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Reproducibility Summary

Scope of Reproducibility — Yuan et al. claim their proposedmethod SubgraphX achieves (i)
higher fidelity in explaining models for graph‐ and node classification tasks compared
to other explanation techniques, namely GNNExplainer. Additionally, (ii) the computa‐
tional effort of SubgraphX is at a ”reasonable level”, which is not further specified by the
original authors. We define this as at most ten times slower than GNNExplainer.

Methodology —We reimplemented the proposed algorithm in PyTorch. Then, we repli‐
cated the experiments performed by the authors on a smaller scale due to resource con‐
straints. Additionally, we checked the performance on a new dataset and investigated
the influence of hyperparameters. Lastly, we improved SubgraphX using greedy initial‐
ization and utilizing fidelity as a score function.

Results —Wewere able to reproduce the main claims on the MUTAG dataset, where Sub‐
graphX has a better performance than GNNExplainer. Furthermore, SubgraphX has a
reasonable runtime of about seven times longer than GNNExplainer. We successfully
employed SubgraphXon theKarate Clubdataset, where it outperformsGNNExplainer as
well. The hyperparameter study revealed that the number ofMonte‐Carlo Tree search it‐
erations and Monte‐Carlo sampling steps are the most important hyperparameters and
directly trade performance for runtime. Lastly, we show that our proposed improve‐
ments to SubgraphX significantly enhance fidelity and runtime.

What was easy — The authors’ description of the algorithm was clear and concise. The
original implementation is available in the DIG‐library as a reference.

What was difficult — The authors performed extensive experiments, which we could not
replicate in their full scale due to resource constraints. However, wewere able to achieve
similar results on a subset of the datasets used. Another issue was that despite the orig‐
inal code of the authors and datasets being publicly available, there were many compat‐
ibility issues.

Communication with original authors — The original authors briefly reviewed our work and
agreed with the findings.

Copyright © 2023 Y. Mahlau, L. Kayser and L. Berg, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Yannik Mahlau (yannik.mahlau@stud.uni-hannover.de)
The authors have declared that no competing interests exist.
Code is available at https://github.com/ymahlau/subgraphx – DOI https://zenodo.org/badge/latestdoi/637344138. – SWH
swh:1:dir:439719e0ad99cbd3d980619c24dec1744b408dd0.
Open peer review is available at https://openreview.net/forum?id=zKBJw4Ht8s.
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[Re] On Explainability of Graph Neural Networks via Subgraph Explorations

1 Introduction

GraphNeural Networks (GNN) achieve increasingly better results in the threemain tasks
regarding graphs: node classification, graph classification and link prediction. How‐
ever, the lack of interpretability of machine learning models is a barrier hindering their
adoption [1]. Therefore, a post‐hoc explanation algorithm for GNNs would be desirable.
There already exist some techniques for explaining black‐boxGNNs, whichmainly focus
on explanations by edge‐ or feature masks, for example GNNExplainer [2].
Empirical studies already showed that an explanationby a subgraph ismore interpretable
to humans than a soft edge‐ or feature mask [3]. Therefore, Yuan et al. [4] proposed an
algorithm named SubgraphX for explaining a GNN by the most important subgraph of
the graph instance. To briefly outline the SubgraphX algorithm:

1. Start with the full graph instance if the GNN performs graph classification. In the
case of node/edge classification, one can prune all nodes and edges outside of the
receptive field of the GNN for efficiency reasons. Therefore, start with the sub‐
graph containing the k‐hop neighborhood around the target node/edge. k denotes
the number of layers of the respective GNN model.

2. Perform Monte‐Carlo Tree Search (MCTS) [5] with the subgraph identified in step
one as root node. Children nodes are subgraphs where a single node was removed
from the parent subgraph. Leaf nodes are subgraphs whose sizes are smaller than
a constant threshold Nmin. The score of a node during search is determined by
theUpper Confidence Bound (UCB) regarding the Shapley Value [6] of its subgraph.
More details about the Upper Confidence Bound are discussed in subsection 7.1.
The Shapley Value is approximated by Monte‐Carlo sampling. Repeat this step for
M iterations.

