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Abstract

This study investigates the problem of K-armed linear contextual bandits, an instance of the
multi-armed bandit problem, under an adversarial corruption. At each round, a decision-
maker observes an independent and identically distributed context and then selects an arm
based on the context and past observations. After selecting an arm, the decision-maker
incurs a loss corresponding to the selected arm. The decision-maker aims to minimize
the cumulative loss over the trial. The goal of this study is to develop a strategy that
is effective in both stochastic and adversarial environments, with theoretical guarantees.
We first formulate the problem by introducing a novel setting of bandits with adversarial
corruption, referred to as the contextual adversarial regime with a self-bounding constraint.
We assume linear models for the relationship between the loss and the context. Then, we
propose a strategy that extends the RealLinExp3 by Neu & Olkhovskaya (2020) and the
Follow-The-Regularized-Leader (FTRL). The regret of our proposed algorithm is shown to

be upper-bounded by O

(
min

{
(log(T ))3

∆∗
+
√

C(log(T ))3

∆∗
,

√
T (log(T ))2

})
, where T ∈ N is

the number of rounds, ∆∗ > 0 is the constant minimum gap between the best and suboptimal
arms for any context, and C ∈ [0, T ] is an adversarial corruption parameter. This regret
upper bound implies O

(
(log(T ))3

∆∗

)
in a stochastic environment and by O

(√
T (log(T ))2

)
in

an adversarial environment. We refer to our strategy as the Best-of-Both-Worlds (BoBW)
RealFTRL, due to its theoretical guarantees in both stochastic and adversarial regimes.

1 Introduction

This study considers minimizing the cumulative regret in the multi-armed bandit (MAB) problem with
contextual information. The MAB problem is a formulation of sequential decision-making. In this study,
we develop an algorithm that utilizes side information called contextual information. We focus on linear
contextual bandits and aim to design an algorithm that performs well in both stochastic and adversarial
environments.

In our problem setting of contextual bandits, a decision-maker observes an independent and identically
distributed (i.i.d.) context each round, draws an arm accordingly, and incurs a loss associated with the
chosen arm. Additionally, we assume linear models between the loss and contexts, which is known as the
linear contextual bandit problem. The contextual bandit problem is widely studied in fields such as sequential
treatment allocation (Tewari & Murphy, 2017), personalized recommendations (Beygelzimer et al., 2011),
and online advertising (Li et al., 2010). Based on these demands, existing studies explore the methods. For
example, Abe & Long (1999) studies linear contextual bandits. Li et al. (2021) provides lower bounds. There
are numerous other studies in this field (Chen et al., 2020; Ding et al., 2022).

The settings of linear contextual bandits are divided into stochastic, with fixed contextual and loss distri-
butions, and adversarial environments, with fixed contexts but adversarially chosen losses1. Most existing

1We can define adversarial linear contextual bandits in different ways. For example, there are studies that consider contextual
bandits with adversarial contexts and fixed losses (Chu et al., 2011; Abbasi-yadkori et al., 2011). On the other hand, several
studies address contextual bandits with adversarial contexts and adversarial losses (Kanade & Steinke, 2014; Hazan et al.,
2016). This study only focuses on contextual bandits with i.i.d. contexts and adversarial losses, which have been studied by
Rakhlin & Sridharan (2016) and Syrgkanis et al. (2016).
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studies focus on algorithms for either stochastic (Abe & Long, 1999; Rusmevichientong & Tsitsiklis, 2010;
Chu et al., 2011; Abbasi-yadkori et al., 2011; Lattimore & Szepesvari, 2017) or adversarial linear contextual
bandits (Neu & Olkhovskaya, 2020).

Thus, optimal algorithms typically differ between the stochastic and adversarial environments. However,
a best-of-both-worlds framework exists, aiming for algorithms that are competent in both stochastic and
adversarial environments (Bubeck & Slivkins, 2012; Seldin & Slivkins, 2014; Auer & Chiang, 2016; Seldin &
Lugosi, 2017; Zimmert & Seldin, 2021; Lee et al., 2021). Building on existing work, we propose a best-of-
both-worlds algorithm for stochastic and adversarial linear contextual bandits.

1.1 Main Contribution

In Section 2, we first introduce the setting of linear contextual bandits with adversarial corruption by defining
the linear contextual adversarial regime with a self-bounding constraint. This setting is a generalization of
the adversarial regime with a self-bounding constraint proposed by Zimmert & Seldin (2021). Under this
regime, we bridge the stochastic and adversarial environments by an adversarial corruption parameter C ≥ 0,
where C = 0 corresponds to a stochastic environment and C = T corresponds to an adversarial environment.

Then, in Section 3 inspired by the RealLinEXP3 proposed by Neu & Olkhovskaya (2020) for adversarial con-
texts, our algorithm uses the Follow-the-Regularized-Leader (FTRL) approach to adapt well to the stochastic
environment. Our algorithm design also follows existing studies in best-of-both-worlds (BoBW) studies, such
as Ito et al. (2022). We refer to our algorithm as the BoBW-RealFTRL.

In Section 4, we show the upper bound of the BoBW-RealFTRL as O
(

min
{

D
∆∗

+
√

CD
∆∗

,
√

log(KT )TD
})

,
where D = K log(T ) (log(T ) + d log(K)) log(KT ), T is the number of rounds, d is the dimension of a context,
andK is the number of arms, when there exists a constant minimum gap ∆∗ between the conditional expected
rewards of the best and suboptimal arms for any context when we consider a stochastic environment. Note
that this regret upper bound holds both for stochastic and adversarial environments. When there does not
exist such a gap ∆∗, we show that the regret upper bound is given as O

(√
log(KT )TD

)
. Note that this

regret upper bound also holds both for stochastic and adversarial environments, as well as the previous upper
bound. Combining them, the regret upper bound is O

(
min

{
D

∆∗
+
√

CD
∆∗

,
√

log(KT )TD
})

. Note that the
regret upper bound under an adversarial environment can hold without any assumption on the existence

of ∆∗. Our regret upper bound is O
(

min
{

(log(T ))3

∆∗
+
√

C(log(T ))3

∆∗
,

√
T (log(T ))2

})
when focusing on

the order with respect to T . Furthermore, in a stochastic environment, the regret is upper bounded by
O
(

(log(T ))3

∆∗

)
, and in an adversarial environment, the regret is upper bound by O

(√
T (log(T ))2

)
.

In summary, we contribute to the problem of linear contextual bandits by proposing a best-of-both-worlds
strategy. Our study enhances the fields of linear contextual bandits and best-of-both-worlds algorithms.

1.2 Related Work

In adversarial bandits, the RealLinExp3, the algorithm proposed by Neu & Olkhovskaya (2020), yields
O
(

log(T )
√
KdT

)
. In Table 1, we compare our regret upper bounds with the upper bounds of Neu &

Olkhovskaya (2020).

