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Abstract

Investigating the marginal causal effect of an intervention on an outcome from
complex data remains challenging due to the inflexibility of employed models
and the lack of complexity in causal benchmark datasets, which often fail to
reproduce intricate real-world data patterns. In this paper we introduce Frugal
Flows, a novel likelihood-based machine learning model that uses normalising
flows to flexibly learn the data-generating process, while also directly inferring
the marginal causal quantities from observational data. We propose that these
models are exceptionally well suited for generating synthetic data to validate causal
methods. They can create synthetic datasets that closely resemble the empirical
dataset, while automatically and exactly satisfying a user-defined average treatment
effect. To our knowledge, Frugal Flows are the first generative model to both
learn flexible data representations and also exactly parameterise quantities such
as the average treatment effect and the degree of unobserved confounding. We
demonstrate the above with experiments on both simulated and real-world datasets.

1 Introduction

Simulating realistic datasets such that the marginal causal effect is constrained to take a specific form
is a significant challenge in causal inference. Many methods for inferring these effects exist, but
simulating from them is a significant challenge (Young et al., 2008; Havercroft and Didelez, 2012;
Keogh et al., 2021). In particular, it is difficult to simulate complex benchmarks from generative
models in such a way that a custom marginal effect exactly holds.

The frugal parameterisation (Evans and Didelez, 2024) provides a solution to this problem by
constructing a joint distribution that explicitly parameterises the marginal causal effect and builds the
rest of the model around it. Frugal models typically represent the dependency between an outcome
and pretreatment covariates using copulae. Standard multivariate copulae are parametric, leading to
potential model misspecification.

In this paper we show how one can construct frugally parameterised marginal causal models using
normalising flows (NFs, Rezende and Mohamed, 2015; Dinh et al., 2016) to target the causal margin of
the distribution (a conditional univariate marginal density of an outcome conditioned on a treatment).
We name the resulting model a Frugal Flow (FF). To the best of our knowledge, FFs offer the first
likelihood-based framework for learning a marginal causal effect while modelling the outcome and
propensity nuisance parameters using flexible generative models.

FFs are exceptionally well suited for generating benchmark datasets for causal method validation.
Since FFs enable direct parameterisation of the causal margin, they provide a framework for gener-
ating causal benchmark datasets which resemble real-world datasets, but which also allow users to
encode causal properties in order to validate novel inference models. FFs can be used to generate
benchmarks with customisable degrees of unobserved confounding. This can aid in the validation
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of model robustness under conditions where the assumption of conditional ignorability does not
hold. Here, conditional ignorability (or conditional exchangeability) means that marginal distribution
of the potential outcomes is independent of the value of treatment, conditional on the observed
covariates (Pearl, 2009).

FFs offer marked improvements over current benchmarking generation methods, which use soft
constraint optimisation to enforce the desired causal restrictions (Kendall, 1975; Parikh et al., 2022).
As a result, post hoc checks are required to see whether these conditions are present in the synthetic
data. FFs do not require this second step, as relevant conditions are explicitly encoded in the
underlying likelihood. Finally, FFs allow for outcomes to be sampled from marginal logistic and
probit models, making them the first generative benchmarking model to facilitate the simulation of
binary outcomes with a choice of user specified risk differences, risk ratios, or odds ratios.

2 Background

In this paper we consider a static treatment model with an outcome Y ∈ Y ⊆ R and T a binary
treatment in T = {0, 1}. Let the set of measured pretreatment covariates be Z ∈ Z ⊆ RD.
Additionally, we will use the notation of Pearl (2009) where intervened distributions are indicated
by the presence of a “do(·)” operator, with its absence indicating that the distribution is from the
observational regime.

2.1 Marginal Causal Models

Causal inference methods are generally developed to estimate the average effect of a treatment (T )
on an outcome (Y ) for a population defined by a set of pretreatment covariates (Z) (Hernán and
Robins, 2020). Let the variables be distributed according to (Z, T, Y ) ∼ PZTY with density pZTY .
We make the standard assumptions of a stable unit treatment value (commonly referred to as SUTVA),
positivity, and conditional ignorability (equivalent to conditional exchangability) outlined in Pearl
(2009). Additionally, the covariate set Z must only include pretreatment covariates. The conditional
distribution of Y and Z after an intervention on T is equal to

pZY |do(T )(z, y | t) = pZ(z) · pY |Z,do(T )(y | z, t).
Causal practitioners are often interested in the marginal effect of T on Y on the intervened system,
sometimes referred to as the marginal outcome distribution (MOD), pY |do(T ):

pY |do(T )(y | t) =
∫
Z
dz pY |Z,do(T )(y | z, t) pZ(z). (1)

The difference between the means of Y under this margin between different values of T is called the
average treatment effect (ATE), τ where, τ = E[Y | do(T = 1)]−E[Y | do(T = 0)]. Models which
target this marginal quantity are known as marginal structural models (MSMs, Robins, 1998) and are
frequently used in epidemiological and medical domains to account for time-varying confounding. In
particular, they are effective at quantifying the effect of an intervention over a population, where the
specific relationships between the outcome and (possibly high dimensional) pretreatment covariates
are not relevant, and are modelled as nuisance parameters. The semiparametric question of estimating
finite dimensional quantities in the presence of high dimensional nuisance parameters has a long
history (Robins et al., 1995; Robins and Rotnitzky, 1995), but has undergone a renaissance since
the development of methods such as targeted maximum likelihood estimation (van der Laan and
Rose, 2011) and double machine learning (Chernozhukov et al., 2018), which allow for general
machine learning algorithms to flexibly describe the nuisance models and still have valid inference
on a low-dimensional treatment effect.

2.2 Frugal Parameterisations

Frugally parameterised distributions consist of three distinct components: the distribution of the ‘past,’
θZT ; the intervened causal quantity of interest, θY |do(T ); and an intervened dependency measure
between Y and Z conditional on T , ϕZY |do(T ). The key idea is to explicitly parameterise the
marginal causal effect, and build the rest of the model around it. In this paper we encode all the
dependence among covariates in the copula, so ‘the past’ is really just the propensity for treatment
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(also called the propensity score) and the product of the univariate margins (Evans and Didelez, 2024).
Figure 1 provides an illustrative summary of our framework, and outline which models are used to
parameterise each component of a frugal model.

Z

θZ :
{
FZd

= F−1
Zd

}D
d=1

YT

θT|Z : FT|Z = C−1
T|Z

(
F−1

T | F−1
Z1
, . . . ,F−1

ZD

)

θY |do(T ) : FY |do(T ) = F−1
Y |do(T )

ϕZY |do(T ) : CZY |do(T ) =

C−1
(
F−1

Y |do(T ),F−1
Z1
, . . . ,F−1

ZD

)

Figure 1: A visual abstract outlining the different components of a frugal model, and how each
specific component is parameterised. Univariate CDFs are denoted by F , and copula distribution
functions are denoted by C. The marginal causal effect, θY |do(T ), is modelled with a univariate
normalising flow, which we denote by F (see Section 2.4). The intervened dependency measure,
ϕZY |do(T ), is modelled with a copula flow which we denote by C (see Section 2.5). The past,
θZT , is modelled by the combination of univariate normalising flows (for the univariate pretreatment
covariate distributions) and a copula flow (for the propensity of treatment).

Variation Independence Any smooth and regular ‘dependency measure’ can be chosen for pa-
rameterising ϕZY |do(T ); this is defined as a quantity which, when combined with the marginal
distributions, smoothly parameterises the joint distribution. It is desirable that the three parameter
sets (θZT , θY |do(T ), ϕZY |do(T )) are variation independent (Barndorff-Nielsen, 2014) of each other;
such parameterisations have the benefit of allowing the measure ϕZY |do(T ) to be freely specified
without restricting the rest of the model. Copulae are an example of such a dependency measure,
and are a natural choice for frugally modelling dependencies in continuous and mixed datasets. For
further detail we refer the reader to Appendix A.

