preference on the following rubrics:

* Latest Intent: The plan should reflect the

user’s most recent goals or intent as expressed
in the conversation.

* Fabrication: The plan should avoid unneces-
sary, repetitive, or fabricated steps.

* Task Granularity: The plan should offer spe-
cific and detailed actions.

» Task Completeness: The plan should include
all necessary steps to fully accomplish the
user’s goal.

* Logical Order: Tasks should be arranged in
a coherent, logical sequence. Parallelizable
tasks should be grouped accordingly for effi-
ciency.

We employ a pairwise comparison setup: two
rewritten intents from the same source conversa-
tion are each fed into the planner, producing two
separate plans. Human annotators, following the
rubric above, are shown both plans (in randomized
order) and asked to select the one that better aligns
with the user’s intended goal. If both are judged
equally effective (or ineffective), a tie is recorded.

More on the implementation details of all met-
rics and human evaluation study is described in
Appendix C.2.

3.3 LLM-as-Judge Evaluator

While human evaluation provides high-quality pref-
erence signals, it is both costly and time-consuming.
To mitigate this, we explore the feasibility of train-
ing models to predict human preferences between
pairs of plans. As a baseline, we prompt a frozen
large language model (LLM) to select the preferred
plan in a zero-shot setting, mirroring the structure
of the human annotation task.

Beyond this, we fine-tune two preference models
using the collected human labels on RECAP-train
with the majority vote of the human preference
labels obtained through the evaluation process de-
scribed later in Section 5.3. These models take as
input a source conversation along with two candi-
date plans and are trained to predict the preferred
plan or indicate a tie. Further implementation and
sampling details are mentioned in Appendix C.2.2.

4 RECAP Rewriters

4.1 Constructing Rewrites

We begin by introducing two baseline rewriters
used to evaluate the impact of rewriting quality on
downstream planning.



Dummy rewriter simply reproduces the original
multi-turn USER-AGENT conversation verbatim,
without any modification or abstraction. This base-
line allows us to observe how the planner responds
to raw, unprocessed dialogue input.

LLM-based Basic rewriter performs a direct
summarization of the full conversation history us-
ing a generic summarization prompt (Appendix B).
This approach does not receive any specific instruc-
tions regarding which parts of the conversation are
important to preserve, such as intent shifts or irrel-
evant contents. As a result, the summary may omit
critical information required for accurate planning,
making it a useful reference point for assessing the
added value of more targeted rewriting approaches.

To capture the nuanced aspects of query rewrit-
ing, we adopt a prompt-based generation approach
(see Appendix B) using GPT-40 (OpenAl, 2024)
with a temperature setting of 0. This setup is
used to generate high-quality rewrites optimized
for downstream planning, which we refer to as the
Advanced rewriter.

The Advanced rewriter produces a refined and
task-aware representation of the original multi-turn
conversation. Unlike generic summarization, it is
explicitly prompted to produce rewrites that are
concise, unambiguous, and well-aligned with the
user’s most recent goals. It emphasizes fine-grained
aspects of intent understanding, such as detecting
the latest user intent(s), filtering out irrelevant or
noisy input, and making reasonable assumptions
in cases where the user’s intent is underspecified.
This guided approach allows the rewrite to serve
as a more effective interface between the user’s
dialogue and the planner.

4.2 Training Rewriter

While the Advanced rewriter effectively captures
many general principles of intent rewriting through
carefully designed prompts, there remain important
considerations that are difficult to encode explicitly
via prompt rubrics. Furthermore, downstream plan-
ners may exhibit inherent biases or preferences for
particular input formulations that cannot be easily
anticipated or specified through prompting alone.
To further enhance the performance of the
rewriter, we fine-tune the advanced summa-
rizer using Direct Preference Optimization (DPO)
(Rafailov et al., 2023) and name it DPO: human This
method leverages human preference annotations
on pairs of plans generated from the same source

conversation. For each annotated plan pair, we
trace back to the corresponding rewrites that pro-
duced them. The rewrite that led to the preferred
plan is treated as a positive sample, while the other
is treated as a negative sample. These preference
pairs serve as training signals to fine-tune a GPT-40
model, encouraging it to generate rewrites that
are more likely to result in plans preferred by hu-
mans. This setup enables indirect supervision of
the rewriter, without requiring manually curated
gold rewrites, by aligning the learning objective
with the downstream metric of planning utility.

Because high-quality human preference labels
are expensive and limited in quantity, we also train
an additional version of the rewriter using pseudo-
labels generated by our strongest automated plan
preference evaluator. This model (DPO:LLM) fol-
lows the same DPO training paradigm, offer-
ing a scalable but weaker alternative to human-
supervised fine-tuning. Training implementation
details is further described in Appendix D.

5 Evaluation

5.1 Experimental setup

Planner To evaluate the impact of different input
rewrites on downstream task planning, we adopt a
controlled setup using a static LLM-based planner.
In this setup, the planner agent does not interact
with the user or the environment; instead, it re-
ceives a rewritten user intent as input and generates
a task plan in the form of a directed acyclic graph
(DAG). The raw output from the language model is
parsed into a structured graph format (details pro-
vided in Appendix C.1, which allows us to verify
the acyclicity of the plan and supports structured
analysis. We use GPT-40 with temperature set
to O to ensure deterministic generation, minimiz-
ing randomness across different runs. The detailed
prompting setup used to guide the planner is de-
scribed in Appendix C.1.

