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Abstract— We investigate the impact of incorporating an
energy-efficient reward term that prioritizes distance-averaged
energy consumption into the reinforcement learning frame-
work. Our findings demonstrate that this simple addition
enables quadruped robots to autonomously select appropriate
gaits—such as four-beat walking at lower speeds and trotting
at higher speeds—without the need for explicit gait regular-
izations. Furthermore, we provide a guideline for tuning the
weight of this energy-efficient reward, facilitating its application
in real-world scenarios. The effectiveness of our approach is
validated through simulations and on a real Unitree Go1 robot.
This research highlights the potential of energy-centric reward
functions to simplify and enhance the learning of adaptive and
efficient locomotion in quadruped robots. Videos and more
details are at https://sites.google.com/berkeley.
edu/efficient-locomotion

I. INTRODUCTION

Using gaits as guidance for locomotion policies is common
in reinforcement learning (RL) methods [1], [2], as they
provide rich information. However, developing a versatile
and robust policy that adapts across speeds and platforms
remains challenging, particularly due to the complexity of
reward design. Gait references have been used as extended
states and as regularization terms to aid policy learning
and support low-level MPC controllers [3]. Prior works [2],
[4], [5] have successfully trained policies in simulators like
IsaacGym [6], [7] and deployed them on hardware, but
often rely on intricate reward shaping and weight tuning.
In addition to gait information, auxiliary rewards such as
feet-air time and contact force penalties [4] have been
used to encourage specific behaviors and stabilize training.
While intended to induce particular traits, these reward
terms ultimately align with the broader goal of minimizing
energy consumption [8], [9]. This observation motivates a
reconsideration of reward design: could a simpler, energy-
centric reward replace complex, behavior-specific terms and
generalize across diverse locomotion tasks, including varying
speeds, directions, and terrains? Under such a formulation,
gaits would naturally emerge as energy-efficient solutions to
the locomotion problem.

Building on the correlation between energy-efficient gaits
and speed [10], and prior findings that energy minimization
at fixed speeds induces specific gaits [9], this study ex-
plores a streamlined reward formulation for energy-efficient
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Fig. 1: Compared to the baseline when there is no energy
regularization, our single policy (from one-time RL training)
autonomously adopted different energy-efficient gaits (walk-
ing, trotting and fly trotting).

locomotion. We focus on minimizing energy consumption
without relying on intricate reward components, aiming to
achieve stable and effective velocity tracking in quadruped
robots across a range of speeds. Unlike previous approaches
that train separate energy-optimal policies for different
speeds [9], we target the development of a single energy-
optimal policy capable of handling various linear and an-
gular velocities and diverse terrains through reinforcement
learning.

In this paper, we investigate the impact of incorporating a
distance-averaged energy reward term into the reinforcement
learning framework. This reward term directly penalizes
energy consumption per unit motion traveled, promoting
energy-efficient locomotion across various speeds. We ex-
plore the effect of different weightings for this energy reward,
observing that both excessively low and high weights can
lead to undesirable behaviors such as unnatural movements
or immobility. By carefully tuning the weight of the distance-
averaged energy reward, we demonstrate its effectiveness
in facilitating stable velocity tracking and encouraging the
emergence of energy-efficient gaits.

Employing this adaptive reward structure within IsaacGym
enables the training of robust policies for the Unitree Go1
[11] quadruped robot. As illustrated in section III, our
methodology identifies appropriate gaits, such as four-beat
walking at lower speeds and trotting at higher speeds, without
predefined gait knowledge. The energy-efficient policy also
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Fig. 2: Gait switching under different command velocities. The policy is generated when αen = 1.0. We also demonstrate
snapshots of two beat walking at 0.5 m/s, trotting at 1.4 m/s and fly trotting at 2.3 m/s.

shows better performance in circle tracking and terrain
clearance tasks. The trained single policy is deployed on
a real Go1 robot to verify its stable moving and transition
locomotion skills in the real world.

