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Figure 1. Merge And Disentangle. We introduce a method that can merge multiple camera views
during training to learn better representations, while simultaneously disentangling the camera view
representations, such that the policy can function with any singular view input during deployment.

Abstract:
Vision is well-known for its use in robotic manipulation, especially using visual
servoing. Due to the 3D nature of the world, using multiple camera views and
merging them creates better representations for Q-learning and in turn, trains more
sample efficient policies. Nevertheless, these multi-view policies are sensitive to
failing cameras and can be burdensome to deploy. To mitigate these issues, we
introduce a Merge And Disentanglement (MAD) algorithm that efficiently merges
views to increase sample efficiency while simultaneously disentangling views by
augmenting multi-view feature inputs with single-view features. This produces
robust policies and allows lightweight deployment. We demonstrate the efficiency
and robustness of our approach using Meta-World and ManiSkill3.
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1 Introduction
Visual reinforcement learning (RL) has demonstrated remarkable progress, achieving superhuman
performance on Atari games [1] and successfully tackling complex real-world applications from
robotic manipulation to autonomous flight [2, 3, 4, 5]. However, the fundamental limitation of
learning from 2D observations constrains these systems’ understanding of the 3D world, particularly
in robotics where depth perception and control are differentiators.

Multi-view approaches offer promising solutions for visual RL, especially when combined with
data efficient Q-learning algorithms. They can merge multiple views to learn better representations,
overcome occlusions, and achieve higher sample efficiency [6]. However, they come with a practical
challenge: conditioning policies on multi-view representations can be burdensome to deploy and
render them fragile in the case of malfunctioning sensors. To deploy lightweight policies that are
robust to a reduction in available camera views, policies must be carefully disentangled during
training [7].
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Figure 2. Environment Setup. Our environment setup for robotic manipulation where we use three
input camera views as inputs, namely First Person, Third Person A, and Third Person B across two
visual RL benchmarks: (Left) Meta-World (Right) ManiSkill3. Extended visuals in Appendix E.

Aligning these two directions, we propose a method to Merge And Disentangle views (MAD),
thereby leveraging multi-view representations for improved sample efficiency, while being robust
to a reduction of camera views for lightweight deployment. To accomplish that, MAD processes
each camera view input individually through a single shared CNN encoder. Then, all singular view
features are merged through feature summation to create a merged multi-view feature representa-
tion. This merged feature representation is passed down to the downstream actor (policy) and critic
(Q-function) for learning. However, to properly disentangle view features, the downstream actor
and critic need to also train on the singular view features. Naively training on both merged feature
representations and all their singular view representations decreases sample efficiency and destabi-
lizes learning, as they can be viewed as multiple different states by the downstream actor and critic
networks. Therefore, we build upon SADA [8], a framework for applying data augmentation to
visual RL agents that stabilizes both the actor and the critic under data augmentation by selectively
augmenting their inputs. We modify the RL loss objectives, such that we train on each merged
multi-view feature, and apply all its singular view features as augmentations to it. By using this for-
mulation, we are able to increase sample efficiency while ensuring robustness to a reduction in input
camera views. Most importantly, we achieve this without requiring ordered input views, auxiliary
losses, extra forward passes, or additional learnable parameters.

Methods that merge and disentangle are vital when deploying robots to new environments or de-
signing benchmarks, where determining optimal camera placement and ensuring task observability
is non-trivial. By learning to merge information from multiple views while maintaining the ability
to generalize to individual perspectives, policies can leverage the complementary nature of different
viewpoints, benefiting from the increased sample efficiency and ensuring robustness. This process of
merging multiple camera views and simultaneously disentangling individual views to create robust
policies is illustrated in Figure 1.

We evaluate our method on 20 visual RL tasks from Meta-World [9] and ManiSkill3 [10] bench-
marks, and find that MAD is able to achieve higher sample efficiency than baselines while being
robust to a reduction in available camera views.