Regret upper bounds in a stochastic setting are categorized into problem-dependent and problem-independent
upper bounds, where the former utilizes some distributional information, such as the gap parameter ∆∗, to
bound the regret, while the latter does not. Additionally, problem-dependent regret upper bounds in the
stochastic bandits depend on the margin condition characterized by a parameter α ∈ [0,+∞] (for the detailed
definition, see Remark 1). Our case with ∆∗ corresponds to a case with α = +∞. Note that in the adversarial
bandits, the margin condition usually does not affect the upper bounds. Dani et al. (2008) proposes the
ConfidenceBAll, and Abbasi-yadkori et al. (2011) proposes OFUL. They both present upper bound with and
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Table 1: Comparison of the regret. We compared the regret upper bound of our proposed BoBW-RealFTRL
with the RealLinExp3 (Neu & Olkhovskaya, 2020).

Regret Adversarial/Stochastic
Ours (BoBW-RealFTRL) O

(
min

{
D

∆∗
+
√

CD
∆∗

,
√

log(KT )TD
})

Both
where D = K log(T ) (log(T ) + d log(K)) log(KT )

O
(√

log(KT )TD
)

Adversarial

O
(

D
∆∗

)
(C = 0) Stochastic

RealLinExp3 O
(

log(T )
√
KdT

)
Adversarial

without the assumption of the existence of ∆∗
2. As mentioned above, the regret upper bound under the

assumption of the existence of ∆∗ corresponds to a case with α = +∞ in the margin condition. In contrast,
Goldenshluger & Zeevi (2013), Wang et al. (2018), and Bastani & Bayati (2020) propose algorithm in a case
with α = 1. Furthermore, Li et al. (2021) propose the ℓ1-ConfidenceBall based algorithm whose upper
bound tightly depends on unknown α.

There are several related studies for linear contextual bandits with adversarial corruption, including Lykouris
& Vassilvtiskii (2018), Gupta et al. (2019), Zhao et al. (2021) and He et al. (2022). Lykouris & Vassilvtiskii
(2018), Gupta et al. (2019), and Zhao et al. (2021) consider other corruption frameworks characterized by
a constant C̃ ∈ [0, T ], which is different but related to our linear contextual adversarial regime with a self-
bounding constraint. He et al. (2022) uses another constant C̃† ∈ [0, T ] different but closely related to C̃.
For the detailed definitions, see Remark 2. The essential difference between our and their settings is the
existence of the gap ∆∗. Furthermore, while our regret upper bound achieves the polylogarithmic order,
those studies show roughly

√
T -order regret upper bounds. He et al. (2022) presents Õ

(
d
√
K + dC̃†

)
regret

under an adversarial corruption characterized by a constant C̃† > 0.

The use of the FTRL approach for adversarial linear bandits is also independently explored by Liu et al.
(2023) to relax the assumption used in Neu & Olkhovskaya (2020). In addition to the difference in con-
tributions, while our algorithm utilizes the Shannon entropy in the regularization of the FTRL, Liu et al.
(2023) employs the log-determinant barrier. We expect that combining these two methods will yield a BoBW
algorithm with relaxed assumptions, and it is future work.

To establish our BoBW regret bounds, we utilize the self-bounding technique (Zimmert & Seldin, 2021; Wei
& Luo, 2018), which yields poly-logarithmic regret bounds in stochastic environments. This is achieved
by integrating regret upper bounds that are contingent on the arm-selection distributions qt, and a lower
bound known as self-bound constraints. The qt-dependent regret bounds are obtained using FTRL with a
negative-entropy regularizer, which is also referred to as the exponential weight method. Our approach in-
cludes an entropy-adaptive update rule for learning rates, originally developed for online learning in feedback
graph contexts (Ito et al., 2022). This strategy has been proven effective in providing BoBW guarantees
for exponential-weight-based algorithms across various sequential decision-making problems, such as multi-
armed bandits (Jin et al., 2023), partial monitoring (Tsuchiya et al., 2023a), linear bandits (Kong et al., 2023),
episodic Markov Decision Processes (MDPs) (Dann et al., 2023), and sparse multi-armed bandits (Tsuchiya
et al., 2023b). However, a common limitation of these results, stemming from the negative-entropy regular-
ization, is the additional log T factors in the regret bounds. A promising future direction to mitigate this
could be exploring alternative regularizers like Tsallis entropy or logarithmic barriers.

2 Problem Setting

Suppose that there are T rounds and K arms. In each round t ∈ [T ] := {1, 2, . . . , T}, a decision-maker
observes a context Xt ∈ X ⊂ Rd, where X is a context space. Then, the decision-maker chooses an arm
At ∈ [K] := {1, 2, . . . ,K} based on the context Xt and past observations. Each arm a ∈ [K] is linked to

2Regret upper bounds with the assumption of the existence of ∆∗ are called problem-dependent.
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a loss ℓt(a,Xt), which depends on Xt and round t. After choosing arm At in round t, the decision-maker
incurs the loss ℓt(At, Xt). Our goal is to minimize the cumulative loss

∑T
t=1 ℓt(At, Xt). We introduce the

setting in more detail in the following part.

Contextual distribution. Let a distribution of Xt be D, which is invariant across t ∈ [T ]. We also
assume that D is known to the decision-maker.
Assumption 2.1 (Contextual distribution). The context Xt is an i.i.d. random variable, whose distribution
D is known to the decision-maker, and the covariance matrix Σ = E

[
XtX

⊤
t

]
is positive definite with its

smallest eigenvalue λmin > 0.

Loss. In each round t ∈ [T ], a context is sampled from D and the environment chooses ℓt(·, Xt) based
on the past observations Ft−1 = (X1, A1, ℓ1(A1, X1), X2, . . . , Xt−1, At−1, ℓt−1(At−1, Xt−1)). We consider a
general framework where ℓt is generated in both stochastic and adversarial ways. See Section 2.3 for details.

Policy. We refer to a function that determines the arm draw as a policy. Let Π be a set of all possible
policies π : X → P :=

{
u = (u1 u2 . . . uK)⊤ ∈ [0, 1]K |

∑K
k=1 uk = 1

}
. Let π(a | x) be the a-th element of

π(x). The goal of the decision-maker is to minimize the cumulative loss
∑T

t=1 ℓt(At, Xt) incurred through T
rounds by learning a policy π ∈ Π.

Procedure in a trial. In each round of a trial, the decision-maker first observes a context and then
chooses an action based on the context and past observations obtained until the round. Specifically, we
consider sequential decision-making with the following steps in each round t ∈ [T ]:

1. The environment decides
(
ℓt(1, Xt), ℓt(2, Xt), . . . , ℓt(K,Xt)

)
based on Ft−1.