II. ENERGY REGULARIZATION

A general form of energy regularized locomotion reward
takes the following form:

R = (Rmotion +Renergy) ∗ f(Raux), (1)

where Rmotion encourages accurate velocity tracking,
Renergy discourages energy consumption and Raux includes
other necessary rewards to stabilize training. ∗ and f are
respectively an arithmetic operator and functions. Common
choices are ∗ = +, f(x) = −x [4] and ∗ = ×, f(x) =
exp(−x) [2].

In previous work [9], motion rewards include negative
squared linear and angular velocity tracking errors; en-
ergy rewards include negative time-averaged motor power
with a fixed weight −τ q̇; survival bonus is also added.
In experiments, we found such a training process unstable
across different speeds, primarily for two reasons—1) The
negatively unbounded nature of tracking and energy rewards.
2) The scale of energy reward varies across different speeds,
and the energy reward weight usually only works within a
narrow range of reference speeds. It is hard to find a single
energy reward weight value that works for all reference
velocities without knowing more simulation settings and
training details. As a result, different speeds are trained in
different runs separately in [9] to energy-efficient gaits at
different speeds.

To overcome this challenge in reward design, we proposed
that the energy-related reward function should depend on
the robot’s velocity to promote an automatic generation

of energy-efficient behavior of legged robots under various
reference velocities.

R = (Rmotion + αenRen(vx, ωz)) exp(−Raux) (2)

where vx is the robot moving velocity. The remaining of this
section elaborates on each component in (2).

1) Motion Rewards: Rmotion consists of Rlin and Rang ,
which respectively encourage the legged robot to track
the linear reference velocities in two directions v̂x, v̂y and
angular reference velocities ω̂z .

Rmotion = Rlin + αangRang,

Rlin = exp
(
− |vx − v̂x|2 + |vy − v̂y|2

σv

)
,

Rang = exp
(
− |ωz − ω̂z|2

σω

)
,

(3)

where v̂y and ω̂z are not user-specified commands, but
randomly sampled during training as explained in section
IV-A. σv and σω are scaling factors depending on the
training velocity range. The structure of motion rewards, the
coefficient αang = 0.5 for angular velocity tracking, and
the scaling coefficients follow the default setting in legged-
gym [4].

2) Energy Rewards: Ren rewards the system for consum-
ing less energy while moving.

Ren = exp
(
−

∑
i |τi||q̇i|

σen,x|vx|+ σen,z|ωz|

)
(4)

The energy consumption is averaged against the robot’s
amount of motion. τi’s are the actuated torque at each joint
while q̇i’s denotes the joint velocities. σen,x and σen,z are en-
ergy scaling constants. Components inside the round bracket
of (4) is equivalent to the linear-distance-averaged energy
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Fig. 3: Ablation study of energy consumption in Unitree Go1 simulation. For straight line walking, reference linear velocities
are chosen from 0.1 to 2.5 m/s with 0.1 common gap. The cost of transportation is measured in J/m. For angular spining,
reference angular velocities are chosen from −2.5 to 2.5 rad/s with 0.2 common gap. In both (a) and (b), CoT considerably
decreases when αen reaches 1.0. CoT of αen = 1.5 when reference velocity of above 1.9 m/s is not plotted because the
output velocity drops to zero in this range. This indicates that velocity tracking accuracy will be sacrificed when energy
regularization weight αen is too large. For terrain walking, the robot is asked to walk in a straight line on a rough slope
terrain with reference linear velocities from 0.3 to 1.5 m/s with 0.1 common gap, because it is hard to walk either too slowly
or too quickly on such terrains. (c) shows that the reduced CoT analogously appears on terrains. (d) shows the effect of
energy regularization method to ANYmal-C platform with the same parameters σen,x, σen,z and αen.

consumption when σen,z = 0, which is the conventional
definition of the cost of transportation (CoT). Since we are
training a linear and angular velocity-dependent policy, we
include rotation distance to form a generalized distance while
generating the energy reward.

As discussed in [3], directly using the CoT format inside
the exponential function in (4) by detecting it from motion re-
ward fails to generate stable policies via end-to-end training.
As a result, authors in [3] learn a contact schedule instead and
execute it via low-level MPC. In our approach, we deployed
the exponential form, which guarantees a positive reward
and scale it within (0, 1]. We multiply the absolute values of
each entry of τ with each entry of q̇ and sum them up in
(4) to follow the fact that a motor does not get charged back
even when the applied torque is opposite to the motion [12].
This adaptive energy regularization term allows us to learn
stable locomotion policies across different speeds, tasks, and
embodiments.

