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Abstract

The deployment of large language models (LLMs) is frequently hindered by pro-
hibitive memory and computational requirements. While quantization mitigates
these bottlenecks, maintaining model fidelity in the sub-1-bit regime remains a per-
sistent challenge. In this paper, we introduce LITTLEBIT, a novel framework for ex-
treme LLM compression. We target quantization rates as low as 0.1 bits per weight
(BPW), achieving a memory reduction of approximately 31×, which effectively
compresses Llama2-13B to under 0.9 GB. We represent weights via low-rank latent
matrix factorization and subsequently binarize the resulting factors. To counteract
the information loss inherent to such drastic precision reduction, we integrate a
multi-scale compensation mechanism that learns importance parameters across row,
column, and latent dimensions. Two primary contributions enable effective training:
Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware
training (QAT) initialization, and Residual Compensation to minimize approxima-
tion errors. Extensive experiments confirm the superiority of LITTLEBIT in the
sub-1-bit domain; for instance, our method at 0.1 BPW surpasses the performance
of leading techniques operating at 0.7 BPW on Llama2-7B. We establish a new size-
performance trade-off—unlocking a potential 11.6× inference speedup relative to
FP16—and render powerful LLMs practical for resource-constrained environments.
Our code is available at https://github.com/SamsungLabs/LittleBit.

1 Introduction

Large language models (LLMs) based on the Transformer architecture [1] have fundamentally
transformed natural language processing. However, the scale of these models, often reaching
hundreds of billions or trillions of parameters [2, 3], results in prohibitive computational and memory
costs. In particular, the high demand for GPU VRAM hinders widespread deployment on consumer
or edge devices [4–6].

Model quantization, which reduces numerical precision, serves as a primary technique to address
these bottlenecks [7]. While post-training quantization (PTQ) methods such as GPTQ [8] and
AWQ [9] effectively compress models to approximately 4 bits, achieving further compression (e.g.,
to 1-bit) typically requires quantization-aware training (QAT) [10, 11] to maintain performance. QAT
has demonstrated the capability to enable 1-bit compression while preserving model fidelity [12–14].

Nevertheless, even 1-bit models (e.g., approximately 15.4 GB for 70B parameters [7]) may exceed
the capacity of highly resource-constrained devices [15]. This limitation motivates the exploration of
sub-1-bit quantization. Although prior work [16] has investigated this area, maintaining performance
at extremely low effective bits (e.g., 0.55 bits per weight (BPW)) while ensuring computational
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Figure 1: Low-bit quantization perplexity on Llama2-13B (WikiText-2). LITTLEBIT surpasses the
state-of-the-art sub-1-bit quantization technique. Below 0.5 BPW, where the leading prior method
degrades sharply, ours remains robust down to 0.1 BPW.

efficiency without restrictive hardware dependencies remains challenging [16]. Consequently, it is
necessary to develop new techniques that achieve such extreme model compression, aiming for bit
rates around 0.1 BPW, while preserving model performance.

We derive our approach from two observations. First, LLM weight matrices often exhibit pronounced
low-rank structure [17, 18]. This observation suggests that factorization methods such as Singular
Value Decomposition (SVD) [19] may offer a more stable compression pathway than pruning [20],
particularly under extreme compression regimes. For instance, at compression ratios exceeding
50%, SVD-based approaches [21] consistently outperform pruning methods such as Wanda [22]
(see Appendix E for details). Second, binarization inherently causes information loss [23]. Recent
high-performing 1-bit methods [13, 24, 25] demonstrate that comprehensive scaling over multiple
dimensions (e.g., row and column) is crucial for mitigating this loss and stabilizing performance [25].

Building on these insights, we introduce LITTLEBIT, a novel method for extreme sub-1-bit quan-
tization (e.g., 0.1 BPW). In LITTLEBIT, we first represent weights via low-rank factorization
(W ≈ UV⊤) and subsequently binarize these factors. To counteract errors from binarization, we
leverage a multi-scale compensation mechanism that applies learnable scales across rows, columns,
and an additional latent dimension. We complement this architecture with Residual Compensation.

Extensive experiments demonstrate the superiority of LITTLEBIT over STBLLM [16], the leading
sub-1-bit technique, on LLMs ranging from 1.3B to 32B parameters. Notably, LITTLEBIT achieves
competitive performance on Llama2-13B at 0.1 BPW (Fig. 1), surpassing STBLLM at 0.55 BPW.
Furthermore, the 32B LITTLEBIT model at just 0.3 BPW maintains strong performance, substantially
outperforming STBLLM and establishing a new state-of-the-art for sub-1-bit quantization.

In summary, our contributions are as follows:

• We propose LITTLEBIT, a novel framework unifying latent matrix factorization with multi-
scale compensation to enable extreme sub-1-bit quantization. This method achieves effective
bits down to 0.1 BPW while preserving model performance, establishing a viable size-
performance trade-off for deploying LLMs in resource-constrained environments.

• We introduce Dual-SVID for the effective initialization of factorized structures and integrate
Residual Compensation to mitigate approximation errors. These techniques collectively
stabilize quantization-aware training (QAT) and counteract the information loss inherent in
drastic precision reduction, ensuring robust learning dynamics.

• We provide extensive empirical validation demonstrating that LITTLEBIT consistently out-
performs STBLLM [16], the prior leading sub-1-bit technique, across various model scales.
Our results confirm that LITTLEBIT maintains superior fidelity in the deep compression
regime, where baseline methods typically suffer severe degradation.

2



2 Related Works

2.1 Binarization and Quantization

Network binarization aims for extreme compression and acceleration by constraining weights or
activations to ±1. This enables efficient bitwise operations [26, 27]. While early studies such as
BinaryConnect [28] and BNNs [26] demonstrated feasibility, they encountered substantial accuracy
degradation [29]. Researchers partially mitigated this degradation by introducing scaling factors [30]
and employing the Straight-Through Estimator (STE) [31] to handle the non-differentiable quantiza-
tion function during training [32].

The direct application of these early techniques to large language models (LLMs) typically results
in severe performance loss [33]. Consequently, LLM-specific quantization strategies have emerged.
These are primarily categorized into post-training quantization (PTQ) and quantization-aware training
(QAT) [34]. PTQ adapts pre-trained models and achieves competitive results at approximately 4-bit
precision with methods such as GPTQ [8] and AWQ [9]. However, these methods generally struggle
to maintain performance below 2-bit precision [33, 7]. The sub-1-bit regime presents particular
challenges for PTQ methods due to severe information loss [35]. Recent work such as STBLLM [16]
demonstrates that incorporating structured binarized compression can extend PTQ into the sub-1-bit
regime, but a non-negligible accuracy gap persists.

In contrast, QAT integrates the quantization process directly into the training loop. This enables the
model to learn and adapt to the low-precision format [36]. This approach generally yields superior
performance compared to PTQ at very low bit-widths. Successful QAT approaches for low-bit
scenarios often employ sophisticated scaling mechanisms alongside adaptive training, as evidenced
by recent methods [13, 24]. Despite these advancements, consistently achieving high model fidelity
when quantizing to less than 1.0 BPW remains a considerable challenge. This persisting difficulty
underscores the need for novel architectures and training strategies specifically designed for such
extreme compression regimes.

2.2 Low-Rank Approximation in Quantization

Beyond quantization, the inherent parameter redundancy within deep neural networks [35] can
be effectively exploited using low-rank approximation methods. This redundancy is particularly
evident in LLMs [37, 38]. Techniques such as Singular Value Decomposition (SVD) [19] allow
large weight matrices to be represented as products of smaller factors. This offers an alternative
compression strategy that may be more resilient than pruning, especially under high compression
regimes [20]. Recognizing the potential for complementary benefits, researchers have explored
combining low-rank factorization to reduce parameter count with quantization to lower parameter
precision [39]. Initial studies applied SVD in various roles within the LLM context. Some approaches
used activation statistics to guide decomposition [21], while others integrated SVD principles into
initialization or parameter-efficient updates [40, 41, 13]. Further works applied transformations prior
to factorization [42] or employed low-rank structures to model quantization errors [43]. A more
integrated approach involves incorporating low-rank concepts directly within QAT methods. For
example, DL-QAT [44] jointly learns a representation amenable to both low-rank approximation
and low-precision quantization. However, this method is currently limited to 3-bit quantization.
Optimizing structural properties such as rank and numerical precision during training represents a
promising path toward effective LLM compression. There is potential for further exploration of even
lower precision quantization.

3 Methodology

This section details LITTLEBIT. It describes the factorized architecture with multi-scale com-
pensation (Section 3.1), the Dual-SVID initialization for stable QAT (Section 3.2), and Residual
Compensation for enhanced fidelity (Section 3.3). These components are optimized via QAT, as
detailed in Section 4.
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Figure 2: Comparison of a standard Transformer layer (left) and the LITTLEBIT architecture (right).
LITTLEBIT performs linear transformation using parallel Primary and Residual pathways. The Pri-
mary path employs binarized factors (Usign,Vsign) and FP16 scales (h,g, ℓ) on input X, initialized
from W via Dual-SVID. Simultaneously, the Residual path computes a correction with its own
parameters (Ures,sign,Vres,sign,hres,gres, ℓres) from the approximation residual. Their outputs sum
to form Y, eliminating storage of the effective weight matrices Ŵpri and Ŵres.

