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Abstract
Understanding user intent is essential for effec-001
tive planning in conversational assistants, par-002
ticularly those powered by large language mod-003
els (LLMs) coordinating multiple agents. How-004
ever, real-world dialogues are often ambiguous,005
underspecified, or dynamic, making intent un-006
derstanding a persistent challenge. Traditional007
classification-based approaches struggle to gen-008
eralize in open-ended settings, leading to brit-009
tle interpretations and poor downstream plan-010
ning. We propose RECAP (REwriting Conver-011
sations for Agent Planning), a new benchmark012
designed to evaluate and advance intent rewrit-013
ing, reframing user-agent dialogues into con-014
cise representations of user goals. RECAP cap-015
tures diverse challenges such as ambiguity, in-016
tent drift, vagueness, and mixed-goal conversa-017
tions. Alongside the dataset, we introduce an018
LLM-based evaluator that compares planning019
utility given a user-agent dialogue. Using RE-020
CAP , we develop a prompt-based rewriting ap-021
proach that outperforms baselines. We further022
demonstrate that fine-tuning two DPO-based023
rewriters yields additional utility gains. Our024
results highlight intent rewriting as a critical025
and tractable component for improving agent026
planning in open-domain dialogue systems.027

1 Introduction028

Understanding user intent is a foundational chal-029

lenge in building effective conversational assistants,030

particularly in systems powered by large language031

models (LLMs) coordinating multiple agents to032

complete complex tasks (Xu et al., 2024b; Song033

et al., 2023a; Wang et al., 2024a). In such sys-034

tems, accurate intent detection is crucial for effec-035

tive planning, where the system must determine036

what action to take and how best to delegate or ex-037

ecute it across agents. Misinterpreting user intent038

can lead to planning errors, degraded user experi-039

ence, and failure to complete tasks efficiently.040

In real-world multi-turn conversations, user in-041

tent is rarely static or perfectly stated (Zhou et al.,042

2024). Users may revise goals mid-conversation, 043

introduce ambiguous or incomplete commands, or 044

digress into side topics. These natural phenom- 045

ena of user-agent dialogue, such as vagueness, in- 046

tent drift, and ellipsis, pose significant challenges 047

for current planning modules that rely on a clear 048

and up-to-date understanding of user goals. Tradi- 049

tional approaches to intent understanding, such as 050

intent classification, often rely on a fixed schema 051

of predefined intents and slots (Goo et al., 2018; 052

Budzianowski et al., 2018). While effective in 053

narrow domains, these approaches struggle with 054

open-ended or evolving conversations common in 055

LLM-powered assistants (Arora et al., 2024). Such 056

methods are susceptible to intent drift within con- 057

versation, fail to generalize to unseen or out-of- 058

domain queries, and often force user inputs into 059

rigid categories that do not reflect their actual goals. 060

These limitations make it difficult for downstream 061

planning modules to act on user input with the 062

necessary flexibility and accuracy. More adaptive 063

strategies are, hence, needed to handle the fluid, 064

underspecified, and dynamic nature of real human 065

intent in open-domain systems. 066

One promising strategy is intent rewriting: in- 067

troducing a module that rephrases the user-agent 068

dialogue into a concise, clarified representation of 069

the user’s most recent intent (Galimzhanova et al., 070

2023). This rewritten intent distills the relevant 071

context, removes distractions, resolves ambiguity, 072

and refocuses the system on the core user goal. By 073

providing a cleaner target for action, intent rewrites 074

enable downstream planners to make better deci- 075

sions with less reliance on the full dialogue history. 076

Despite the growing interest in task-oriented dia- 077

logue and agent planning (King and Flanigan, 2024; 078

Xu et al., 2024a; Gan et al., 2025; Qiao et al., 2024), 079

there remains a lack of benchmarks specifically 080

designed to evaluate intent rewriting in this con- 081

text. Existing datasets either focus narrowly on slot- 082

filling and task completion (Budzianowski et al., 083
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Figure 1: Comparing Agent Planning with explicit modeling of User Intent and Planning based on raw dialogue.

2018) or treat rewriting as a standalone summariza-084

tion problem (Li et al., 2023), without grounding it085

in agent behavior or planning effectiveness. As a086

result, there is limited empirical understanding of087

what makes a rewrite effective for agent planning.088

To bridge this gap, we introduce RE-089

CAP (REwriting Conversations for Agent090

Planning), a new benchmark that systematically091

captures diverse intent rewriting challenges across092

domains, including under-specified, drifted intent093

and multi-intent conversations. Alongside this094

dataset, we provide an effective LLM-based evalu-095

ator that judges the quality of agent plans given096

dialogue history and rewrites. Using RECAP , we097

develop a prompt-based intent rewriter that consis-098

tently outperforms baseline approaches. Building099

on this, we fine-tune two DPO-based rewriters100

starting from our best-performing zero-shot model,101

achieving further gains in planning utility.102

2 Explicit Intent Modeling for Planning103

Many task-oriented applications, such as virtual as-104

sistants, engage users through dialogue interfaces105

and increasingly rely on multi-agent collaboration106

behind the scenes to decompose and execute com-107

plex tasks. This architecture demands accurate and108

adaptable intent understanding, as well as effec-109

tive agent planning. As illustrated in Figure 1, we110

assume the presence of a base chat agent that con-111

ducts multi-turn conversations with the user, main-112

taining a trajectory of USER–AGENT dialogue.113

Notably, the chat agent does not directly solve the114

task itself, but instead keeps the conversation flow-115

ing by presenting intermediate results generated by116

the underlying multi-agent system.117

Complementing the chat agent is a planner that118

interprets user intent from the dialogue history up 119

to the current point and generates a plan to coor- 120

dinate action agents in order to complete the task 121

(e.g., searching the web, drafting an email, creat- 122

ing a file). The planner produces a structured plan 123

represented as a Directed Acyclic Graph (DAG), 124

which captures the sequence and dependencies of 125

sub-tasks required to achieve the user’s goal. Each 126

node in the DAG represents a sub-task, while edges 127

define the logical flow between them. The plan- 128

ner is implemented using state-of-the-art LLMs, 129

enabling flexible, context-aware plan generation. 130

While it may seem straightforward to feed the 131

entire conversation history directly to the planner 132

and rely on it to infer the implicit user intent, this 133

approach can be problematic, particularly in real- 134

world settings where User–Agent interactions are 135

often noisy and include irrelevant or ambiguous 136

turns. Specifically, we identify four common chal- 137

lenges in everyday User–Agent conversations that 138

can lead to confusion or failure in planning: un- 139

derspecified intent, where the user’s goal lacks 140

sufficient detail; noisy input, where irrelevant or 141

off-topic dialogue turns obscure the main objective; 142

shifted intent, where the user changes their goal 143

mid-conversation; and multi-intent, where multi- 144

ple distinct goals are presented simultaneously or 145

sequentially without clear separation. 146

Table 1 presents qualitative examples of short 147

dialogues with complex intents that confuse plan- 148

ners when processed in raw form. In the first di- 149

alogue, the user initially mentions an interest in 150

Italian restaurants but later shifts to searching for a 151

Mexican restaurant. The plan generated from the 152

raw dialogue incorrectly interprets the chat agent’s 153

suggestions (e.g., pizza and pasta) as user requests 154
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Example dialogue Problematic plan from raw dialogue

Underspecified and Shifted Intent

USER: I'm looking for a restaurant that serves Italian food,

AGENT: Are you looking for pasta or pizza

USER: Actually, I think I'd rather have Mexican food instead

Identify Italian
restaurant

search for pizza

search for pasta

Switch to Mexican
restaurant

list
recommendation

Multi-Intent

USER: I want to book a flight from Denver to Seattle and also
get information about hotels in Seattle', 

AGENT: Are you looking for a specific type of hotel, such as
luxury or budget-friendly?