2.3 Copulae

A multivariate copula, denoted by C : [0, 1]d → [0, 1] is a multivariate cumulative distribution
function (CDF) defined over a set of d uniform margins, with an associated density c(·) if it is
continuous with respect to its arguments (Sklar, 1959; Joe, 2014). Copulae are often used to
parameterise the dependency structure of a joint distribution independent of its univariate margins.
Large, complex dependency structures are often modelled by pair-copula constructions (PCCs) or
vine copulae (Czado and Nagler, 2022; Joe and Kurowicka, 2011). These methods factorise the
dependency structure into a set of non-overlapping bivariate copulae. However, these approaches
typically impose the constraints of a finite dimensional parameterisation on the dependency structure
in the bivariate copulae used. A more comprehensive introduction to copulae can be found in
Appendix B.

Copulae in Machine Learning More complex ML models have been developed to more flexibly
learn copula distributions. Several alternatives have been proposed, some targeting specific copula
classes (Ling et al., 2020; Wilson and Ghahramani, 2010), and others constraining a neural network-
based architecture to estimate valid copulae, though often with limited scalability (Zeng and Wang,
2022; Chilinski and Silva, 2020) or using variational approximations (Letizia and Tonello, 2022).
However, the most active research area in this field makes use of normalising flows, leveraging their
likelihood-based, composable and invertible nature to chain transformations of marginal quantities to
the fitting of the copula density.

Paper Motivation A key motivation for this paper is the search for a flexible parameterisation of
the copula

ϕZY |do(T )(z, y | t) = c(FY |do(T )(y | t), FZ1
(z1), . . . , FZD

(zD)) (2)

3



between the probability integral transforms of the univariate pretreatment covariates and a conditional
univariate quantity which parameterises the causal margin. Evans and Didelez (2024) show that this
can be done using parametric copulae, and also prove that it targets the marginal causal rather than
the conditional distribution when ϕZY |do(T ) is parameterised by a multivariate copula. Consider the
multivariate copula for the distribution of Z and Y conditional on T :

c(FY |T , FZ1|T , . . . , FZD|T ).

For an intervened distribution, all pretreatment covariates Z are marginally independent of T , and so
the intervened joint density becomes

pY |Z,do(T ) = pY |do(T ) · c(FY |do(T ), FZ1
, . . . , FZD

),

where pY |do(T ) is the marginal causal effect of T on Y . The final propensity score density pX|Z
does not affect the marginal densities in the observational model as there is a parameter cut between
pT|Z and pY |Z,do(T ) (Barndorff-Nielsen, 2014). However, θY |do(T ) and ϕZY |do(T ) are functions of
pY |Z,do(T ) and thus should be estimated jointly. If pY |do(T ) is estimated separately from the copula,
the marginal conditional effect will be inferred rather than the marginal causal effect.

Generative ML methods allow for estimating more flexible and general copulae, but have struggled
so far to learn copulae together with conditional univariate quantities. We resolve this problem and
design a NF-based copula inference method that allows for these quantities to be estimated jointly as
required by the frugal parametrisation (see Section 2.5). The model is then trained on real-world data
and used for generating customised causal benchmarks which closely resemble the original dataset.

2.4 Normalising Flows

Normalising flows (NFs) (Tabak and Turner, 2013; Rezende and Mohamed, 2015; Dinh et al., 2016)
allow for density estimation via learning a diffeomorphic transformation F that maps the unknown
target distribution pX(x), x ∈ RD to a simple and known base distribution pU (u), u ∈ RD, so that
when X ∼ pX and U ∼ pU then U = F−1(X) .

F is usually a composition of invertible and differentiable transformations Fi parametrised by neural
networks, and is often trained by maximising the log-likelihood of observed {xi}Ni=1. This can be
conveniently done in closed form exploiting the change of variable formula

pX(x) = pU (F−1(x))

∣∣∣∣det
(
∂(F−1(x))

∂x

)∣∣∣∣ , (3)

provided that the chosen model for F allows for efficient computation of the Jacobian determinant
det(∂(F−1(x))/∂x). The implementation of F−1 then allows for density evaluation, whereas F
can be used for sampling from the joint.

As for the choice of F , the literature has explored a number of implementations that retain invertibility
while allowing for computational tractability of the determinant. See Papamakarios et al. (2021) for
an introduction and overview. Our implementation relies on neural spline flows (NSF, Durkan et al.,
2019), a particular type of autoregressive flows that will be further illustrated in Section 2.5.

2.5 Copula Flows

Our Frugal Flow approach builds upon the copula-based flow model proposed by Kamthe et al.
(2021) for synthetic data generation. The authors start by considering a copula C(FX1 , . . . , FXD

)
defined over the marginal probability integral transforms FX1 , . . . , FXD

of a random vector X =
[X1, . . . , XD]. Assuming the copula density exists, the joint density of X can be written as

pX(x1, . . . , xd) = cX (FX1
(x1), . . . , FXD

(xD)) ·
[

D∏
d=1

pXd
(xd)

]
, (4)

where pXd
is the marginal density of Xd. This factorisation of the density can be similarly induced

by a NF that composes D flows F1, . . . ,FD for the marginal quantities and a flow CX for the copula.

For the rest of this paper, we will let U ∼ Uniform[0, 1]D represent a vector of independent uniforms,
and let V ∼ C represent a vector of dependent uniforms as a multivariate copula C. The generative
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procedure for this NF takes samples U from a base distribution of independent uniforms and first
pushes them through the copula flow CX , obtaining correlated uniform samples V = CX(U).
Then V is mapped through the marginal flows FX = [FX1 , . . . ,FXD

] to obtain the random vector
X = FX(V ).

The composed flow X = FX(CX(U)) is also a valid flow, and via the change of variable formula
as in eq. (3) it induces a specific factorisation of the density of X Here, we quote the result from
Kamthe et al. (2021):

pX = pV (F−1
X (X))

∣∣∣∣det
(
∂F−1

X (X)

∂X

)∣∣∣∣
=

∣∣∣∣det
(
∂C−1

X (F−1
X (X))

∂F−1
X (X)

)∣∣∣∣
∣∣∣∣∣

D∏
d=1

(
∂F−1

Xd
(Xd)

∂Xd

)∣∣∣∣∣ . (5)

As the univariate mapping from a uniform to a random variable is uniquely defined by the CDF, the
flows F−1

X = [F−1
X1
, . . . ,F−1

XD
] target the marginal CDFs FX1 , . . . , FXD

. Note how eq. (5) factorises
the density of X into a copula density and a product of marginal densities as in eq. (4).

CX is estimated with a NSF, a NF of the autoregressive flow class. Autoregressive flows (Papamakar-
ios et al., 2017; Huang et al., 2018) factorise CX as a recursive sequence of univariate conditional
flows:

V1 := C1(U1) Vd := Cd|1...d−1(Ud | V1, . . . , Vd−1) 2 ≤ d ≤ D. (6)

In principle, since the input U is a vector of independent uniforms, the conditional flows would
approximate the inverse of the Rosenblatt transform (Rosenblatt, 1952) and thus be universal approxi-
mators if the flows were sufficiently expressive (Papamakarios et al., 2021). The Rosenblatt transform
sequentially maps each component Sd of any random vector S with strictly positive density through
its corresponding conditional CDF FSd|S1,...,Sd−1

, obtaining a vector U of independent uniforms. It
is known to be a diffeomorphism, so its inverse bears the same structure as eq. (6)), but uses inverse
conditional CDFs C−1

d|1,...,d−1 for each Vd. We use the notation C−1 to emphasise that in the copula
flow case we are dealing with inverse copula CDFs, whose codomain is also uniform.