3.1 LITTLEBIT Architecture

The LITTLEBIT architecture, depicted in Fig. 2, redesigns linear layers for extreme compression
(e.g., 0.1 BPW) by synergistically combining low-rank factorization and binarization. The method
leverages the observed low-rank structure in LLM weights [45] to approximate the weight matrix
W ∈ Rdout×din as:

W ≈ UV⊤ (U ∈ Rdout×r,V ∈ Rdin×r, r ≪ min(din, dout)) (1)

We prioritize this factorization-based approach over other structural compression methods, such as
pruning, due to its superior robustness in extreme compression regimes. As the comparative analysis
against methods like Wanda demonstrates (Appendix E), SVD-based compression maintains model
integrity far more effectively at high compression ratios. This provides a more stable foundation for
ultra low-bit quantization. The resulting factors U and V are then binarized:

Usign = sign(U), Vsign = sign(V) ∈ {−1,+1} (2)

To compensate for the significant information loss incurred by binarization [23], LITTLEBIT in-
corporates learnable FP16 scales. Beyond standard row (h) and column (g) scaling [33, 13, 25],
the architecture introduces an additional latent scale (ℓ ∈ Rr). This latent scale addresses the
factorization structure by learning the relative importance of each of the r latent dimensions, which
correspond to the columns of the binarized factors Usign and Vsign:

h ∈ Rdout , g ∈ Rdin , ℓ ∈ Rr (3)

The primary effective weight, Ŵpri, is implicitly constructed from these components:

Ŵpri = diag(h)Usigndiag(ℓ)V
⊤
signdiag(g) (4)

Instead of storing or optimizing Ŵpri directly, the model learns latent full-precision factors U and V.
These are binarized during the forward pass using Eq. (2), along with the FP16 scales h,g, ℓ. This
factorized representation enables efficient computation during the forward pass.

Proposition 1 Let X ∈ Rseq×din be the input matrix. The forward computation Y = XŴ⊤
pri using

the primary approximation (Eq. (4)) is efficiently computed as:

Y = ((((X⊙ g)Vsign)⊙ ℓ)U⊤
sign)⊙ h (5)
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where ⊙ denotes element-wise multiplication with broadcasting.

This decomposition (Eq. (5)) replaces a large high-precision General Matrix Multiply (GEMM)
operation with two smaller binary matrix multiplications and element-wise scaling operations. This
offers computational advantages and reduces memory requirements. The effective bits per weight
(BPW) is determined by the storage cost of these learnable parameters relative to the original matrix
size (see Appendix D for details).

3.2 Dual-SVID Initialization

Naively initializing the highly constrained LITTLEBIT structure can lead to unstable QAT. To
circumvent this, we propose Dual-SVID, an SVD-based initialization method designed to provide
a starting point where the initial effective weight Ŵpri,0 closely approximates W. Dual-SVID
aims to preserve essential sign and magnitude information from the optimal low-rank SVD factors
(obtained from W ≈ U′V′⊤, then truncated) and map this information to the learnable LITTLEBIT
parameters (Usign,Vsign,h,g, ℓ). The process involves three steps: (1) Obtaining U′,V′ via a
truncated SVD. (2) Setting initial binary factors based on signs (Eq. (6)). (3) Decomposing the
magnitudes |U′| ∈ Rdout×r and |V′| ∈ Rdin×r. To initialize the scales, a rank-1 SVD (or equivalent
rank-1 approximation) is performed on each of these magnitude matrices separately. For |U′|, its
best rank-1 approximation can be written as sU,0(ℓu,0)

⊤, where sU,0 ∈ Rdout becomes the initial
row scale h0, and ℓu,0 ∈ Rr is a component contributing to the latent scale. Similarly, for |V′|, its
rank-1 approximation sV,0(ℓv,0)

⊤ provides the initial column scale g0 = sV,0 ∈ Rdin and another
latent scale component ℓv,0 ∈ Rr. These steps effectively disentangle multi-dimensional magnitude
variations and allow for the estimation of initial row (h0), column (g0), and the final latent scale
(ℓ0 = ℓu,0 ⊙ ℓv,0 by element-wise product), as shown in Eqs. (7) and (8):

Usign,0 = sign(U′), Vsign,0 = sign(V′) (6)

|U′| ≈ h0(ℓu,0)
⊤, |V′| ≈ g0(ℓv,0)

⊤ (7)
ℓ0 = ℓu,0 ⊙ ℓv,0 (8)

The resulting initial effective weight Ŵpri,0 = diag(h0)Usign,0diag(ℓ0)V
⊤
sign,0diag(g0) preserves

key structural information. The learnable parameters are initialized as follows: the latent factors U
and V are initialized with the factors U′ and V′ obtained from SVD, respectively, and the scales
h,g, ℓ are initialized to h0,g0, ℓ0.

3.3 Residual Compensation

To further improve fidelity without increasing the primary path’s rank, we introduce Residual
Compensation. This technique is motivated by the theoretical insight that a two-stage error correction
can be more effective than a single, larger approximation (Appendix A). Crucially, this method does
not increase the model’s total parameter budget; instead, the fixed bit budget of a single, higher-rank
approximation is strategically reallocated into two lower-rank paths: a primary and a residual path.
The term ‘residual’ primarily describes its role during initialization, where the auxiliary path is
configured to model the error of the primary approximation. During QAT, both paths are optimized
jointly to collectively represent the original weight. The advantage of this dual-path approach over a
single path is empirically validated in our ablation studies (Appendix B.1).

To implement this, Residual Compensation employs a parallel auxiliary path that learns an approx-
imation Ŵres of the residual error. This auxiliary path mirrors the structure of the LITTLEBIT
path:

Ŵres = diag(hres)Ures,signdiag(ℓres)V
⊤
res,signdiag(gres) (9)

The parameters of this auxiliary path (Ures,sign,Vres,sign,hres,gres, ℓres) are also learnable during
QAT. They are initialized using the Dual-SVID strategy applied to the initial residual error Wres,0 =

W − Ŵpri,0. Employing a separate path allows the model to specifically learn and compensate for
the potentially distinct characteristics of this residual error. The final effective weight is the sum of
both approximations:

Ŵ = Ŵpri + Ŵres (10)
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Figure 3: Visualization of Dual-SVID initialized weight components for a selected layer in Llama2-
7B (Query Weight, Layer 0). Columns, from left to right, represent effective bits of 0.1, 0.3, 0.55, 0.7,
0.8, and 1.0 BPW. Rows display the primary approximation (Ŵpri,0), the residual approximation
(Ŵres,0), and their sum (Ŵ0 = Ŵpri,0 + Ŵres,0). The rightmost image shows the corresponding
crop of the original weight matrix (W) for reference.

This targeted error correction is often advantageous for maintaining performance at extreme compres-
sion levels, as demonstrated by the ablation studies presented in Appendix B.1. It is important to note
that all learnable parameters from both the primary and residual paths are included when calculating
the final BPW (see Appendix D for calculation details).

Figure 3 visualizes the initial state of weight components (Ŵpri,0, Ŵres,0, and their sum Ŵ0) for
a Llama2-7B query weight, derived via Dual-SVID across effective bits from 0.1 to 1.0, compared
against the original weight W (far right). Even at a low 0.1 BPW, the primary approximation
Ŵpri,0 (top row, leftmost) captures the dominant low-rank structure of W, albeit with considerable
simplification. As effective bits increase, Ŵpri,0 progressively refines details and more effectively
suppresses disruptive approximation noise, allowing underlying weight patterns to emerge with
greater clarity. A key observation is that Ŵ0 (bottom row) at a modest 0.3 BPW—benefiting
from the initialized residual component Ŵres,0 (middle row)—often presents a more faithful initial
representation of W than Ŵpri,0 alone even at a higher 1.0 BPW. This underscores that Residual
Compensation, even at the initialization stage, is vital for capturing complexities missed by the
primary low-rank approximation, thereby providing a more faithful starting point for QAT.

4 Experiments

4.1 Settings

Evaluation Setup We evaluated LITTLEBIT across diverse LLM families, including Llama [46],
Llama2 [47], Llama3 [48], OPT [49], Phi-4 [50], and QwQ [51]. These models span parameter scales
from 1.3B to 32B. Perplexity (PPL) on the WikiText-2 [52] validation dataset served as the primary
performance metric. Appendix C provides additional results on the C4 [53] and PTB [54] datasets.
Furthermore, we assessed zero-shot accuracy on common reasoning benchmarks: WinoGrande [55],
OpenBookQA (OBQA) [56], HellaSwag [57], BoolQ [58], ARC-Easy (ARC-e), ARC-Challenge
(ARC-c) [59], and PIQA [60].