USER: Yes, I'm looking for something mid-range

Search for flights
(Denver-Seattle) 

Book flight

Search for mid range
hotels in Seattle

Book hotel

Table 1: Qualitative examples of short dialogues with complex intents that confuse the planners when provided in
raw form. Red nodes highlight issues in the generated plans.

and fails to recognize that the user’s original intent155

is no longer relevant. In the second example, the156

user wants to book a flight but only seeks infor-157

mation about hotels. The planner, given the full158

dialogue without explicit intent modeling, mistak-159

enly proceeds to book both the flight and a hotel.160

With explicit intent modeling, the correct interpre-161

tation would be: "search for a Mexican restau-162

rant" and "book a flight from Denver to Seattle and163

gather information about mid-range hotels in Seat-164

tle." While these examples are brief due to space165

constraints, such confusion is far more frequent in166

longer, more complex dialogues.167

Quantitatively, we observe notable differences in168

preference, semantics, and structure between plans169

generated from raw conversation history and those170

generated from rewritten inputs. These discrepan-171

cies are consistent across multiple planning mod-172

els, including the reasoning-capable o3-mini, high-173

lighting the importance of clear and well-structured174

intent representations for effective agent planning.175

We present detailed results in Section 5.2.176

3 RECAP Benchmark177

Existing agent planning benchmarks either assume178

clearly defined tasks with well-specified require-179

ments (e.g., TravelPlanner (Xie et al.)) or focus180

solely on vague or underspecified intent (e.g., IN3181

(Qian et al.)). As demonstrated in Section 2, addi-182

tional challenges such as intent shifts and nuanced183

details can lead to suboptimal downstream plan-184

ning. To enable a deeper understanding of how to185

Figure 2: RECAP Dataset Characteristics

effectively represent complex user intent, we intro- 186

duce RECAP , a benchmark designed to evaluate 187

the ability of conversational rewriters to capture ac- 188

curate, unambiguous, up-to-date, and comprehen- 189

sive intent for downstream multi-agent planning. 190

3.1 Dataset Construction 191

Our goal is to construct a diverse and challenging 192

dataset of user-agent conversations for intent un- 193

derstanding in planning tasks. We synthetically 194

generate two-way dialogues that reflect realistic 195

user-agent interactions. Specifically, we create con- 196

versations that span a variety of topics (cooking, 197

programming, health, flights, restaurants), conver- 198

sation lengths (short, medium, and long), and in- 199

tent understanding categories (shifted intent, noisy 200

input, underspecified intent, multi-intent, perfect in- 201

tent), as illustrated in Figure 2. This design allows 202

our dataset to capture a wide range of scenarios 203

relevant to planning tasks based on understanding 204

complex user intent. 205

We adopt a prompt-based generation approach 206

(see Appendix A.2) using LLMs (GPT-4o OpenAI 207
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(2024) and LLaMA 3.3-70B Meta (2024)) to simu-208

late a back-and-forth conversation on a given topic209

between a user and a chat agent. Conversations are210

also designed to be challenging in at least one of211

the predefined categories.212

The generated dialogues undergo careful human213

vetting to ensure they are coherent, adhere to the214

assigned topic and challenge type, and follow the215

specified conversation-length constraints. We also216

filter out any dialogues in which the chat agent hal-217

lucinates or attempts to solve the user’s task. Ad-218

ditionally, since intent analysis is performed only219

on user utterances, we require each conversation to220

end with a user turn, and discard any that violate221

this constraint. In total, RECAP comprises 750222

validated conversation instances (see Appendix F).223

3.2 Evaluation Metrics224

Having constructed a set of challenging user-agent225

conversations, we apply various rewriters to each226

conversation and feed the resulting rewritten intent227

into a planner to generate the final task plans. We228

evaluate the quality of these plans in a pair-wise229

method using three main categories of metrics.230

Structural Metrics To capture structural differ-231

ences between the plan DAGs, we compute the232

following metrics:233

Node and Edge Count Differences: ∆nodes =234

N1 − N2, ∆edges = E1 − E2, where Ni and235

Ei denote the number of nodes and edges in plan236

Pi, respectively.237

Graph Edit Distance (Sanfeliu and Fu, 1983)238

GED(P1, P2) , which measures the minimum cost239

of edit path to transform plan P1 to P2 such that240

they are isomorphic.241

These metrics provide a quantitative view of how242

structurally similar or divergent two plans are.243

Semantic Metrics We assess the semantic dis-244

tance between generated plans using BERTScore245

(Zhang et al., 2019). Specifically, we compute246

Semantic Distance as: 1−BERTScore(P1, P2),247

where P1 and P2 are the two plans being compared.248

Preference Metric As the ultimate measure of249

utility, we assess whether the planner produces the250

most effective plan given a rewritten intent. In251

this work, we employ human annotators as well252

as utilize LLM-based evaluators, who are asked to253

judge plan preference on the following rubrics:254

• Latest Intent: The plan should reflect the255

user’s most recent goals or intent as expressed 256

in the conversation. 257

• Fabrication: The plan should avoid unneces- 258

sary, repetitive, or fabricated steps. 259

• Task Granularity: The plan should offer spe- 260

cific and detailed actions. 261

• Task Completeness: The plan should include 262

all necessary steps to fully accomplish the 263

user’s goal. 264

• Logical Order: Tasks should be arranged in 265

a coherent, logical sequence. Parallelizable 266

tasks should be grouped accordingly for effi- 267

ciency. 268

We employ a pairwise comparison setup: two 269

rewritten intents from the same source conversa- 270

tion are each fed into the planner, producing two 271

separate plans. Human annotators, following the 272

rubric above, are shown both plans (in randomized 273

order) and asked to select the one that better aligns 274

with the user’s intended goal. If both are judged 275

equally effective (or ineffective), a tie is recorded. 276

More on the implementation details of all met- 277

rics and human evaluation study is described in 278

Appendix C.2. 279

3.3 LLM-as-Judge Evaluator 280

While human evaluation provides high-quality pref- 281

erence signals, it is both costly and time-consuming. 282

To mitigate this, we explore the feasibility of train- 283

ing models to predict human preferences between 284

pairs of plans. As a baseline, we prompt a frozen 285

large language model (LLM) to select the preferred 286

plan in a zero-shot setting, mirroring the structure 287

of the human annotation task. 288

Beyond this, we fine-tune two preference models 289

using the collected human labels on RECAP-train 290

with the majority vote of the human preference 291

labels obtained through the evaluation process de- 292

scribed later in Section 5.3. These models take as 293

input a source conversation along with two candi- 294

date plans and are trained to predict the preferred 295

plan or indicate a tie. Further implementation and 296

sampling details are mentioned in Appendix C.2.2. 297

4 RECAP Rewriters 298

4.1 Constructing Rewrites 299

We begin by introducing two baseline rewriters 300

used to evaluate the impact of rewriting quality on 301

downstream planning. 302
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Dummy rewriter simply reproduces the original303