2 Related Works

Data Augmentation in Visual Reinforcement Learning. To improve the visual generalization
of models, data augmentation has been a commonly employed strategy in supervised and self-
supervised learning for computer vision tasks [11, 12, 13, 14, 15, 16]. Due to its limited data
diversity, visual reinforcement learning is especially prone to overfitting on visual inputs. Re-
cent works have found that applying data augmentation with input image transformations such
as random crops or random shifts regularizes the learning and increases sample efficiency in RL
agents [17, 18, 19, 20, 21, 22]. In contrast, [18, 23] find that stronger image transformations such
as rotation, random convolution, and masking lead to training instabilities and a decrease in data
efficiency. To mitigate this, many works focus on improving training stability under stronger data
transformations [23, 24, 25, 26, 27, 28, 29, 8] and increasing visual generalization by proposing
new types of transformations [30, 31, 32, 33, 34, 35, 36]. Most importantly, Almuzairee et al. [8]
propose a generic recipe for applying data augmentation, named SADA, which allows RL agents
to generalize to many types of stronger image transformations, without sacrificing training sam-
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ple efficiency. Our work builds on SADA and shows that it can be extended to feature level data
augmentation within our framework.

Robot Manipulation from Multiple Views. While robots can learn from singular camera views,
increasing the available cameras and using merged representations have been shown to improve
performance in robotic manipulation. [37, 6, 38, 39, 40, 41, 42]. These approaches leverage multiple
camera perspectives to mitigate occlusions and improve representations, leading to enhanced task
performance [43, 6]. Most notably, Hsu et al. [6] show that a first-person view outperforms a third-
person view when considering only one single view. However, due to the first-person view’s limited
observability, fusing it with a third person camera improves learning, as long as the third person
view is regularized with a variational information bottleneck. They show that their method, VIB,
outperforms singular and combined views on tabletop robot manipulation. Jangir et al. [44] achieve
similar conclusions, where fusing first and third person views with cross attention achieves better
real-world transfer than their singular view counterparts. Although there is merit in using multiple
views, performance degradation is significant when a view that was available during training is not
present during inference, especially if the views were not disentangled properly during training [7].

Merging and Disentangling Features. Research in computer vision has extensively explored fea-
ture merging [45, 46, 47, 48] and feature disentanglement [13, 49, 50] across multiple camera views
and sensor modalities. Inspired by these efforts, multiple works in visual RL have explored feature
merging [51, 52, 44, 6] and feature disentanglement [53, 17, 54]. However, policies trained on
multiple feature inputs often suffer significant performance degradation when any feature inputs be-
come unavailable [55, 7]. Multiple works have researched this problem of feature disentanglement
for reinforcement learning. Hu et al. [56] explore the use of scaffolding through extra privileged
features at training time, and disentangling them to achieve better test time performance than their
unscaffolded counterparts. Skand et al. [57] introduce a multi sensor feature encoder for RL polices
that disentangles features through dropout, yielding robust policies. Recently, Dunion and Albrecht
[7] addressed feature disentanglement in the multi-camera view RL setup for robotic manipulation.
They introduced MVD, an actor-critic method that disentangles view representations into shared and
private components through contrastive losses, enabling policies to maintain performance despite a
reduction in input camera views. While MVD focuses exclusively on disentangling views, our ap-
proach focuses on both merging and disentangling views: we merge multi-view features to improve
sample efficiency and we train on both merged multi-view features and singular-view features to
ensure disentanglement in the case of a singular camera view input.

3 Preliminaries

Visual Reinforcement Learning formulates the interaction between the agent and the environ-
ment as a Partially Observable Markov Decision Process (POMDP) [58], defined by a tuple of
⟨S,O,A, T , R, γ⟩. In a POMDP, S ⊆ Rd is an unobservable state space by the agent, o ∈ O is the
observation space, a ∈ A the action space, T : S × A × S → [0, 1] is the state-to-state transition
probability function, R : S × A → R is the reward function and γ is the discount factor. To better
approximate the current state st ∈ S, we follow Mnih et al. [1] in defining observations as a stack
of three prior consecutive RGB frames at time t. The goal is to learn a policy π : O → A that
maximizes the expected discounted sum of rewards Eπ[

∑∞
t=0 γ

trt] where rt = R(st, at).