Training Details We optimized the LITTLEBIT model parameters, initialized via the Dual-SVID
method (Section 3.2), using QAT with knowledge distillation (KD) [61, 36, 62]. The original pre-
trained full-precision model functioned as the teacher (T ) for the LITTLEBIT student model (S).
The QAT objective combines the standard output Kullback-Leibler (KL) divergence loss, Lout, and
an intermediate layer mean squared error (MSE) loss, Linter, to match hidden representations. We
weighted these terms using an empirically determined coefficient λ = 10:

LQAT = Lout + λLinter. (11)
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Table 1: Perplexity (PPL) comparison on WikiText-2 across various LLMs and quantization methods.
Lower PPL indicates better performance. BPW denotes effective bits per weight. Methods marked
with † use quantization-aware training (QAT). STBLLM [16] utilizes N:M sparsity (ratio in parenthe-
ses). LITTLEBIT demonstrates strong performance, particularly in the sub-1-bit regime.

Settings OPT Llama Llama2 Llama3 Phi-4 QwQ

Method Block Size BPW 1.3B 7B 13B 7B 13B 8B 14.7B 32B

FullPrecision - 16 14.62 5.67 5.09 5.47 4.88 6.10 6.67 6.34
OmniQuant - 2 28.82 9.75 7.83 11.20 8.25 349.27 12.09 10.19
GPTQ 128 2 119.98 39.96 15.08 52.22 23.63 1.5e3 24.96 67.16
BiLLM 128 1.1 74.07 41.95 13.95 29.00 23.71 54.29 16.95 15.4
OneBit† - 1 20.27 8.21 7.37 8.36 7.41 13.09 9.92 9.86
BinaryMoS† - 1 18.09 7.84 7.05 7.74 6.95 10.83 9.51 8.99
LITTLEBIT † - 1 20.33 9.03 8.17 9.08 8.18 16.30 11.28 12.08

STBLLM 128 0.80 (6:8) 52.13 15.19 9.43 13.81 11.90 30.90 12.12 12.19
STBLLM 128 0.70 (5:8) 73.42 19.52 11.47 19.17 14.00 59.83 14.57 13.78
STBLLM 128 0.55 (4:8) 123.03 38.73 16.88 30.67 27.05 241.95 21.99 18.32
STBLLM 128 0.30 (2:8) 2.3e3 1.6e3 592.06 1.8e3 893.82 1.7e5 761.05 512.01

LITTLEBIT † - 0.80 21.32 9.44 8.50 9.53 8.52 17.28 11.70 12.46
LITTLEBIT † - 0.70 21.99 9.66 8.71 9.85 8.76 18.01 12.05 13.22
LITTLEBIT † - 0.55 23.35 10.09 9.16 10.47 9.24 18.47 12.80 13.57
LITTLEBIT † - 0.30 28.30 11.50 10.33 12.00 10.48 20.34 14.71 16.48
LITTLEBIT † - 0.10 53.76 15.58 13.71 15.92 15.09 26.11 19.73 35.26

Adhering to the protocol in [24], the training data combined WikiText-2 with selected partitions from
C4. The configuration included a sequence length of 2048 tokens, 5 epochs, the Adam optimizer
(β1 = 0.9, β2 = 0.999) [63], and a cosine learning rate decay with 2% warm-up (see Appendix G
for details). For models employing Grouped-Query Attention (GQA) [64], such as Llama3, Phi-4,
and QwQ, we specifically adjusted the latent ranks r for key (K) and value (V) projection layers
(see Appendix B.3) to maintain performance under extreme quantization. We employed SmoothSign
(forward: sign(x); backward gradient: tanh(kx), k = 100) for backpropagation, as it demonstrated
superior performance compared to the Straight-Through Estimator (STE) [31] (see Appendix B.2).
Although proxy gradients are established in the literature, this work validates the specific application
of the tanh(100x) derivative as a stable gradient for QAT in the ultra-low-bit regime. Our ablation
study confirms the effectiveness of this approach (Appendix B.2).

Baselines We benchmarked LITTLEBIT across effective bit rates ranging from approximately
1.0 down to 0.1 bits per weight (BPW). In the challenging sub-1-bit regime, we compared our
method against STBLLM [16], a post-training quantization (PTQ) method that employs N:M sparsity.
For settings approximating 1.0 BPW, we compared against the 1-bit PTQ method BiLLM [7] and
quantization-aware training (QAT) approaches such as OneBit [13] and BinaryMoS [24]. We included
results from standard low-bit methods, such as GPTQ [8] and OmniQuant [65], to provide broader
context.

4.2 Main Results

Superior Perplexity in Sub-1-bit Regime Table 1 presents the perplexity (PPL) results of LIT-
TLEBIT compared to baseline methods. The proposed method demonstrates robust performance,
particularly within the sub-1-bit regime. Relative to STBLLM [16], LITTLEBIT achieves markedly
superior PPL scores at 0.8, 0.7, and 0.55 BPW. For instance, on Llama2-7B, LITTLEBIT at 0.55 BPW
achieves a PPL of 10.47, which represents a substantial improvement over the 30.67 score reported
for STBLLM. We observe comparable gains across other models and bit-widths. For Llama2-13B at
0.8 BPW, LITTLEBIT records a PPL of 8.52, whereas STBLLM records 11.90.

Extreme Low-BPW Stability A primary advantage of LITTLEBIT lies in its exceptional stability
and performance in the extreme sub-0.5 BPW range, specifically at 0.3 BPW and 0.1 BPW. In this
regime, methods such as STBLLM exhibit severe performance degradation. For example, Llama2-7B
yields a PPL of 1.8× 103 at 0.3 BPW. Conversely, LITTLEBIT maintains strong PPL scores, such as
12.00 for Llama2-7B at 0.3 BPW and 15.92 at an unprecedented rate of 0.1 BPW. When configured
for effective bits approximating 1.0 BPW by adjusting the latent rank r, LITTLEBIT yields perplexity
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Table 2: Zero-shot accuracy (%) comparison on common sense reasoning benchmarks. Compares
Full Precision (FP16) models against STBLLM [16] and LITTLEBIT at 0.55 and 0.3 BPW.

Models Method WinoGrande OBQA HellaSwag BoolQ ARC-e ARC-c PIQA Average

Llama2-7B

FullPrecision 67.16 40.80 72.95 71.37 69.44 40.95 78.12 62.97
STBLLM (0.55) 52.80 33.00 36.94 62.17 37.33 25.34 62.46 44.29
STBLLM (0.3) 50.43 31.80 26.20 37.83 25.88 25.09 53.26 35.78
LITTLEBIT (0.55) 51.62 34.00 44.57 61.38 44.15 26.96 68.12 47.26
LITTLEBIT (0.3) 51.30 34.80 37.61 61.80 39.98 25.09 65.83 45.20

Llama2-13B

FullPrecision 69.45 41.80 76.58 69.29 73.19 44.53 78.61 64.78
STBLLM (0.55) 55.25 31.20 35.10 62.23 42.51 27.22 61.75 45.04
STBLLM (0.3) 51.54 28.80 26.01 55.63 27.53 24.74 53.32 38.22
LITTLEBIT (0.55) 53.04 35.60 51.06 50.58 46.09 29.10 70.78 48.03
LITTLEBIT (0.3) 51.30 34.00 43.81 55.96 42.59 25.17 68.77 45.94

Llama3-8B

FullPrecision 72.92 45.00 79.18 81.25 80.21 52.98 79.54 70.15
STBLLM (0.55) 52.17 25.80 30.61 57.16 30.35 23.72 57.56 39.62
STBLLM (0.3) 49.57 26.60 26.36 51.62 26.05 24.40 51.74 36.62
LITTLEBIT (0.55) 50.12 30.20 36.78 57.55 46.80 22.95 66.27 44.38
LITTLEBIT (0.3) 51.93 28.20 33.91 57.98 43.48 24.32 64.64 43.49
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Figure 4: Zero-shot accuracy (%) on 7 common sense reasoning tasks. The comparison highlights the
robustness of LITTLEBIT (solid lines) against STBLLM (dashed lines) in the sub-0.5 BPW regime.
While STBLLM degrades sharply, LITTLEBIT preserves viable reasoning capabilities for both (a)
Phi-4 and (b) QwQ models.

scores comparable to specialized 1-bit QAT methods. For example, on Llama2-7B, LITTLEBIT
achieves 9.08 compared to 8.36 for OneBit [13]. It also remains competitive with PTQ methods such
as BiLLM [7]. Although BinaryMoS [24] may exhibit slightly lower PPL in certain 1-bit scenarios
(e.g., Llama2-7B: BinaryMoS 7.74), this performance difference is attributable to its use of more
complex mechanisms, such as dynamic scaling, which represent a distinct set of architectural and
computational trade-offs. Our analysis of the trade-off involved in adjusting the latent rank to tune
effective bits from 1.0 down to 0.1 BPW indicates that performance degradation is minimal down
to approximately 0.55 BPW. However, a quantization cliff appears between 0.3 and 0.1 BPW. This
observation positions the 0.3–0.55 BPW range as an optimal sweet spot for balancing compression
and accuracy.