multi-turn USER-AGENT conversation verbatim,304

without any modification or abstraction. This base-305

line allows us to observe how the planner responds306

to raw, unprocessed dialogue input.307

LLM-based Basic rewriter performs a direct308

summarization of the full conversation history us-309

ing a generic summarization prompt (Appendix B).310

This approach does not receive any specific instruc-311

tions regarding which parts of the conversation are312

important to preserve, such as intent shifts or irrel-313

evant contents. As a result, the summary may omit314

critical information required for accurate planning,315

making it a useful reference point for assessing the316

added value of more targeted rewriting approaches.317

To capture the nuanced aspects of query rewrit-318

ing, we adopt a prompt-based generation approach319

(see Appendix B) using GPT-4o (OpenAI, 2024)320

with a temperature setting of 0. This setup is321

used to generate high-quality rewrites optimized322

for downstream planning, which we refer to as the323

Advanced rewriter.324

The Advanced rewriter produces a refined and325

task-aware representation of the original multi-turn326

conversation. Unlike generic summarization, it is327

explicitly prompted to produce rewrites that are328

concise, unambiguous, and well-aligned with the329

user’s most recent goals. It emphasizes fine-grained330

aspects of intent understanding, such as detecting331

the latest user intent(s), filtering out irrelevant or332

noisy input, and making reasonable assumptions333

in cases where the user’s intent is underspecified.334

This guided approach allows the rewrite to serve335

as a more effective interface between the user’s336

dialogue and the planner.337

4.2 Training Rewriter338

While the Advanced rewriter effectively captures339

many general principles of intent rewriting through340

carefully designed prompts, there remain important341

considerations that are difficult to encode explicitly342

via prompt rubrics. Furthermore, downstream plan-343

ners may exhibit inherent biases or preferences for344

particular input formulations that cannot be easily345

anticipated or specified through prompting alone.346

To further enhance the performance of the347

rewriter, we fine-tune the advanced summa-348

rizer using Direct Preference Optimization (DPO)349

(Rafailov et al., 2023) and name it DPO:human This350

method leverages human preference annotations351

on pairs of plans generated from the same source352

conversation. For each annotated plan pair, we 353

trace back to the corresponding rewrites that pro- 354

duced them. The rewrite that led to the preferred 355

plan is treated as a positive sample, while the other 356

is treated as a negative sample. These preference 357

pairs serve as training signals to fine-tune a GPT-4o 358

model, encouraging it to generate rewrites that 359

are more likely to result in plans preferred by hu- 360

mans. This setup enables indirect supervision of 361

the rewriter, without requiring manually curated 362

gold rewrites, by aligning the learning objective 363

with the downstream metric of planning utility. 364

Because high-quality human preference labels 365

are expensive and limited in quantity, we also train 366

an additional version of the rewriter using pseudo- 367

labels generated by our strongest automated plan 368

preference evaluator. This model (DPO:LLM) fol- 369

lows the same DPO training paradigm, offer- 370

ing a scalable but weaker alternative to human- 371

supervised fine-tuning. Training implementation 372

details is further described in Appendix D. 373

5 Evaluation 374

5.1 Experimental setup 375

Planner To evaluate the impact of different input 376

rewrites on downstream task planning, we adopt a 377

controlled setup using a static LLM-based planner. 378

In this setup, the planner agent does not interact 379

with the user or the environment; instead, it re- 380

ceives a rewritten user intent as input and generates 381

a task plan in the form of a directed acyclic graph 382

(DAG). The raw output from the language model is 383

parsed into a structured graph format (details pro- 384

vided in Appendix C.1, which allows us to verify 385

the acyclicity of the plan and supports structured 386

analysis. We use GPT-4o with temperature set 387

to 0 to ensure deterministic generation, minimiz- 388

ing randomness across different runs. The detailed 389

prompting setup used to guide the planner is de- 390

scribed in Appendix C.1. 391

Data For our experiments in the following sec- 392

tions, we sample and utilize 150 conversation in- 393

stances from RECAP due to cost constraints (eg. 394

human annotations). We include studies on the 395

entire dataset in Appendix F. We partition these 396

150 RECAP conversations into train, val, and 397

test splits with a ratio of 60-10-30. By holding 398

the planner fixed and systematically varying only 399

the rewritten input, we isolate the effect of intent 400

formulation on the resulting task decomposition. 401
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Figure 3: Structural and Semantic Differences between
plans generated using Dummy and Advanced rewrites, on
on RECAP-toy and IN3

This setup enables a controlled evaluation of how402

different rewriting strategies influence the structure403

and quality of generated plans.404

5.2 Sensitivity405

Length RECAP-toy IN3-70

Dummy Tie Advanced Dummy Tie Advanced

Short 26.67 23.33 50.00 16.67 66.67 16.67
Medium 20.00 20.00 60.00 8.62 70.69 20.69
Long 16.67 20.00 63.33 33.33 66.67 0.00

Table 2: Plan Preference % between plans generated
from Dummy and Advanced rewrites, on RECAP-toy and
IN3 datasets.