Data Regularized Q-Learning (DrQ) [19] is an actor critic algorithm, based on Soft Actor Critic
[59] commonly used for continuous control in visual RL. DrQ concurrently learns a Q-function Qθ

(critic) and a policy πϕ (actor) with a seperate neural network for each. The Q-function Qθ aims
to estimate the optimal state-action value function Q∗ : O × A 7→ R by minimizing the one step
Bellman Residual LQθ

(D) = E(ot,at,rt,ot+1)∼D[(Qθ(ot,at)−rt−γQθ(ot+1,a
′))2] where D is the

replay buffer, a′ is an action sampled from the current policy a′ ∼ πϕ(·|ot+1), and Qθ represents an
exponential moving average of the weights from Qθ [60, 61, 59]. The policy πϕ is a stochastic policy
with temperature alpha α that aims to maximize entropy and Q-values. For simplicity, we abstract
the entropy objective and define a generic actor loss to be Lπϕ

(D) = Eot∼D [−Qθ(ot, πϕ(ot))].
Both the critic and actor losses are updated iteratively using stochastic gradient descent in an aim
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Figure 3. Our framework. Update diagram of a generic visual actor-critic model with our modifi-
cations. MAD merges camera views through feature summation and disentangles camera views by
selectively augmenting inputs to the downstream actor and critic with all the singular view features.
The agent is trained end-to-end with our defined MAD loss functions. (Left): Single Shared CNN
Encoder. (Middle): Actor Update diagram (Right): Critic Update diagram.

to maximize the expected discounted sum of rewards. DrQ also applies small random shifts to all
input images sampled from the replay buffer which improves learning sample efficiency [19, 22].

4 Merge And Disentangle Views in Visual Reinforcement Learning
Building on prior work in multi-view reinforcement learning, we found it to pursue two distinct di-
rections: one focusing on merging views to improve sample efficiency, while the other focusing on
disentangling views to create policies that are robust to view reduction. To unify these complemen-
tary approaches in pursuit of both increased sample efficiency and policy robustness, we propose
MAD: Merge And Disentangle views for visual reinforcement learning. Our method merges views
through feature summation, and simultaneously disentangles views by training the downstream actor
and critic on both the merged and singular view features. However, naively training on both merged
and singular view features deteriorates policy performance. Therefore, we elect to train using the
merged features, and apply singular view features as augmentations to the inputs of the downstream
actor and critic networks. We start by defining our merge module, followed by our application of
feature-level data augmentation, and finally our augmentation strategy.

4.1 Merge Module
Given a multi-view input om

t = o1
t ,o

2
t , ...,o

n
t consisting of n views at time t, where each oi

t repre-
sents a single view, each view is passed separately through a shared CNN encoder fξ. The output
features of a single view input is then defined to be Vi

t = fξ(o
i
t). After encoding all singular views

V1
t ,V2

t , ...,Vn
t , the features are merged through summation such that the combined multi-view rep-

resentation becomes: Mt =
∑n

i Vi
t .

Feature summation is chosen as the merging method for two reasons: 1) To make the downstream
actor and critic robust to a reduction in views, they need to be trained on both merged features Mt

and singular-view features Vi
t . With feature summation, both Mt and Vi

t have equal dimensionality,
and thus no architectural changes need to be made to accommodate different feature dimensions in
the case of missing input views. 2) Feature summation preserves the magnitude of different view
features, such that the downstream actor and critic have a signal of how many views are inputted. As
our experiments will show, most merging methods in visual RL perform similarly, and so the choice
of the merging method comes down to the properties desired within a certain framework.

4.2 Feature-level Data Augmentation
Feature-level augmentation in MAD differs from traditional RL data augmentation techniques.
While conventional approaches apply data augmentation by modifying input images through ran-
dom cropping and color jittering, or altering input states via amplitude scaling and Gaussian noise
injection [18], MAD introduces augmentation at the feature level—specifically between the image
encoder and the downstream actor and critic networks. The process begins by encoding each cam-
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era view image into its corresponding singular-view feature representation Vi
t , then combining these

features through summation to produce the merged representation Mt. Standard multi-view algo-
rithms would only pass this merged representation Mt to the downstream components. However, to
strengthen the robustness of the downstream actor and critic to missing input camera views, MAD
augments the downstream component inputs with all the singular-view feature representations Vi

t .