Model Generalization & Zero-Shot We consistently observe the advantages of LITTLEBIT across
a diverse set of model architectures and sizes. This includes the Llama3 family, which is typically
considered challenging for quantization, as well as other contemporary models such as Phi-4. For
example, Llama3-8B quantized by LITTLEBIT to 0.55 BPW yields a PPL of 18.47. This result
substantially outperforms the STBLLM score of 241.95 at 0.55 BPW with 4:8 sparsity. The zero-shot
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Table 3: Memory footprint comparison (GB) for Llama2 [47] models under different quantization
methods. LITTLEBIT is evaluated at various BPWs, achieved by adjusting the latent rank r. Com-
pression factors relative to FP16 are shown in parentheses.The gap between the effective BPW and
the compression factor arises because quantization is applied only to the Transformer blocks, while
components like the embedding layer and the lm_head remain in FP16.

Model FP16 BiLLM [7] OneBit [13] LITTLEBIT (Ours)

BPW 16 1.1 1 0.8 0.55 0.3 0.1

Llama2-7B 13.49 GB 1.60 GB (8.43×) 1.36 GB (9.92×) 1.19 GB (11.34×) 0.98 GB (13.77×) 0.79 GB (17.08×) 0.63 GB (21.41×)
Llama2-13B 26.06 GB 2.80 GB (9.31×) 2.28 GB (11.43×) 1.95 GB (13.36×) 1.51 GB (17.26×) 1.15 GB (22.66×) 0.84 GB (31.02×)
Llama2-70B 138.04 GB 15.40 GB (8.96×) 9.72 GB (14.20×) 7.97 GB (17.31×) 5.83 GB (23.68×) 3.70 GB (37.31×) 1.98 GB (69.72×)
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Figure 5: Conceptual view of KV Cache storage:
the standard method (left) stores the full hidden
dimension (dmodel), whereas LITTLEBIT (right)
caches a reduced latent dimension (r)

Table 4: Estimated KV cache memory reduction
for Llama2-7B using LITTLEBIT, with a reduc-
tion factor of approximately dmodel/r.

BPW KV Latent Rank KV Cache
(r) Reduction Factor

0.80 1,624 ≈2.5×
0.55 1,112 ≈3.7×
0.30 600 ≈6.8×
0.10 192 ≈21.3×

evaluation results presented in Table 2 corroborate these perplexity-based findings. For instance,
Llama2-7B compressed by LITTLEBIT to 0.55 BPW achieves a mean accuracy of 47.26%, and
the model maintains 45.20% mean accuracy even at an extreme 0.3 BPW. These results compare
favorably with those of STBLLM at similar or even higher effective bits. STBLLM on Llama2-7B at
0.55 BPW scores 44.29%. This outcome suggests superior preservation of the intrinsic reasoning
capabilities of the models even under extreme compression. It highlights the efficacy of LITTLEBIT
in creating highly compact yet powerful LLMs.

4.3 Reasoning Performance of Extremely Compressed LLMs

The capability of LITTLEBIT to achieve sub-1-bit compression while maintaining robust model
fidelity prompts an evaluation of its reasoning abilities, particularly for large-scale models under
extreme compression. We investigated the Phi-4 14B model and extended our analysis to the
QwQ-32B model, comparing their performance against STBLLM across 7 zero-shot reasoning tasks.

When compressed with LITTLEBIT to 0.55 BPW, Phi-4 achieved an average accuracy of approxi-
mately 52.3%. Although this performance is marginally lower than STBLLM at a similar compression
level (54.2% at 0.55 BPW), LITTLEBIT demonstrates substantially more graceful degradation. At the
more aggressive 0.3 BPW setting, the LITTLEBIT-compressed Phi-4 maintained an average accuracy
of 48.7%, which markedly outperforms STBLLM at 0.3 BPW (40.3%). Even at an extreme 0.1 BPW,
Phi-4 retained a notable accuracy of 43.6%. We observed a consistent trend with the QwQ-32B
model, as illustrated in Figure 4. While STBLLM exhibited severe performance collapse in the
sub-0.5 BPW regime, LITTLEBIT maintained a stable trajectory down to 0.1 BPW. These results
highlight the ability of LITTLEBIT to preserve robust reasoning capabilities across varying model
scales as compression becomes increasingly extreme.

5 Analysis
Memory Footprint Reduction LITTLEBIT is designed for resource-constrained environments,
such as on-device deployment, and achieves substantial reductions in model memory footprint. As
summarized in Table 3, quantizing a Llama2-7B model (originally 13.49 GB in FP16) to an effective
bit rate of 0.3 BPW using LITTLEBIT reduces its required storage to 0.79 GB. This corresponds
to a compression factor exceeding 17×. At the extreme setting of 0.1 BPW, the footprint is further
reduced to 0.63 GB (over 21× compression). We observe comparable reductions for larger models,
such as Llama2-70B, where the memory footprint decreases from 138.04 GB to under 2 GB at 0.1
BPW, achieving nearly 70× compression. These substantial memory reductions significantly expand
the range of devices capable of hosting large-scale language models, thereby enabling complex
language tasks on hardware with limited VRAM or storage capacity.
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Figure 6: Kernel-level latency (bars, left axis) and speedup relative to FP16 (dashed line, right axis) on
an NVIDIA A100 GPU for a Llama2-70B MLP layer (8, 192× 28, 672). The benchmark compares
the FP16 GEMM baseline with OneBit and the proposed LITTLEBIT (LB) kernel across various
BPW configurations ranging from 1.0 to 0.1.

KV Cache Compression The proposed factorization (Eq. (4)) inherently compresses the KV cache
when applied to key and value projection matrices. Because the forward computation (Eq. (5))
operates on latent states, intermediate rank r vectors are cached rather than full dmodel-dimensional
vectors, as illustrated in Fig. 5. Consequently, KV cache memory requirements are reduced by a factor
of approximately dmodel/r. For example, a reduction of up to 21.3× is observed for Llama2-7B at
0.1 BPW (Table 4). While this effect aligns with explicit compression methods such as MLA [66]
and ASVD [42], the approach described herein achieves this via unified factorization within attention
layers, thereby reducing both weight and activation memory simultaneously.

Latency Considerations In addition to memory optimization, inference latency presents a critical
performance metric. The factorized architecture (Eq. (5)) facilitates computational acceleration
through low-rank binary operations, distinct from methods solely prioritizing memory or requiring
specific hardware. To evaluate this capability, a custom 1-bit GEMV CUDA kernel was developed
to accelerate the primary computational path. As illustrated in Fig. 6 for a Llama2-70B MLP layer,
the kernel demonstrates speedups that inversely correlate with bit-width, peaking at 11.6× over an
optimized FP16 baseline at 0.1 BPW.

These findings suggest the proposed method enables efficient deployment with reduced latency. The
discrepancy between theoretical computational gains and practical latency is likely attributable to
memory access dominance during small-batch inference. The factorized approach involves multiple
memory-bound operations, and the custom kernel has not yet reached the optimization level of
industry-standard libraries. Appendix H provides a comprehensive analysis covering theoretical
FLOPs, practical latency, and end-to-end decoding throughput.

6 Conclusion

This study proposed LITTLEBIT, a method designed to advance LLM compression into the sub-
0.5 BPW regime while maintaining viable performance at 0.1 BPW. Performance improvements
were realized through SVD-inspired latent matrix factorization, factor binarization, and a multi-
scale compensation mechanism encompassing row, column, and latent dimensions. Furthermore,
Dual-SVID initialization was introduced to stabilize quantization-aware training (QAT), alongside
Residual Compensation for error mitigation. Empirical results demonstrate that the proposed method
markedly outperforms prior sub-1-bit techniques and preserves fidelity across LLMs scaling up to
32B parameters. Consequently, LITTLEBIT suggests a favorable size–performance trade-off, thereby
facilitating LLM deployment in resource-constrained environments. Future research may address
practical deployment through hardware co-design for edge devices, such as neural processing units
(NPUs). Additional improvements in model fidelity could be examined by integrating advanced
techniques such as non-uniform bit allocation, applied either across model layers or within single
layers via dynamic bit budget distribution between primary and residual paths.
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A Mathematical Analysis and Proofs

This section provides mathematical details for the LITTLEBIT computation and explores theoretical
aspects related to low-rank quantization errors, offering motivation for certain design choices.

Proposition 1 (LITTLEBIT Forward Pass Computation (Proof Detail)). As stated in Section 3.1
(Proposition 1), for input X ∈ Rseq×din , the primary quantized weight matrix is Ŵpri =

diag(h)Usigndiag(ℓ)V
⊤
signdiag(g). The forward pass Y = XŴ⊤

pri can be computed as shown
in Eq. (12).