Data For our experiments in the following sec-
tions, we sample and utilize 150 conversation in-
stances from RECAP due to cost constraints (eg.
human annotations). We include studies on the
entire dataset in Appendix F. We partition these
150 RECAP conversations into train, val, and
test splits with a ratio of 60-10-30. By holding
the planner fixed and systematically varying only
the rewritten input, we isolate the effect of intent
formulation on the resulting task decomposition.
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Figure 3: Structural and Semantic Differences between
plans generated using Dummy and Advanced rewrites, on
on RECAP-toy and IN3

This setup enables a controlled evaluation of how
different rewriting strategies influence the structure
and quality of generated plans.

5.2 Sensitivity

RECAP-toy | IN3-70

Length ‘
| Dummy  Tie

Advanced \ Dummy Tie Advanced

Short 26.67 2333 50.00 16.67  66.67 16.67
Medium | 20.00 20.00 60.00 8.62  70.69 20.69
Long 16.67  20.00 63.33 3333 66.67 0.00

Table 2: Plan Preference % between plans generated
from Dummy and Advanced rewrites, on RECAP-toy and
IN3 datasets.

We begin by qualitatively comparing the qual-
ity and characteristics of plans generated from raw
conversations versus rewritten user intent, to as-
sess the sensitivity of LLM planners to input varia-
tion. This motivates the need for effective con-
versation rewriters. For each conversation, we
generate two rewrites using Dummy and Advanced
rewriters, simulating two extremes of rewriting.
These are provided as input to a static LLM planner
(GPT-40, temperature=0) using a fixed prompt
template (Appendix C.1). Evaluation is conducted
on two benchmarks: a 70-instance subset of the IN3
dataset (Qian et al.), and a synthetic RECAP-toy
dataset of 70 USER-AGENT dialogues generated
with GPT-40 (Appendix B), following the same
procedure as the main RECAP data generation.

Table 2 shows that human annotators con-
sistently prefer plans generated from Advanced
rewrites on RECAP-toy, demonstrating that im-
proved input formulations lead to better plan qual-

ity, even with identical planning models. Figure 3
further shows that these plans diverge structurally,
in terms of node/edge counts and graph edit dis-
tance, especially as conversation length increases,
highlighting amplified variability in complex dia-
logues. While plan pairs typically show limited
semantic variability, potentially due to the inabil-
ity of metrics like BERTScore to capture subtle
distinctions, longer conversations tend to induce
greater divergence.

In contrast to RECAP , IN3 exhibits lower sen-
sitivity across all metrics. Human preferences are
more often tied, and structural and semantic dif-
ferences are reduced regardless of conversation
length. This indicates that IN3 lacks the realism
and complexity to surface input-sensitivity effects,
reinforcing the need for more challenging datasets
like RECAP .

To confirm these results are not planner-specific,
we replicate the experiments on RECAP-toy using
LLaMA 3.3-70B and GPT-03-mini (Figures 9, 10).
All models exhibit consistent sensitivity to rewrites
under identical prompt and decoding settings.

5.3 Comparing Rewriters

Building on our findings from Section 5.2, we be-
gin by evaluating the performance of the prompt-
based rewriters introduced in Section 4.1 in gener-
ating rewrites that support effective plan generation.
The analysis is conducted on conversations from
RECAP-train.!.

Structural and Semantic Comparisons: As
shown in Table 3, plans derived from different
rewrites exhibit noticeable structural divergence.
Notably, GED is highest between plans generated
from Basic and Advanced rewrites respectively, in-
dicating that these input variants induce markedly
different planning behaviors. Despite using identi-
cal prompts and models, such structural shifts re-
flect the planner’s high sensitivity to surface form
and implicit signals in the input.

Plan Preference Results in Table 4 highlight that
plans derived from Advanced rewriter are consis-
tently preferred across most intent-related chal-
lenges. This effect is particularly strong in con-
versations involving complex or evolving intents,
eg. Shifted Intent and Multi-Intent. In contrast,

!The prompt-based rewriters are zero-shot and not trained
for this task; we use the training partition to avoid contami-
nating the held-out test set used later for evaluating trained
rewriters.



Plan Comparison Ajoges Acgges GED Semantic Distance

Dummy vs Basic 1.68 2.18 4.99 0.10
Dummy vs Advanced 1.70 236 5.56 0.11
Basic vs Advanced 1.87 249 6.44 0.11

Table 3: Average structural and semantic distances be-
tween plans generated with prompt-based rewriters.