2. The decision-maker observes the context Xt, which is generated from a known distribution D.

3. Based on the context Xt, the decision-maker chooses a policy πt(Xt) ∈ P.

4. The decision-maker chooses action At ∈ [K] with probability πt(a | Xt).

5. The decision-maker incurs the loss ℓt(At, Xt).

The goal of the decision-maker is to choose actions in a way that the total loss is as small as possible.

2.1 Linear Contextual Bandits

This study assumes linear models between ℓt(At, Xt) and Xt as follows.
Assumption 2.2 (Linear models). For each ℓt(a,Xt), the following holds:

ℓt(a,Xt) = x⊤
t θt(a) + εt(a),

where θt(a) is a d-dimensional parameter, and εt(a) is the error term independent of the sequence {Xt}t∈[T ].

For linear models and variables, we make the following assumptions.
Assumption 2.3 (Bounded variables). We assume the following:

1. There exists an universal constant CX > 0 such that for each x ∈ X , ∥x∥2 ≤ CX holds.

2. There exists an universal constant CΘ > 0 such that for each θ ∈ Θ, ∥θ∥2 ≤ CΘ holds.

3. There exists an universal constant CE > 0 such that |εt(a)| ≤ CE holds.

Under this assumption, there exists Cℓ := C(CX , CΘ, CE) such that for all ℓt(a,Xt), the following holds for
each a ∈ [K] and x ∈ X :

|ℓt(a, x)| ≤ Cℓ.
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2.2 Regret

This section provides the definition of the regret, a relative measure of the cumulative loss. We evaluate the
performance of the decision or policy of the decision-maker by using regret. Let R be a set of all possible
ρ : X → [K]. The quality of a decision by the decision-maker is measured by its total expected regret,
defined as

RT = max
ρ∈R

E

[
T∑

t=1

{
ℓt(At, Xt) − ℓt(ρ(Xt), Xt)

}]
= max

ρ∈R
E

[
T∑

t=1

〈
Xt, θt(At) − θt(ρ(Xt))

〉]
,

where the expectation is taken over the randomness of policies of the decision-maker, as well as the sequence
of random contexts, {Xt}t∈[T ], and losses, {ℓt(·, Xt)}t∈[T ].

Let X0 be an i.i.d. random variable from the distribution of Xt. Then, because Xt is an i.i.d. random
variable from D, we have

E

[
T∑

t=1

〈
Xt, θt(ρ(Xt))

〉]
= E

[
T∑

t=1

〈
X0, θt(ρ(X0))

〉]
≥ E

[
min

a∈[K]

T∑
t=1

〈
X0,E [θt(a)]

〉]
.

Based on this inequality, we define an optimal policy a∗ as

a∗
T (x) = arg min

a∈[K]

T∑
t=1

〈
x,E [θt(a)]

〉
.

Then, we have

RT ≤ E

[
T∑

t=1

〈
Xt, θt(At) − θt(a∗

T (Xt))
〉]

.

Neu & Olkhovskaya (2020) refers to ρ as linear-classifier policies, while πt is called stochastic policies. In
our study, decision-makers compare their stochastic policies πt to the optimal linear-classifier policy a∗ using
the regret.

2.3 Linear Contextual Adversarial Regime with a Self-Bounding Constraint

Then, we define the framework of a linear contextual adversarial regime with a self-bounding constraint,
which is a generalization of adversarial and stochastic bandits.
Definition 2.4 (Linear contextual adversarial regime with a self-bounding constraint). We say that an
environment is in an adversarial regime with a (∆∗, C, T ) self-bounding constraint for some ∆∗, C > 0 if RT

is lower bounded as

RT ≥ ∆∗ · E

[
T∑

t=1

(
1 − πt(a∗

T (X0) | X0)
)]

− C.

The contextual adversarial regime with a self-bounding constraint includes several important settings.
Among them, we raise linear contextual bandits in stochastic bandits and adversarial bandits below.
Example 1 (Linear contextual bandits in stochastic bandits.). In stochastic bandits, the bandit models
are fixed; that is,

(
Xt, ℓt(1, Xt), . . . , ℓt(K,Xt)

)
are generated from a fixed distribution P0. Let θ1(a) =

· · · θT (a) = θ0(a). Note that when considering stochastic bandits, we have E [θt(a)] = θ0(a) and

a∗
T (x) = arg min

a∈[K]

T∑
t=1

〈
x,E [θt(a)]

〉
= arg min

a∈[K]

〈
x, θ0(a)

〉
∀x ∈ X .
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Let a∗
T (x) be a∗

0(x).

In this setting, we assume that for each P0, there exist positive constraints ∆∗ such that for all x ∈ X ,

min
b ̸=a∗

0(x)

〈
x, θ0(b)

〉
−
〈
x, θ0(a∗

0(x))
〉

≥ ∆∗. (1)

Then, the regret can be lower bounded as RT ≥ ∆∗ · E
[∑T

t=1

(
1 − πt(a∗

0(X0) | X0)
)]

(See Appendix A).

Example 2 (Linear contextual bandits in adversarial bandits). In adversarial bandits, we do not assume
any data-generating process for the ℓt(a,Xt), and the loss is decided to increase the regret based on the past
observations Ft−1.
Remark 1 (Margin conditions). In linear contextual bandits, we often employ the margin condition to
characterize the difficulty of the problem instance. The margin condition is defined as follows (Li et al.,

2021): there exist ∆∗, C1, a∗, and α ∈ [0,+∞], such that for h ∈
[
C1

√
log(d)

T ,∆∗

]
,

P
(〈

Xt, θt(a∗)
〉

≥ min
b ̸=a∗

〈
Xt, θt(b)

〉
− h

)
≤ 1

2

(
h

∆∗

)α

.

Our definition of the linear contextual adversarial regime with a self-bounding constraint corresponds to a
case with α = ∞. Extending our results to more general α is a future work.
Remark 2 (Linear contextual bandits with corruption in existing studies). Lykouris & Vassilvtiskii (2018),
Gupta et al. (2019), Zhao et al. (2021), and He et al. (2022) propose another definition of linear contextual
contextual bandits with corruption. In their work, instead of our defined ℓt(a,Xt), they define a loss as

ℓ̃t(a,Xt) = ℓt(a,Xt) + c̃t(a),

where c̃t(a) is an adversarial corruption term. For simplicity, let c̃t(a) ∈ [−1, 1]. In Zhao et al. (2021), the
degree of the corruption is determined by C̃ ∈ [0, T ] defined as C̃ =

∑T
t=1 maxa∈[K] |ct(a)|. In Lykouris &

Vassilvtiskii (2018), Gupta et al. (2019), and He et al. (2022), the corruption level is determined by another
parameter C̃† ∈ [0, T ] defined as

∑T
t=1 |ct(At)|. Here, C̃ ≥ C̃† holds. Note that the adversarial corruption

depends on At in He et al. (2022), while the adversarial corruption is determined irrelevant to At in Lykouris
& Vassilvtiskii (2018), Gupta et al. (2019), and He et al. (2022). Unlike ours, they do not assume the
existence of ∆∗ defined in equation 1. In this sense, our results and their results are complementary.