One may claim that the selection of an appropriate energy
reward weight αen in (2) is still nontrivial since a tiny αen di-
minishes the influence of energy regularization. At the same
time, an overly large value can lead to over-enforcement,
compromising velocity tracking accuracy. However, the gen-
eralized distance design calibrates the energy reward across
different speeds, and the exponential function design on
motion and energy reward scale both into (0, 1]. As a result,
a αen = 1 works for all cases in our experiments, and the
parameter is not that sensitive. This trade-off and detailed
ablation study will be shown in Section III.

3) Auxiliary Rewards: Energy regularization alone is usu-
ally insufficient for generating proper behaviors. To address
this, we add a few auxiliary regularization rewards, including
collision avoidance, action rate control and trunk orientation
regularization. Higher values of these terms signify less de-
sirable performance, so we deployed a negative exponential
function as detailed in (2). Comprehensive information on
these auxiliary rewards can be found in the project website.

Fig. 4: Gait under different velocities when αen = 0.0.

III. EXPERIMENTS

The experiments are designed to support the following
statements after adding the velocity-dependent energy reward
as shown in (4) without specifying gait information. Training
details are given in the appendices.

• The generated RL policy automatically selects an en-
ergy efficient action at different command linear and
angular velocity.

• The energy reward weight αen should be comparable to
motion rewards in order to get a satisfactory RL policy.

• The energy reward can also be used for locomotion
training on terrains with minor amendments on the
auxiliary reward Raux.

A. Translation and Rotation

To demonstrate natural emergence of efficient locomotion
gaits, we evaluate the trained walking policy under different
reference velocities. Fig. 2 demonstrates a trial run where
the legged robot was commanded to move from v̂x = 0.0,
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Fig. 5: Gait comparison of ANYmal-C between energy
regularization and original legged gym policy [4]. In the
original legged gym policy, the lifting height of rear right
leg is very low, so it has several unexpected mild contacts
with the ground. Videos of ANYmal-C simulation can be
found on our project website.

to 2.5 m/s. The robot accelerates at 0.5m/s2. We plot the
gait recorded from the Go1 real-world deployment. We can
see that our trained policy exhibits four-beat walking at low
speed (around 0.0 to 0.4 m/s), where four legs touches the
ground in front-left, front-right, rear-left, rear-right sequence.
Then, the robot shows two-beat walking (around 0.4 to 1.1
m/s) where the four legs touch the ground in diagonal pairs
and present observable moments where four legs touches the
ground at the same time. At medium speed (around 1.1 to
1.7 m/s), the policy exhibits an trotting gait. At this gait, the
four legs still touch the ground in diagonal pairs, but there
is neither noticeable moment where the four legs touch the
ground at the same time, nor moment where all four legs
are in the air. At high speed (around 1.7 m/s and beyond),
the trained policy exhibits a fly-trotting gait, which is similar
to trotting gait, except there are observable moments where
all four legs are in the air. This gait transition is endorsed
by previous works [10], [3] that walking and trotting are
respectively the most energy-efficient gaits under low and
high speeds.

The result in Fig. 2 is generated with αen = 1.0. In Fig.
3a and Fig. 3b, we compare CoT and linear velocity tracking
results across different αen. When weight is small (like 0.0
or 0.5), the effect of energy regularization is minor, so the
generated policy has a much higher CoT. Fig. 4 shows that
when αen = 0.0, the robot exhibits a bouncing gait across
the whole velocity domain, which is not efficient [10].

The proposed energy regularization can be similarly ap-
plied to other quadruped platforms. Experiments were con-
ducted on the ANYmal-C simulation environment [4] with
the same scaling constants σen,x = 1000 and σen,z =
500 as well as the regularization weight αen = 1.0. The
generated policy similarly showed preferred gait transition
from walking to trotting, which is show in Fig. 5. As shown
in Fig. 3d, it also successfully reduced CoT in comparison

(a) Snapshots of the quadruped robot climbing over randomly
distributed paper boards.