Autoregressive flows estimate each univariate conditional flow Cd|1...d−1 with a strictly monotone
function whose parameters are only allowed to depend on dimensions 1, . . . , d− 1. The monotonicity
of the function ensures invertibility, while the autoregressive structure in the function parameter
dependence gives a triangular Jacobian whose determinant is tractable. Kamthe et al. (2021) use a
NSF, where the monotone function is given by a monotone rational quadratic spline, whose knot
parameters are provided by a neural network where weights are appropriately masked to ensure the
autoregressive structure. The univariate marginal flows FX are estimated with separate NSFs before
training the copula flow using the transformed data V .

While a NSF can constrain the support of both the base and target distributions, it cannot control the
form of the marginal distribution. If marginal and copula flows are learned simultaneously, neither
will be correctly inferred due to the infinite possible combinations of (FX , CX) which yield the same
composite flow W = FX ◦ CX . These flows must be learned sequentially if C is to model a copula.

In our application, we wish to infer a multivariate copula which models the joint dependence
between univariate pretreatment covariates and conditional univariate quantities such that the latter
parameterises the causal margin. Inferring the MOD separately from the copula, as copula-based
flows do, will target the conditional causal effect rather than the marginal causal effect. We propose a
solution in the form of Frugal Flows, which we introduce in Section 3.1.1. Moreover, for discrete
variables we use a dequantised form of the empirical CDF rather than a NSF adaptation (see
Appendix B.2 for further details).

2.6 Validating and Benchmarking Causal Methods

Methods for validating causal models can be broadly categorised into two groups. The first comprises
auxiliary analyses conducted after fitting a causal model and estimating a treatment effect. These
include but are not limited to sensitivity analyses (Imai et al., 2010), subgroup analyses (Cochran and
Chambers, 1965), placebo tests (Eggers et al., 2023), and negative controls (Shi et al., 2020).

5



The second set of validation methods is where we see FFs having a significant impact. These methods
are used to construct synthetic datasets while allowing the causal practitioner to customise specific
features of the data-generating process. For example, when validating an inference method which
estimates an ATE under certain confounding assumptions, it is crucial that generated data follow the
“ground truth” ATE and confounding assumptions one wishes to measure. However, synthetic data
risk being oversimplified and contrived, failing to reflect the complexity of real world datasets.

To mitigate this, generative models are trained on real-world data and calibrated to generate samples
with modifiable causal constraints. Such constraints include the average causal treatment effect,
unobserved confounding, and positivity. To our knowledge, the FF framework proposed in this paper
is the first method to allow all of these conditions to adjusted by the user. Existing methods (Neal
et al., 2020; Athey et al., 2021; Parikh et al., 2022) encode these effects through soft optimisation
constraints, hence there is no guarantee that the constraints are satisfied. Enforcing these constraints
too strongly may negatively impact model optimisation, and may affect the reconstructive ability
of the underlying model. Furthermore, since these approaches do not explicitly parameterise the
causal effect, samples from trained models must be tested post hoc to ensure the desired constraints
are present in the sampled data. A key benefit of frugal models is that the marginal causal effect is
directly parameterised by the user through the likelihood. As a result, synthetic data samples will
exactly satisfy these constraints.

3 Method

3.1 Building the Joint Distribution

In this section we parameterise the full observational joint using FFs. Section 3.1.1 outlines how the
FF is constructed; we first learn the probability integral transforms of the pretreatment covariates,
and then infer the causal margin jointly with an extended copula flow, the Frugal Flow. To infer the
causal margin, this is sufficient. Nevertheless, the propensity score is needed to complete the joint in
order to generate benchmarks which are confounded in a similar fashion to the original real-world
dataset. We describe the fitting of the propensity score in Section 3.1.2

3.1.1 Constructing Frugal Flows

The first step involves learning the margins for the pretreatment covariates Z. This is done in a
similar fashion to that of Kamthe et al. (2021)’s copula-based flows, as described in Section 2.5. The
outcome, treatment, and the inferred ranks VZ of the pretreatment covariates are then used to train
the Frugal Flow (see bottom part of Figure 2) that models F−1

Y |do(T ) together with the copula flow.
This is required in order to learn the causal marginal pY |do(T ) rather than the conditional pY |T .

The Frugal Flow of dimension D + 1 transforms the joint input of (Y, VZ | do(T )) into a random
vector U which we set to be distributed according to an independent uniform base distribution. In the
first subflow of the composition, Y is pushed through a univariate flow F−1

Y |do(T ) conditioned on T to
obtain VY |do(T ), while the VZ remain untransformed. Subsequently, VY |do(T ) is kept fixed, while
a copula is learnt over VZ conditional on VY |do(T ) via an NSF. Importantly, a specific ordering of
the variables is imposed, such that the causal margin is ranked first. In this way, we ensure that U1

and VY |do(T ) have the same distribution, and VY |do(T ) is therefore constrained to be uniform. The
marginal flow F−1

Y |do(T ) thus targets the CDF of the marginal causal effect, FY |do(T ).

In summary, we construct a flow Q−1 : (Y, VZ1
, . . . , VZD

| T ) → V as a composition of
a marginal flow F−1

Y |do(T ) and conditional copula distribution C−1(vY |do(T ), vZ1
, . . . , vZD

) =

C(vZ1
, . . . , vZD

| vY |do(T )). More on the implementation details can be found in Appendix C.

3.1.2 Learning the Propensity Flow

We constructed the conditional distribution of Y and Z after an intervention on T in Section 3.1.1:

pZY |do(T )(z, y | t) =
[

D∏
i=1

pZi
(zi)

]
· pY |do(T )(y, t) · cZY |do(T )(vY |do(T ), vZ1

, . . . , vZD
).
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Z1

...
ZD


F−1

Z1
(·)

...
F−1

ZD
(·)


VZ1

...
VZD

 = VZ

[
Y | do(T )

VZ

] (
F−1

Y |do(T )(·)
I(·)

) [
VY |do(T )

VZ

]
NSF

(
c(vY |do(T )) = 1
c(vZ | vY |do(T ))

) [
U1

U2:(D+1)

]
Figure 2: Structure for learning a Frugal Flow. The top line outlines the process for learning the
univariate marginal flows of the pretreatment covariates Z. The bottom transform illustrates the
Frugal Flow, which learns the conditional copula c(vZ | vY |do(T )) jointly with the causal marginal
flow FY |do(T ) by enforcing VY |do(T ) to be marginally uniform.

Inferring the above is sufficient for identifying the causal margin. However, to generate realistic
samples for causal method validation, one also needs to learn the propensity score, pT |Z = pT · cT|Z .
By decoupling the marginal treatment density pT from the conditional copula cT|Z , one can can
modify the marginal treatments while retaining the dependence of the original data. We therefore
learn an approximate probability integral transform of the discrete treatment T (see Appendix B.2.1
for further details), followed by the conditional copula flow of T on Z, C−1

T |Z : VT → VT|Z | Z.

One could directly model pT|Z using a normalising flow, which would also constitute a valid frugal
model. We instead choose to model the conditional copula using a flow, CT|Z = C−1

T|Z , allowing users
to encode a degree of unobserved confounding in the generated data by sampling the ranks VT|Z and
VY |do(T ) from a non-independence copula. Assuming ignorability, these ranks would be independent.
However, unobserved confounders imply dependence between these ranks. Sampling them from a
copula can replicate this effect, as demonstrated in the far-right plots in Figures 3 and 4.