Challenge | Rewriter | Win Rate Tie Rate Loss Rate
Dummy 2143 59.52 19.05
Shifted Intent Basic 2.38 47.62 50.0
Advanced 50.0 45.24 4.76
Dummy 23.81 54.76 2143
Noisy Input Basic 11.90 54.76 33.33
Advanced 30.95 57.14 11.90
Dummy 14.29 47.62 38.09
Multi-Intent Basic 19.05 52.38 28.57
Advanced 40.48 52.38 7.14
. Dummy 12.5 55.0 325
Underspecified | gagic 20.0 70.0 100
nien Advanced |  17.50 75.0 7.50
Dummy 11.36 63.64 25.0
Perfect Intent Basic 15.91 72.73 11.36
Advanced 20.46 68.18 11.36
Total Dummy 16.67 56.19 27.14
Basic 13.81 59.52 26.67
Advanced 31.90 59.52 8.57

Table 4: Win/Tie/Loss percentage for each rewriter
grouped by challenge. Each rewriter competes against
all other rewriters.

for perfect intent cases, where the user’s request
is explicit, even plans generated from Dummy or
Basic rewrites yield competitive performance. In-
terestingly, in Underspecified Intent contexts, the
Advanced rewriter underperforms slightly, suggest-
ing that it may introduce unnecessary assumptions
that misalign with annotator expectations.

These findings reinforce that input formulation
plays a pivotal role in plan quality. While sophisti-
cated rewriting can significantly enhance perfor-
mance in complex scenarios, over-specification
may be detrimental when user intent is vague.

Model | Train | | Test

|Acc% F1 | |Acc% F1

baseline:gpt-40-mini | 3891 0.31 375 035
baseline:gpt-4o0 36.36  0.31 4375 0.39
baseline:gpt-4.1 38.55 0.38 45.0 046
ft:gpt-40-mini 69.09 0.67 48.75 0.48
ft:gpt-40 72.00 0.72| | 53.75 0.48
ft:gpt-4.1 7491 0.73| | 65.01 0.65

Table 5: LLM-as-Judge plan preference evaluator,
prompted and fine-tuned.

5.4 Learning to Predict Plan Preference

As discussed in Section 3.3, we explore the use
of LLMs to predict human plan preferences, en-
abling scalable evaluation. We compare baseline
and fine-tuned LLLM evaluators on train and test
splits sampled from RECAP-train, enriched with
more challenging comparisons between plans from
Advanced and DPO: human rewrites. Full details on
setup and sampling methodology are provided in
Appendix C.2.2.

Table 5 summarizes performance across of vari-
ous LLM models. The fine-tuned gpt-4.1 model
achieves the highest accuracy and F1 scores on
both train and test sets, substantially outperforming
zero-shot baselines (gpt-4o0-mini, gpt-4o0, and
gpt-4.1). These results highlight the promise of
fine-tuned LLMs as reliable and cost-efficient eval-
uators in nuanced plan comparison tasks.

5.5 Evaluation of Trained Rewriters

Next, we evaluate how trained rewriters introduced
in Section 4.2 compare to prompt-based rewriters.
Specifically, we compare two DPO-based rewrit-
ers against our best-performing Advanced rewriter
on the held-out RECAP-test set, using the static
GPT-40 planner. The DPO: human model is trained
using human preference labels from RECAP-train,
while DPO:LLM is trained on the same plan pairs
but uses preferences judged by an LLM-as-a-judge
evaluator. We employ our best-performing LLM
evaluator, a fine-tuned GPT-4.1.

As shown in Table 6, DPO: human achieves the
highest win rate across nearly all intent challenge
categories, outperforming the Advanced rewriter.
Notably, it yields substantial gains in more dif-
ficult scenarios such as Shifted Intent and Multi-
Intent, suggesting that aligning with human pref-
erences helps capture finer nuances of user intent.
In contrast, DPO: LLM performs competitively in cat-
egories like Perfect Intent and Multi-Intent, but
does not consistently surpass Advanced across all
intent-understanding categories. This indicates that
while LLM-generated supervision offers scalability,
it may still fall short of the effectiveness achieved
through human preferences. Figures 7 and 8 further
illustrate plan preferences across test cases.

These results highlight the value of human-
aligned supervision for training robust rewriters
and demonstrate DPO as a scalable path toward
adaptive, human-aligned input reformulation in
task-oriented dialogue systems.



Challenge | Rewriter | Win Rate Tie Rate Loss Rate
) DPO:human | 55.56 11.11 33.33
Shifted ntent ‘ DPO: LLM 22 B33 uu
Noisy Tnout PO:human |  44.44 3333 2222
sy np DPO:LLM 44.44 0.0 55.56
. DPO:human | 44.44 3333 222
Multi-Intent ‘ DPO: LLM 333 B33 3333
Underspecified | DPO:human 30.0 50.0 20.0
Intent DPO:LLM 20.0 60.0 20.0
DPO: human 75.0 12.50 12.50
Perfect Intent ‘ DPO: LLM 250 6250 1250
Total ‘ DPO: human 48.88 28.90 2222

DPO:LLM 28.88 33.33 37.78

Table 6: Win/Tie/Loss percentage for DPO:human vs
Advanced and DPO:LLM vs Advanced rewriters

6 Related Work

Multi-Turn Intent Understanding Intent under-
standing is a core component of dialogue systems,
particularly in multi-turn interactions where user in-
tent can be vague, drift over time, or be obscured by
noisy utterances. Traditional intent classification
approaches and slot filling solutions in Dialogue
State Tracking (DST) works (Budzianowski et al.,
2018; Wu et al., 2019; Mrksic et al., 2017; Rastogi
et al., 2020) aim to map user utterances to one or
more predefined intent categories, offering clear
signals to inform the system’s next action. How-
ever, these methods rely heavily on a well-defined
intent taxonomy and often struggle to generalize
across domains. To address these limitations, re-
search on intent discovery and out-of-distribution
(OOD) detection has emerged (Song et al., 2023b;
Wang et al., 2024b). While these methods aim
to identify novel or ambiguous intents, they face
challenges such as low precision in distinguishing
subtle intent variations and difficulty in adapting to
evolving user goals. A more flexible approach is
to directly rewrite user intent utterances, without
relying on predefined intent classes.