Y = ((((X⊙ g)Vsign)⊙ ℓ)U⊤
sign)⊙ h. (12)

Terms are defined in Section 3.1.

Proof. Starting with Y = XŴ⊤
pri:

Y = X
(
diag(h)Usigndiag(ℓ)V

⊤
signdiag(g)

)⊤
= Xdiag(g)Vsigndiag(ℓ)U

⊤
signdiag(h)

= ((((X⊙ g)Vsign)⊙ ℓ)U⊤
sign)⊙ h. (13)

This yields Eq. (12), where ⊙ implies element-wise multiplication with broadcasting.

Claim 1 (Quantization Error vs. Factor Rank). Consider a simplified model where a rank-r ma-
trix W(r) = U(r)(V(r))⊤ is approximated. Let U(r)

sign = sign(U(r)), V(r)
sign = sign(V(r)). If

magnitudes are crudely approximated using fixed rank-1 SVDs of |U(r)| and |V(r)| to form scales
s
(r)
U , s

(r)
V :

Ŵr :=
(
U

(r)
sign ⊙ (s

(r)
U 1⊤

r )
)(

V
(r)
sign ⊙ (s

(r)
V 1⊤

r )
)⊤

. (14)

The error E(r) :=
∥∥∥W(r) − Ŵr

∥∥∥
F

might be non-decreasing with r.

Proof Sketch / Heuristic Argument. As rank r (and thus complexity of W(r), U(r), V(r)) increases,
the fixed-structure rank-1 magnitude approximation (via s(r)U , s

(r)
V ) may become a relatively poorer fit

for the increasingly complex actual magnitudes of U(r),V(r). This degradation in scaling accuracy
could lead to E(r) not decreasing, or even increasing, motivating more sophisticated scaling as in
LITTLEBIT.

Claim 2 (Quantization Bias vs. SVD Component Structure). Let W’s rank-r SVD approximation be
W̃r = W̃r1 + R̃r2 (primary W̃r1 , residual R̃r2 ). Consider a quantization operator Q. The relative
quantization error ∥Q(A) − A∥F /∥A∥F might be larger for matrices A with "flatter" singular
value spectra or less energy concentration (e.g., R̃r2 vs. W̃r1 ). This suggests that Q applied to R̃r2

might be less effective (i.e., higher relative quantization error) than when applied to W̃r1 .

Proof Sketch. W̃r1 has dominant singular values, while R̃r2 has smaller ones, often resulting in
lower energy concentration for R̃r2 . If Q’s relative error is sensitive to this (e.g., higher for lower
concentration), quantizing W̃r1 and R̃r2 separately may be better than quantizing W̃r jointly, as it
allows adapting Q to their differing structures.

Proposition 2 (Potential Advantage of Two-Stage Quantization of SVD Components). Using the
setup of Claim 2, let Ŵsingle

r = Q(W̃r) and Ŵtwo−stage = Q(W̃r1) + Q(R̃r2). The two-stage

error Etwo−stage =
∥∥∥W − Ŵtwo−stage

∥∥∥
F

can be less than the single-stage error Esingle−stage =∥∥∥W − Ŵsingle
r

∥∥∥
F

. This occurs if the quantization error of the sum is greater than the sum of
(vectorial) quantization errors of parts:

∥(Q(W̃r1)− W̃r1) + (Q(R̃r2)− R̃r2)∥F < ∥Q(W̃r)− W̃r∥F . (15)
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Proof Outline and Discussion. Let Etrunc = W − W̃r. Errors are ∆1 = Q(W̃r1) − W̃r1 ,
∆2 = Q(R̃r2) − R̃r2 , ∆sum = Q(W̃r) − W̃r. Then Etwo−stage = ∥Etrunc − (∆1 + ∆2)∥F
and Esingle−stage = ∥Etrunc −∆sum∥F . The condition Eq. (15) makes Etwo−stage < Esingle−stage

likely. Non-linear Q (e.g., with adaptive scaling) can satisfy this by better handling the distinct
characteristics of W̃r1 and R̃r2 . This motivates LITTLEBIT’s separate residual handling, though its
residual is learned differently.

B Ablation Study

B.1 Residual Compensation

To provide further intuition behind the benefits of Residual Compensation, we visualize the output
activations of selected Transformer layers under different quantization schemes. Specifically, we
extract the final outputs from Transformer layers 0, 5, 10, and 15 of an OPT-1.3B model, evaluated
on two randomly sampled input sequences. For each layer and input, we display a set of three
activation maps corresponding to the full-precision baseline, as well as two quantized variants—with
and without residual compensation. These groupings allow us to directly observe the structural
differences induced by the presence or absence of the residual compensation.

As shown in Fig. 7, residual compensation preserves a high-fidelity resemblance to the full-precision
baseline across all inspected layers. In the no-residual setting, the output feature distributions
exhibit noticeable deformation relative to the full-precision baseline. In contrast, applying residual
compensation consistently restores structural similarity to the original distribution, preserving both
directional patterns and magnitude diversity.

Table 5 presents the PPL results for the OPT-1.3B model, comparing configurations with and
without residual compensation. As indicated in the table, at the extremely low bit of 0.1 BPW, the
version with residual compensation (PPL 60.011) performed worse than the version without it (PPL
48.512). This suggests that for relatively small models (1.3B), when pushing effective bits to such
extreme lows, the additional complexity introduced by the residual compensation mechanism might
outweigh its benefits and instead hinder performance. However, for the same OPT-1.3B model at other
effective bits evaluated (ranging from 0.3 BPW to 1.0 BPW), the inclusion of residual compensation
consistently resulted in better (lower) PPL. Moreover, experiments conducted with other, larger
models generally showed that residual compensation tended to provide superior performance. In
light of these overall advantages observed across various settings and particularly for larger models,
residual compensation was adopted as a standard component in all experiments presented in this
study.

Table 5: Perplexity (WikiText-2) comparison between Residual and Non-Residual for OPT-1.3B at
various BPWs. Learning rate was 8e-5. Lower PPL is better.

BPW Residual PPL Non-Residual PPL Difference (Residual - Non-Residual)

1.00 20.329 21.691 -1.362
0.80 21.338 22.688 -1.350
0.70 22.001 23.313 -1.312
0.55 23.457 24.788 -1.331
0.30 28.984 29.724 -0.740
0.10 60.011 48.512 11.499

B.2 SmoothSign versus Straight-Through Estimator

For backpropagating through the non-differentiable sign(x) function, we compared the Straight-
Through Estimator (STE) [31] with our proposed SmoothSign technique. SmoothSign employs the
sign(x) function for the forward pass. For the backward pass, it utilizes a smooth proxy gradient,
specifically the derivative of tanh(kx) where k = 100 (illustrated in Fig. 8).

Table 6 (OPT-1.3B results) shows SmoothSign yielding better PPL as effective bits decrease, with
a notable advantage at 0.1 BPW. Due to its superior stability and performance in the ultra-low bit
regime, SmoothSign was adopted for all QAT experiments (consistent with Section 4.1).
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Figure 7: Visualization of Transformer layer outputs for layers 0, 5, 10, and 15 under the LITTLEBIT
quantization scheme on OPT-1.3B. For each of two randomly sampled input sequences (annotated at
the top), we show horizontally grouped triplets of activation maps per layer: full-precision baseline
(left), quantized with residual compensation (center), and quantized without residual compensation
(right).
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Figure 8: The SmoothSign activation technique. (a) Functions relevant to the forward pass: Smooth-
Sign uses the sign(x) function (actual forward pass). The plot also shows tanh(100x), which serves
as the basis for deriving the smooth proxy gradient shown in (b). (b) The smooth proxy gradient,
d
dx tanh(100x), utilized for the backward pass.

B.3 Grouped Query Attention

Modern LLMs often use Grouped Query Attention (GQA) [64] or Multi-Query Attention (MQA) [67],
where key (K) and value (V) projection layers have smaller output dimensions than query (Q)
projections. Applying LITTLEBIT at ultra-low bits (e.g., 0.1 BPW) to these GQA/MQA models can
result in an extremely small latent dimension r for K/V layers (e.g., r ≈ 20 for Llama3-8B K/V
layers at 0.1 BPW overall), potentially creating an information bottleneck and hindering QAT or
performance.

To investigate, we performed an ablation on Llama3-8B (∼0.1 BPW target), increasing the latent rank
r for K/V layers by 2×, 4×, and 8x over the standard calculation (Appendix D), while other layers
remained unchanged. Table 7 shows that a 4x factor for K/V rank yielded the best PPL on WikiText-2
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Table 6: Perplexity (WikiText-2) comparison between STE and SmoothSign for OPT-1.3B at various
effective bits (BPW). Learning rate was 8e-5. Lower PPL is better.