The above section describes how one can estimate the propensity of treatment from a real-world
dataset. However, we remark that one can choose any custom propensity score function to generate
treatments conditional on the pretreatment covariates via inverse probability integral transforms on
VT |Z . Hence, one can fully control the overlap/positivity of FF generated benchmark datasets.

3.2 Generating Synthetic Benchmarks

Data generated from a fitted FF can be customised with a range of properties, allowing for model
validation against a range of customisable causal assumptions. We describe these below.

Modifying the Causal Margin The central output of the Frugal Flow is a method for sampling
ranks for each of the margins in PY |do(T ), PZ1

, . . . , PZd
. Any causal marginal density qY |do(T ) can

be used to generate samples of Y via inverse probability integral transforms. Since the Frugal Flow
returns ranks for the intervened causal effect, these can be inverse transformed by any valid CDF.
Unlike other methods, this constraint is strictly enforced by the the frugal likelihood.

Simulating from Discrete Outcomes Since FFs return VY |do(T ) ranks, one can sample from
any custom causal margin. This extends to both continuous and discrete causal margins. One can
simulate from a logistic marginal effect Y | do(T ) ∼ Bernoulli(p = expit(βT + c)) or probit
model Y | do(T ) ∼ Bernoulli(p = Φ(βT + c)) where Φ(·) is a univariate standard Gaussian
CDF. This is non-trivial, because logistic regression is not collapsible, meaning that if (for example)
Y | T = t,Z = z is a logistic regression, then Y | do(T = t) generally will not be. Hence it is
infeasible for a fully conditional method of simulation to produce outcomes where the causal margin
uses a logistic link. For experimental results see Appendix D.2.1.

Modifying the Degree of Unobserved Confounding One can sample data from FFs as if the
outcome is affected by unobserved confounding. The variables VY |do(T ) and VT|Z are independent of
each other if no unobserved confounding is assumed. Introducing a dependence between these ranks
replicates the effect of unobserved confounding. This can be achieved by sampling (VY |do(T ), VT |Z)
from a Gaussian bivariate copula, c(vY |do(T ), vT |Z ; ρ), where ρ quantifies the degree of unobserved
confounding in the sampled data.
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Customising Treatment Effect Heterogeneity Consider a stationary treatment with pretreament
covariate set Z = (W ,W ) where W ⊂ Z with |Z| = D, |W | = d, and |W | = D − d. We
proceed considering the case where 0 < d < D. Interest may lie in the causal treatment margin
conditional on the subset of variables W :

pY |W,do(T )(y | w, t) =
∫
W
dw pY |Z,do(T )(y | w,w, t) pW |W (w | w) (7)

We propose a method to exactly parameterise heterogeneous treatment effects using a subset of
pretreatment covariates, W ⊂ Z. FFs offer exact parameterisation of pY |W,do(T ), allowing for
customisation of heterogeneity while capturing complex dependencies between other covariates.
Specifically, the model infers the conditional treatment margin, pY |W,do(T )(y | w, t), ensuring proper
inference of the joint pretreatment covariate distribution, pZ(·). Thus, one may simulate data where
causal effects are conditional on a selected subset of variables, offering flexible and precise control
over treatment heterogeneity. Further details may be found in Appendix D.2.2.

Customising the Propensity Score Since the propensity score is variation independent from the
rest of the model, one has complete flexibility on how to parameterise the propensity score. Any
distribution PT|Z can be used to generate treatments with varying degrees of overlap in a manner that
is completely customisable by the user.

4 Experiments

The following section discusses our experiments and results, which aim to i) demonstrate that FFs
accurately infer the true MOD for confounded data, and ii) show how a trained FF can generate
synthetic datasets that meet user specified causal margins and unobserved confounding.

4.1 Inference

We generate simulated data from three models. The first two are parameterised by four pretreatment
covariates Z = {Z1, . . . , Z4} with a binary treatment T , a linear Gaussian causal margin Y |
do(T ) ∼ N (µ = T + 1, σ = 1), and a copula dependence measure c(vY |T , vZ1

, . . . , vZ4
). In

the first model M1, all four covariates follow a gamma distribution. In the second M2, the data is
generated from an even split of gamma and binary covariates. Additionally, we generate data from
model M3 with ten pretreatment covariates comprising five gamma and five binary variables. A
more quantitative description of the simulated data generating process and hyperparameter values are
presented in Appendix D.1.

Table 1: Mean and 2σ confidence interval of the inferred ATE, bootstrapped over 25 different runs
and with a data size of N = 25,000. The number of pretreatment covariates in each model is denoted
by D. Bold confidence intervals contain the true ATE. OR quotes the results obtained by linear
outcome regression, and CNF reports the ATE estimted by causal normalising flows.

Model True ATE D Frugal Flow OR Matching CNF

M1 1 4 0.98± 0.12 1.28± 0.06 0.78± 1.06 0.73± 0.16
M1 5 4 5.00± 0.24 5.29± 0.04 4.68± 1.06 4.23± 0.20
M2 1 4 1.01± 0.10 1.46± 0.07 1.36± 0.72 1.01± 0.20
M2 5 4 5.01± 0.18 5.44± 0.05 5.55± 0.88 5.03± 0.44
M3 1 10 1.00± 0.09 1.13± 0.06 0.90± 0.48 0.87± 0.15
M3 5 10 5.18± 0.30 5.13± 0.26 4.90± 0.47 4.73± 0.28

We generated datasets with a sample size of N = 25,000 across B = 25 different runs. Frugal
Flows (FFs) were compared against outcome regression (OR), traditional causal propensity score
matching (Stuart, 2010), and state-of-the-art causal normalising flows (CNFs) (Javaloy et al., 2024).
Further details on the methods can be found in Appendix D.3.3. A default set of hyperparameters
was used for all models. The estimated ATEs are shown in Table 4. OR models, which estimate
the conditional rather than the marginal effect of T on Y , consistently exhibited bias, pulling the
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estimates away from the true value. In contrast, FFs achieved the lowest error in identifying the true
ATE, outperforming both statistical matching and CNFs.

Our results demonstrate that Frugal Flows can correctly identify causal relationships under ideal
conditions, confirming that they are a valid, efficient way to parameterise a causal model using deep
learning architectures. A drawback of FFs is that they need large datasets to accurately infer causal
margins. Additionally, the complexity of data dependencies might require careful hyperparameter
tuning to prevent the copula from overfitting, which could bias the inference of the causal relationships.
Because of these challenges, we do not recommend using FFs on real-world datasets for statistically
inferring treatment effect sizes, as causal benchmark datasets are usually small.

4.2 Benchmarking and Validation

In this section we present the results of multiple causal inference methods on data generated from FFs
trained on two real-world datasets. The first is the Lalonde data, taken from a randomised control trial
to study the effect of a temporary employment program in the US on post intervention income level
(LaLonde, 1986). The second is an observational dataset used to quantify the effect of individuals’
401(k) eligibility on their accumulated net assets, in the presence of several relevant covariates
(Abadie, 2003). Both datasets have a binary treatment and continuous outcome. Appendix D.3 can be
referred to for a more comprehensive description of the data. In addition, we present diagnostics on
the quality of the model fit in Appendix D.3.6, and the loss optimization for both datasets is presented
in Appendix D.3.7.
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Figure 3: Boxplot of ATE estimates from 10 inference methods, estimated across 50 different samples
from a FF trained on the Lalonde dataset. The dotted red line represents the customized ATE of
samples generated from the trained Frugal Flow.