4.3 Augmentation Strategy
To generalize to all singular view inputs oi

t, MAD applies their corresponding features V i
t as feature-

level augmentations to the downstream actor and critic. However, naive application of data augmen-
tation in visual RL has been shown to degrade policy performance and stability [18, 23, 8]. Later
works established ways to stabilize actor-critic learning under data augmentation [24, 8]. We follow
SADA [8] in their recipe for applying data augmentation, where given an encoder fξ, actor πϕ, and
critic Qθ, data augmentation is selectively applied to the actor and critic inputs such that: (1) In the
critic update, the target Q-value is predicted purely from the unaugmented stream, while the online
Q-value is predicted from both the augmented and unaugmented streams. (2) In the actor update, the
Q-value is predicted purely from unaugmented stream while the policy action is predicted from both
the augmented and unaugmented streams. By predicting the learning targets in both actor and critic
updates from the unaugmented stream, the variance in the targets is reduced, thereby stabilizing the
learning objective under data augmentation.

We build on this loss formulation with some modifications. Given n input camera views, n single-
view features Vi

t = fξ(o
i
t) for i ∈ {1, ..., n}, and a multi-view feature representation Mt =

∑n
i=1 Vi

t ,
the MAD update loss function for generic actor becomes:

LUnAug
πϕ

(D) = Eom
t ∼D [−Qθ(Mt, πϕ(Mt))]

LAug
πϕ

(D, i) = Eom
t ∼D

[
−Qθ(Mt, πϕ(Vi

t))
]

LMAD
πϕ

(D) = α ∗ LUnAug
πϕ

(D) + (1− α) ∗ 1

n

n∑
i=1

LAug
πϕ

(D, i) (actor) (1)

where α is a hyperparameter that we add to the SADA loss. This α hyperparameter weighs the
unaugmented and augmented streams for more fine grained control over the learning, similar to
[24]. Setting this α hyperparameter to 0.5 recovers the original SADA loss. On the other hand, the
MAD update loss function for a generic critic becomes:

LUnAug
Qθ

(D) = E(om
t ,at,rt,om

t+1)∼D

[(
Qθ(Mt,at) − rt − γQθ(Mt+1,a

′)
)2]

LAug
Qθ

(D, i) = E(om
t ,at,rt,om

t+1)∼D

[(
Qθ(Vi

t ,at) − rt − γQθ(Mt+1,a
′)
)2]

LMAD
Qθ

(D) = α ∗ LUnAug
Qθ

(D) + (1− α) ∗ 1

n

n∑
i=1

LAug
Qθ

(D, i) (critic) (2)

A higher value of α would increase the weight of the unaugmented objective, while a lower α would
increase the weight of the augmented objective. Using this formulation, and after tuning α, MAD
is able to train on both the merged features and singular view features with minimal loss to training
sample efficiency. A detailed diagram of our method update is provided in Figure 3.

5 Experiments
We benchmark our method and baselines on a total of 20 visual RL tasks, consisting of 15 Meta-
World v2 tasks [9] and 5 ManiSkill3 tasks [10], focusing on tabletop robot manipulation tasks. Both
environments are set up with three camera views, consisting of a first-person camera attached to
the robot arm, and two third-person cameras with reasonable observability to the task at hand. See
Figure 2 for visualizations of our camera setup in each environment. The full task list is defined
in A.3, and detailed visuals of all tasks can be found in E. Through experimentation, our aim is to
answer the following questions:

- Robustness. How does MAD compare to baselines in terms of sample efficiency? Does MAD
function with a reduction in camera views?
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Figure 4. Overall Robustness. Success rate as a function of environment steps, averaged over all
(Top) 15 Meta-World and (Bottom) 5 ManiSkill3 visual RL tasks. Methods are trained on all three
camera views and evaluated on all and singular camera views with the final average displayed on the
far right. Mean and 95% CI over 5 random seeds.

- Analysis. Why do baselines fail to achieve similar sample efficiency to MAD? How much does
each component contribute within MAD? How do different merge methods compare?

- Adaptability. Can MAD be adapted to other modalities?