3 Algorithm

This section provides an algorithm for our defined problem. Our proposed algorithm is a generalization of
the RealLinEXP3 algorithm proposed by Neu & Olkhovskaya (2020). We extend the method by employing
the Follow-The-Regularized-Leader (FTRL) approach with round-varying arm-drawing probabilities. Our
design of the algorithm is also motivated by existing studies about Best-of-Both-Worlds (BoBW) algorithms
in different Multi-Armed Bandit (MAB) problems, such as Ito et al. (2022).

In our setting, we first observe a context and then draw an arm based on that context. We consider
stochastically drawing an arm. Therefore, in designing the algorithm, our interest lies in appropriately
defining the arm-drawing probability. In the FTRL approach, we define this probability by utilizing an
unbiased estimator of the loss function.

We refer to our proposed algorithm as BoBW-RealFTRL because it modifies the RealLinEXP3 for a best-
of-both-worlds algorithm using the FTRL framework. The pseudo-code is shown in Algorithm 1. In the
following part, we explain the algorithm.

Unbiased loss estimator. For each a ∈ [K], let us define an estimator of regression parameters as

θ̂t(a) := Σ†
t,a1[At = a]Xtℓ(At, Xt),

6
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where Σ†
t,a is an estimator of E

[
1[At = a]X⊤

0 X0
]−1. Then, the loss can be estimated as

ℓ̂t(a, x) =
〈
x, θ̂t(a)

〉
.

In analysis of adversarial bandits, the bias of ℓ̂t(a, x) plays an important role. If Σ†
t,a =

E
[
1[At = a]X⊤

0 X0 | Ft−1
]−1, then this loss estimator is unbiased for x⊤θ0(a) because

E
[
ℓ̂t(a, x) | Ft−1

]
= xE

[
ℓ̂t(a, x) | Ft−1

]
= xΣ†

t,aE [1[At = a]Xtℓ(At, Xt) | Ft−1]

= xΣ†
t,aE

[
1[At = a]Xt

{
X⊤

t θ0(a) + εt(a)
}

| Ft−1
]

= x⊤θ0(a).

Note that in our algorithm, Σ†
t,a is just an estimator of E

[
1[At = a]X⊤

0 X0 | Ft−1
]−1, and Σ†

t,a =
E
[
1[At = a]X⊤

0 X0 | Ft−1
]−1 does not hold in general. Therefore, ℓ̂t(a, x) is not unbiased. However, we

can show that the bias can be ignored because it is sufficiently small to evaluate the regret in depth. We
also define a vector of loss estimators as ℓ̂t(x) =

(
ℓ̂t(1, x) ℓ̂t(2, x) · · · ℓ̂t(K,x)

)⊤
.

Estimation of E
[
1[At = a]X⊤

0 X0 | Ft−1
]−1. Our remaining task is to estimate

E
[
1[At = a]X⊤

0 X0 | Ft−1
]−1. The difficulty of this task stems from the dependency on At, which

varies across rounds. To address this issue, we consider Matrix Geometric Resampling (MGR) proposed by
Neu & Olkhovskaya (2020).

The MGR assumes that we have access to the distribution D of Xt and estimates E
[
1[At = a]X⊤

0 X0
]−1 by

using simulations. We introduce the algorithm in Algorithm 2.

In Algorithm 2, we define Wk,a for which E[Wk,a | Ft−1] = Σt,a holds. Here, from the independence of the
context X(k) from each other, we also have E[Vk,a | Ft−1] = E

[∏k
j=1

(
I − δWj,a

)
| Ft−1

]
= (I − δΣt,a)k.

Therefore, Σ̂†
t,a works as a good estimator of Σ−1

t,a on expectations when Mt = ∞ because

E
[
Σ̂†

t,a | Ft−1

]
= δI + δ

∞∑
k=1

(I − δΣt,a)k = δ

∞∑
k=0

(I − δΣt,a)k = δ(δΣ−1
t,a)−1 = Σ−1

t,a .

holds.

In implementation, Mt is finite, and we introduce an approximation error of Σ−1
t,a with finite Mt in Lemma 4.8.

Our proposed algorithm: BoBW-RealFTRL. Then, we define our policy, called the BoBW-RealFTRL, as

πt(Xt) := (1 − γt)qt(Xt) + γt

K
ι, (2)

where ι is a K-dimensional vector ι = (1 1 · · · 1)⊤,

qt(x) ∈ arg min
q∈Π

{
t−1∑
s=1

〈
ℓ̂t(x), q(x)

〉
+ ψt(q(x))

}
for t ≥ 2, q1(x) := (1/K 1/K · · · 1/K)⊤,

ψt(q(x)) := −βtH(q(x)), H(q(x)) :=
∑

a∈[K]

q(a | x) log
(

1
q(a | x)

)
, (3)

βt+1 := βt + β1√
1 +

(
log(K)

)−1∑t
s=1 H

(
qs(Xs)

) , β1 := ω

√
log(KdT )

log(K) , (4)

ω := CℓCX , γt := K

2δλminβt
log(T ), (5)

7



Under review as submission to TMLR

Algorithm 1 BoBW-RealFTRL.
Parameter: Learning rate η1, η2, . . . , ηT > 0, exploration parameter γ ∈ (0, 1).
Initialization: Set θ0(a) = 0 for all a ∈ [K].
for t = 1, . . . , T do

Observe Xt.
Draw At ∈ [K] following the policy πt(Xt) := (1 − γt)qt(Xt) + γt

K ι defined in equation 2.
Observe the loss ℓt(At, Xt).
Compute θ̂t(a) for all a ∈ [K].

end for

Algorithm 2 Matrix Geometric Resampling (Neu & Olkhovskaya, 2020).
Input: Context distribution D, policy πt, action a ∈ [K].
for k = 1, . . . ,Mt do

Draw X(k) ∼ D and V (k) ∼ πt(· | X(k)).
Compute Wk,a = 1[V (k) = a]X(k)X⊤(k).
Compute Vk,a =

∏k
j=1(I − δWk,a).

end for
Return: Σ̂†

t,a = δI + δ
∑Mt

k=1 Vk,a.

Mt := 2βt − 1, and δ := 1
2CℓCX

.

This algorithm is an extension of the RealLinEXP3 proposed by (Neu & Olkhovskaya, 2020) and the FTRL.
In the studies of BoBW algorithms, the FTRL-based algorithms are often employed, and our algorithm is
connected to the literature.

4 Regret Analysis

This section provides upper bounds for the regret of our proposed BoBW-RealFTRL algorithm.

For notational simplicity, let us denote a∗
T by a∗. To derive upper bounds, we define the following quantities:

Q(a∗ | x) =
T∑

t=1

{
1 − qt

(
a∗(x) | x

)}
, Q(a∗) = E [Q(a∗ | X0)] .