FFs were fitted to both datasets and used to simulate data with an ATE of 1000. We simulate 50
datasets of size N = 1000 from three different cases each: i) no confounding, ii) with confounding
according to the propensity flow inferred in the model fitting, and iii) with propensity flow confound-
ing and unobserved confounding introduced via a Gaussian copula. A variety of causal inference
methods (see Appendix D.3.4 for a more detailed description) were fit to the data sets, including
a difference of means (DoMs) estimate which is an unbiased estimator of the treatment effect for
randomised data. The inferred ATEs across all runs are presented in Figure 3 and Figure 4.

In both cases, all inference methods demonstrate no bias when fitted to unconfounded data. With
real-world confounding, most methods estimate the correct ATE in Figure 4, whereas the DoMs
shows a substantial bias from the ground truth. In Figure 3 however, all methods infer the correct
ATE including DoMs. This is not surprising as the original data was randomised; the propensity flow
here appears to simply add more noise to the outcomes. Finally, we note that all causal inference
methods show confounding bias in the far right hand plots, demonstrating that FFs can simulate data
with replicate the effects of hidden confounding.
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Figure 4: Boxplot of ATE estimates from 10 inference methods, estimated across 50 different samples
from a FF trained on the e401(k) dataset. The dotted red line represents the customized ATE of
samples generated from the trained Frugal Flow.

5 Conclusions

We introduce Frugal Flows, a novel likelihood-based model that leverages NFs to flexibly learn
the data-generating process while directly targeting the marginal causal quantities inferred from
observational data. Our proposed model addresses the limitations of existing methods by expliclitly
parameterising the causal margin. FFs offer significant improvements in generating benchmark
datasets for validating causal methods, particularly in scenarios with customizable degrees of un-
observed confounding. To our knowledge, FFs are the first generative model that allows for exact
parameterisation of causal margins, including binary outcomes from logistic and probit margins.

5.1 Limitations and Future Work

Our experiments validated the empirical effectiveness of FFs, showing that they can infer the correct
form of causal margins on confounded data simulations. Despite these promising results, FFs
come with certain limitations that need to be addressed in future research. NFs require extensive
hyperparameter tuning, which can be computationally intensive and time-consuming. Moreover,
we see that FFs perform better in inference tasks with larger datasets. Future work could explore
alternative ML copula methods and architectures that may be more effective for smaller datasets.
Fortunately, this is less problematic for simulation as specification of the exact causal margin is left
to the user. Additionally, the dequantising mechanism used by FFs implicitly shuffles the order of
discrete samples, potentially losing some inherent structure in the data, making FFs less suitable for
categorical datasets without implicit ordering.

In summary, Frugal Flows offer a novel approach to causal inference and model validation that
combines flexibility with exact parameterisation of causal effects. Future work will refine the
inference capabilities and extend the applicability of FFs to a wider range of data types and sizes.
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A The Frugal Parameterisation

The frugal parameterisation proposed by Evans and Didelez (2024) provides a method for simulating
from a parametric marginal causal model, by starting with this distribution and building the rest of
the model around it.

Z

YT

Figure 5: A generalised example of a static causal treatment model. The past P (T,Z) (black) can be
freely specified separately from the causal effect (blue). However, the dependency measure between
Z and Y (red), ϕ should be parameterised in such a way that the margins P (Z) and P (Y |do(T ))
are invariant to changes in ϕ.

We specify the notation used in this appendix. Functions labelled Fi(·) are CDFs for the variable i.
Apart from this, in general density functions will be labelled with a lower case letter, whereas CDFs
will be named with the upper case (e.g. we contrast the copula density c(u1, u2) with the distribution
function C(u1, u2)).

Consider firstly the case of a static treatment model with a single outcome Y , a single treatment
T and an effective pretreatment covariate set Z. Assume that any of these covariates occur prior
to treatment even if they do not causally affect the treatment directly. Evans and Didelez (2024)
construct frugal models in three parts:

• The causal distribution of interest P (Y | do(T ))
• The past P (Z, T )
• The intervened variation independent dependency measure ϕ(Y,Z | do(T )).

The three frugal components are variation independent in the sense that they characterise non-
overlapping components of the full observational joint. We quote the following definition from Evans
and Didelez (2024):

Definition 1 Take a set Θ and two functions defined on it ϕ, ψ. We say that ϕ and ψ are variation
independent if (ϕ× ψ)(Θ) = ϕ(Θ)× ψ(Θ); i.e. the range of the pair of functions together is equal
to the Cartesian product of the range of them individually.

Variation independence (VI) is a highly desirable property for a parameterization, since it allows
different components to be specified entirely separately. This is extremely useful if one is trying to
use a link function in a GLM, or to specify independent priors for a Bayesian analysis. In addition,
VI is important in semiparametric statistics. The definition simply states that the Cartesian product of
the images is the same as the image of the joint map. For example, in a bivariate gamma-distribution
with positive responses, then µ1 ∈ R+ and µ2 ∈ R+ is a variation independent parameterization,
since

(µ1 × µ2)(Θ) = R+ × R+ = µ1(Θ)× µ2(Θ).

However, if we replace µ2 with µ′
2 = µ2−µ1 (for example), then although the range of this parameter

is R,
(µ1 × µ′

2)(Θ) = {(x, y) : x > 0, y > −x} ≠ R+ × R = µ1(Θ)× µ′
2(Θ).

Central to this is the choice of ϕ∗. This dependency measure should encode dependencies between Z
and Y | do(T ), but not provide information about their marginal distributions.

Discrete frugal models can be parameterised by conditional odds ratios, while continuous variables
typically use copulae. Both allow for variation independent parameterisation of the full joint dis-
tribution. The methodology facilitates the creation and simulation of models with parametrically
determined causal distributions, enabling fitting using likelihood-based techniques, including fully
Bayesian methods. Furthermore, this parameterisation covers a range of causal quantities, such as the
average causal effect and the effect of treatment on the treated.
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B Copula Theory

Copulae present a powerful tool to model joint dependencies independent of the univariate margins.
This aligns well with the requirements of the frugal parameterisation, where dependencies need
to be varied without altering specified margins (the most critical being the specified causal effect).
Understanding the constraints and limitations of copula models ensures that causal models remain
accurate and consistent with the intended parameterisation.

B.1 Sklar’s Theorem

Sklar’s theorem (Sklar, 1959; Czado, 2019) is the fundamental foundation for copula modelling, as it
provides a bridge between multivariate joint distributions and their univariate margins. It allows one
to separate the marginal behaviour of each variable from their joint dependence structure, with the
latter being represented by the copula itself.

Theorem 1 For a d-variate distribution function F1:d ∈ F(F1, . . . , Fd), with jth univariate margin
Fj , the copula associated with F is a distribution function C : [0, 1]d → [0, 1] with uniform margins
on (0, 1) that satisfies

F1:d(y) = C(F1(y1), . . . , Fd(yd)),y ∈ Rd.

1. If F is a continuous d-variate distribution function with univariate margins F1, . . . , Fd and
rank functions F−1

1 , . . . , F−1
d then

C(u) = F1:d(F
−1
1 (u1), . . . , F

−1
d (ud)),u ∈ [0, 1]d.

2. If F1:d is a d-variate distribution function of discrete random variables (more generally,
partly continuous and partly discrete), then the copula is unique only on the set

Range(F1)× · · · ×Range(Fd).

The copula distribution is associated with its density c(·)
f(y) = c(F1(y1), . . . , Fd(yd)) · f1(y1) . . . fd(yd)

where fi(·) is the univariate density function of the ith variable.

Note that Sklar’s theorem explicitly refers to the univariate marginals of the variable set
{Y1, . . . , Yd} to convert between the joint of univariate margins C(u) and the original distribu-
tion F (y). For absolutely continuous random variables, the copula function C is unique. This
uniqueness no longer holds for discrete variables, but this does not severely limit the applicability of
copulae to simulating from discrete distributions. The non-uniqueness does play a more problematic
role in copula inference, however (Genest and Nevslehova, 2007).