Implementation. We use DrQ [19], a visual based Soft Actor Critic algorithm [59], as the backbone
algorithm for our method across both environments, with detailed hyper parameters defined in Ap-
pendix A.1. To process all input camera views, we use a single shared DQN CNN encoder [62]. For
our observations, we pass in a stack of three most recent RGB images such that input observations
for each view are of shape (3× R(3×84×84)). We further pass in proprioceptive robot state input to
the actor and critic, similar to prior works [6, 7]. When learning from images, DrQ regularizes its
learning by applying small random shift transformations to input images, which has been shown to
improve performance. We apply identical random shifts to all input camera views at each timestep.

Environments. We evaluate on 15 Meta-World [9] tasks spanning medium, hard, and very hard
difficulties, as defined in [63], and 5 tasks from ManiSkill3 [10]. For each of the two benchmarks,
we use a fixed camera setup consisting of a first person camera view and two third person camera
views. When evaluating, we report the mean success rate of the agent across 20 episodes.

Baselines. We compare MAD against the following strong baselines. 1) MVD [7], a contrastive
learning method that learns to disentangle multi-view image inputs by encoding a shared and pri-
vate representation for each view. The shared representation is pushed to align with other views
while the private representation is pushed to differ. Through combined contrastive losses, they are
able to learn representations that are robust to a reduction in views. 2) VIB [6], a variational in-
formation bottleneck approach that merges first person and third person views with a variational
information bottleneck objective applied only on third person views to provide complementary in-
formation to the first person view. 3) MV-MWM [38], a multi-view masked autoencoder that learns
representations across multiple views while using a world model for planning. While MV-MWM
uses expert demonstrations to bootstrap its learning, we train it without any expert demonstrations
for a fair comparison with our method and baselines. 4) Single Camera DrQ [19], where DrQ
agents are trained only on a single view and evaluated on that same single view.

5.1 Empirical Results

Robustness. To quantify the sample efficiency of MAD, we train all methods on 20 visual RL tasks
from Meta-World and ManiSkill3, using all three cameras as input, and evaluate the methods on all
cameras views combined, and individual, reporting the combined, individual and average success
rates in Figure 4. As our results indicate, MAD demonstrates superior performance to baselines on
Meta-World by (30%) success rate over 15 tasks, and on ManiSkill3 by (36%) over 5 tasks. These
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Figure 5. Ablations. Success rate as a function of environment steps, averaged over 5 Meta-World
hard tasks. (Top) Component Ablations. (Bottom) Alpha Ablations. Methods trained on all camera
views and evaluated on all and singular camera views. Mean and 95% CI over 5 random seeds.

improvements in success rates within the same number of environment steps as baseline methods
directly reflect the enhanced sample efficiency of MAD.

With a reduction in camera views, MAD achieves stronger robustness on the Third Person A and
Third Person B singular views than all the baselines, including the Single Camera baseline that
was trained solely on these third person views. This indicates that MAD was able to leverage
better representations from All Cameras to achieve higher success rates on these third person views.
On the First Person View, MAD outperforms most baselines and achieves similar success rates as
the Single Camera and VIB baselines. Overall, MAD is able to achieve consistent success rates
whether All Cameras are present, or when only singular camera view inputs are available, indicating
a robustness to a reduction in camera views. Detailed graphs of all results can be found in Appendix
D. Extended experiments on increasing views (5 views), and varying input view resolutions are
provided in Appendix B.

Analysis. Based on our experiments, baselines fail to achieve similar sample efficiency and ro-
bustness to MAD over the two benchmarks. Our disentanglement baseline, MVD, successfully
disentangles representations such that it is robust to a reduction in views, but it struggles with poor
sample efficiency. This limitation stems from its design approach: rather than leveraging all input
views simultaneously, MVD randomly selects individual views to encode into shared and private
representations. While this strategy effectively promotes disentanglement, it deliberately avoids
creating representations dependent on all views combined — a trade-off that preserves robustness at
the cost of efficiency. On the other hand, our merge baseline, VIB, appears highly dependent on the
first person view, since it applies a variational information bottleneck only on third person views.
Therefore, it achieves high sample efficiency only when the first person view is available, and it fails
otherwise. Our third baseline, MV-MWM, is able to disentangle views effectively. However, it uses
a heavy auxiliary objective of learning masked multi view representations that hinders its learning
speed when no expert demonstrations are provided. In contrast to MVD, MAD is able to leverage all
input views combined to increase its learning speed, while augmenting with singular view features
to disentangle representations. In contrast to VIB, MAD is agnostic to input perspectives, allowing
it to function even without first person view inputs. In contrast to MV-MWM, MAD uses no heavy
auxiliary objective that requires expert demonstrations to increase its learning speed. Overall, MAD
is able to achieve higher sample efficiency and robustness than MVD, VIB, and MV-MWM.