BPW STE PPL SmoothSign PPL Difference (SmoothSign - STE)

1.00 20.322 20.329 +0.007
0.80 21.344 21.338 -0.006
0.70 22.100 22.001 -0.099
0.55 23.528 23.457 -0.071
0.30 29.058 28.984 -0.074
0.10 60.401 60.011 -0.390

Table 7: Ablation study on adjusting the latent dimension factor (r) for key (K) and value (V)
projection layers in Llama3-8B with GQA, targeting an overall effective bit of 0.1 BPW. Performance
measured by perplexity (PPL, lower is better) on WikiText-2 and C4 validation sets, and average
zero-shot accuracy (%) on common sense reasoning tasks (higher is better). The ’KV Factor’ indicates
the multiplier applied to the K/V layers’ latent rank r compared to the standard calculation for 0.1
BPW.

KV Factor Approx. BPW WikiText-2 PPL C4 PPL Avg. Zero-shot Acc (%)

1× (Baseline) ∼0.098 25.80 34.04 44.85
2× ∼0.101 25.22 33.20 44.92
4× ∼0.107 24.93 32.69 44.70
8× ∼0.119 25.31 33.21 44.87

and C4, with minimal impact on overall BPW (e.g., ∼0.098 BPW to ∼0.107 BPW for 4×). Average
zero-shot accuracy also remained competitive. An 8x factor showed diminishing returns.

Given the significant PPL improvement with the 4× K/V rank factor (nearly 1 point on WikiText-2
vs. 1×) at a negligible BPW cost (<10% relative increase in effective bits for transformer layers,
<4% of total parameters), this strategy was adopted for GQA/MQA models (Llama3-8B, Phi-4,
QwQ-32B) in our main results. For these models, the latent rank r for K and V projection layers was
calculated based on a 4× multiplier compared to the standard calculation for the target BPW, while
all other layers used the standard rank calculation. This approach helps mitigate potential information
bottlenecks in GQA/MQA layers under extreme quantization without significantly altering the target
compression level.

C Perplexity on C4 and PTB

To further assess LITTLEBIT’s generalization, we evaluated its performance on additional bench-
marks: the diverse C4 web text corpus and the distinct PTB news corpus (Table 8). Focusing
on Llama2-7B/13B against STBLLM, the results on these datasets confirm the trends observed
on WikiText-2. LITTLEBIT consistently achieves lower perplexity than STBLLM at comparable
sub-1-bit regimes. This performance advantage becomes more significant below 0.55 BPW, where
STBLLM’s performance degrades considerably, particularly on PTB.

Notably, LITTLEBIT maintains robust performance and stability even at the extreme 0.1 BPW level
across all tested datasets. This consistent ability to maintain strong language modeling capabilities
under severe compression highlights the generalizability of our approach, which integrates latent
factorization, multi-scale compensation, and QAT. It reinforces LITTLEBIT’s potential for effectively
deploying capable LLMs in resource-limited environments.

D Average Bits Per Weight Calculation

This section details the calculation of the average effective bits per weight (which we denote as b in
the following equations) for a linear layer implemented using the LITTLEBIT architecture, including
the parameters from the primary (Ŵpri) and residual compensation (Ŵres) pathways, as described
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Table 8: Perplexity (PPL) comparison on C4 and PTB validation sets for Llama2 models. Lower PPL
indicates better performance. STBLLM [16] utilizes N:M sparsity (ratio in parentheses).

Model Method BPW C4 PTB

Llama2-7B

FullPrecision 16 6.97 37.91
STBLLM (6:8) 0.80 15.42 2.4e3
STBLLM (4:8) 0.55 30.99 527.56
STBLLM (2:8) 0.30 808.98 2.3e4
LITTLEBIT 0.80 11.77 40.75
LITTLEBIT 0.55 12.94 50.53
LITTLEBIT 0.30 14.78 59.17
LITTLEBIT 0.10 19.73 83.09

Llama2-13B

FullPrecision 16 6.47 50.94
STBLLM (6:8) 0.80 12.96 165.51
STBLLM (4:8) 0.55 27.38 424.82
STBLLM (2:8) 0.30 442.49 1.7e3
LITTLEBIT 0.80 10.60 44.87
LITTLEBIT 0.55 11.53 53.52
LITTLEBIT 0.30 13.07 51.66
LITTLEBIT 0.10 18.88 87.59

in Sections 3.1 and 3.3. The calculation demonstrates how to determine the latent rank r required to
achieve a target value for b within the range of approximately 0.1 to 1.0.

A LITTLEBIT linear layer replaces the original weight matrix W ∈ Rdout×din with two parallel
structures, each comprising:

• Two binary sign matrices: Usign ∈ {±1}dout×r and Vsign ∈ {±1}din×r. These require 1
bit per element.

• Three FP16 scaling vectors: h ∈ Rdout , g ∈ Rdin , and ℓ ∈ Rr. These require 16 bits per
element.

Since both the primary and residual paths have this structure, the total number of bits required to
store the parameters for a LITTLEBIT layer is:

Total Bits = 2× (Bits for Usign + Bits for Vsign + Bits for h+ Bits for g + Bits for ℓ)
= 2× ((dout × r × 1) + (din × r × 1) + (dout × 16) + (din × 16) + (r × 16))

= 2r(dout + din) + 32(dout + din) + 32r

Note: If Residual Compensation is not used, the initial factor of 2 should be removed from the
calculation.

The average bits per weight, denoted as b, is calculated by dividing the total bits by the number of
parameters in the original FP16 weight matrix (dout × din):

b =
2r(dout + din) + 32(dout + din) + 32r

dout × din
(16)

To achieve a target value for b, we rearrange Eq. (16) to solve for the required latent rank r:

r =
(b× dout × din)− 32(dout + din)

2(dout + din) + 32
(17)

Since r must be an integer, we typically round the calculated value to the nearest suitable integer.
This chosen integer r then determines the actual value of b achieved, which will be very close to the
target value.
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• Example 1: Linear Layer (4,096×4,096) Let dout = 4,096 and din = 4,096. The original
number of parameters is 4,096× 4,096 = 16,777,216. dout + din = 8,192.
For a target b ≈ 0.55: Using Eq. (17) with b = 0.55:

r =
(0.55× 16,777,216)− 32(8,192)

2(8,192) + 32
≈ 546

We choose integer r = 546. The actual value of b for r = 546, using Eq. (16), is:

b =
2(546)(8,192) + 32(8,192) + 32(546)

16,777,216
≈ 0.5498

• Example 2: Linear Layer (4,096 × 11,008) Let dout = 4,096 and din = 11,008. The
original number of parameters is 4,096× 11,008 = 45,090,816. dout + din = 15,104.
For a target b ≈ 0.1: Using Eq. (17) with b = 0.1:

r =
(0.1× 45,090,816)− 32(15,104)

2(15,104) + 32
≈ 133

We choose integer r = 133. The actual value of b for r = 133, using Eq. (16), is:

b =
2(133)(15,104) + 32(15,104) + 32(133)

45,090,816
≈ 0.0999

By following this procedure for each linear layer in the model, we can select appropriate ranks (r)
to achieve a desired overall value for b (average bits per weight), thereby controlling the trade-off
between model compression and performance. The specific ranks used to achieve the average bits per
weight (BPW) figures reported in the main paper (e.g., in Tables 1 and 3) are determined using this
calculation methodology for b for each layer type within the respective models.

E Pruning versus SVD

To select a base compression method to achieve sub-0.5 BPW, we compared pruning (Wanda [22])
with SVD-based compression (SVD-LLMv2 [21]) on Llama-7B ( Table 9). SVD showed superior
robustness at extreme compression ratios (e.g., 25% parameter retention).

Consequently, low-rank factorization was chosen to design LITTLEBIT due to its performance
resilience and the deployment advantages of dense factorized matrices over sparse pruned models
(which may require specialized hardware or overhead). Although SVD-LLMv2 itself performs well,
we found that initializing LITTLEBIT’s Dual-SVID with vanilla SVD was sufficient. The subsequent
QAT process effectively recovered performance, rendering the added complexity of SVD-LLMv2 for
initialization unnecessary. Accordingly, we employ the simpler vanilla SVD within our Dual-SVID
initialization procedure.

Table 9: Perplexity (WikiText-2) comparison between Pruning (Wanda) and SVD-based compression
(SVD-LLMv2) on Llama-7B at different parameter retention ratios. Lower perplexity is better. FP16
PPL is 5.68.

Remaining Parameter Ratio Pruning [22] SVD [21]

50% 8.7 13.6
37.5% 46.0 20.1
25% 1842.7 52.6

F Analysis of Generated Samples

The below generated samples illustrate qualitative differences as the BPW of the LITTLEBIT model
decreases. Two main observations are:

1. Impact on Specificity, Factual Detail, and Coherence: As the effective bits decrease from 0.8
BPW towards 0.1 BPW, the generated text exhibits significant changes in detail, factual accu-
racy, and coherence. At 0.8 BPW, the Mona Lisa sample, while attempting to provide details
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(e.g., "complex facial features"), becomes verbose and repetitive, and anachronistically
refers to Da Vinci and the Mona Lisa in the context of the "20th century." The Turing sample
at this effective bit, however, offers a standard, factually sound definition. As the effective
bit drops to 0.55 BPW, the Mona Lisa sample loses coherence significantly, expressing
uncertainty about the painting’s location and bizarrely shifting to a help-seeking persona
("Could you help me find the Mona Lisa painting..."). The Turing sample at 0.55 BPW
begins to broaden its definition, losing some precision but remaining somewhat related.