Then, we show the following upper bound, which holds for general cases such as adversarial and stochastic
environments. We show the proof in Sections 4.1 and 4.2.
Theorem 4.1 (General regret bounds). If the environment generates losses under the contextual adversarial
regime with a self-bounding constraint (Definition 2.4), the BoBW-RealFTRL with Σ̂†

t,a incurs the total regret

RT ≤ O

((
K log(T )

β1

(
log(T )

δλmin log(K) + d

)
+ β1

√
log(K)

)√
log(KT ) max

{
Q

1/2(a∗), 1
})

.

For each situation, such as adversarial environments and linear contextual adversarial regimes with a self-
bounding constraint, we derive a specific upper bound.

First, from Q(a∗) ≤ T , the following regret bound holds without any assumptions on the loss; that is, it
holds for an adversarial environment.
Corollary 4.2. Assume the same conditions in Theorem 4.1. Then, under an adversarial environment, the
regret satisfies

RT = O

((
K log(T )

β1

(
log(T )

δλmin log(K) + d

)
+ β1

√
log(K)

)√
log(KT )

√
T

)
;

8
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that is, from β1 = ω

√
K log(T )

(
log(T )

δλmin log(K) + d
)

,

RT = O

(
log(KT )

√
K log(K)T log(T )

(
log(T )

δλmin log(K) + d

))

holds.

Furthermore, we derive a regret bound under the linear contextual adversarial regime with a self-bounding
constraint.
Corollary 4.3 (Regret bounds under the linear contextual adversarial regime with a self-bounding con-
straint). Suppose that the same conditions in Theorem 4.1 hold. Then, under the contextual adversarial
regime with self-bounding constraints, the regret satisfies

RT = O

({
K log(T )

β1

(
log(T )

δλmin log(K) + d

)
+ β1

√
log(K)

}2
log(KT )/∆∗

+

√
C

{
K log(T )

β1

(
log(T )

δλmin log(K) + d

)
+ β1

√
log(K)

}2
log(KT )/∆∗

)
;

that is, from β1 = ω

√
K log(T )

(
log(T )

δλmin log(K) + d
)

,

RT = O

(
D

∆∗
+
√
CD

∆∗

)

holds, where

D = K log(K) log(T )
(

log(T )
δλmin log(K) + d

)
log(KT ).

The result in Corollary 4.3 implies RT = O

(
(log(T ))3

∆∗
+
√

C(log(T ))3

∆∗

)
.

Proof. From the definition of the contextual adversarial regime with a self-bounding constraint, we have

RT ≥ ∆∗ · E

[
T∑

t=1

(
1 − πt(a∗(X0) | X0)

)]
− C = ∆∗ ·Q(a∗) − C.

Therefore, from Lemma 4.10, for any λ > 0, we have

RT = (1 + λ)RT − λRT

= (1 + λ)O

c√log(KT )

√√√√ T∑
t=1

E [H(qt(X0))]

− λRT

≤ (1 + λ)O

c√log(KT )

√√√√ T∑
t=1

E [H(qt(X0))]

− λ∆∗ ·Q(a∗) + λC,

where
c =

(
K log(T )

β1

(
log(T )

δλmin log(K) + d

)
+ β1

√
log(K)

)
.

9
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Here, as well as the proof of Theorem 4.1, from Lemma 4.11, if Q(a∗ | x) ≤ e, we have
∑T

t=1 H(qt(x)) ≤
e log(KT ) and otherwise, we have

∑T
t=1 H(qt(x)) ≤ Q(a∗ | x) log(KT ). Hence, we have

∑T
t=1 H(qt(x)) ≤

log(KT ) max{e,Q(a∗ | x)}. Here, to upper bound RT , it is enough to only consider a case with Q(a∗ | x) ≥ e,
and we obtain

RT ≤ (1 + λ)O
(
c
√

log(KT )
√
Q(a∗) log(KT )

)
− λ∆∗ ·Q(a∗) + λC ≤

O

({
(1 + λ)c

}2√
log(KT )

)
2λ∆∗

+ λ∆∗.

where the second inequality follows from a
√
b− c

2b ≤ a2

c2 holds for any a, b, c > 0. By choosing

λ =

√
c2 log(KT )

∆∗

/(c2 log(KT )
∆∗

+ 2C
)
.

Then, we obtain RT = O

(
c2 log(KT )/∆∗ +

√
Cc2 log(KT )/∆∗

)
.

In the following sections, we show the proof procedure of Theorem 4.1.

4.1 Preliminaries for the Proof of Theorem 4.1

Let X0 be a sample from the context distribution D independent of FT . Let Dt(p, q) denote the Bregman
divergence of p.q ∈ Π with respect to ψt; that is,

Dt(p, q) = ψt(p) − ψt(q) −
〈

∇ψt(q), p− q
〉
.

Let us define π∗ ∈ Π as π∗(a∗(x) | x) = 1 and π∗(a | x) = 0 for all a ∈ [K]\{a∗(x)}.

Then, the following lemma holds. The proof is shown in Appendix B
Lemma 4.4. If At is chosen as our proposed method, the regret is bounded by

RT ≤ E

[
T∑

t=1

{
γt +

〈
ℓ̂t(X0), qt(X0) − qt+1(X0)

〉
−Dt(qt+1(X0), qt(X0)) + ψt(qt+1(X0)) − ψt+1(qt+1(X0))

}
+ ψT +1(π∗(X0)) − ψ1(q1(X0))

]
+ 2

T∑
t=1

max
a∈[K]

∣∣∣E [⟨Xt, θt(a) − θ̂t(a)⟩
]∣∣∣ .

To show Lemma 4.4, we use the following proposition from Neu & Olkhovskaya (2020).

Proposition 4.5. Suppose that πt ∈ Ft−1 and that E
[
θ̂t,a|Ft−1

]
= θt,a for all t, a hold. Then, the following

holds:

E

 T∑
t=1

∑
a∈[K]

(
πt(a | Xt) − π∗(a | Xt)

)〈
Xt, θt,a

〉 = E

 T∑
t=1

∑
a∈[K]

(
πt(a | X0) − π∗(a | X0)

)〈
X, θ̂t,a

〉 .
This proposition plays an important role throughout this study.

Bounding the stability term. For the stability term
〈
ℓ̂t(X0), qt(X0) − qt+1(X0)

〉
−

Dt(qt+1(X0), qt(X0)), we use the following proposition from Ito et al. (2022).

10
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Proposition 4.6 (From Lemma 8 in Ito et al. (2022)). If ψt is given as equation 3, for any ℓ : X → RK

and p, q ∈ Π, we have〈
ℓ(x), p(x) − q(x)

〉
−Dt(q(x), p(x)) ≤ βt

∑
a∈[K]

p(a | x)ξ
(
ℓ(a, x)
βt

)
.

for any x ∈ X , where ξ(x) := exp(−x) + x− 1.