To measure the contribution of each component within MAD, we conduct ablations over 5 hard tasks
from Meta-World and plot the results in Figure 5. We first ablate different components. In (MAD -
Naive Both), we train our DrQ baseline naively on both merged and singular view features without
using the MAD loss formulations. In (MAD - Merged Only), we train our DrQ baseline on the
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merged multi view features only without any disentanglement, and in (MAD - Singular Only) we
train our DrQ baseline on all the singular view features without merging them. MAD outperforms all
these alternative setups by (29%) success rate, indicating the necessity of each component within our
formulation. We further ablate different α values for the loss, where we find α = 0.8 to outperform
other alpha values, including the original SADA formulation of α = 0.5. In summary, each of
our design choices appears to be essential for the superior performance of MAD. Furthermore, we
empirically compare our choice of merging using summation with other alternatives in Appendix C,
and find that all merging methods achieve similar sample efficiency on two and three views.

Adaptability. We further evaluate whether MAD can be adapted to different modalities such as
depth and RGB as opposed to different camera views, and display results in Figure 6. We train
MAD and DrQ agents on 5 ManiSkill3 tasks, with only one camera view input. We pass in RGBD
inputs to MAD, and different combinations of RGB and Depth to DrQ agents to measure the base-
line performance on that modality. While RGBD input is usually merged by adding depth as an
extra channel to the CNN input, we merge it in MAD by summing its features after encoding them
separately, for consistency with the MAD framework. Based on the results, MAD achieves similar
sample efficiency to the RGBD baseline, while generalizing to both the RGB-Only and Depth-Only
modalities. Most surprisingly, MAD is more sample efficient than the Depth baseline on the Depth-
Only evaluation, mainly due to it leveraging more informative representations from the RGB inputs.
This can prove to be an effective way to train deployable depth-only policies from RGBD inputs.

6 Limitations and Conclusion
A limitation of the current study is the absence of real-world experimental validation. Future re-
search could address this gap by implementing MAD on physical robots through simulation-to-real
transfer methods [64], demonstration-bootstrapped methods [65], or enhanced sample efficient vi-
sual Q-learning methods [66, 67, 68]. Furthermore, generalizing to novel unseen viewpoints in both
MAD, and visual RL in general, remains challenging. Future research is needed to expand on the
potential of MAD for tackling novel view points, especially with the aid of generative foundational
models [69], to deploy robust robot policies to the real world.

To conclude, throughout this work, we identified that the two directions in visual reinforcement
learning of: (1) merging views and (2) disentangling views, can be complementary. We proposed our
framework, Merge And Disentangle (MAD), which bridges these two directions, benefiting from the
merits of each. Concretely in MAD, multi-view inputs are merged for higher sample efficiency from
multi-view representations, while singular view features are selectively applied as feature-level aug-
mentations to the downstream components to ensure disentanglement. This produces policies that
are robust to a reduction of available cameras, whether in training or deployment. We heavily bench-
marked MAD on 20 visual RL tasks from Meta-World and ManiSkill3 against multiple baselines,
showcasing its superiority in terms of sample efficiency and robustness. Furthermore, we showed
that the application of MAD could be versatile, whether to multiple camera views, or multiple input
modalities. Bringing this work forward, we hope this can aid in democratizing visual reinforcement
learning, and serve as a strong baseline for future work in multi view reinforcement learning.
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A Experiment Setup

A.1 Hyper-parameters

Parameter Setting

Replay buffer capacity 500,000
Image Size (3, 84, 84)
Frame stack 3
Exploration steps 2000
Mini-batch size 256
Optimizer Adam
Learning rate 5× 10−4

Agent update frequency 2
Critic Q-function soft-update rate τ 0.01
Features dim. 50
Hidden dim. 1024
Actor log stddev bounds [−10, 2]
Init temperature 0.1
MAD Alpha α 0.8
Discount γ (Meta-World) 0.99

(ManiSkill3) 0.8
Table 1. The default set of hyper-parameters used in our experiments.