We begin by qualitatively comparing the qual-406

ity and characteristics of plans generated from raw407

conversations versus rewritten user intent, to as-408

sess the sensitivity of LLM planners to input varia-409

tion. This motivates the need for effective con-410

versation rewriters. For each conversation, we411

generate two rewrites using Dummy and Advanced412

rewriters, simulating two extremes of rewriting.413

These are provided as input to a static LLM planner414

(GPT-4o, temperature=0) using a fixed prompt415

template (Appendix C.1). Evaluation is conducted416

on two benchmarks: a 70-instance subset of the IN3417

dataset (Qian et al.), and a synthetic RECAP-toy418

dataset of 70 USER-AGENT dialogues generated419

with GPT-4o (Appendix B), following the same420

procedure as the main RECAP data generation.421

Table 2 shows that human annotators con-422

sistently prefer plans generated from Advanced423

rewrites on RECAP-toy, demonstrating that im-424

proved input formulations lead to better plan qual-425

ity, even with identical planning models. Figure 3 426

further shows that these plans diverge structurally, 427

in terms of node/edge counts and graph edit dis- 428

tance, especially as conversation length increases, 429

highlighting amplified variability in complex dia- 430

logues. While plan pairs typically show limited 431

semantic variability, potentially due to the inabil- 432

ity of metrics like BERTScore to capture subtle 433

distinctions, longer conversations tend to induce 434

greater divergence. 435

In contrast to RECAP , IN3 exhibits lower sen- 436

sitivity across all metrics. Human preferences are 437

more often tied, and structural and semantic dif- 438

ferences are reduced regardless of conversation 439

length. This indicates that IN3 lacks the realism 440

and complexity to surface input-sensitivity effects, 441

reinforcing the need for more challenging datasets 442

like RECAP . 443

To confirm these results are not planner-specific, 444

we replicate the experiments on RECAP-toy using 445

LLaMA 3.3-70B and GPT-o3-mini (Figures 9, 10). 446

All models exhibit consistent sensitivity to rewrites 447

under identical prompt and decoding settings. 448

5.3 Comparing Rewriters 449

Building on our findings from Section 5.2, we be- 450

gin by evaluating the performance of the prompt- 451

based rewriters introduced in Section 4.1 in gener- 452

ating rewrites that support effective plan generation. 453

The analysis is conducted on conversations from 454

RECAP-train.1. 455

Structural and Semantic Comparisons: As 456

shown in Table 3, plans derived from different 457

rewrites exhibit noticeable structural divergence. 458

Notably, GED is highest between plans generated 459

from Basic and Advanced rewrites respectively, in- 460

dicating that these input variants induce markedly 461

different planning behaviors. Despite using identi- 462

cal prompts and models, such structural shifts re- 463

flect the planner’s high sensitivity to surface form 464

and implicit signals in the input. 465

Plan Preference Results in Table 4 highlight that 466

plans derived from Advanced rewriter are consis- 467

tently preferred across most intent-related chal- 468

lenges. This effect is particularly strong in con- 469

versations involving complex or evolving intents, 470

eg. Shifted Intent and Multi-Intent. In contrast, 471

1The prompt-based rewriters are zero-shot and not trained
for this task; we use the training partition to avoid contami-
nating the held-out test set used later for evaluating trained
rewriters.
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Plan Comparison ∆nodes ∆edges GED Semantic Distance

Dummy vs Basic 1.68 2.18 4.99 0.10
Dummy vs Advanced 1.70 2.36 5.56 0.11
Basic vs Advanced 1.87 2.49 6.44 0.11

Table 3: Average structural and semantic distances be-
tween plans generated with prompt-based rewriters.

Challenge Rewriter Win Rate Tie Rate Loss Rate

Shifted Intent
Dummy 21.43 59.52 19.05
Basic 2.38 47.62 50.0
Advanced 50.0 45.24 4.76

Noisy Input
Dummy 23.81 54.76 21.43
Basic 11.90 54.76 33.33
Advanced 30.95 57.14 11.90

Multi-Intent
Dummy 14.29 47.62 38.09
Basic 19.05 52.38 28.57
Advanced 40.48 52.38 7.14

Underspecified
Intent

Dummy 12.5 55.0 32.5
Basic 20.0 70.0 10.0
Advanced 17.50 75.0 7.50

Perfect Intent
Dummy 11.36 63.64 25.0
Basic 15.91 72.73 11.36
Advanced 20.46 68.18 11.36

Total Dummy 16.67 56.19 27.14
Basic 13.81 59.52 26.67
Advanced 31.90 59.52 8.57

Table 4: Win/Tie/Loss percentage for each rewriter
grouped by challenge. Each rewriter competes against
all other rewriters.

for perfect intent cases, where the user’s request472

is explicit, even plans generated from Dummy or473

Basic rewrites yield competitive performance. In-474

terestingly, in Underspecified Intent contexts, the475

Advanced rewriter underperforms slightly, suggest-476

ing that it may introduce unnecessary assumptions477

that misalign with annotator expectations.478

These findings reinforce that input formulation479

plays a pivotal role in plan quality. While sophisti-480

cated rewriting can significantly enhance perfor-481

mance in complex scenarios, over-specification482

may be detrimental when user intent is vague.483

Model Train Test

Acc% F1 Acc% F1

baseline:gpt-4o-mini 38.91 0.31 37.5 0.35
baseline:gpt-4o 36.36 0.31 43.75 0.39
baseline:gpt-4.1 38.55 0.38 45.0 0.46

ft:gpt-4o-mini 69.09 0.67 48.75 0.48
ft:gpt-4o 72.00 0.72 53.75 0.48
ft:gpt-4.1 74.91 0.73 65.01 0.65

Table 5: LLM-as-Judge plan preference evaluator,
prompted and fine-tuned.

5.4 Learning to Predict Plan Preference 484

As discussed in Section 3.3, we explore the use 485

of LLMs to predict human plan preferences, en- 486

abling scalable evaluation. We compare baseline 487

and fine-tuned LLM evaluators on train and test 488

splits sampled from RECAP-train, enriched with 489

more challenging comparisons between plans from 490

Advanced and DPO:human rewrites. Full details on 491

setup and sampling methodology are provided in 492

Appendix C.2.2. 493

Table 5 summarizes performance across of vari- 494

ous LLM models. The fine-tuned gpt-4.1 model 495

achieves the highest accuracy and F1 scores on 496

both train and test sets, substantially outperforming 497

zero-shot baselines (gpt-4o-mini, gpt-4o, and 498

gpt-4.1). These results highlight the promise of 499

fine-tuned LLMs as reliable and cost-efficient eval- 500

uators in nuanced plan comparison tasks. 501

5.5 Evaluation of Trained Rewriters 502

Next, we evaluate how trained rewriters introduced 503

in Section 4.2 compare to prompt-based rewriters. 504

Specifically, we compare two DPO-based rewrit- 505

ers against our best-performing Advanced rewriter 506

on the held-out RECAP-test set, using the static 507

GPT-4o planner. The DPO:human model is trained 508

using human preference labels from RECAP-train, 509

while DPO:LLM is trained on the same plan pairs 510

but uses preferences judged by an LLM-as-a-judge 511

evaluator. We employ our best-performing LLM 512

evaluator, a fine-tuned GPT-4.1. 513

As shown in Table 6, DPO:human achieves the 514

highest win rate across nearly all intent challenge 515

categories, outperforming the Advanced rewriter. 516

Notably, it yields substantial gains in more dif- 517

ficult scenarios such as Shifted Intent and Multi- 518

Intent, suggesting that aligning with human pref- 519

erences helps capture finer nuances of user intent. 520

In contrast, DPO:LLM performs competitively in cat- 521

egories like Perfect Intent and Multi-Intent, but 522

does not consistently surpass Advanced across all 523

intent-understanding categories. This indicates that 524

while LLM-generated supervision offers scalability, 525

it may still fall short of the effectiveness achieved 526

through human preferences. Figures 7 and 8 further 527

illustrate plan preferences across test cases. 528

These results highlight the value of human- 529

aligned supervision for training robust rewriters 530

and demonstrate DPO as a scalable path toward 531

adaptive, human-aligned input reformulation in 532

task-oriented dialogue systems. 533
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Challenge Rewriter Win Rate Tie Rate Loss Rate