An equivalent definition (from an analytical purview) is C : [0, 1]d → [0, 1] is a d-dimensional copula
if it has the following properties:

1. C(u1, . . . , 0, . . . , ud) = 0

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui.
3. C is d-non-decreasing.

Definition 2 A copula C is d-non-decreasing if, for any hyperrectangle H =
∏d

i=1 [ui, yi] ⊆ [0, 1]d,
the C-volume of H is non-negative. ∫

H

C(u) du ≥ 0

B.2 Copulae for Discrete Variables

Accurately modelling the univariate marginal CDFs of pretreatment covariates is a crucial step in
training Frugal Flows, particularly when the dataset includes discrete variables. For continuous
covariates, the mapping between observations and ranks is unique, allowing for straightforward
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estimation of the marginal distribution. However, with discrete covariates, this mapping becomes
one-to-many, as the same observation can be transformed from different ranks. This non-uniqueness
introduces significant challenges when modelling the joint distribution via copulae, as the joint set of
ranks for discrete covariates lacks a unique representation. As a result, estimating the dependency
structure between variables becomes more complex and less reliable.

To extend Frugal Flows to accommodate mixed data types, it is essential to generate empirical
ranks for discrete covariates in a way that allows the model to capture their dependencies. Our
goal is to obtain valid rank samples that can be used to train a Frugal Flow without introducing
distortions in the copula structure. While this issue has been widely explored in the copula literature
for parametric models, there remains a gap in effectively addressing it within more flexible, non-
parametric frameworks. In this work, we implement a generalised distributional transform for
discrete covariates (presented in Appendix B.2), which allows Frugal Flows to be trained effectively,
maintaining the flexibility of the model while accurately capturing the relationships between variables.

B.2.1 Challenges and Motivation

In addition to the above, copulae encode a degree of ordering in the joint as probability integral
transforms are inherently ranked, and hence should only be used for variables that have an inherent
ordering of their own (e.g. count or ordinal data models). While approaches to model discrete
variables exist in parametric copulae models (Zilko and Kurowicka, 2016; Panagiotelis et al., 2017),
more flexible non-parametric copulae struggle to capture the dependencies of empirical copulae.
Similar to Kamthe et al. (2021) we use the approach suggested by Rüschendorf (2009). An outline of
this method is presented in Appendix B.2.2. However, unlike Kamthe et al. we use the empirical
CDF inferred from the discrete data as opposed to modelling the CDF with a marginal flow.

B.2.2 Empirical Copula Processes for Discrete Variables

In order to deal with discrete variables, we use a similar approach as taken by Kamthe et al. (2021),
who quote the generalised distributional transform of a random variable found originally proposed by
Rüschendorf (2009). We quote the main result from Rüschendorf (2009) below.

Theorem 2 On a probability space (Ω,A, P ) let X be a real random variable with distribution
function F and let V ∼ U(0, 1) be uniformly distributed on (0, 1) and independent of X . The
modified distribution function F (x, λ) is defined by

F (x, λ) := P (X < x) + λP (X = x).

We define the (generalised) distributional transform of X by

U := F (X,V ).

An equivalent representation of the distributional transform is

U = F (X−) + V (F (X)− F (X−)).

Rüschendorf (2009) makes a key remark about the generalised transform’s lack of uniqueness for
discrete variables. Such a dequantisation step may introduce artificial local dependence which may
lead to an incorrect flow being inferred, and therefore hinder the inference of the causal margin.

C Frugal Flow Implementation Details

The FF software used for this paper can be found in the GitHub repository
https://github.com/llaurabatt/frugal-flows.git.

FF software builds upon FlowJax (Ward, 2024), a Python package implementing normalising flows in
JAX (Bradbury et al., 2018). JAX is an open-source numerical computing library that extends NumPy
functionality with automatic differentiation and GPU/TPU support, designed for high-performance
machine learning research.

Frugal Flow architecture.

The Frugal Flow component builds a flow of the form in the bottom part of Figure 2. It allows us to
implement FY |T with either (i) a customised CDF conditioned on T , of a known parametric family;
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(ii) a univariate NSF on the [−1, 1] interval modified to allow a location translation parameter that
represents the ATE for T , where the input is mapped from the real line via a tanh transform; or finally
(iii) a univariate NSF on the [−1, 1] interval that is not conditional on T , where the input is mapped
from [0, 1] via an affine transform. As for known parametric families, only the Gaussian CDF is
currently implemented, but the architecture allows us to define any different parametric class provided
that it constitutes a diffeomorphism. As for the univariate NSF in (iii), it does not explicitly learn
an ATE in the training phase, but can be used for simulation of e.g. binary outcomes by applying a
subsequent logistic transformation to its outcome.

The multivariate NSF element is a composition of multiple modified NSF subflows. In each subflow
the first transform is fixed to be an identity, while the other dimensions are transformed with a
monotone rational quadratic spline whose knot parameters are produced by masked multilayer
perceptrons (MLPs) implemented as in Germain et al. (2015), conditional on the first dimension.
In order to increase expressivity, dimension permutation is usually applied between the different
subflows in the NSF composition. We still allow this permutation but excluding the first dimension,
that is fixed to be at the top in each subflow. The NSF acts on the on the [−1, 1] interval and is
mapped from and back to the quantile space with affine transforms.

Tunable hyperparameters to the Frugal Flow component are the number of subflows of the multivariate
NSF, the width and depth of the MLPs and the number of spline knots, together with the specific
hyperparameters of the chosen FY |T .

Marginal flows architecture for continuous variables.

Each marginal flow for the continuous covariates maps each variable from the real line to the [−1, 1]
interval with a tanh transform, then applies a univariate NSF on the [−1, 1] interval, and maps back
to the standard uniform base distribution via an affine transform. Tunable hyperparameters are the
number of subflows of the NSF, the width and depth of the MLPs and the number of spline knots.

Marginal transform architecture for discrete variables.

To map a discrete Z to the ranks VZ , we compute its empirical CDF and then apply the procedure
outlined in Appendix B.2.2. We use the inverse of the same empirical CDF to map ranks back to the
Z for sampling.

Propensity score model architecture.

To map a discrete T to the ranks VT , we compute its empirical CDF and then apply the procedure
outlined in Appendix B.2.2. A univariate NSF flow with a uniform base distribution is then applied to
learn the copula CDF of T on the [0, 1] support, conditioned on Z. The Z conditioning is obtained
by adding Z as an (unmasked) input to the MLP that produces the knot parameters for the rational
quadratic spline. This is standard in NF literature. Tunable hyperparameters are the number of
subflows of the NSF, the width and depth of the MLPs and the number of spline knots.

The propensity score model can be inverted to generate T samples conditioned on a given Z. Uniform
samples are pushed through the trained univariate propensity score flow to obtain ranks, that are then
mapped to the discrete space via the inverse of the empirical CDF of T .

Training the Frugal Flow and the propensity score flow.

In order to train a FF, one must fit the marginal flows first. The marginal flows are trained (for
continuous variables) via maximising the log-likelihood with stochastic gradient descent, and/or the
discrete Z are mapped to the rank space via the procedure in Appendix B.2.2. Next, the FF is trained
via maximum likelihood estimation (MLE), taking as input the outcome Y together with the ranks
VZ , and conditioning the flow for the causal margin on treatment T where required by the chosen
method. For MLE optimisation, we take advantage of JAX automatic differentiation capabilities
and use the Adam optimiser (Kingma and Ba, 2015), whose hyperparameters can also be tuned. If
required, the propensity flow is likewise trained on VT conditioning on Z via MLE with an Adam
optimiser.

Simulating benchmarks.