3. Output the best leaf node found by MCTS.

During MCTS, if the removal of a node splits the subgraph in multiple connected com‐
ponents, only the component including target node/edge is kept. In graph classification,
there exists no target node/edge and therefore only the largest component is kept. The
Shapley Value of a subgraph E ⊆ G (approximated by Monte‐Carlo sampling) is com‐
puted as:

ϕ(E) =
1

T

T∑
t=1

f(St ∪ E)y − f(St)y, St ⊆ (G \ E) (1)

where f(·)y is themodel output for class y and T is the number ofMonte‐Carlo sampling
steps. The coalitions St are sampled randomly. All nodes, which are not considered in
the current sampling step, are excluded from themodel input by setting their attributes
to a baseline of zero.
The authors also propose MCTS_GNN, a faster variant of SubgraphX. MCTS_GNN de‐
termines the score of a subgraph E by the model prediction for that subgraph. This
is equivalent to an approximated Shapley Value with just the empty coalition St = ∅
(sampling size T = 1):

MCTS_GNN(E) = f(E)− f(∅) ≈ f(E). (2)

The term f(∅) is the same for all subgraphs and therefore can be omitted in the compu‐
tation of Monte‐Carlo Tree Search.
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2 Scope of Reproducibility

As part of the ML Reproducibility Challenge we reimplemented SubgraphX using the
PyTorch‐Geometric library [7]. Then, we replicated the experiments performed by the
authors on a smaller scale, using a subset of the original datasets. The central claims of
Yuan et al. [4] regarding SubgraphX are the following:

• SubgraphX achieves higher fidelity scores than the GNNExplainer for graph‐ and
node classification tasks.

• The computation time of SubgraphX is at a ”reasonable level” in comparison to
GNNExplainer. To specify this exactly, we consider a ”reasonable level” to be up to
a factor of ten. In other words, the computation of SubgraphX should be at most
ten times slower than GNNExplainer.

Note that in the original paper the authors also consider PGExplainer [8] for comparison.
We excluded PGExplainer in our experiments as its implementation would exceed any
reasonable effort for a student project. In addition to the twomain claims, we tested the
sensitivity of SubgraphX to its hyperparameters. Next, we tested the transferability of
the algorithm to a new datasets. Lastly, we empirically tested two novel optimizations to
the SubgraphX algorithm. These novel optimizations improve the runtime drastically
while scoring a higher fidelity than the original algorithm.

3 Methodology

Even though Yuan et al. [4] performed experiments on five different datasets, we fo‐
cused only on theMUTAG dataset [9] due to our limited resources. We chose theMUTAG
dataset for two reasons:

• The number of graphs (188) and the size of the graphs (≈18 nodes) is small enough
for training a GNN model and computing the explanation with limited resources.

• The paper considered two different GNN models for this dataset, namely a Graph
Convolutional Network (GCN) and a Graph Isomorphism Network (GIN), hence in
using this dataset we ’kill two birds with one stone’.

We trained bothmodels on an 80% training split (i.e. 150 graphs) and used the remaining
38 graphs as the test set. The structure of the models is the same as described in the
appendix of the original paper [4]. Both models achieved a test accuracy of around 92%.
Note that in the original paper the authors tested the the explanation performance on
all 188 graphs, but this would take too long on our hardware. Therefore, we decided
to use the 38 graphs of the test set. Unless specified otherwise, our calculations were
performed on a computer with an AMD Ryzen 9 3900 12‐Core processor and a NVIDIA
GeForce RTX 2080 Super GPU.
Like Yuan et al. [4], wemeasure the performance of an explanation by the fidelitymetric,
i.e. the decrease in model confidence when removing the nodes in the explanation. As
this is highly dependent on the number of nodes in the explanation, the results are
plotted as fidelity versus sparsity curves. Fidelity and sparsity are computed as:

Fidelity =
1

N

N∑
i=1

f(Gi)yi
− f(Gi \ Ei)yi

, (3)

Sparsity =
1

N

N∑
i=1

(1− |Ei|
|Gi|

). (4)
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where N is the number of instances (graphs, nodes or edges depending on the task at
hand). Gi is the graph corresponding to a single of those instances. Gi \Ei denotes the
graph, where the features of nodes contained in the explanation set Ei are set to zero.
The class yi is the prediction of the model on the original graph Gi.
For GNNExplainer, we used the implementation available in the PyTorch‐Geometric li‐
brary [7]. Even though SubgraphX is available as part of the DIG library, we chose to
reimplement it using the PyTorch‐Framework. That is, because the DIG‐library is cur‐
rently not compatiblewith someof thenewer version of PyTorch andPyTorch‐Geometric.
Additionally, this gave us the opportunity to extend the original implementation with
further algorithmic optimizations (see Section 7). Our implementation is publicly avail‐
able at https://github.com/ymahlau/subgraphx.