Shifted Intent DPO:human 55.56 11.11 33.33
DPO:LLM 22.22 33.33 44.44

Noisy Input DPO:human 44.44 33.33 22.22
DPO:LLM 44.44 0.0 55.56

Multi-Intent DPO:human 44.44 33.33 22.22
DPO:LLM 33.33 33.33 33.33

Underspecified
Intent

DPO:human 30.0 50.0 20.0
DPO:LLM 20.0 60.0 20.0

Perfect Intent DPO:human 75.0 12.50 12.50
DPO:LLM 25.0 62.50 12.50

Total DPO:human 48.88 28.90 22.22
DPO:LLM 28.88 33.33 37.78

Table 6: Win/Tie/Loss percentage for DPO:human vs
Advanced and DPO:LLM vs Advanced rewriters

6 Related Work534

Multi-Turn Intent Understanding Intent under-535

standing is a core component of dialogue systems,536

particularly in multi-turn interactions where user in-537

tent can be vague, drift over time, or be obscured by538

noisy utterances. Traditional intent classification539

approaches and slot filling solutions in Dialogue540

State Tracking (DST) works (Budzianowski et al.,541

2018; Wu et al., 2019; Mrkšić et al., 2017; Rastogi542

et al., 2020) aim to map user utterances to one or543

more predefined intent categories, offering clear544

signals to inform the system’s next action. How-545

ever, these methods rely heavily on a well-defined546

intent taxonomy and often struggle to generalize547

across domains. To address these limitations, re-548

search on intent discovery and out-of-distribution549

(OOD) detection has emerged (Song et al., 2023b;550

Wang et al., 2024b). While these methods aim551

to identify novel or ambiguous intents, they face552

challenges such as low precision in distinguishing553

subtle intent variations and difficulty in adapting to554

evolving user goals. A more flexible approach is555

to directly rewrite user intent utterances, without556

relying on predefined intent classes.557

Query Rewriting In information-seeking and558

Retrieval-augmented Generation(RAG) settings,559

query rewriting has been shown to enhance re-560

trieval quality by incorporating conversational con-561

text. Wu et al. introduced CONQRR, a transformer-562

based model trained with reinforcement learning563

to optimize downstream retrieval rewards. Ye et al.564

explored prompting LLMs like GPT-3 to generate565

context-aware rewrites, showing that LLMs can in-566

fer implicit information from earlier turns. Mo et al.567

(2024) proposed CHIQ, a two-stage method where568

an LLM first enhances the dialogue history and569

then rewrites the final user query, achieving strong 570

performance on conversational search tasks. While 571

effective, these approaches are primarily designed 572

for search scenarios and assume a task-agnostic, 573

retrieval-focused environment. Intent rewriting in 574

realistic multi-round conversations for planning 575

and agent coordination remain underexplored. 576

LLM-Based Planning Recent work has ex- 577

plored LLMs for planning in ambiguous, multi- 578

step dialogue settings. Chen et al. (2024) proposed 579

ACT, a method that trains LLMs to proactively 580

ask clarification questions using a contrastive self- 581

training objective, promoting better discrimination 582

between plausible next steps. Deng et al. (2024) 583

introduced Self-MAP, a memory-augmented plan- 584

ner that uses reflection to adjust plans in response 585

to evolving user goals, showing improved perfor- 586

mance on complex instruction-following tasks. Al- 587

though these approaches show promising signals 588

in reasoning over ambiguity and intent drift, they 589

typically require carefully designed planning so- 590

lutions involving fine-tuning or the integration of 591

additional components—such as dedicated reflec- 592

tion modules or memory-augmented agents. RE- 593

CAP provides planner-agnostic benefits by operat- 594

ing independently of the underlying planner’s ar- 595

chitecture or capabilities and offers a more flexible 596

and interpretable representation. 597

This gap of flexible intent understanding for 598

agent planning is especially evident in the lack of 599

robust benchmarks that reflect the complexities of 600

real-world conversations. Qian et al. introduced 601

IN3, a benchmark that captures vague user intents 602

and focuses on generating clarification questions. 603

However, it does not adequately address other chal- 604

lenging scenarios, such as intent shifts or multiple 605

simultaneous intents. 606

7 Conclusion 607

We introduced RECAP , a new benchmark for eval- 608

uating intent rewriting in LLM-powered conversa- 609

tional systems, capturing key challenges like ambi- 610

guity, drift, and goal shifts. By reframing dialogue 611

into concise intent representations, rewriting en- 612

ables more accurate and flexible agent planning. 613

Our experiments show that both prompt-based and 614

DPO-trained rewriters significantly improve plan- 615

ning utility, even without explicit preference la- 616

bels. These results highlight intent rewriting as a 617

promising direction for building more effective and 618

adaptive dialogue agents. 619
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Limitations620

While our study provides a systematic analysis621

of how input formulations affect plan generation622

in goal-oriented dialogue systems, few limitations623

still remain.624

First, our experiments are restricted to text-only625

input representations. However, real-world task-626

oriented systems often involve multi-modal signals627

such as visual context, system state, or user behav-628

ior. Extending rewriting and planning approaches629

to such multi-modal input settings remains an im-630

portant direction for future work.631

Secondly, we evaluate plans using structural met-632

rics and human preference judgments to give us633

strong signals on plan structure differences and634

downstream applications. However, these metrics635

may not fully capture cases where plans are struc-636

turally different but functionally equivalent in more637

actionable plan-execution settings. Our work can638

be extended to environments and datasets, where639

a more principled notion of plan equivalence or640

plan executability is present, which can also allow641

point-wise plan evaluation.642

Lastly, while our approach learns to align643

rewrites with human preferences, we do not explic-644

itly optimize for plan structure. Future work could645

explore structural supervision during rewrite train-646

ing, incorporating signals from the plan itself into647

the rewriting loop. Furthermore, a deeper analysis648

into the characteristics of the rewrites and planner649

signals (from open LLMs) can be made to study650

the causality between the rewriter and plan output.651

Ethics Statement652

In this work, we propose a novel benchmark for653

intent rewriting and understanding for agentic plan-654

ning. Our dataset was synthetically generated using655

LLMs which may introduce artifacts or biases in-656

herent to the model used. However, we ensured to657

vet all generated samples to remove any unwanted658

instances, and also redact any use of real or fake659

names and contact information in the generated660

conversations.661

In our evaluation methodology, we made sure662

that experiments involving human annotators were663

conducted in accordance with ethical research664

guidelines. Annotators provided informed consent665

for participation and the purpose of the task and666

the manner in which their annotations will be used667

was clearly communicated.668

Artifacts used in our work, including publicly 669

available ones, have been clearly cited and utilized 670

with intended use. We also used commercially 671

available AI models (e.g., GPT) in a manner con- 672

sistent with their terms of service. These data are 673

intended for research purposes only and do not 674

contain real user information. 675

Finally, while our findings point toward im- 676

proved plan quality through rewrite optimization, 677

we caution against over-reliance on such systems 678

without human oversight, particularly in high- 679

stakes or safety-critical domains. 680
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intent understanding in e-commerce. In Conference833
on Empirical Methods in Natural Language Process-834
ing.835