Query Rewriting In information-seeking and
Retrieval-augmented Generation(RAG) settings,
query rewriting has been shown to enhance re-
trieval quality by incorporating conversational con-
text. Wu et al. introduced CONQRR, a transformer-
based model trained with reinforcement learning
to optimize downstream retrieval rewards. Ye et al.
explored prompting LLMs like GPT-3 to generate
context-aware rewrites, showing that LLMs can in-
fer implicit information from earlier turns. Mo et al.
(2024) proposed CHIQ, a two-stage method where
an LLM first enhances the dialogue history and

then rewrites the final user query, achieving strong
performance on conversational search tasks. While
effective, these approaches are primarily designed
for search scenarios and assume a task-agnostic,
retrieval-focused environment. Intent rewriting in
realistic multi-round conversations for planning
and agent coordination remain underexplored.

LLM-Based Planning Recent work has ex-
plored LLMs for planning in ambiguous, multi-
step dialogue settings. Chen et al. (2024) proposed
ACT, a method that trains LLMs to proactively
ask clarification questions using a contrastive self-
training objective, promoting better discrimination
between plausible next steps. Deng et al. (2024)
introduced Self-MAP, a memory-augmented plan-
ner that uses reflection to adjust plans in response
to evolving user goals, showing improved perfor-
mance on complex instruction-following tasks. Al-
though these approaches show promising signals
in reasoning over ambiguity and intent drift, they
typically require carefully designed planning so-
lutions involving fine-tuning or the integration of
additional components—such as dedicated reflec-
tion modules or memory-augmented agents. RE-
CAP provides planner-agnostic benefits by operat-
ing independently of the underlying planner’s ar-
chitecture or capabilities and offers a more flexible
and interpretable representation.

This gap of flexible intent understanding for
agent planning is especially evident in the lack of
robust benchmarks that reflect the complexities of
real-world conversations. Qian et al. introduced
IN3, a benchmark that captures vague user intents
and focuses on generating clarification questions.
However, it does not adequately address other chal-
lenging scenarios, such as intent shifts or multiple
simultaneous intents.

7 Conclusion

We introduced RECAP , a new benchmark for eval-
uating intent rewriting in LLM-powered conversa-
tional systems, capturing key challenges like ambi-
guity, drift, and goal shifts. By reframing dialogue
into concise intent representations, rewriting en-
ables more accurate and flexible agent planning.
Our experiments show that both prompt-based and
DPO-trained rewriters significantly improve plan-
ning utility, even without explicit preference la-
bels. These results highlight intent rewriting as a
promising direction for building more effective and
adaptive dialogue agents.



Limitations

While our study provides a systematic analysis
of how input formulations affect plan generation
in goal-oriented dialogue systems, few limitations
still remain.

First, our experiments are restricted to text-only
input representations. However, real-world task-
oriented systems often involve multi-modal signals
such as visual context, system state, or user behav-
ior. Extending rewriting and planning approaches
to such multi-modal input settings remains an im-
portant direction for future work.

Secondly, we evaluate plans using structural met-
rics and human preference judgments to give us
strong signals on plan structure differences and
downstream applications. However, these metrics
may not fully capture cases where plans are struc-
turally different but functionally equivalent in more
actionable plan-execution settings. Our work can
be extended to environments and datasets, where
a more principled notion of plan equivalence or
plan executability is present, which can also allow
point-wise plan evaluation.

Lastly, while our approach learns to align
rewrites with human preferences, we do not explic-
itly optimize for plan structure. Future work could
explore structural supervision during rewrite train-
ing, incorporating signals from the plan itself into
the rewriting loop. Furthermore, a deeper analysis
into the characteristics of the rewrites and planner
signals (from open LLMs) can be made to study
the causality between the rewriter and plan output.

Ethics Statement

In this work, we propose a novel benchmark for
intent rewriting and understanding for agentic plan-
ning. Our dataset was synthetically generated using
LLMs which may introduce artifacts or biases in-
herent to the model used. However, we ensured to
vet all generated samples to remove any unwanted
instances, and also redact any use of real or fake
names and contact information in the generated
conversations.

In our evaluation methodology, we made sure
that experiments involving human annotators were
conducted in accordance with ethical research
guidelines. Annotators provided informed consent
for participation and the purpose of the task and
the manner in which their annotations will be used
was clearly communicated.

Artifacts used in our work, including publicly
available ones, have been clearly cited and utilized
with intended use. We also used commercially
available Al models (e.g., GPT) in a manner con-
sistent with their terms of service. These data are
intended for research purposes only and do not
contain real user information.