A.2 Baseline Implementations

For all baselines, we reimplement them on top of our DrQ baseline for a fair comparison. The
MV-MWM baseline however was kept using its model-based baseline, as DrQ is model-free. Nev-
ertheless, MV-MWM was tuned accordingly on both benchmarks.

A.3 Environment Setups

Meta-World. We evaluate on 15 tasks where 5 tasks are chosen from each of medium, hard, and
very hard difficulties, defined in Seo et al. [63]. Every 25,000 environment steps, we evaluate for 20
episodes and report the mean success rate.

MetaWorld-v2 Tasks
Task Difficulty Action Dim Proprioceptive State Dim

Basketball Medium 4 4

Hammer Medium 4 4

Peg Insert Side Medium 4 4

Soccer Medium 4 4

Sweep Into Medium 4 4

Assembly Hard 4 4

Hand Insert Hard 4 4

Pick Out Of Hole Hard 4 4

Pick Place Hard 4 4

Push Hard 4 4

Shelf Place Very Hard 4 4

Disassemble Very Hard 4 4

Stick Pull Very Hard 4 4

Stick Push Very Hard 4 4

Pick Place Wall Very Hard 4 4
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ManiSkill3. We evaluate on 5 visual tasks from ManiSkill3. Every 20,000 environment steps, we
evaluate for 20 episodes and report the mean success rate. We alter the default camera setups of
the tasks to accommodate our setup. For both PushCube and PokeCube tasks, we alter the state to
include the goal position of the cube to keep consistent with other tasks in the ManiSkill3 environ-
ments.

ManiSkill3 Tasks
Tasks Difficulty Action Dim Proprioceptive State Dim

Push Cube - 4 28

Pull Cube - 4 28

Pick Cube - 4 29

Place Sphere - 4 29

Poke Cube - 4 28

Environment Settings
Environment Steps Episode Length Action Repeat Metric Number of Eval Episodes

Meta-World 1M 200 2 Success 20

ManiSkill3 0.5M 50 1 Success 20
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B Camera Scalability Experiments

B.1 Increased Camera Views

We further evaluate how our method would scale with larger number of views. We setup ManiSkill3
with five views as outlined below and evaluate our method and baselines on 5 ManiSkill3 tasks. As
shown below, MAD outperforms all baselines by (48%) success rate when increased to 5 views.
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Figure 7. View Robustness. Success rate as a function of environment steps, averaged over 5
ManiSkill3 visual RL tasks. Methods are trained on all five camera views and evaluated on all and
singular camera views with the final average displayed on the far right. Mean and 95% CI over 5
random seeds.

B.2 Different Input Camera View Sizes

We also evaluate the case where we have multiple camera inputs with different resolutions. If we
have multiple cameras with different resolutions, some options to process them are:

(a) As a preprocessing step, resize all images to a fixed size.

(b) Use separate CNN encoders for each image size. This would mean that the input views need to
be ordered, such that it is possible to assign each input view to its corresponding CNN encoder.