2. Degradation in Factual Accuracy and Relevance at Extreme Compression: Extreme compres-
sion, especially at 0.1 BPW, leads to severe degradation in factual accuracy and relevance,
as vividly demonstrated by both samples. The Mona Lisa sample at 0.1 BPW starts with a
generally acceptable statement (e.g., "iconic masterpiece") but quickly devolves into hallu-
cination, referring to the Mona Lisa as a "statue" and associating it with "Milan’s fashion
world." Similarly, the Turing sample at 0.1 BPW deviates drastically from the core definition
of computer science, incorrectly defining it as "the study of the theory and methods of how
the human mind and the brain work" and "the science of mind." These examples underscore
that while LITTLEBIT might maintain superficial grammatical structure at very low bits, the
ability to recall and generate accurate, relevant factual information is compromised, often
leading to the generation of plausible-sounding but nonsensical statements.

Sample 1: Mona Lisa

Prompt: Leonardo da Vinci painted the Mona Lisa. The Mona Lisa is

BPW Generated Output (Phi-4 Model)

0.80 Leonardo da Vinci painted the Mona Lisa. The Mona Lisa is famous for its complex facial
features and the artist’s depiction of her complex expression. It is considered one of the
most important paintings of the 20th century. The Mona Lisa is a painting by the Italian
artist Leonardo da Vinci, who was a painter and sculptor. He is best known for his realistic
and expressive style of painting, which is often compared to that of the natural world around
him. Leonardo da Vinci is considered one of the most important painters of the 20th
century. He is famous for his complex facial features and the artist’s depiction of her
complex expression. The Mona Lisa is

0.55 Leonardo da Vinci painted the Mona Lisa. The Mona Lisa is in the Louvre Museum in Paris,
France. I am not sure if it is in the museum or not. Could you help me find the Mona
Lisa painting. I am searching it everywhere. It is so hard to find a picture of it. I am
looking for a Mona Lisa painting with Leonardo da Vinci and the Mona Lisa by the
side. Thanks in advance!

0.10 Leonardo da Vinci painted the Mona Lisa. The Mona Lisa is an iconic masterpiece of
Italian art, and it is one of the most photographed and photographed works of art in the
world. Its execution and interpretation are breathtaking. This statue is also one of the most
popular works in Milan’s fashion world, and is one of the most photographed of the entire
collection of the Mona Lisa.

Sample 2: Turing

Prompt: Turing is called the father of computer science. Computer science is
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BPW Generated Output (Phi-4 Model)

0.80 Turing is called the father of computer science. Computer science is a branch of mathematics
that studies the design and analysis of computational systems. It is the study of the methods
of designing and implementing computational systems and the application of mathematics to
these systems. The most basic concepts of computer science are the concepts of computation,
algorithms, data structures, and programming.

0.55 Turing is called the father of computer science. Computer science is a branch of engineering
that focuses on the design, implementation, and maintenance of systems and technologies
using computers. This includes designing, implementing, and maintaining the algorithms that
underpin the software, hardware, and communication systems that are used in information
processing, and the Internet. Computer science is a multidisciplinary field that draws
on engineering, mathematics, and business. Computer science is often divided into four
broad areas

0.10 Turing is called the father of computer science. Computer science is the study of the theory
and methods of how the human mind and the brain work. It is also called the science of
mind. This is a very complex field, and many people are just not sure what to think.
Some people think that computer science is the most important and most advanced
field in the world, and that it is the most important branch of science in the world. This
is just a myth. But there is a reason for this.

G Hyperparameters

Across all QAT experiments, models were trained for 5 epochs using the Adam optimizer with a cosine
decay schedule. The training corpus – a mixture of C4 and WikiText-2 – contains approximately 1
billion tokens when the text is tokenized with the Llama-2-7B tokenizer (≈0.2 billion tokens per
epoch). The raw number of training samples (i.e., the amount of original text) is identical for every
model. As detailed in Table 12, for each model and BPW configuration, we swept the learning rate
within the range of 4.0e-5 to 2.4e-4. We then selected the learning rate that maintained numerical
stability while minimizing validation perplexity. For example, OPT-1.3B used a learning rate of
8.0e-5 at 1.0 BPW and 2.0e-4 at 0.1 BPW, while larger BPW models generally adopted slightly lower
values for stability. Training was conducted using four H100 GPUs for all models except QwQ-32B,
which required 4× 8 A100 GPUs. In this GPU configuration notation, the first number signifies the
number of nodes, and the second indicates the number of GPUs per node; thus, 4× 8 represents a
total of 32 GPUs.

Table 12: Knowledge Distillation Training Details
Training Setup OPT Llama Llama2 Llama3 Phi-4 QwQ

BPW Target 1.3B 7B 13B 7B 13B 8B 14.7B 32B

1.00 Learning Rate 8.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5
# GPUs 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 4 × 8

0.80 Learning Rate 1.2e-4 4.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5 1.0e-4
# GPUs 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 4 × 8

0.70 Learning Rate 1.2e-4 8.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5 4.0e-5
# GPUs 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 4 × 8

0.55 Learning Rate 1.2e-4 8.0e-5 8.0e-5 4.0e-5 4.0e-5 8.0e-5 8.0e-5 1.0e-4
# GPUs 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 4 × 8

0.30 Learning Rate 2.0e-4 1.2e-4 8.0e-5 8.0e-5 8.0e-5 1.2e-4 8.0e-5 1.0e-4
# GPUs 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 4 × 8

0.10 Learning Rate 2.0e-4 1.2e-4 1.2e-4 1.2e-4 4.0e-5 1.2e-4 1.2e-4 1.6e-4
# GPUs 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 1 × 4 4 × 8
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H Inference Efficiency Analysis

This section provides a detailed account of LITTLEBIT’s inference efficiency, complementing the
kernel-level latency results presented in the main text. We analyze the theoretical computational cost,
present detailed kernel latency benchmarks, and report end-to-end decoding throughput.

H.1 Theoretical Cost Analysis

To complement the empirical latency results, this section provides a theoretical analysis of LIT-
TLEBIT’s computational cost. The core principle behind LITTLEBIT’s efficiency is the replacement
of a large number of expensive FP16 multiply-accumulate (MAC) operations with a smaller volume of
cheaper FP16 additions and highly efficient bitwise operations (BOPs). To illustrate this, we analyze
the operational cost for a single forward pass through a Llama2-7B MLP layer, where din = 11,008
and dout = 4,096, quantized to 0.3 BPW, which corresponds to a latent rank of r = 431.

A standard FP16 matrix-vector multiplication for this layer involves din × dout MAC operations.
Counting each MAC as two floating-point operations (1 multiplication, 1 addition), the total com-
putational cost for the FP16 baseline is 2 × din × dout ≈ 90.2 million FLOPs. In contrast, LIT-
TLEBIT’s computation is divided into floating-point and bitwise components. The FLOPs arise
primarily from FP16 additions during accumulation and scaling multiplications, totaling approxi-
mately 2× (din + dout)× r ≈ 13.0 million FLOPs. The BOPs stem from multiplications with the
binary weights (±1), which are executed as sign-bit XOR operations, amounting to approximately
2× r × (din + dout) ≈ 13.0 million BOPs. This analysis reveals a nearly 7× reduction in expensive
FLOPs, which are replaced by an equivalent number of BOPs. As bitwise operations are substantially
faster than floating-point operations on modern hardware, this theoretical breakdown provides a
strong justification for the empirical latency improvements detailed below.

H.2 Kernel-Level Latency

Custom Kernel Implementation To empirically assess the latency of LITTLEBIT’s factorized
linear layers (Eq. (5)), we developed a custom CUDA kernel. The kernel implements the two-
stage computation involving the binary matrices Vsign and Usign. Key implementation details for
performance include:

• Bit-level Parallelism: Binary weights (±1) are packed into uint32_t data types. Multipli-
cation by these weights is efficiently realized by directly manipulating the sign bit of the
FP16 input values via bitwise XOR operations, avoiding costly floating-point multiplications.

• Warp-Level Reductions: To accelerate the accumulation step, the kernel employs warp-
level reduction primitives (warpReduceSum). This technique efficiently sums partial results
within a CUDA warp (a group of 32 threads), significantly reducing memory traffic and
latency compared to naive reduction methods.

• FP16 Arithmetic: The scaling factors (g, ℓ,h) are maintained in FP16 precision, and their
application leverages native half-precision Arithmetic Logic Units (ALUs).