For ℓ̂(a, x), if ℓ̂(a,x)
βt

≥ −1 holds, then Proposition 4.6 implies〈
ℓ̂t(x), qt(x) − qt+1(x)

〉
−Dt(qt+1(x), qt(x)) ≤ 1

βt

∑
a∈[K]

πt(a | x)ℓ̂2
t (a, x).

For the RHS, we apply the following proposition from Neu & Olkhovskaya (2020).
Proposition 4.7 (From Lemma 6 in Neu & Olkhovskaya (2020)). For each t ∈ [T ], our strategy satisfies

E

 ∑
a∈[K]

πt(a | X0)ℓ̂2
t (a,X0) | Ft−1

 ≤ 3Kd.

Estimation error of the design matrix. Next, we bound
∑T

t=1 maxa∈[K]

∣∣∣E [⟨Xt, θt(a) − θ̂t(a)⟩
]∣∣∣. An

upper bound of
∑T

t=1 maxa∈[K]

∣∣∣E [⟨Xt, θt(a) − θ̂t(a)⟩
]∣∣∣ is given as the following lemma.

Lemma 4.8. We have
∣∣∣E [⟨Xt, θt(a) − θ̂t(a)⟩

]∣∣∣ ≤ CXCΘ/T .

Proof of Lemma 4.8. From Lemma 5 in Neu & Olkhovskaya (2020), we have
∣∣∣E [⟨Xt, θt(a) − θ̂t(a)⟩

]∣∣∣ ≤

CXCΘ exp
(

− γtδ
K λminMt

)
. Then, we have

exp
(

−γtδ

K
λminMt

)
= exp

(
− K log(T )
δλmin · 2βt

δλmin

K
Mt

)
≤ exp

(
− K log(T )
δλmin · (2βt − 1)

δλmin

K
Mt

)
= exp (− log(T )) = 1

T
,

where recall that we defined Mt = βt − 1

4.2 Proof of Theorem 4.1

Then, we show the following lemma. The proof is shown in Appendix C.
Lemma 4.9. The regret for the BoBW-RealFTRL with Σ̂†

t,a is bounded as

RT ≤ E

[
T∑

t=1

{
γt + 3Kd

βt
+ (βt+1 − βt)H(qt+1(X0))

}]
+ β1 log(K) + 2CXCΘ.

From this result, we obtain the following lemma. We provide the proof in Appendix D
Lemma 4.10. Assume the conditions in Theorem 4.9. Suppose that βt and γt satisfy equation 4 and
equation 5. Then, we have

RT ≤ c

√√√√E

[
T∑

t=1
H(qt(X0))

]
+ 2CXCΘ,

where c = O
(

K log(T )
β1

(
log(T )

δλmin log(K) + d
)

+ β1
√

log(K)
)

.
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Next, we consider bounding
∑T

t=1 H(qt(x)) by Q(a∗ | x) as shown in the following lemma.
Lemma 4.11 (From Lemma 4 in Ito et al. (2022)). For any a∗ : X → [K], the following holds:

T∑
t=1

H(qt(x)) ≤ Q(a∗ | x) log
(

eKT

Q(a∗ | x)

)
,

where e is Napier’s constant.

By using the above lemmas and propositions, we prove Theorem 4.1.

Proof of Theorem 4.1. From Lemma 4.11, if Q(a∗ | x) ≤ e, we have
∑T

t=1 H(qt(x)) ≤ e log(KT ) and other-
wise, we have

∑T
t=1 H(qt(x)) ≤ Q(a∗ | x) log(KT ). Hence, we have

∑T
t=1 H(qt(x)) ≤ log(KT ) max{e,Q(a∗ |

x)}. From Lemma 4.10, we have

RT ≤ c

√√√√ T∑
t=1

E [H(qt(X0))] + 2CXCΘ

≤ O

((
K log(T )

β1

(
log(T )

δλmin log(K) + d

)
+ β1

√
log(K)

)√
log(KT ) max

{
Q

1/2
, 1
})

.

5 Conclusion

We developed a BoBW algorithm for linear contextual bandits. Our proposed algorithm is based on the
FTRL approach. In our theoretical analysis, we show that the upper bounds of the proposed algorithm are
given as O

(
min

{
D

∆∗
+
√

CD
∆∗

,
√

log(KT )TD
})

, where D = K log(T ) (log(T ) + d log(K)) log(KT ). This re-

gret upper bound implies O
(

min
{√

T D
∆∗
,
√

log(KT )TD
})

regret in an adversarial environment and O
(

D
∆∗

)
regret in an adversarial environment and O

(
D

∆∗

)
regret in a stochastic environment. This result also implies

O
(

(log(T ))3

∆∗

)
regret in a stochastic regime and O

(√
T (log(T ))2

)
regret in an adversarial regime with respect

to T .

There are four directions for future work in this study. The first direction is to develop an algorithm that
does not require a contextual distribution while maintaining the BoBW property. We expect this extension
can be accomplished by applying our proposed method to a method proposed by Liu et al. (2023), based on
the FTRL approach with the log-determinant barrier. We note that standard linear contextual bandits in a
stochastic environment do not require the contextual distribution to be known, but it is required for dealing
with an adversarial environment.

The second direction is to provide lower bounds in our adversarial regimes. In existing studies, Li et al. (2021)
provides a general upper bound that holds for a high-dimensional setting with various margin conditions.
We can incorporate such results to derive a lower bound in our problem setting.

The third extension is to develop an algorithm that works for linear contextual bandits without assuming a
specific minimum gap constant ∆∗. To address this issue, we might use the margin condition to generalize
the minimum gap assumption. Lastly, tightening our regret upper bound is also an open problem.
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A Details of Example 1

When minb̸=a∗
0(x)

〈
x, θ0(b)

〉
−
〈
x, θ0(a∗

0(x))
〉

≥ ∆∗ holds for all x ∈ X , we have

RT = E

[
T∑

t=1
ℓt(At, Xt) −

T∑
t=1

ℓt(a∗, Xt)
]

= E

 T∑
t=1

∑
a∈[X]

Xt

(
θ∗

a − θ∗
a∗

t

)
πt(a | Xt)


= E

 T∑
t=1

∑
a∈[X]

Xt

(
θ∗

a − θ∗
a∗

t

)
πt(a | Xt)1

[
min
b ̸=a∗

t

〈
Xt, θ

∗
b

〉
−
〈
Xt, θ

∗
a∗

t

〉
≤ ∆∗

]
+ E

 T∑
t=1

∑
a∈[X]

Xt

(
θ∗

a − θ∗
a∗

t

)
πt(a | Xt)1

[
min
b̸=a∗

t

〈
Xt, θ

∗
b

〉
−
〈
Xt, θ

∗
a∗

t

〉
> ∆∗

]
≥ E

 T∑
t=1

∑
a∈[X]

Xt

(
θ∗

a − θ∗
a∗

t

)
πt(a | Xt)1

[
min
b̸=a∗

t

〈
Xt, θ

∗
b

〉
−
〈
Xt, θ

∗
a∗

t

〉
> ∆∗

]
≥ ∆∗ ·

T∑
t=1

E
[
Q2

t (a∗(Xt))
]
.