We opt for option (a) due to its simplicity. Given a First Person View of size (64x64), a Third Person
A View of size (96x96) and a Third Person B View of size (84x84), we resize all input images to
(84x84) and train MAD on 5 ManiSkill3 tasks to empirically validate our suggestions. We display
the results in the figure below, where we find that MAD is able to support different sizes of camera
views with a similar performance to our original setup.
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Figure 8. View Robustness. Success rate as a function of environment steps, averaged over 5
ManiSkill3 visual RL tasks. Methods are trained on all three camera views and evaluated on all and
singular camera views with the final average displayed on the far right. Mean and 95% CI over 5
random seeds.
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C Extended Analysis
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Figure 9. Multi-view Merging. Success rate as
a function of environment steps averaged over
5 Meta-World hard visual RL tasks. Methods
were trained and evaluated on (Left) two camera
views - First and Third A - (Right) three cam-
era views. Dashed line indicates highest per-
formance of singular view baselines. Mean and
95% CI over 5 random seeds.
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How do different merge methods compare in visual RL? Furthermore, we compare different
merge methods with our merge module. We train DrQ agents on 5 hard tasks from Meta-World
using different merge methods for multi view inputs. These merge techniques consist of early,
middle, and late merging. For early merging we employ: 1) Frame Stack, where multiple views
are stacked across the channel dimension before being passed to the CNN encoder [1, 62]. For
middle merging we include: 2) Concat, where singular views are passed through the encoder and
their features are then concatenated [6] 3) Sum (Ours), where singular view features are summed
instead of being concatenated [70], 4) Attention, where cross attention is used between singular
view features [44], 5) ViT, where singular view features are passed through a ViT layer to leverage
attention across views [38]. For late merging we add: 6) Q-mean, where we predict a separate Q-
value for each view and then average across all views to get the final Q-value [37, 71]. We train these
merge strategies using our DrQ baseline on two views and on three views and display the results in
Figure 9. The results indicate that all merge methods achieve similar sample efficiency on two and
three views. The only merging method that slightly under performs is Q-Mean, which indicates that
late merging might not be as effective as other merging strategies for multi view RL.

How well does MAD adapt with occluded views? To test the adaptability of MAD to occluded
or partial views, we alter the angles of two cameras to face uninformative views and align only one
camera, namely Third Person A, to face the robot arm and task. We train all methods using this
setup on 5 ManiSkill3 tasks and report the results in Figure 10. Our method, MAD, is able to solve
the tasks with similar success rate (63%) as the Single Camera (62%), despite it being overloaded
with uninformative views. Compared to MAD, neither the MVD nor the VIB baselines seem to
achieve similar sample efficiency. For the MVD baseline, the three views don’t have a useful shared
representation, since only one view is observant of the task, and thus it fails to solve the tasks
effectively. On the other hand, the VIB baseline fails to solve the tasks due to its heavy dependency
on the first person camera view.

Is there a single camera view that consistently outperforms other camera views? Based on our
experiments, there is a singular view that outperforms other singular views, and that being the First
Person view. This observation aligns with findings from Hsu et al. [6]. Due to the first person cam-
era’s attachment to the robot arm, and active perception system, it provides the best representations
for robot learning. However, its attachment to the robot arm can be a double edged sword, as it can
suffer from limited observability that prevents it from solving the task. We shed light on the Poke-
Cube task from ManiSkill3 in Figure 11, where the First Person view isn’t sufficient to solve the
task as it has limited observability. Nevertheless, MAD is able to leverage useful information from
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other third person views and achieve high success rate on All Cameras. In the case of a reduction in
views, MAD can still maintain the highest possible success rate on the First Person view given its
limited observability.
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Figure 11. First Person Camera View Failure. Success rate as a function of environment steps
on the ManiSkill3 PokeCube task. Methods are trained on all three views and evaluated an all and
singular views separately. Mean and 95% CI over 5 random seeds.
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D Extended Results

D.1 Overall Robustness
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Figure 12. Overall Robustness. Success rate as a function of environment steps, averaged over
15 Meta-World and 5 ManiSkill3 visual RL tasks. (Top Left) Meta-World Medium. (Top Right)
Meta-World Hard. (Bottom Left) Meta-World Very Hard. (Bottom Right) ManiSkill3. Methods are
trained on all three camera views and evaluated on all and singular camera views. Mean and 95%
CI over 5 random seeds. In reference to Figure 4 in the main text.
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D.2 Ablations
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Figure 13. Ablations. Success rate as a function of environment steps, averaged over 5 Meta-World
hard visual RL tasks. (Left) Alpha Ablations. (Right) Component Ablations. Methods are trained
on all three camera views and evaluated on all and singular camera views. Mean and 95% CI over 5
random seeds. In reference to Figure 5 in the main text.
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D.3 Multi-View Merging
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Figure 14. Multi-view Merging. Success rate as a function of environment steps, averaged over 5
Meta-World hard visual RL tasks. Methods trained and evaluated on (Left) two camera views - First
and Third A - (Right) three camera views. Mean and 95% CI over 5 random seeds. In reference to
Figure 9 in the main text.
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E Visuals
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Very Hard Tasks
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