A Constructing Conversations836

In order to suit our study setting, we aim to ob-837

tain conversation instances between a USER and838

an AGENT focused on task-oriented dialogue with839

intent-related challenges. We utilize the existing840

IN3 dataset (Qian et al.), as well synthetically gen-841

erate our own.842

A.1 Conversation Construction: IN3843

Qian et al. provide an instruction understanding844

& execution benchmark, where a task eg. “Find845

a recipe for homemade pizza." is annotated with846

a label vague, denoting if the task-intent is vague847

or not. If the task is vague, the benchmark pro-848

vides missing details with an inquiry i.e. a849

clarification question eg. “"Do you have any di-850

etary restrictions or preferences?"" and possible851

answer options to this query eg. “["Gluten-free",852

"Vegan", "No restrictions"]"853

We modify this dataset to build conversations854

prompting gpt-4o with temperature=0 to con-855

vert the initial task and missing details as a USER-856

AGENT style conversation. The USER begins the857

conversation with the task, and the AGENT fol-858

lows up with each inquiry. The USER answers859

the inquiry with one of the answer options pro-860

vided, at random. The prompt used is shown in861

Prompt:A.1.862

We perform this method on 70 instances of the863

IN3 data (to match the instances in RECAP-toy864

dataset) and filter only those tasks which have been865

labeled as vague.866

Conversation Construction: IN3
You will be provided a task sentence and
some missing details as a list. Each missing
detail has an inquiry and corresponding
options. Your job will be to convert this to
a friendly User-Agent conversation. The User
begins conversation with the task. The Agent
responds with each missing detail inquiry
one at a time, and the User responds with
the option as response.

Task: task
Missing Details: missing_details

Output Format: Each conversation should a
list of strings starting with ‘USER:’ or
‘AGENT:’.

867

A.2 Conversation Construction: RECAP 868

To generate a conversation dataset with tougher 869

intent-understanding related challenges, we follow 870

the methodology described in Section 3.1. The 871

prompt used to generate such conversations is de- 872

tailed in Prompt:A.2 which aims to generate conver- 873

sations across different topics, conversation lengths 874

and intent-understanding challenges. During simu- 875

lation, we emphasize that the chat agent should not 876

attempt to solve the user’s task. 877

The topics included are cooking, program- 878

ming, health, flights, restaurants, taking inspiration 879

from existing intent classification works such as 880

Budzianowski et al. (2018). 881

The conversation length categories are defined 882

as: 883

short : where the total number of USER and 884

AGENT utterances is up to 5 885

medium : where the total number of USER and 886

AGENT utterances more than 5 but up to 10 887

long : where the total number of USER and 888

AGENT utterances more than 10 but up to 20 889

Conversation Construction: RECAP
Generate a conversation between a USER and
an AGENT on the topic: {topic}.
The USER begins with a task-oriented query.
The AGENT only asks clarifying or follow-up
questions to understand the USER’s intent
and constraints. It must not solve the task.

The conversation should be {conv_len}, stay
on-topic, and be coherent.

Each conversation must end with a USER
utterance and no utterance should include
unrelated or off-topic remarks.

The challenge types are:
{challenge_instructions}

Output a single JSON object with challenge
names as keys and conversations as values.
Each conversation is a list of strings
starting with ‘USER:’ or ‘AGENT:’.

890

We utilize gpt-4o and 891

llama-v3p3-70b-instruct(Fireworks) models 892

with temperature=1 to generate varied and 893

diverse instances. We curate and pick 150 894

conversations generated using these different 895

models separately, and modify if needed to ensure 896

adherence to prompt instructions. Characteristics 897

of the dataset are illustrated in Figure 2. 898
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Examples of conversations across intent-899

understanding categories are included in Table 7.900

A simplified version of this prompt (using only901

conversation length as criteria) is used to generate902

70 instances for a toy dataset which we use for903

sensitivity analysis in Section 5.2.904

B Rewrite Generation905

Prompt used to Generate Rewrites

Basic Rewriter
Summarize the following USER-AGENT
conversation

Conversation:
{conversation}

Advanced Rewriter
Summarize the following USER-AGENT
conversation into a single, concise
sentence describing the user’s intended
task.
The summary should reflect the user’s goal
or intent, in an instruction style.
Do not introduce new information. Only
include what is stated or clearly implied.

Conversation:
{conversation}

906

Rewrites are generated using gpt-4o with907

temperature set to 0. Prompt:B outlines the908

prompt used to generate rewrites for the Basic909

and Advanced summarizers. The dummy rewriter910

simply outputs the input conversation as a string.911

C Plan Generation and Evaluation912

C.1 Generating Plans913

We use the following prompt to generate plans914

given an input task i.e. output of a rewriter. For915

RECAP, we use a static gpt-4o planner with916

temperature=0, so as to obtain as deterministic917

outputs from the planner as possible.918

Prompt used for Generating Plans

You are a planner responsible for creating
high-level plans to solve any task.
Understand the user intent from the input
and plan accordingly. Consider breaking down
complex tasks into subtasks.

Represent your plan as a graph where each
node corresponds to a step, and each edge
represents a dependency between two steps.
If a node requires the output from a previous
node as an input, ensure it is included in
the edge list.

919

The output should be structured in the
following JSON format:
‘nodes’: <list of JSON nodes with keys ‘id’:
<node id as integer>, ‘name’: <sub-task node
name> >,
‘edges’: <list of tuples [node_id, node_id]>

Input:
{input}

920

After obtaining the plan generated from the 921

LLM, the plan is converted to DAG format using 922

networkx:MultiDiGraph utilizng the correspond- 923

ing nodes and edges. 924

C.2 Evaluating Plans 925

In Section 3.2, we defined the three categories of 926

metrics we used to evaluate plans - structural, se- 927

mantic and preference based. 928

C.2.1 Structural & Semantic Evaluation of 929

Plans 930

Structural Metrics: ∆nodes = N1 − N2 and 931

∆edges = E1 − E2, are computed using in- 932

built networkx functions, which corresponds 933

to the difference in the number of nodes and 934

edges, respectively, between two plans. We 935

use the optimize_graph_edit_distance func- 936

tion within networkx to comput the graph edit dis- 937

tance between the two plans GED(P1, P2). This 938

measures the minimum cost of edit path (sequence 939

of node and edge edit operations) transforming plan 940

P1 to P2 such that they are isomorphic. While the 941

generic graph_edit_distance function may be 942

computationally expensive and slow, especially for 943

larger graphs, the optimized version helps calculate 944

the nearest approximation of GED for such cases. 945

Semantic Metrics: We combine the text from 946

all task nodes from plan P1 and P2 respectively 947

and report the F1 BertScore (Zhang et al., 2019) 948

between them as 949

Semantic Distance = 1 - BertScore(P1, P2). 950

C.2.2 Plan Preference 951

For each conversation instance, given two plans 952

generated correspondingly from two different 953

rewriters (eg. Dummy vs Basic), we use human 954

as well as LLM evaluators to measure the pair-wise 955

performance between the two generated plans. 956

The evaluators are provided a conversation, two 957

plans A and B (when presenting plans A & B to the 958

user, the plans from the rewriters eg. dummy and 959

basic are randomly shuffled to ensure no positional 960
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Shifted Intent Noisy Input Underspecified Intent Multi-Intent Perfect Intent

USER: I want to bake a
cake for my birthday.
AGENT: What kind of
cake are you thinking of?
USER: Actually, I’d
rather make some fresh
chocolate chip cookies.