(b) Snapshots of the quadruped robot climbing over a 20 cm step
covered by paper boards.

Fig. 6: Quadruped robot clearing terrains.

to the original legged gym settings [4].

B. Terrain Clearance

The effect of energy regularization on quadruped gait can
also be deployed on terrain clearance. Since it is hard to
walk either very fast or very slow on a rough slope, the
training velocity range is limited to only [−1.5, 1.5] m/s.
When no energy regularization presents, the quadruped robot
also tends to show a bouncing gait. When αen = 1.0, a
more natural trotting gait appears. As indicated in Fig. 3c,
the policy generated from αen = 1.0 is also a more energy
efficient gait.

We tested the trained policy on the real Go1 quadruped
robot. Fig. 6 shows experiment snapshots. The robot success-
fully cleared a 20 cm step covered by paper boards, which
is a considerable high step compared to the size of Go1.

IV. DISCUSSION AND CONCLUSION

This paper presented a novel approach to energy-efficient
locomotion in quadruped robots by implementing a sim-
plified, energy-centric reward strategy within a reinforce-
ment learning framework. Our method demonstrated that
quadruped robots, specifically Unitree Go1, could au-
tonomously develop and transition between various gaits
across different linear and angular velocites without relying
on predefined gait patterns or intricate reward designs. The
adaptive energy reward function, adjusted based on velocity,
enabled these robots to select the most energy-efficient
locomotion strategies naturally.

The energy-centric training framework extends beyond lo-
comotion tasks, where motion rewards move beyond velocity
tracking to incorporate more task-specific objectives. This
approach requires the system to dynamically adapt its strat-
egy in response to varying reward structures. While this study
focuses on locomotion, the underlying principle—using en-
ergy efficiency to guide behavior selection—has broader
applicability. Future work could explore its extension to
other robotic domains, such as manipulation and interaction
tasks, where prioritizing energy efficiency may lead to the

https://sites.google.com/berkeley.edu/efficient-locomotion


emergence of natural and effective behaviors analogous to
those seen in biological systems [13], [14]. Such an approach
would also promote greater alignment between robotic sys-
tem design and principles of sustainability and environmental
responsibility.
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APPENDICES

A. Training Setup in Experiments

We utilized the robot model and PPO training package
in [2]. The system outputs the position command of the
12 joints in the next time step. The system inputs include
the projected gravity in the robot frame, the commanded
x velocities, the commanded yaw rate, each joint’s current
position and velocity, as well as the action at previous time
step. In addition, the inputs of the previous 30 time steps are
also given to the RL system. The training episode will reset
after 1000 time steps or if any part of the robot except its
feet touches the floor.

1) Details of Reward Parameters: In motion rewards (3),
both σv and σω were fixed at 0.25. In energy rewards (4),
the energy scaling constants are fixed at σen,x = 1000 and
σen,z = 500. As stated in section II, we found that the
energy reward Ren alone is insufficient to regularize Go1’s
behavior, which is likely due to the lighter weight compared
to its motor power. Thus, following the settings in [2], we
add the fixed auxiliary reward Raux. This auxiliary reward
is derived mainly from safety concerns, such as penalizing
limb-ground collision, out-of-range joint position, and high
frequency joint action. The details of Raux can be found on
the project website. Compared to [2], we did not include any
gait-related rewards.

2) Curriculum and Domain Randomization: We deployed
curriculum technique on command velocities. The sampling
range of linear and angular velocities start at [−1, 1] m/s
and [−1, 1] rad/s. The sampling range increases when the
total reward achieves a certain threshold, and the maximal
sampling range is set at [−5, 5] m/s and [−5, 5] rad/s.
The ground coefficient of friction is randomized between
[0.05, 1.5]. We also added a disturbance to the robot mass
with a uniform random value in [−0.1, 3.0] kg. A uniformly
distributed noise was added to the observation. All these
randomized domain parameters are renewed every time the
training episode resets, except observation noise is resampled
after every time step.

3) Amendments for Training on Terrains: All previous
techniques are deployed on flat ground trainings. We also
tested adding energy regularization while training on terrains.
The training terrain shape is rough slope adapted from [4].
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