One can use a trained FF for simulation of causal benchmarks. The general data simulation pipeline
is:
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1. Generate a sample of UT|Z , VY |do(T ) from a bivariate Gaussian copula, parameterised by
correlation ρ, which quantifies the degree of unobserved confounding one wishes to encode
in the benchmark. If no unobserved confounding is desired, set ρ = 0.

2. Generate a sample of D independent uniforms, UZ

3. Push the sample (VY |do(T ),UZ) through the trained FF and save the resulting correlated
VZ samples associated with VY |do(T )

4. Generate Z from uniform samples via inverting the univariate marginal flows (continuous
variables) and/or using the learnt inverse empirical CDF (discrete variables)

5. Generate T as a function of Z by pushing UT|Z through the inverse of the trained propensity
score flow and mapping ranks VT back to the discrete space via the learnt inverse empirical
CDF

6. Push VY |do(T ) through the desired causal margin transform to obtain outcome samples
conditioned on T . Currently, the package supports:

(a) Sampling from an inverse CDF provided by the user, taking VY |do(T ) as input and con-
ditioning on the given univariate T . Currently a Gaussian inverse CDF is implemented,
where the coefficient on T can be chosen to impose the desired ATE. The user is free
to define different inverse CDFs.

(b) Sampling a binary outcome with probabilities produced from a logistic function taking
VY |do(T ) as input and conditioning on the given univariate T . The coefficient on T can
be chosen to impose the desired odds ratio.

(c) Sampling from the univariate NSF learnt during the FF training, but with a user-defined
location translation parameter representing the ATE and conditioning on the given
treatment T . This method exploits the flexible margin distribution learnt for T = 0
during FF training, but allows to choose a different ATE for the location-translation
effect produced by T = 1.

D Experimental Details

All experiments were run on a MacBook (16-inch, 2021) with an M1 Max chip and 32GB memory
using the CPU.

D.1 Simulated Data Experiments

The simulated data generated for the inference experiments was generated using the causl package
written in R, which was called in Python via the rpy2 package (Evans, 2021; Evans and Didelez,
2024).

The covariates were either selected to be binary (marginally distributed according to Bernoulli(p =
0.5) or continuous (marginally distributed according to Gamma(µ = 1, ϕ = 1). The marginal causal
effect was chosen to be a linear Gaussian; Y | do(T ) ∼ N (T, 1).

The underlying data generating process uses a multivariate Gaussian copula to generate dependencies
between the marginal covariates and the causal effect. The Spearman correlation matrix used to
generate the data for models M1 and M2 is

R4 =


1.0 0.5 0.3 0.1 0.8
0.5 1.0 0.4 0.1 0.8
0.3 0.4 1.0 0.1 0.8
0.1 0.1 0.1 1.0 0.8
0.8 0.8 0.8 0.8 1.0
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and the correlation matrix used to generate data for model M3 is

R10 =



1.0 0.3 0.4 0.5 0.1 0.2 0.7 0.5 0.4 0.5 0.5
0.3 1.0 0.3 0.6 0.3 0.4 0.4 0.6 0.3 0.2 0.5
0.4 0.3 1.0 0.5 0.2 0.1 0.1 0.0 0.4 0.4 0.5
0.5 0.6 0.5 1.0 0.2 0.2 0.5 0.5 0.3 0.4 0.5
0.1 0.3 0.2 0.2 1.0 0.1 0.5 0.6 0.2 0.4 0.5
0.2 0.4 0.1 0.2 0.1 1.0 0.0 0.4 0.2 0.5 0.5
0.7 0.4 0.1 0.5 0.5 0.0 1.0 0.4 0.4 0.4 0.5
0.5 0.6 0.0 0.5 0.6 0.4 0.4 1.0 0.4 0.4 0.5
0.4 0.3 0.4 0.3 0.2 0.2 0.4 0.4 1.0 0.4 0.5
0.5 0.2 0.4 0.4 0.2 0.5 0.4 0.4 0.4 1.0 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0


,

where the later rows/columns are indexed by the causal effect ranks, VY |do(T ), and the earlier
rows/columns correspond to the Spearman correlation matrix between the ranks of the covariates,
VZ .

The propensity model for M1 and M2 was a sigmoid

pT|Z(t | z) = Sigmoid(−0.3 + 0.1z1 + 0.2z2 + 0.5z1z2 − 0.2z3 + z4),

and M3 was parameterised by

pT|Z(t | z) = Sigmoid(−0.3 + 0.1z1 + 0.2z2 + 0.5z3 − 0.2z4 + z5

+ 0.3z6 − 0.4z7 + 0.7z8 − 0.1z9 + 0.9z10).

D.1.1 Hyperparameters and Runtime

The hyperparameters and runtime for the simulated inference datasets are presented in Table 4. In
these cases, the models were trained with a default set of hyperparameters.

Table 2: Runtime and hyperparameters for fitting 25 different runs of each model, with a datasize of
15,000.

Model Total Runtime RQS Knots Flow Layers Learning Rate NN Width NN Depth

M1 45.4 mins 8 5 5e-3 50 4
M2 44.1 mins 8 5 5e-3 50 4
M3 66.3 mins 8 5 5e-3 50 4

D.2 Additional Results

D.2.1 Logistic Benchmark Simulation

To demonstrate the FF ability to generate discrete outcomes from known marginal logistic models,
we ran the following experiment. First, data of the following form

Z ∼ N (µ = 0, σ = 2)

VZ , VY |do(T ) ∼ cGaussian(ρ = 0.8)

Y | do(T ) ∼ N (µ = 2X,σ = 1)

was generated from the causl package. It was then fitted with a FF using the same hyperparameters
as in Appendix D.1.1. We then generated samples from a custom logistic CDF such that

Y | do(T ) ∼ Bernoulli(p = Sigmoid(2X − 1)).

A dataset size of N = 1000 was generated from the model, and fit using two models. The first is
a Bernoulli outcome regression model, and the second uses inverse propensity weighting (IPW) to
estimate the logistic parameters instead. The outcome regression (OR) estimates are biased indicating
a clear confounding effect, whereas the IPW estimates comfortably contain the true parameters within
their 2σ bounds. These results are presented in Table 3.
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Table 3: Mean and 2-sigma confidence interval of the logistic parameter estimates. The “ground-
truth” estimates are contrasted alongside the IPW estimates and OR methods, the latter of which
demonstrates clear data confounding.

Model Parameter 1 Parameter 2

Ground Truth −1 +2
Robust IPW −0.88± 0.38 1.6± 0.48
Outcome Regression −1.59± 0.24 3.16± 0.34

[
VW

Y | W ,do(T )
VW

]  I(·)
F−1
Y |W,do(T )(·)

I(·)

 [
VW

VY |W,do(T )

VW

]

NSF

 c(vW )
c(vY |W,do(T )) = 1

c(vW | vY |W,do(T ),vW )

[
U1:d

Ud+1

Ud+2:(D+2)

]

Figure 6: Structure for learning a Frugal Flow with a heterogeneous treatment effect. This enforces
that vW |= vY |W,do(T ) and that the copula density of vW can be inferred via the factor c(vW |
vY |W,do(T ))

D.2.2 Heterogeneous Treatment Effects

In the main paper, we comment on the ability of the model to simulate data from distributions where
the causal effect is a marginal quantity taken over the entire covariate set

pY |do(T )(y | t) =
∫
Z
dz pY |Z,do(T )(y | z, t) pZ(z). (8)

However, one may wish to simulate from more complex heterogeneous treatment effect models.
Consider a stationary treatment with pretreament covariate set Z = {W ,W } where W ⊂ Z and
|Z| = D, |W | = d, and |W | = D − d. We proceed considering the case where 0 < d < D.