USER: Hi, how’s it go-
ing? I need to cook din-
ner tonight.
AGENT: Hello! Sure, I’ll
be happy to assist you to-
day! I can help you with
cooking. What type of
dinner are you planning
to make?
USER: Thank you for as-
sisting me! Umm, some-
thing with chicken.

USER: I need to cook
something for a party.
AGENT: How many peo-
ple are you planning to
serve?
USER: Not sure, but I
want it to be easy to eat.

USER: I want to make a
meal that’s both healthy
and tasty.
AGENT: Are you look-
ing for a specific cuisine
or dietary restriction?
USER: I’m open to any-
thing, but it should be
quick to prepare and not
too expensive.

USER: I want to make
chicken parmesan with
spaghetti for 4 people. Do
you have a good recipe?
AGENT: Would you like
to use homemade or store-
bought marinara sauce?
USER: I’ll use home-
made sauce and serve it
with a side salad.

Table 7: Example USER-AGENT dialogues with short conversation length in the cooking domain, illustrating
different intent-related challenges.

Figure 4: Rubrics for Plan Evaluation

bias). The evaluators are further provided instruc-961

tions with criteria to choose the best plan among962

the two – A, or B, or a tie if both plans are equally963

good.964

It is to be noted that (a) the evaluators are not965

provided any information about the rewriter (input966

to planner); and (b) that the plans are generated967

using a static planner (detailed in Section C.1) so968

as to indirectly measure the impact of the corre-969

sponding rewriter on the downstream plan perfor-970

mance/preference.971

Human Annotators: We recruited 3 expert in-972

house annotators, who are proficient in English,973

and currently based in the United States of Amer-974

ica, with at least a graduate-level degree. The an-975

notators were clearly explained the objective of the976

task and how their annotations would be utilized.977

To measure agreement between the annotators we978

use average of the pair-wise accuracy scores be-979

tween each of the annotators. We also note the980

Figure 5: Interface for Human Preference Annotation

subjectivity and difficulty of the task, which leads 981

to moderate to good agreement scores across our 982

human-evaluation studies. 983

The instructions provided to the human annota- 984

tors were the same as provided to the LLM Evalu- 985

ator which is detailed in Figure 4. An example of 986

the interface used for human annotation is shown 987

in Figure 5. Once the annotations are obtained, 988

the majority label of the annotators is used as the 989

preference label for the plan-pair. 990

To compare how plans from different rewrit- 991

ers were preferred by humans, we report the 992

Win/Tie/Loss rates for each rewriter i.e. for all 993

plan-pairs, how many times was the plan from the 994

corresponding rewriter preferred (win), not pre- 995

ferred (loss), or a tie. 996

We also build a ranking mechanism to rank 997
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(a) Human Preference of Plans by In-
tent Category

(b) Human Preference of Plans by
Topic

(c) Human Preference of Plans by Con-
versation Length

Figure 6: Ranked Analysis: Human Preference of Plans across Rewriters (Dummy, Basic and Advanced) on
RECAP-test: Advanced ranks 1st across all intent categories

the 3 plan-pairs per conversation instance. For998

the three rewrites and corresponding plans i.e.999

Dummy, Basic and Advanced, a +1 score is given1000

to a rewriter if it is preferred over another, +0.51001

given to both rewriters if there is a TIE, else 0 is1002

given for losses. The total scores across plan-pairs1003

for a conversation instance are used to rank the1004

performance of these rewriters for that instance,1005

using standard ranking mechanism eg. if Basic1006

and Advanced both have +2.5 scores while Dummy1007

has a score of 0, the ranks are:1008

Advanced rewriter: Rank 11009

Basic rewriter: Rank 11010

Dummy rewriter: Rank 31011

1012

The results from this ranked analysis is shown in1013

Figures 6a, 6b, 6c, measuring the count that each1014

rewriter was ranked ri across the different intent-1015

understanding challenges, topics, and conversation1016

lengths in our dataset.The average pair-wise inter1017

annotator accuracy is 75.4%.1018

LLM Evaluator: Human annotations are not1019

scalable, hence we rely on LLMs as plan-1020

preference evaluators on a large sclae. The LLM1021

evaluator is also prompted with the same instruc-1022

tions as given to the users using Prompt:C.2.2.1023

Prompt used for Evaluating Plans

You will be given a task-oriented dialogue
between a USER and an AGENT as well
as two plans. Your task is to choose the
plan that better addresses the user’s intent.

Please refer to the rubrics below when
conducting the comparison: RUBRICS

The plans are evaluated on their ability to
fulfill the above rubrics. Both plans are
considered equally good when they are equally
capable of fulfilling the above rubrics. In
that case, output TIE.

1024

Conversation:conv
Plan A: planA
Plan B: planB

Which plan better fulfills the user’s
request? Reply with ’A’, ’B’, or ’TIE’."

1025

To further improve LLM evaluators, we fine tune 1026

them on the RECAP-train data with the majority 1027

vote of the human preference labels obtained ear- 1028

lier. We additionally add 40 samples comparing the 1029

Advanced vs DPO:human plans from Section 5.5 so 1030

as to include tougher instances of plan comparison 1031

while training our fine-tuned evaluator. These in- 1032

stances are also generated only from conversations 1033

included in RECAP-train, so as to not contaminate 1034

the RECAP-test dataset. 1035

These samples (RECAP-train + tougher in- 1036

stances) are then split into train-val-test splits 1037

(60-10-30) for the sole purpose of fine-tuning LLM 1038

evaluators. We utilize the same Prompt:C.2.2 as 1039

previously to prepare the training, validation and 1040

test data. For our baseline, we use a zero-shot ap- 1041

proach, prompting models gpt-4o-mini, gpt-4o 1042

and gpt-4.1. Furthermore, use OpenAI fine- 1043

tuning for each of these models using the human 1044

majority label, with hyperparameters: batch_size, 1045

learning_rate_multiplier, and n_epochs set 1046

to auto. 1047

D Training Rewriters using DPO 1048

In Section 4.2, we described adopting a preference- 1049

based learning strategy using Direct Preference Op- 1050

timization (DPO), where given a pair of plans eval- 1051

uated, we trace each plan back to its corresponding 1052

rewrite. The rewrite responsible for the preferred 1053

plan is treated as the preferred_output, and the 1054

other as the non_preferred_output. These pref- 1055

erence pairs serve as supervisory signals to fine- 1056

tune a gpt-4o model, optimizing it to generate 1057

rewrites that are more likely to result in preferred 1058
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plans. The prompt used to prepare the data is as1059

follows in Prompt:D.1060

Prompt used for Training Rewriters using
DPO
You will be given a task-oriented dialogue
between a USER and an AGENT. Your task is
to reinterpret or rewrite the conversation
in a format that clearly conveys the USER’s
intent, optimized for a downstream planning
agent that will decompose the request into
actionable subtasks.
Based on your judgment, you may choose
to rewrite the conversation or retain the
original format.