4 Replication

4.1 Performance Study
For each explanationmethod, each graph in the test set and each explanation sizeNmin ∈
{4, . . . , 12} we collected sparsity, fidelity and execution time for the respective explana‐
tion node set. Then for each sizeNmin we calculated the average sparsity and fidelity of
all explanations. The results are reported in Figure 1. It is clearly visible that SubgraphX
outperforms both GNNExplainer and MCTS_GNN in both experiments. The difference
is most prominent for GCN.

(a) GCN on test set (b) GIN on test set (c) GIN on whole dataset

Figure 1. Fidelity vs Sparsity of the explanation algorithms for GCN (a) and GIN (b)/(c) model on
the MUTAG dataset.

To address the concern that the small number of graphs may distort the experimental
results, we repeated the experiment for the GIN model (which is the faster one of the
two) for all 188 graphs in the MUTAG dataset. Even though the individual fidelity scores
are different between the two setups, the general trends are the same. Therefore, we
conclude that it is valid to restrict our experiments to a subset of the dataset.

4.2 Efficiency Study
To compare the runtime of these algorithms we measured the runtime for explanations
of the GIN model. The average runtime is displayed in Table 1.

METHOD GNNExplainer MCTS_GNN1 SubgraphX
TıME 6.6s 2.9s 45.8s

Table 1. Average execution time of explanation algorithms for GIN model on MUTAG dataset.

1Notice that the “MCTS” values in the efficiency study of the original paper [4, Table 2] have nothing to do
with MCTS_GNN. This is just an unfortunate naming issue.
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MCTS_GNN has an even lower runtime than GNNExplainer with similar or slightly bet‐
ter performance (see Figure 1) Therefore, MCTS_GNN appears to be the best choice if
time constraints are important. If performance ismore important than time constraints,
SubgraphX is suited best. These results adhere to the findings of the original paper.

5 Transfer Study

Yuan et al. [4] already extensively studied the performance of SubgraphX on the graph
classification task, which we validated in Section 4. However, they only tested a single
node classification dataset. Therefore, we tried to verify the transferability of their re‐
sults to another dataset, which is the Karate Club Network [10] (See Figure 2). This is
a very small dataset consisting of only a single graph, which is perfect for our limited
compute capabilities. The experiments in this section were performed on a consumer
grade laptop with Intel Core i7‐1065G7 (1.30GHz) CPU and NVIDIA GeForce MX330 GPU.
The training set is already given and consists of a total of four nodes; One node of each
class. Furthermore, we randomly picked 16 validation and 14 test nodes with class dis‐
tributions as equal as possible.
To generate node features we first trained an unsupervised Node2Vec‐Embedding [11].
The model to be analyzed was a two layer Graph Convolutional Network (GCN) [12] with
a hidden dimension of 20 and ReLU activation function. The prediction scores were
normalized into probabilities by a softmax layer. The model scored 85.7% accuracy on
the test set.
We compared the performance of SubgraphX and GNNExplainer. Both explanation
methods were evaluated for Nmin ∈ {4, .., 12} on all nodes in the test set. Figure 3 dis‐
plays the results of our experiments. It is clearly visible that SubgraphX outperformsGN‐
NExplainer at any sparsity. Especially at high sparsity SubgraphX performs much bet‐
ter than GNNExplainer. This validates the claim of the original authors that SubgraphX
can be used in node classification tasks. The average runtime per node (of a single ex‐
planation) is 80.5 seconds for SubgraphX and 9 seconds for GNNExplainer. Therefore,
according to our own definition, the runtime is still within a ”reasonable limit”.

Figure 2. The Karate Club Network. Figure 3. Fidelity vs Sparsity of the explanation
algorithms for GCN on the Karate Club Network.