All latency benchmarks were performed on an NVIDIA A100 GPU with a batch size of 1. The primary
baseline for comparison is a standard FP16 GEMM operation as implemented by torch.matmul,
which leverages highly optimized libraries like CUBLAS.

Latency Results and Discussion Table 13 presents the detailed latency comparison. The results
demonstrate that LITTLEBIT, accelerated by our custom kernel, can offer significant inference
acceleration. For instance, in a Llama2-70B MLP-like layer, LITTLEBIT achieves up to an 11.6×
speedup relative to the FP16 baseline at an effective BPW of 0.1. While our custom kernel is a
proof-of-concept and not as exhaustively optimized as mature libraries like CUBLAS, these findings
are promising. They show a clear path to substantial latency reduction at ultra-low bits, confirming
that LITTLEBIT’s architecture is well-suited for high-performance deployment.

H.3 End-to-End Decoding Throughput

To assess real-world application performance, we benchmarked the end-to-end decoding speed of a
Llama2-7B model, measured in tokens per second (TPS). It is important to note that these throughput
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Table 13: Kernel-level latency (ms) on an NVIDIA A100 GPU (Batch Size = 1). Compares PyTorch’s
FP16 GEMM with the LITTLEBIT (LB) kernel and a baseline 1-bit (OB) kernel. Dimensions (N, M,
R) denote output, input, and latent features, respectively.

Layer Type (Model Ref.) Dimensions (N, M, R) Method BPW Latency (ms) Relative Speedup

Llama2-70B MLP-like (8,192, 28,672, r)

FP16 Baseline 16.0 0.2882 1.00×
OneBit 1.0 0.0713 4.04×

LITTLEBIT 1.0 (r = 6,400) 0.0938 3.07×
LITTLEBIT 0.8 (r = 5,120) 0.0734 3.93×
LITTLEBIT 0.7 (r = 4,480) 0.0648 4.45×
LITTLEBIT 0.55 (r = 3,520) 0.0555 5.19×
LITTLEBIT 0.3 (r = 1,920) 0.0372 7.75×
LITTLEBIT 0.1 (r = 640) 0.0249 11.57×

Llama2-70B ATTN-like (8,192, 8,192, r)

FP16 Baseline 16.0 0.0896 1.00×
OneBit 1.0 0.0285 3.14×

LITTLEBIT 1.0 (r = 4,096) 0.0440 2.04×
LITTLEBIT 0.8 (r = 3,296) 0.0340 2.64×
LITTLEBIT 0.7 (r = 2,880) 0.0330 2.72×
LITTLEBIT 0.55 (r = 2,272) 0.0302 2.97×
LITTLEBIT 0.3 (r = 1,248) 0.0238 3.76×
LITTLEBIT 0.1 (r = 416) 0.0207 4.33×

Llama2-7B MLP-like (4,096, 11,008, r)

FP16 Baseline 16.0 0.0620 1.00×
OneBit 1.0 0.0226 2.74×

LITTLEBIT 1.0 (r = 3,008) 0.0238 2.61×
LITTLEBIT 0.8 (r = 2,400) 0.0220 2.82×
LITTLEBIT 0.7 (r = 2,112) 0.0211 2.94×
LITTLEBIT 0.55 (r = 1,664) 0.0192 3.23×
LITTLEBIT 0.3 (r = 896) 0.0192 3.23×
LITTLEBIT 0.1 (r = 320) 0.0190 3.26×

gains are achieved by accelerating only the nn.Linear layers with our custom kernel; other modules,
such as attention and layer normalization, remained in their original FP16 implementations. Despite
this partial acceleration, the results shown in Table 14 demonstrate a substantial impact on overall
performance. When generating 128 new tokens, the 0.1 BPW model achieves 203.20 TPS, a 2.46×
speedup over the FP16 baseline. This confirms that the significant kernel-level efficiencies of
LITTLEBIT translate into tangible end-to-end acceleration, even when other parts of the model
leverage standard implementations.

Table 14: End-to-end decoding throughput (tokens/sec) for Llama2-7B on an NVIDIA A100 GPU.
The benchmark was run 10 times and averaged.

Method BPW 128 New Tokens 256 New Tokens
Avg. TPS (tok/s) Speedup Avg. TPS (tok/s) Speedup

FP16 Baseline 16.0 82.56 1.00× 78.16 1.00×
LITTLEBIT 1.0 151.37 1.83× 139.70 1.79×
LITTLEBIT 0.8 160.43 1.94× 147.42 1.89×
LITTLEBIT 0.55 174.24 2.11× 160.67 2.06×
LITTLEBIT 0.3 190.43 2.31× 174.82 2.24×
LITTLEBIT 0.1 203.20 2.46× 185.39 2.37×

I Limitation

Despite the promising results of LITTLEBIT in achieving extreme compression, several limitations
warrant discussion. Firstly, the current LITTLEBIT method primarily focuses on compressing the
parameters within the Transformer blocks. The language model head (lm_head), which typically
consists of a linear layer projecting to the vocabulary size, is not subjected to the same aggressive
factorization and binarization. At ultra-low bits, such as 0.1 BPW for the Transformer blocks, the
lm_head can become a significant bottleneck in terms of overall model size, especially for models
with large vocabularies. Thus, developing specialized compression techniques for the lm_head that
are compatible with LITTLEBIT’s low-rank and binary principles is an important avenue for future
work to fully realize the potential of extreme model quantization.

Secondly, while quantization-aware training (QAT) is crucial for maintaining performance at such low
bits, it is computationally intensive and can be challenging to scale to extremely large models (e.g.,

24



70B parameters and beyond). Our own experiments faced resource constraints when attempting QAT
for models of this magnitude. Exploring more resource-efficient QAT strategies or investigating post-
training quantization (PTQ) approaches that can effectively adapt LITTLEBIT’s factorized structure to
these massive models would enhance the practical applicability of our method in real-world scenarios
with limited computational budgets.

Finally, the remarkable ability of models quantized with LITTLEBIT to perform complex tasks even
when retaining only a tiny fraction of the original weight information (e.g., at 0.1 BPW, which can
correspond to less than 1% of the original parameters’ information) calls for deeper investigation.
While our empirical results demonstrate efficacy, a more fundamental understanding of how such
aggressively compressed models retain their capabilities, perhaps through the lens of information
theory or by analyzing changes in learned representations, would be valuable. This could lead to even
more effective extreme compression techniques in the future.

J Societal Impact

Our work on LITTLEBIT enhances the accessibility of large language models (LLMs) by reduc-
ing their computational and memory costs, which can foster positive societal impacts in research,
education, and privacy-preserving on-device applications. However, we acknowledge that easier
deployment of capable LLMs may also inadvertently lower barriers to potential misuse, such as the
spread of disinformation or the amplification of societal biases. Our research responsibly utilizes
existing, often publicly available models in accordance with their licenses and ethical guidelines.
We strongly advocate for the ethical development and deployment of any models compressed using
LITTLEBIT, emphasizing the critical need for safeguards such as content filtering, bias mitigation
techniques, transparency regarding AI-generated content, and the continuous development of robust
detection mechanisms.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and Section 1 clearly state the contributions of LITTLEBIT,
including the novel factorization architecture, Dual-SVID initialization, and Residual Com-
pensation. Experimental results supporting these claims are provided in Section 4 and
Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: We explicitly discuss limitations, such as the lack of compression for the
language model head and the computational cost of QAT, in Appendix I.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Mathematical details for the LITTLEBIT forward pass and proofs/claims
regarding quantization errors are provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We provide full details on model architectures, training settings, and hyperpa-
rameters in Section 4.1 and Appendix G (including Table 12). Specifics on initialization,
average bit calculation, and GQA adjustments are in Section 3.2, Appendix D, and Appendix
B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is provided as supplemental material and will be publicly released.
We use open datasets (WikiText-2, C4) and standard open-source models (Llama, OPT, etc.).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Comprehensive training details, including optimizer settings, learning rate
schedules, and GPU configurations, are provided in Section 4.1 and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the high computational cost of performing QAT on large language
models (up to 32B parameters), we report results from single runs, consistent with standard
practices in LLM quantization research (see Table 1).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the hardware used (NVIDIA A100/H100 GPUs) and the number
of GPUs per experiment in Section 4.1, Section 5, and Table 12.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work involves compressing public open-source models and uses standard
datasets. It does not involve human subjects or sensitive personal data.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the benefits of efficient LLM deployment and the potential risks of
easier access to powerful models in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We address responsible use and safeguards in our Societal Impact discussion
in Appendix J. We do not release new base models but compress existing ones.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all original models (Llama, OPT, etc.) and datasets (WikiText-2, C4)
in Section 4.1 and throughout the text. We respect the licenses of these open-source assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code for LITTLEBIT (our primary new asset) is documented and included
in the supplemental material.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research did not involve human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research did not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are the subject of our study (we are compressing them), but we did not
use LLMs to generate the scientific content or methodology of this paper.

Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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