B Proof of Lemma 4.4

Let us define

R̂T (x) :=
T∑

t=1

∑
a∈[K]

(
πt(a | x) − π∗(a | x)

)〈
x, θ̂t,a

〉
.

Then, the following holds:

RT ≤ E
[
R̂T (X0)

]
+ 2

T∑
t=1

max
a∈[K]

∣∣∣E [⟨Xt, θt,a − θ̂t,a⟩
]∣∣∣ .

Then, we prove Lemma 4.4 as follows.

Proof of Lemma 4.4. From the definition of the algorithm, we have

RT ((a∗
t )t∈[T ]) = E

[
T∑

t=1
ℓt(At, Xt) −

T∑
t=1

ℓt(a∗
t , X)

]

= E

[
T∑

t=1
⟨ℓt(Xt), πt(Xt) − π∗(Xt)⟩

]

= E

[
T∑

t=1
⟨ℓt(Xt), qt(Xt) − π∗(Xt)⟩ +

T∑
t=1

γt ⟨ℓt(Xt), µU − qt(Xt)⟩
]

≤ E

[
T∑

t=1

〈
ℓt(Xt), qt(Xt) − π∗(Xt)

〉
+

T∑
t=1

γt

]

= E

[
T∑

t=1

〈
ℓt(X0), qt(X0) − π∗(X0)

〉
+

T∑
t=1

γt

]
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= E

[
T∑

t=1

〈
ℓ̂t(X0), qt(X0) − π∗(X0)

〉
+

T∑
t=1

γt

]

+ E

[
T∑

t=1

〈
ℓt(X0) − ℓ̂t(X0), qt(X0) − π∗(X0)

〉]

≤ E

[
T∑

t=1

〈
ℓ̂t(X0), qt(X0) − π∗(X0)

〉
+

T∑
t=1

γt

]
+ 2

T∑
t=1

max
a∈[K]

∣∣∣E [〈Xt, θt,a − θ̂t,a

〉]∣∣∣ . (6)

Then, from the definitions of qt, for each x ∈ X , we also have

T∑
t=1

〈
ℓ̂t(x), π∗(x)

〉
+ ψT +1(π∗(x))

≥
T∑

t=1

〈
ℓ̂t(x), qT +1(x)

〉
+ ψT +1(qT +1(x)) − ψT +1(qT +1(x))

+ ψT +1(π∗(x)) − ⟨∇ψt(qT +1(x)), π∗(x) − qT +1(x)⟩

=
T∑

t=1

〈
ℓ̂t(x), qT +1(x)

〉
+ ψT +1(qT +1(x)) +DT +1(π∗(x), qT +1(x)),

where we used that ⟨∇ψt(qT +1(x)), π∗(x) − qT +1(x)⟩ ≥ 0 holds for a convex function ψt. Then, it holds that

T∑
t=1

〈
ℓ̂t(x), π∗(x)

〉
+ ψT +1(π∗(x))

≥
T∑

t=1

〈
ℓ̂t(x), qT +1(x)

〉
+DT +1(π∗(x), qT +1(x)) + ψT +1(qT +1(x))

≥
T∑

t=1

〈
ℓ̂t(x), qT +1(x)

〉
+ ψT (qT (x))

+DT (qT +1(x), qT (x)) +DT +1(π∗(x), qT +1(x)) − ψT (qT +1(x)) + ψT +1(qT +1(x))

=
T −1∑
t=1

〈
ℓ̂t(x), qT +1(x)

〉
+ ψT (qT (x))

+
〈
ℓ̂T (x), qT +1(x)

〉
+DT (qT +1(x), qT (x)) +DT +1(π∗(x), qT +1(x)) − ψT (qT +1(x)) + ψT +1(qT +1(x))

≥
T −1∑
t=1

〈
ℓ̂t(x), qT (x)

〉
+ ψT (qT (x))

+
〈
ℓ̂T (x), qT +1(x)

〉
+DT (qT +1(x), qT (x)) +DT +1(π∗(x), qT +1(x)) − ψT (qT +1(x)) + ψT +1(qT +1(x))

≥
T∑

t=1

〈
ℓ̂t(x), qt+1(x)

〉
+

T∑
t=1

Dt(qt+1(x), qt(x)) −
T∑

t=1

{
ψt(qt+1(x)) − ψt+1(qt+1(x))

}
+ ψ1(q1(x)).

Therefore, we have

T∑
t=1

〈
ℓ̂t(x), qt(x) − π∗(x)

〉
≤

T∑
t=1

{〈
ℓ̂t(x), qt(x) − qt+1(x)

〉
−Dt(qt+1(x), qt(x)) + ψt(qt+1(x)) − ψt+1(qt+1(x))

}
+ ψT +1(π∗(x)) − ψ1(q1(x)).

16
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Combining this with equation 6, we obtain

RT ((a∗
t )t∈[T ])

≤ E

[
T∑

t=1

{〈
ℓ̂t(X0), qt(X0) − qt+1(X0)

〉
−Dt(qt+1(x), qt(X0)) + ψt(qt+1(X0)) − ψt+1(qt+1(X0))

}
+ ψT +1(π∗(X0)) − ψ1(q1(X0)) +

T∑
t=1

γt

]
+ 2

T∑
t=1

max
a∈[K]

∣∣∣E [〈Xt, θt,a − θ̂t,a

〉]∣∣∣ .

C Proof of Lemma 4.9

Proof of Lemma 4.9. From Lemma 4.4, we have

RT ≤ E

[
T∑

t=1

(
γt +

〈
ℓ̂t(X0, d), πt(X0) − qt+1(X0)

〉
−Dt(qt+1(X0), πt(X0))

+ ψt(qt+1(X0)) − ψt+1(qt+1(X0))
)

+ ψT +1(π∗(X0)) − ψ1(q1(x))
]

+ 2
T∑

t=1
max
a∈[K]

∣∣∣E [⟨Xt, θt,a − θ̂t,a⟩
]∣∣∣ .