Finally, while our findings point toward im-
proved plan quality through rewrite optimization,
we caution against over-reliance on such systems
without human oversight, particularly in high-
stakes or safety-critical domains.
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intent understanding in e-commerce. In Conference
on Empirical Methods in Natural Language Process-

ing.

A Constructing Conversations

In order to suit our study setting, we aim to ob-
tain conversation instances between a USER and
an AGENT focused on task-oriented dialogue with
intent-related challenges. We utilize the existing
IN3 dataset (Qian et al.), as well synthetically gen-
erate our own.

A.1 Conversation Construction: IN3

Qian et al. provide an instruction understanding
& execution benchmark, where a task eg. “Find
a recipe for homemade pizza." is annotated with
a label vague, denoting if the task-intent is vague
or not. If the task is vague, the benchmark pro-
vides missing details with an inquiry ie. a
clarification question eg. “"Do you have any di-
etary restrictions or preferences?"" and possible
answer options to this query eg. “/"Gluten-free",
"Vegan'", "No restrictions"]"

We modify this dataset to build conversations
prompting gpt-4o with temperature=0 to con-
vert the initial task and missing details as a USER-
AGENT style conversation. The USER begins the
conversation with the task, and the AGENT fol-
lows up with each inquiry. The USER answers
the inquiry with one of the answer options pro-
vided, at random. The prompt used is shown in
Prompt:A.1.

We perform this method on 70 instances of the
IN3 data (to match the instances in RECAP-toy
dataset) and filter only those tasks which have been
labeled as vague.

Conversation Construction: IN3

You will be provided a task sentence and
some missing details as a list. Each missing
detail has an inquiry and corresponding
options. Your job will be to convert this to
a friendly User-Agent conversation. The User
begins conversation with the task. The Agent
responds with each missing detail inquiry
one at a time, and the User responds with
the option as response.

Task: task
Missing Details: missing_details

Each conversation should a
‘USER:’ or

Output Format:
list of strings starting with
‘AGENT:” .
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A.2 Conversation Construction: RECAP

To generate a conversation dataset with tougher
intent-understanding related challenges, we follow
the methodology described in Section 3.1. The
prompt used to generate such conversations is de-
tailed in Prompt:A.2 which aims to generate conver-
sations across different topics, conversation lengths
and intent-understanding challenges. During simu-
lation, we emphasize that the chat agent should not
attempt to solve the user’s task.

The topics included are cooking, program-
ming, health, flights, restaurants, taking inspiration
from existing intent classification works such as
Budzianowski et al. (2018).

The conversation length categories are defined
as:

short : where the total number of USER and
AGENT utterances is up to 5

medium : where the total number of USER and
AGENT utterances more than 5 but up to 10

long where the total number of USER and
AGENT utterances more than 10 but up to 20

Conversation Construction: RECAP

Generate a conversation between a USER and
an AGENT on the topic: {topic}.

The USER begins with a task-oriented query.
The AGENT only asks clarifying or follow-up
questions to understand the USER’s intent
and constraints. It must not solve the task.

The conversation should be {conv_len},
on-topic, and be coherent.

stay

must end with a USER
include

Each conversation
utterance and no utterance should
unrelated or off-topic remarks.

The challenge types are:
{challenge_instructions}

Output a single JSON object with challenge
names as keys and conversations as values.
Each conversation is a 1list of strings
starting with ‘USER:’ or ‘AGENT:’.

We utilize gpt-40 and
llama-v3p3-70b-instruct(Fireworks) models
with temperature=1 to generate varied and
diverse instances. @ We curate and pick 150
conversations generated using these different
models separately, and modify if needed to ensure
adherence to prompt instructions. Characteristics
of the dataset are illustrated in Figure 2.


https://api.semanticscholar.org/CorpusID:267897422

Examples of conversations across intent-
understanding categories are included in Table 7.

A simplified version of this prompt (using only
conversation length as criteria) is used to generate
70 instances for a toy dataset which we use for
sensitivity analysis in Section 5.2.

B Rewrite Generation

Prompt used to Generate Rewrites

Basic Rewriter
Summarize the
conversation

following USER-AGENT

Conversation:
{conversation}

Advanced Rewriter
Summarize the
conversation into
sentence describing
task.

The summary should reflect the user’s goal
or intent, in an instruction style.

USER-AGENT
concise
intended

following
a single,
the user’s

Do not introduce new information. Only
include what is stated or clearly implied.
Conversation:

{conversation}

Rewrites are generated using gpt-4o0 with
temperature set to 0. Prompt:B outlines the
prompt used to generate rewrites for the Basic
and Advanced summarizers. The dummy rewriter
simply outputs the input conversation as a string.

C Plan Generation and Evaluation

C.1 Generating Plans

We use the following prompt to generate plans
given an input task i.e. output of a rewriter. For
RECAP, we use a static gpt-4o planner with
temperature=0, so as to obtain as deterministic
outputs from the planner as possible.

Prompt used for Generating Plans

You are a planner responsible for creating
high-level plans to solve any task.
Understand the user intent from the input
and plan accordingly. Consider breaking down
complex tasks into subtasks.