6 Hyperparameter Study

6.1 MCTS iterations and MC sampling steps
There are two central hyperparameters which directly trade performance for runtime:
The number of iteration of MCTS M and the number of Monte‐Carlo sampling steps T
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(for the shapley value). More iterations and more sampling steps yield better results at
the cost of higher runtime.

(a) SubgraphX for GIN model on MUTAG dataset (b) SubgraphX for GCNmodel on Karate Club Network

Figure 4. Effect of Monte‐Carlo sampling steps T on fidelity. The number of MCTS iterationsM is
kept at 20.

(a) SubgraphX for GIN model on MUTAG dataset (b) SubgraphX for GCNmodel on Karate Club Network

Figure 5. Effect of MCTS iterationsM and Monte‐Carlo sampling steps T on runtime and fidelity.

The authors chose values of M = 20 and T = 100 for all of their experiments. Figure
4 shows the effect of T on the fidelity, which is higher for the MUTAG dataset than the
Karate Club network. It seems that T = 20 is a sufficient value, because the perfor‐
mance is similar at lower runtime. The difference in runtime as well as performance is
displayed in Figure 5. The number of MCTS iterations M has a strong effect on fidelity
and therefore should not be lower thanM = 20 as chosen by the authors.

6.2 MCTS Exploration vs Exploitation
There is a key difference between the original Monte‐Carlo Tree Search algorithm, e.g.
as employed by AlphaGo [13], and MCTS employed by the authors. In the original ver‐
sion unexplored nodes in the search tree are treated as leaf nodes until they are explored.
Then, from leaf node to terminal node a game would be simulated, for example by play‐
ing randomly. In contrast, in SubgraphX only terminal nodes are considered leaf nodes,
meaning there is no simulation phase in SubgraphX and there is no benefit in exploit‐
ing existing leaf nodes (visiting multiple times). Therefore, the MCTS algorithm should
focus on exploration, which the authors enforce by choosing a sufficiently high explo‐
ration rate λ.
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Looking at a representative MCTS search tree (see Figure 6), we indeed observe this be‐
havior as most subgraphs are visited only once. In our experiment, a broad range of ex‐
ploration rates resulted in the desired wide exploration with little effect on the fidelity.

(a) SubgraphX for GIN model on MUTAG dataset (b) Example of MCTS search Tree

Figure 6. Effect of exploration rate λ on fidelity and an example search tree. Blue nodes are visited
once, green nodes twice and red nodes more than two times. The red border indicates the best
nodes found for different thresholdsNmin.

7 Improvements beyond original Paper

7.1 Greedy Initialization
During MCTS, the path to the terminal node is taken by choosing the best children ac‐
cording to the upper confidence bound for trees. For node Ni the best pruning action
a∗ in SubgraphX is chosen as [4]:

a∗ = argmaxaj

W (Ni, aj)

C(Ni, aj)
+ λR(Ni, aj)

√∑
k C(Ni, ak)

1 + C(Ni, aj)
(5)

where C(Ni, aj) is the visit count, W (Ni, aj) the total reward of all visits, and R(Ni, aj)
the score function, i.e. the Shapley Value. However, while exploring a new part of the
search tree, the visit counts of all nodes are inherently zero. Therefore, the upper con‐
fidence bound for all these nodes is not defined due to division by zero. A tie‐break has
to be used to resolve this conflict. Note that this situation would never occur in the orig‐
inal version of Monte‐Carlo Tree Search because it would be in the random simulation
phase. However, this situation occurs very often in SubgraphX, as most nodes in the
search tree are visited only once (recall Figure 6b). In fact, the tie‐break has to be used
more often than the upper confidence bound.
In the implementation of the authors, children are chosen by a tie break according to
the pruning strategy, which depends only on the node degree. Since the node degree is
completely independent of the model to explain, we propose a tie‐break based on the
Shapley Values of the children. In other words, we greedily choose the child with the
highest immediate reward. This strategy is equivalent to initializing the visit counts of
all nodes to one. That is, because the only term of equation 5 differing between children
in an unexplored subtree would be the immediate reward R(Ni, aj), i.e. the shapley
value. The effects of a greedy strategy are shown in Figure 7.
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7.2 Fidelity Score Function
Internally, the SubgraphX algorithm uses a metric derived from Shapley Values, de‐
noted as ϕ, to guide the MCTS and select the subgraph for the final explanation. In the
end, Yuan et al. use the fidelity of explanations to quantitatively compare their method
against others like GNNExplainer [2]. For a single explanation E of predicted class y on
graph G, they are computed as [4]:

Fidelity = f(G)y − f(G \ E)y (6)

ϕ(E) =
1

T

T∑
t=1

f(St ∪ E)y − f(St)y, St ⊆ (G \ E) (7)

where f(·)y is the models output for class y, T is the number of Monte‐Carlo sampling
steps and St is sampled randomly. The features of nodes which are not passed to the
model are set to a baseline of zero. Comparing these formulas, fidelity is a special case
of the Shapley Value (withSt = G\E). Similarly toMCTS_GNN,we can directly optimize
for fidelity by using it as the score function. Optimizing for fidelity (St = G \ E) can be
seen as the antipodal method to MCTS_GNN (St = ∅).
In Figure 7, a comparison between the scoring functions is shown. In addition to su‐
perior performance, using fidelity as a scoring function has the advantage of requiring
much less computational effort. That is, because only one step ofMonte‐Carlo sampling
has to be performed. Unfortunately, we did not record the runtime in this experiment.
Yet, a comparison can be made because the computation of fidelity as a score function
is similar to MCTS_GNN. Thus, it is reasonable to assume that the runtime difference is
similar to the values reported in Table 1.

(a) Improved SubgraphX for GIN on MUTAG dataset (b) Improved SubgraphX for GCN on Karate Club

Figure 7. Effect of greedy initialization and fidelity as a score function on the fidelity of SubgraphX.

7.3 Edge Case Behavior
During our experiments, we observed that SubgraphX explored the same leaf node mul‐
tiple times for some graph instances. In the usual setting of MCTS, for example in the
game of Go [13], this is desirable as it updates the estimated Q‐value of all nodes on
the path in the search tree. However, in this case we are only interested in the best
leaf node. Exploring a leaf node multiple times only repeats the same computation.
Therefore, reaching the same leaf node multiple times is wasted computational effort.
This problem becomes especially apparent when using a small exploration rate λ. As
a solution, we propose to mark nodes in the search tree whose subgraphs are already
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completely explored. These nodes should be ignored during search. Future work could
include empirical investigation of this effect.

8 Discussion

Wewere able to reproduce themain claimsmade by Yuan et al. [4] regarding SubgraphX
using our own implementation. SubgraphX has a higher fidelity score than GNNEx‐
plainer, while being slower by a factor of seven. This is, according to our own defini‐
tion, a ”reasonable runtime”. Additionally, we were able to transfer the results to the
Karate Club dataset, where SubgraphX outperforms GNNExplainer as well. During our
hyperparameter study, we discovered that SubgraphX is sensitive to number of MCTS
iterations M and Monte‐Carlo sampling steps T . However, the exploration rate λ has
little effect on the performance.
Lastly, we propose to improve SubgraphX by using a greedy initialization and optimizing
directly for fidelity. Using these improvements, we were able to achieve higher fidelity
at lower runtime.

8.1 What was easy
SubgraphX is explained very concisely in the original paper. It was quite easy to under‐
stand and implement the method by ourselves. It was also helpful to check the original
implementation in the DIG repository to compare against our own. Furthermore, the
datasets were readily available and easy to download and use. The appendix of the paper
contained most of the information necessary for the reproduction process.

8.2 What was difficult
Even though the original code of the authors is available as part of the DIG‐library, we
had to spent considerable time to resolve version issues in order to use the datasets of
the original experiments. That is, because at the start of this project the DIG‐library did
not support PyTorch versions above 1.6.
Another challenge was the computational effort required to perform the experiments.
The authors performed extensive experiments, which we could not repeat with our lim‐
ited resources. Therefore, we had to run the experiments on fewer instances and with
fewer iterations than in the original experiments.

8.3 Communication with original authors
Wecontacted the original authors afterfinishing thefirst draftof this report. Theybriefly
reviewed our work and agreed that our experiments prove a successful reproduction of
their paper. Additionally, they gave helpful feedback regarding the presentation of our
results.
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