First, we show

E
[〈
ℓ̂t(X0), πt(X0) − qt+1(X0)

〉
−Dt(qt+1(X0), πt(X0))

]
≤ 3Kd

βt
. (7)

To show this, we confirm ℓ̂t(a,x)
βt

≥ −1, which is necessary to derive an upper bound from Proposition 4.6.
We have

1
βt

·
〈
X0, θ̂t(a)

〉
= 1
βt

·X⊤
0 Σ̂†

t,aXt

〈
Xt, θt,a

〉
1[At = a] ≥ −Cℓ

βt
·
∣∣∣X⊤

0 Σ̂†
t,aXt

∣∣∣
≥ − 1

βt
CℓCX

∥∥∥Σ̂†
t,a

∥∥∥
op

≥ − 1
βt
CℓCX δ

(
1 +

Mt∑
k=1

∥Vk,a∥op

)
= − 1

2βt
(Mt + 1),

where we used that δ = 1
2CℓCX

. Here, recall that we defined Mt as 2βt − 1. Therefore, ℓ̂t(a,x)
βt

= −1 holds.
Then, we have 〈

ℓ̂t(x), πt(x) − qt+1(x)
〉

−Dt(qt+1(x), πt(x))

≤ βt

∑
a∈[K]

πt(a | x)ξ
(
ℓ̂t(a, x)
βt

)
≤ 1
βt

∑
a∈[K]

πt(a | x)ℓ̂2
t (a, x).

Then, from Proposition 4.7, we have equation 7.

From ψt(q(x)) = −βtH(q(x)), we have

T∑
t=1

(ψt(qt+1(x)) − ψt+1(qt+1(x))) + ψT +1(π∗(x)) − ψ1(q1(x))

≤
T∑

t=1
(βt+1 − βt)H(qt+1(x)) + β1 log(K).

17
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From Lemma 4.8, we have
T∑

t=1
max
a∈[K]

∣∣∣E [⟨Xt, θt,a − θ̂t,a⟩
]∣∣∣ ≤

T∑
t=1

CXCΘ
1√
T

= CXCΘ
√
T .

D Proof of Lemma 4.10

Proof of Lemam 4.10. Firstly, we note that the following equality holds:

E

[
T∑

t=1
(βt+1 − βt)H(qt+1(Xt+1))

]

= E

[
T∑

t=1
(βt+1 − βt)E [H(qt+1(Xt+1)) | Ft]

]

= E

[
T∑

t=1
(βt+1 − βt)E [H(qt+1(X0)) | Ft]

]

= E

[
T∑

t=1
(βt+1 − βt)H(qt+1(X0))

]
We show the following two inequalities:

T∑
t=1

(
γt + 3Kd

βt

)
= O

K log(T )
β1

(
log(T )

δλmin log(K) + d

)√√√√ T∑
s=1

H
(
qt+1(Xs)

) (8)

T∑
t=1

(βt+1 − βt)H(qt+1(Xt+1)) = O

β1
√

log(K)

√√√√ T∑
t=1

H(qt(Xt)

 . (9)

First, we show equation 8. From γt = K
4δλminβt

log(T ), we obtain

T∑
t=1

(
γt + 3Kd

βt

)
=

T∑
t=1

(
K

2δλminβt
log(T ) + 3Kd

βt

)
=
(

K

2 1
2CℓCX

δλmin
log(T ) + 3Kd

)
T∑

t=1

1
βt
.

From βt+1 = βt + β1√
1+
(

log(K)
)−1∑t

s=1
H
(

qs(Xs)
) , we obtain

βt = β1 +
t−1∑
u=1

β1√
1 +

(
log(K)

)−1∑u
s=1 H

(
qs(Xs)

) ≥ tβ1√
1 +

(
log(K)

)−1∑t
s=1 H

(
qs(Xs)

) .
Therefore, we have

T∑
t=1

1
βt

≤
T∑

t=1

√
1 +

(
log(K)

)−1∑t
s=1 H

(
qs(Xs)

)
tβ1

≤ 1 + log(T )
β1

√√√√1 +
(

log(K)
)−1

T∑
s=1

H
(
qs(Xs)

)
.

By using H
(
q1(x)

)
= log(K), we obtain

T∑
t=1

(
γt + 3Kd

βt

)
= O

K log(T )
β1

(
log(T )

δλmin log(K) + d

)√√√√ T∑
s=1

H
(
qt+1(Xs)

) .
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Next, we show equation 9. From the definitions of βt and γt, we have

T∑
t=1

(βt+1 − βt)H(qt+1(Xt+1)) =
T∑

t=1

β1√
1 +

(
log(K)

)−1∑t
s=1 H

(
qs(Xs)

)H(qt+1(Xt+1))

= 2β1
√

log(K)
T∑

t=1

H
(
qt+1(Xt+1)

)√
log(K) +

∑t
s=1 H

(
qs(Xs)

)
+
√

log(K) +
∑t

s=1 H
(
qs(Xs)

)
≤ 2β1

√
log(K)

T∑
t=1

H
(
qt+1(Xt+1)

)√
log(K) +

∑t+1
s=1 H

(
qs(Xs)

)
+
√

log(K) +
∑t

s=1 H
(
qs(Xs)

)
≤ 2β1

√
log(K)

T∑
t=1

H
(
qt+1(Xt+1)

)√∑t+1
s=1 H

(
qs(Xs)

)
+
√∑t

s=1 H
(
qs(Xs)

)
= 2β1

√
log(K)

T∑
t=1

H(qt+1(Xt+1))
H(qt+1(Xt+1))


√√√√t+1∑

s=1
H
(
qs(Xs)

)
−

√√√√ t∑
s=1

H
(
qs(Xs)

)
= 2β1

√
log(K)

T∑
t=1


√√√√t+1∑

s=1
H
(
qs(Xs)

)
−

√√√√ t∑
s=1

H
(
qs(Xs)

)
= 2β1

√
log(K)


√√√√T +1∑

s=1
H
(
qs(Xs)

)
−
√
H
(
q1(X1)

)
≤ 2β1

√
log(K)

√√√√ T∑
s=1

H
(
qs(Xs)

)
,

where we used
√
H(qT +1(XT +1)) ≤

√
H(q1(X1)).

Inequalities equation 8 and equation 9 combined with the inequality in Theorem 4.9 yield

RT ≤ E

[
T∑

t=1

{
γt + 3Kd

βt
+ (βt+1 − βt)H(qt+1(X0))

}]
+ β1 log(K) + 2CXCΘ

√
T

= E

[
T∑

t=1

{
γt + 3Kd

βt
+ (βt+1 − βt)H(qt+1(Xt+1))

}]
+ β1 log(K) + 2CXCΘ

√
T

= E

 T∑
t=1

O
K log(T )

(
log(T ) + δλmind

)
β1δλmin log(K)

√√√√ T∑
s=1

H
(
qt+1(Xs)

)+O

β1
√

log(K)

√√√√ T∑
t=1

H(qt(Xt)




+ β1 log(K) + 2CXCΘ
√
T

=
T∑

t=1

O
K log(T )

(
log(T ) + δλmind

)
β1δλmin log(K)

√√√√ T∑
s=1

E
[
H
(
qt+1(X0)

)] )+O

β1
√

log(K)

√√√√ T∑
t=1

E [H(qt(Xt)]


+ β1 log(K) + 2CXCΘ

√
T .

Thus, we obtain the regret bound in Lemma 4.10.
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