Represent your plan as a graph where each
node corresponds to a step, and each edge
represents a dependency between two steps.
If a node requires the output from a previous
node as an input, ensure it is included in
the edge list.
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The output should be structured in the
following JSON format:

‘nodes’: <list of JSON nodes with keys ‘id’:
<node id as integer>, ‘name’: <sub-task node
name> >,

‘edges’: <list of tuples [node_id, node_id]>

Input:
{input}

After obtaining the plan generated from the
LLM, the plan is converted to DAG format using
networkx:MultiDiGraph utilizng the correspond-
ing nodes and edges.

C.2 Evaluating Plans

In Section 3.2, we defined the three categories of
metrics we used to evaluate plans - structural, se-
mantic and preference based.

C.2.1 Structural & Semantic Evaluation of
Plans

Structural Metrics: Apoges = N1 — Ny and
Acgges = F1 — Eo, are computed using in-
built networkx functions, which corresponds
to the difference in the number of nodes and
edges, respectively, between two plans. We
use the optimize_graph_edit_distance func-
tion within networkx to comput the graph edit dis-
tance between the two plans GED(P;, P,). This
measures the minimum cost of edit path (sequence
of node and edge edit operations) transforming plan
P to P, such that they are isomorphic. While the
generic graph_edit_distance function may be
computationally expensive and slow, especially for
larger graphs, the optimized version helps calculate
the nearest approximation of GED for such cases.

Semantic Metrics: We combine the text from
all task nodes from plan P; and P, respectively
and report the F1 BertScore (Zhang et al., 2019)
between them as

Semantic Distance =1 - BertScore( Py, Ps).

C.2.2 Plan Preference

For each conversation instance, given two plans
generated correspondingly from two different
rewriters (eg. Dummy vs Basic), we use human
as well as LLM evaluators to measure the pair-wise
performance between the two generated plans.
The evaluators are provided a conversation, two
plans A and B (when presenting plans A & B to the
user, the plans from the rewriters eg. dummy and
basic are randomly shuffled to ensure no positional



Shifted Intent

Noisy Input

Underspecified Intent

Multi-Intent

Perfect Intent

USER: I want to bake a
cake for my birthday.
AGENT: What kind of
cake are you thinking of?
USER: Actually, I'd
rather make some fresh
chocolate chip cookies.

USER: Hi, how’s it go-
ing? I need to cook din-
ner tonight.

AGENT: Hello! Sure, I’ll
be happy to assist you to-
day! I can help you with
cooking. What type of
dinner are you planning
to make?

USER: I need to cook
something for a party.
AGENT: How many peo-
ple are you planning to
serve?

USER: Not sure, but I
want it to be easy to eat.

USER: I want to make a
meal that’s both healthy
and tasty.

AGENT: Are you look-
ing for a specific cuisine
or dietary restriction?
USER: I'm open to any-
thing, but it should be
quick to prepare and not

USER: I want to make
chicken parmesan with
spaghetti for 4 people. Do
you have a good recipe?
AGENT: Would you like
to use homemade or store-
bought marinara sauce?
USER: TI'll use home-
made sauce and serve it
with a side salad.

USER: Thank you for as-
sisting me! Umm, some-
thing with chicken.

too expensive.

Table 7: Example USER-AGENT dialogues with short conversation length in the cooking domain, illustrating

different intent-related challenges.

You will be provided with a conversation between a user and a chat agent.

The user makes an initial query, and the chat agent asks some clarifying questions to better understand the
user's intent.
Note:

1. In some cases, the user's intent may be fully clear through the conversation (e.g., "For dinner, | want to
cook white sauce pasta with chicken").

2. While in other instances, few aspects of the user's intent remain vague (e.g., "l want to have pasta for
dinner”).

3. In some cases, the user may backtrack on their initial query and ask help regarding a different task
(e.g., the user initially asks the agent to help find restaurants with Japanese cuisine, but later decides
they want Italian cuisine instead).

4. In some cases, the user may provide multiple tasks to the agent (e.g., "Find me programming
resources for Web Development and Mobile App Development").

Now, keeping in mind the entire conversation between the user and agent, two plans have been generated
to perform actions which shall help fulfil the task described in the above conversation.

Aplan breaks down the user's task(s) into various sub-tasks which are connected with arrows showing a
logical flow from one sub-task to another.

Your task is to choose which plan is better to solve the task.
Please refer to the rubrics below when conducting the comparison:

« latest_intent: A good plan should fulfill the user's updated goals/intent from the conversation.

« fabrication: A good plan should be accurate and not include unnecessary, repetitive or false tasks.

« task_granularity: A good plan should provide more specific and detailed steps.

+ task_completeness: A good plan should include all necessary steps to achieve the user goal.

+ logical_order: A good plan should arrange tasks in a coherent, logical sequence. If tasks can be done
in parallel, they should be done so for better efficiency.

Please select your preference: PlanA, PlanB, or TIE if you feel both plans are equally good and capable of
solving the task.

Figure 4: Rubrics for Plan Evaluation

bias). The evaluators are further provided instruc-
tions with criteria to choose the best plan among
the two — A, or B, or a tie if both plans are equally
good.

It is to be noted that (a) the evaluators are not
provided any information about the rewriter (input
to planner); and (b) that the plans are generated
using a static planner (detailed in Section C.1) so
as to indirectly measure the impact of the corre-
sponding rewriter on the downstream plan perfor-
mance/preference.