Interest may lie in the causal treatment margin conditional on the subset of variables W :

pY |W,do(T )(y | w, t) =
∫
W
dw pY |Z,do(T )(y | w,w, t) pW |W (w | w) (9)

which we call the conditional treatment margin. We infer this effect by constructing a Frugal Flow
which ensures that the pretreatment covariate joint pZ(·) is correctly inferred and that the conditional
treatment margin ranks are uniformly distributed. A modified version of the Frugal Flow illustrated
Figure 2 is used to account for this change. The choice of F−1

Y |W,do(T )(·) can be left to the user for
inferring the Frugal Flow. For simulating benchmarks, the conditional treatment margin can be free
set to any valid CDF, for example:

Y | W ,do(T ) ∼ N (µ = g(W , T ), 1)

where g(·) : Rd × T → R can be chosen to encode arbitrary heterogeneity in treatment effects.

D.3 Real-World Data Benchmarks

D.3.1 Lalonde Temporary Employment Program

The Jobs dataset by LaLonde is a benchmark in causal inference studies, where job training serves as
the treatment and the outcomes are post-training income and employment status. Originating from
the National Support Work Demonstration (NSW), this randomized controlled trial (RCT) examines
the impact of a temporary employment program (i.e. the treatment) in the US on participants’ income
levels (LaLonde, 1986). Due to its design the treatment assignment is random, eliminating unobserved
confounding. The measured features, all recorded in 1975, are:
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• an individual’s age in years;

• the number of years an individual spent in education;

• whether an individual is black;

• whether an individual is hispanic;

• an individual’s marital status (1 if married, 0 otherwise);

• whether an individual has a high school degree.

The outcome is the individual’s real earnings in 1978.

D.3.2 401(k) Eligibility

The 401(k) savings plans dataset has been analysed in a variety of studies. We use it to investigate the
impact of eligibility to enroll on the increase in net assets.

The dataset includes 9,915 individuals with the following variables measured:

• age of the individual in years;

• income of the individual;

• years of education the individual has completed;

• size of the individual’s family;

• indicator variable of whether the individual is married (1 for married, 0 otherwise);

• indicator of whether there are two earners in the household (1 if two earners, 0 otherwise);

• membership of a defined benefit pension scheme (1 if true, 0 otherwise);

• eligibility for Individual Retirement Allowance (IRA) (1 if true, 0 otherwise);

• homeownership status of the individual (1 if true, 0 otherwise).

D.3.3 Causal methods used for benchmarking FF inference

Section 4.1 reports FF ATE inference performance in a simulated setting comparing to a number of
methods.

• Outcome regression (OR) ATE results are obtained by regressing Y on the treatment T
together with the covariates Z in the different scenarios and reporting the coefficient and
confidence interval on T .

• Propensity score matching is implemented using the R package MatchIt for estimating the
ATE (Stuart et al., 2011).

• Causal normalising flow (CNF) (Javaloy et al., 2024) is trained using the causal abductive
model with one layer, that the paper reports to be the best-performing model variation
(Paragraph 6.1). We use the hyperparameter settings recommended in the package and do
not perform hyperparameter tuning. For the flow architecture, we use neural spline flows, as
the paper reports in Appendix D.3 that they yield a better performance than simple masked
autoregressive flows, plus this resembles our architecture choice in Frugal Flows. We do not
add uniform independent noise to the binary inputs as recommended in paragraph 3.1 as we
find this worsens the ATE estimates for the model.

D.3.4 Causal methods used for validating FF as a benchmark

Similar to Parikh et al. (2022) we use a variety of different causal inference methods to validate the
generated benchmark samples of our model.

• Propensity score matching is implemented using the R package MatchIt for estimating the
ATE (Stuart et al., 2011).

• Causal BART is implemented via the R package dbarts using default hyperparame-
ters (Dorie et al., 2024).
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• The double machine learning methods are implemeneted using the Python package EconML
(Research, 2019) using the scikit-learn’s machine learning API for the same. For GBT DML,
we used the method with 100 trees, and the linear DML used ridge regression (Pedregosa
et al., 2011).

• EconML was also used for implementing the S-, T- and X-learners also using scikit-learn’s
ML API to for gradient boosting trees and ridge regression.

• TMLE was implemented using the zepid Python package (Zivich, 2020).

D.3.5 Hyperparameters and Runtime

For both datasets, a random hyperparameter search was conducted by choosing the hyperparameter
set which minimised the validation loss, given a train/test data split of 9/1. The total number of
neural network of the hyperparameter tuned Frugal Flow for the Lalonde and e401(k) datasets are
485243 and 106969 respectively.

Table 4: Runtime and hyperparameters for fitting both a Frugal and Propensity Flow to the Lalonde
and e401(k) data.

Benchmark Runtime Knots Flow Layers Learning Rate NN Width NN Depth

Lalonde 1.2 mins 4 9 6.3e-3 50 10
e401(k) 4.9 mins 5 2 2.6e-3 34 3

D.3.6 Realism of Datasets

We conducted additional validation of the proposed Frugal Flows method to enhance its robustness in
comparison to current state-of-the-art methods such as Credence (Parikh et al., 2022) and RealCause.
Credence allows for the exact specification of conditional average treatment effect (CATE) in genera-
tive samples, whereas RealCause adjusts the causal effect post hoc, preventing it from realistically
modelling a null hypothesis where the average treatment effect (ATE) is zero. Additionally, Frugal
Flows and Credence both model unobserved confounding, a feature absent in RealCause, making
Credence the more suitable method for direct comparison.

We ran the benchmarking simulations in Section 4.2 with Credence, using its default parameters,
evaluating model performance on Lalonde and the e401(k) dataset. We compared the correlation
matrices of the pretreatment covariates and outcomes for the original data, Frugal Flows-generated
data, and two Credence-generated datasets with different causal constraints. The results, illustrated in
Figure 7 and Figure 8, show that Frugal Flows produce samples closely resembling the original data,
especially for the larger e401(k) dataset.

While Credence also performs well on the e401(k) dataset, altering its causal constraints significantly
affects the covariate dependencies. In contrast, Frugal Flows optimise the model once, allowing for
causal constraint modifications without altering the covariate joint distribution or propensity score.

Figure 7: Lalonde: Correlation matrices across covariates and the outcome (re78), comparing
the second moments of distributions for the Lalonde observed real data, as well as synthetic data
generated by a trained Frugal Flow (2nd column) and Credence (3rd column) models. The comparison
is further extended to models with default settings and those with modified bias rigidity (4th column).

22



Figure 8: e401(k): Correlation matrices across covariates and the outcome (net_tfa), comparing
the second moments of distributions for the e401(k) observed real data and synthetic data generated
by trained Frugal Flow (2nd column) and Credence (3rd column) models. The comparison is further
extended to models with default settings and those with modified bias rigidity (4th column).

D.3.7 Loss Optimisation

In training, we perform a train-val split and use a “patience” criterion on the validation loss as a
criterion to stop the training. Namely, we monitor the validation loss and stop training if the validation
loss does not improve for a specified number of epochs (we set the patience value to 100). This aims
to prevent overfitting and saves computational resources by not continuing training unnecessarily. It
is standard in machine learning model training and was implemented in the FlowJax package that we
use as code-base to build the Frugal Flow package from.

The observational likelihood losses during model training for both real-world datasets are presented
in Figures 9 and 10.

Figure 9: Training and validation losses when
fitting a Frugal Flow to the Lalonde dataset
using optimal hyperparameters and a “pa-
tience” setting of 200 iterations for illustrative
purposes.

Figure 10: Training and validation losses
when fitting a Frugal Flow to the e401(k)
dataset using optimal hyperparameters and
a “patience” setting of 200 iterations for illus-
trative purposes.
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