Conversation: conversation
1061

Once again, we train the DPO-rewriter on1062

RECAP-train using either the human or LLM1063

based preference labels which corresponds to the1064

preferred_output or non_preferred_output.1065

The resulting model is used to generate rewrites1066

with Prompt:B, and subsequently plans using1067

Prompt:C.1 – as previously to maintain consistency1068

– on the RECAP-test set.1069

We train the gpt-4o-2024-08-06 model using1070

OpenAI DPO fine-tuning, with hyperparameters1071

beta=0.1, n_epochs=3, batch_size=auto and1072

learning_rate_multiplier=auto.1073

D.1 DPO:human Downstream Performance1074

After training the DPO model on the train data with1075

human preference labels, we obtain the correspond-1076

ing rewrite and plan (DPO:human) on RECAP-test.1077

To restrict cost due to a cross product of comparison1078

between rewriters, we only compare DPO:human1079

plans with the best performing Advanced summa-1080

rizer (from Table 4).1081

The results of this comparison using ranked anal-1082

ysis is shown in Figures 7a, 7b, 7c corresponding to1083

intent-understanding challenge, topic, and conver-1084

sation length respectively. The average pair-wise1085

inter annotator accuracy is 64.3%.1086

D.2 DPO:LLM Downstream Performance1087

We repeat the same analysis, this time using which1088

is the rewriter model trained using LLM (gpt-4.11089

as it was the best performing model from Ta-1090

ble 5) on RECAP-test. The results of the compar-1091

ison between plans generated from DPO:LLM and1092

Advanced rewriters is shown in Figures 8a, 8b, and1093

8c. The average pair-wise inter annotator accuracy1094

is 61.48%.1095

E Sensitivity Analysis 1096

E.1 Toy Datset Construction 1097

To construct the toy dataset utilized for sensitivity 1098

analysis we generate USER-AGENT style conver- 1099

sations using gpt-4o, temperature=0 using a 1100

prompt similar to A.2 without specifying explicit 1101

challenge instructions. The conversation length i.e. 1102

conv_len categories are defined as: 1103

short : where the total number of USER and 1104

AGENT utterances is up to 5 1105

medium : where the total number of USER and 1106

AGENT utterances more than 5 but up to 10 1107

long : where the total number of USER and 1108

AGENT utterances more than 10 but up to 20 1109

E.2 Sensitivity Analysis Across Planners 1110

Although we use a static planner through our ex- 1111

periments, we extend our initial sensitivity analysis 1112

(Section 5.2) to various state-of-the-art LLM-based 1113

planners. This is done to perform a preliminary 1114

validation experiment that the results we see across 1115

our work is not a sole result of the planner quality 1116

we use i.e. GPT-4o. 1117

We utilize the prompt defined in Appendix C.1 1118

and employ LLaMA 3.3-70B with a temperature 1119

setting of 0 and GPT-o3-mini to generate plans us- 1120

ing Dummy and Advanced rewriters on RECAP-toy 1121

data, as consistent with Section 5.2. 1122

We use the same metrics defined in 3.2 to ob- 1123

serve plan variation to input. Figures 9 10 also 1124

show similar trends to GPT-4o (3) indicating that 1125

plan outputs are sensitive to the input characteris- 1126

tics – output of the rewriter. 1127

F RECAP Benchmark 1128

We release 750 conversations as the RECAP bench- 1129

mark. In our experiments, due to cost and effort 1130

constraints because of human annotation, we only 1131

utilized 150 of these conversation instances. 1132

Stats The RECAP dataset is uniformly dis- 1133

tributed across five distinct topics — cook- 1134

ing, programming, flights, restaurants, and 1135

health — with 150 instances each. Simi- 1136

larly, the intent_category dimension covers the 1137

different intent-understanding related categories: 1138

shifted_intent, noisy_input, underspecified_intent, 1139

multi_intent, and perfect_intent, also with 150 in- 1140

stances each. Conversation lengths (conv_len) are 1141
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(a) Human Preference of Plans on
RECAP-test by Intent Category

(b) Human Preference of Plans on
RECAP-test by Topic

(c) Human Preference of Plans on
RECAP-test by Conversation Length

Figure 7: Ranked Analysis: Human Preference of Plans generated between Advanced and DPO:human on
RECAP-test: DPO:human ranks 1st across all intent categories, conversation lengths and most topics

(a) Human Preference of Plans on
RECAP-test by Intent Category

(b) Human Preference of Plans on
RECAP-test by Topic

(c) Human Preference of Plans on
RECAP-test by Conversation Length

Figure 8: Ranked Analysis: Human Preference of Plans generated between Advanced and DPO:LLM on RECAP-test:
DPO:LLM ranks better for short conversation lengths and performs comparatively well across intent categories

Figure 9: Sensitivity analysis for LLAMA Figure 10: Sensitivity analysis for o3-mini

evenly distributed across three buckets: short (250),1142

medium (250), and long (250), ensuring balance1143

across all dimensions.1144

Vetting The synthetically generated conversa-1145

tions are vetted for adherence to instructions, over-1146

all coherency, and to ensure no bias or malicious1147

content is present. Personal information such as1148

names, contact details (even if generated by the1149

LLMs, serving as placeholders) were redacted.1150

Evaluation Using the best-performing fine-tuned1151

evaluator (Table 5), we evaluate the plans generated1152

on the entire RECAP dataset. The plans are gen-1153

erated using DPO:human and Advanced rewriters,1154

utilizing the planner described in Appendix C.1.1155

Intent Category Win Rate Tie Rate Loss Rate

Shifted Intent 35.33 40.00 24.67
Noisy Input 26.67 47.33 26.00
Multi-Intent 24.00 46.00 30.00
Underspecified Intent 22.00 54.00 24.00
Perfect Intent 26.00 35.33 38.67

Total 26.80 44.53 28.67

Table 8: Win/Tie/Loss percentage for plans generated
from DPO:human vs Advanced across intent categories

The results are shown in Table 8, where Win Rate 1156

denotes the plan from DPO:human was preferred 1157

to Advanced rewriter, and Loss Rate denotes vice 1158

versa. We observe there is largely neutral prefer- 1159

ence across intent categories. 1160
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