Human Annotators: We recruited 3 expert in-
house annotators, who are proficient in English,
and currently based in the United States of Amer-
ica, with at least a graduate-level degree. The an-
notators were clearly explained the objective of the
task and how their annotations would be utilized.
To measure agreement between the annotators we
use average of the pair-wise accuracy scores be-
tween each of the annotators. We also note the
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USER: | need to cook something for a party.
AGENT: How many people are you planning to serve?

USER: Not sure, but | want it to be easy to eat.

1Determine Dish T 2Estimate Number of GL

3Select Recil

.

4List Ingredier

5Purchase Ingredie

6Prepare Ingredie

7Cook Dis

8Serve Dis

Figure 5: Interface for Human Preference Annotation

subjectivity and difficulty of the task, which leads
to moderate to good agreement scores across our
human-evaluation studies.

The instructions provided to the human annota-
tors were the same as provided to the LLM Evalu-
ator which is detailed in Figure 4. An example of
the interface used for human annotation is shown
in Figure 5. Once the annotations are obtained,
the majority label of the annotators is used as the
preference label for the plan-pair.

To compare how plans from different rewrit-
ers were preferred by humans, we report the
Win/Tie/Loss rates for each rewriter i.e. for all
plan-pairs, how many times was the plan from the
corresponding rewriter preferred (win), not pre-
ferred (loss), or a tie.

We also build a ranking mechanism to rank
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Figure 6: Ranked Analysis: Human Preference of Plans across Rewriters (Dummy, Basic and Advanced) on
RECAP-test: Advanced ranks 1st across all intent categories

the 3 plan-pairs per conversation instance. For
the three rewrites and corresponding plans i.e.
Dummy, Basic and Advanced, a +1 score is given
to a rewriter if it is preferred over another, +0.5
given to both rewriters if there is a TIE, else 0 is
given for losses. The total scores across plan-pairs
for a conversation instance are used to rank the
performance of these rewriters for that instance,
using standard ranking mechanism eg. if Basic
and Advanced both have +2.5 scores while Dummy
has a score of 0, the ranks are:

Advanced rewriter: Rank 1

Basic rewriter: Rank 1

Dummy rewriter: Rank 3

The results from this ranked analysis is shown in
Figures 6a, 6b, 6¢c, measuring the count that each
rewriter was ranked r; across the different intent-
understanding challenges, topics, and conversation
lengths in our dataset.The average pair-wise inter
annotator accuracy is 75.4%.

LLM Evaluator: Human annotations are not
scalable, hence we rely on LLMs as plan-
preference evaluators on a large sclae. The LLM
evaluator is also prompted with the same instruc-
tions as given to the users using Prompt:C.2.2.

Prompt used for Evaluating Plans

You will be given a task-oriented dialogue
between a USER and an AGENT as well
as two plans. Your task is to choose the
plan that better addresses the user’s intent.

Please refer to the rubrics below when
conducting the comparison: RUBRICS

The plans are evaluated on their ability to
fulfill the above rubrics. Both plans are
considered equally good when they are equally
capable of fulfilling the above rubrics. In
that case, output TIE.
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Conversation:conv
Plan A: planA
Plan B: planB

fulfills the user’s
’B’, or 'TIE’."

Which plan better
request? Reply with A’

To further improve LLM evaluators, we fine tune
them on the RECAP-train data with the majority
vote of the human preference labels obtained ear-
lier. We additionally add 40 samples comparing the
Advanced vs DPO: human plans from Section 5.5 so
as to include tougher instances of plan comparison
while training our fine-tuned evaluator. These in-
stances are also generated only from conversations
included in RECAP-train, so as to not contaminate
the RECAP-test dataset.

These samples (RECAP-train + tougher in-
stances) are then split into train-val-test splits
(60-10-30) for the sole purpose of fine-tuning LLM
evaluators. We utilize the same Prompt:C.2.2 as
previously to prepare the training, validation and
test data. For our baseline, we use a zero-shot ap-
proach, prompting models gpt-4o0-mini, gpt-4o0
and gpt-4.1. Furthermore, use OpenAl fine-
tuning for each of these models using the human
majority label, with hyperparameters: batch_size,
learning_rate_multiplier, and n_epochs set
to auto.

D Training Rewriters using DPO

In Section 4.2, we described adopting a preference-
based learning strategy using Direct Preference Op-
timization (DPO), where given a pair of plans eval-
uated, we trace each plan back to its corresponding
rewrite. The rewrite responsible for the preferred
plan is treated as the preferred_output, and the
other as the non_preferred_output. These pref-
erence pairs serve as supervisory signals to fine-
tune a gpt-4o model, optimizing it to generate
rewrites that are more likely to result in preferred



plans. The prompt used to prepare the data is as
follows in Prompt:D.

Prompt used for Training Rewriters using
DPO

You will be given a task-oriented dialogue
between a USER and an AGENT. Your task is
to reinterpret or rewrite the conversation
in a format that clearly conveys the USER’s
intent, optimized for a downstream planning
agent that will decompose the request into
actionable subtasks.

Based on your judgment, you may choose
to rewrite the conversation or retain the
original format.

Conversation: conversation

Once again, we train the DPO-rewriter on
RECAP-train using either the human or LLM
based preference labels which corresponds to the
preferred_output or non_preferred_output.
The resulting model is used to generate rewrites
with Prompt:B, and subsequently plans using
Prompt:C.1 — as previously to maintain consistency
— on the RECAP-test set.

We train the gpt-40-2024-08-06 model using
OpenAl DPO fine-tuning, with hyperparameters
beta=0.1, n_epochs=3, batch_size=auto and
learning_rate_multiplier=auto.

D.1 DPO:human Downstream Performance

After training the DPO model on the train data with
human preference labels, we obtain the correspond-
ing rewrite and plan (DPO:human) on RECAP-test.
To restrict cost due to a cross product of comparison
between rewriters, we only compare DPO:human
plans with the best performing Advanced summa-
rizer (from Table 4).

The results of this comparison using ranked anal-
ysis is shown in Figures 7a, 7b, 7c corresponding to
intent-understanding challenge, topic, and conver-
sation length respectively. The average pair-wise
inter annotator accuracy is 64.3%.

D.2 DPO:LLM Downstream Performance

We repeat the same analysis, this time using which
is the rewriter model trained using LLM (gpt-4.1
as it was the best performing model from Ta-
ble 5) on RECAP-test. The results of the compar-
ison between plans generated from DPO:LLM and
Advanced rewriters is shown in Figures 8a, 8b, and
8c. The average pair-wise inter annotator accuracy
is 61.48%.

15

E Sensitivity Analysis

E.1 Toy Datset Construction

To construct the toy dataset utilized for sensitivity
analysis we generate USER-AGENT style conver-
sations using gpt-4o, temperature=0 using a
prompt similar to A.2 without specifying explicit
challenge instructions. The conversation length i.e.
conv_len categories are defined as:

short : where the total number of USER and
AGENT utterances is up to 5

medium : where the total number of USER and
AGENT utterances more than 5 but up to 10

long where the total number of USER and
AGENT utterances more than 10 but up to 20

E.2 Sensitivity Analysis Across Planners

Although we use a static planner through our ex-
periments, we extend our initial sensitivity analysis
(Section 5.2) to various state-of-the-art LLM-based
planners. This is done to perform a preliminary
validation experiment that the results we see across
our work is not a sole result of the planner quality
we use i.e. GPT-4o.

We utilize the prompt defined in Appendix C.1
and employ LLaMA 3.3-70B with a temperature
setting of 0 and GPT-03-mini to generate plans us-
ing Dummy and Advanced rewriters on RECAP-toy
data, as consistent with Section 5.2.

We use the same metrics defined in 3.2 to ob-
serve plan variation to input. Figures 9 10 also
show similar trends to GPT-40 (3) indicating that
plan outputs are sensitive to the input characteris-
tics — output of the rewriter.

F RECAP Benchmark

We release 750 conversations as the RECAP bench-
mark. In our experiments, due to cost and effort
constraints because of human annotation, we only
utilized 150 of these conversation instances.

Stats The RECAP dataset is uniformly dis-
tributed across five distinct topics — cook-
ing, programming, flights, restaurants, and
health — with 150 instances each.  Simi-
larly, the intent_category dimension covers the
different intent-understanding related categories:
shifted_intent, noisy_input, underspecified_intent,
multi_intent, and perfect_intent, also with 150 in-
stances each. Conversation lengths (conv_1len) are
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Figure 7: Ranked Analysis: Human Preference of Plans generated between Advanced and DPO:human on
RECAP-test: DPO: human ranks 1st across all intent categories, conversation lengths and most topics
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Figure 8: Ranked Analysis: Human Preference of Plans generated between Advanced and DPO: LLM on RECAP-test:
DPO:LLM ranks better for short conversation lengths and performs comparatively well across intent categories
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Figure 9: Sensitivity analysis for LLAMA Figure 10: Sensitivity analysis for 03-mini
evenly distributed across three buckets: short (250), Intent Category | WinRate Tie Rate Loss Rate
medium (250), and long (250), ensuring balance Shifted Intent 35.33 40.00 24.67
. . Noisy Tnput 26.67 47.33 26.00
across all dimensions. Multi-Intent 2400 4600 3000
Underspecified Intent 22.00 54.00 24.00
. . Perfect Intent 26.00 35.33 38.67
Vetting The synthetically generated conversa- erect en
Total 26.80 4453 28.67

tions are vetted for adherence to instructions, over-
all coherency, and to ensure no bias or malicious
content is present. Personal information such as
names, contact details (even if generated by the
LLMs, serving as placeholders) were redacted.

Table 8: Win/Tie/Loss percentage for plans generated
from DPO: human vs Advanced across intent categories

The results are shown in Table 8, where Win Rate
Evaluation Using the best-performing fine-tuned  jonotes the plan from DPO:human was preferred
evaluator (Table 5), we evaluate the plans generated () Aqvanced rewriter, and Loss Rate denotes vice
on the entire RECAP dataset. The plans are gen-  yerqn We observe there is largely neutral prefer-
erated using DPO:human and Advanced rewriters, e across intent categories.
utilizing the planner described in Appendix C.1.
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