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Abstract
The vulnerability of machine learning models to
spurious correlations has mostly been discussed in
the context of supervised learning (SL). However,
there is a lack of insight on how spurious cor-
relations affect the performance of popular self-
supervised learning (SSL) and auto-encoder based
models (AE). In this work, we shed light on this
by evaluating the performance of these models
on both real world and synthetic distribution shift
datasets. Following observations that the linear
head itself can be susceptible to spurious corre-
lations, we develop a novel evaluation scheme
with the linear head trained on out-of-distribution
(OOD) data, to isolate the performance of the pre-
trained models from a potential bias of the linear
head used for evaluation. With this new method-
ology, we show that SSL models are consistently
more robust to distribution shifts and thus better
at OOD generalisation than AE and SL models.

1. Introduction
In most real world datasets, there exist features that are ir-
relevant to the true labelling functions, yet highly predictive
of the labels [Torralba and Efros, 2011, Calude and Longo,
2017, Fan and Lv, 2008, Fan et al., 2014]. Such features
are commonly referred to as spurious features, while the
ones that are truly relevant to labels are called core fea-
tures. For instance, consider the Waterbirds dataset [Sagawa
et al., 2020] where the classification task is to determine
whether an image contains either a landbird or a waterbird.
Naturally, the vast majority of the training data features
landbirds on land and waterbirds on water. A classifier can
therefore make a decision using only the background of
the image, which is only spuriously correlated to the labels
(i.e., the class of the bird), and disregard anatomical features
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of the bird [Kirichenko et al., 2022]. However, using just
the background for classification can result in poor OOD
generalisation performance on test data where the spurious
correlation is no longer present, e.g., for images of a land-
bird flying over a river [Brendel and Bethge, 2019a, Shah
et al., 2020, Geirhos et al., 2020, Singla and Feizi, 2021].

Recent work discovered that supervised learning (SL) can
be very susceptible to spurious correlation [Shah et al., 2020,
Geirhos et al., 2020]. This is not at all surprising—after all,
the objective of SL is to most accurately predict the targets,
not to represent the data most accurately. If a model’s
only goal is to predict the labels, there is no guarantee that
it should favour core features over spurious ones; when
both are equally predictive of the labels, the choice comes
down to the inductive bias of the optimiser and the model
architecture.

Can we get around this by replacing explicit supervision by
another objective? In this work, we turn our attention to un-
supervised pre-training methods, including self-supervised
learning (SSL) algorithms (e.g., [Chen et al., 2020, Grill
et al., 2020, Chen and He, 2021]), which learn representa-
tions by enforcing invariance between the representations
of two distinctly augmented views of the same image, and
auto-encoder based models (AE) [Rumelhart et al., 1985,
Kingma and Welling, 2014, Higgins et al., 2017, Burda
et al., 2016], which learn by reconstructing the input image.
These methods have been under-explored in the context of
spurious correlations, and since SSL and AE methods do
not require annotations of the data, we hypothesize that they
stand a better chance at avoiding the exploitation of spuri-
ous correlation and thus faring better under distribution shift
compared to SL.

To understand this, we develop a suite of experiments to
evaluate the performance of pre-trained models under dis-
tribution shift. Figure 1 provides a summary of our re-
sults, comparing a wide range of models from the following
classes of methods: (i) SSL, (ii) AE, and (iii) SL. To the
best of our knowledge, we are the first to systematically
evaluate the performance of these pre-trained models under
distribution shift. In addition, to isolate the performance
of the pre-trained models from the potential bias of the lin-
ear layer used for prediction (as discovered in Kirichenko
et al. [2022] and Kang et al. [2020]), we establish a new
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evaluation scheme where the linear head is trained on OOD
data (right subplots in Figures 1a to 1c). We also provide re-
sults using the classical evaluation scheme, where the linear
head is trained on in-distribution (ID) data (left subplots in
Figures 1a to 1c). The main takeaways from this paper are:

• SSL > AE ≥ SL for distribution shift: Results of our
proposed OOD linear head evaluation show that SSL
models consistently achieve better performance than AE,
however, AE models still perform at least as good as SL
on both synthetic and realistic settings that we study;

• Performance of all models under both synthetic and
realistic distribution shift can be significantly improved
by retraining the last linear layer: We show a large
performance gain evaluating the models using linear head
trained on a small amount of OOD data, in contrast to
the baseline where the linear head is trained on ID data
(compare left to right subplots in Figure 1); the surprising
gain of this cheap procedure indicates that 1) existing pre-
trained models, especially SSL, avoid the exploitation
of spurious correlations and 2) more work on improving
the performance under distribution shift should focus on
balancing the final linear layer.

2. How to evaluate spurious correlation?
Inspired by prior work, we examine the models’ robustness
to spurious correlation under two different settings:

Synthetic distribution shift (Section 3.1): Shah et al. [2020]
studies the susceptibility of SL to spurious correlations by
careful design of synthetic datasets, which contain one sim-
ple feature (e.g. color) and one complex feature (e.g. shape)
that are both equally predictive of the target. They show
through experiments on these datasets that SL models can
completely ignore the more complex feature and predict
solely based on the simple feature. This bias can be very
harmful for OOD generalisation if the simple features are
not present in the OOD data, or if their correlation with the
true labels changes. They name this intriguing phenomenon
simplicity bias, and their set of experiments constitute a
useful set of tools for diagnosing a model’s vulnerability to
spurious correlation under controlled settings.

Realistic distribution shift (Section 3.2): Koh et al. [2021],
Sagawa et al. [2021] propose WILDS, a benchmark for
OOD generalisation in the wild. The benchmark studies
domain generalisation, where the training data is sampled
from one or many source domains, while the test data is sam-
pled from an unseen target domain. A model’s performance
on the target domain is a reliable indicator of its ability to
learn domain-invariant features that are predictive of the
targets while ignoring spurious features that are domain-
specific. One can view this as a more realistic scenario of
the simplicity bias datasets mentioned above. However, it is

not possible to disentangle the simple spurious feature and
the complex core feature.

2.1. Disentangling linear head from pre-trained models

Kang et al. [2020] and Kirichenko et al. [2022] observe
the interesting phenomenon that the linear classifier itself
could be susceptible to a simplicity bias. They show that
by simply retraining the linear classifier on data where the
spurious correlation is removed, a model’s performance can
be drastically improved on the OOD test set. This indicates
that the representations learned by the backbone are able
to capture both the simple and the complex features in the
data, however the linear classifier only assigns weights to
those simpler features that are spuriously correlated to the
labels. Since our interest lies in examining the vulnerability
of the representations of the pre-trained models to spurious
correlation, without the bias of the linear classifier, for all
our experiments we report the performance using a linear
head trained on the OOD data. We also provide results
using more standard evaluation scheme for distribution shift,
where the linear head is trained on ID data. Note that in both
scenarios, the model is evaluated on the OOD test set. A
summary of the results using this methodology is presented
in Figure 1. The evaluation with the OOD linear head
provides insight on whether the representations produced
by the pre-trained models contain information about all
features, and the difference between the ID and OOD linear
head sheds light on the bias of the linear classifier.

3. Experimental results
Learning algorithms: 8 in total. For all experiments we
report results on eight types of learning algorithms, includ-
ing three SSL algorithms 1) SimCLR [Chen et al., 2020], 2)
SimSiam [Chen and He, 2021], 3) BYOL [Grill et al., 2020];
four AE algorithms 1) Autoencoder [Rumelhart et al., 1985],
2) Variational Autoencoder (VAE) [Kingma and Welling,
2014], 3) β-VAE [Higgins et al., 2017] and 4) Importance
Weighted Autoencoder (IWAE) [Burda et al., 2016]; as well
as one model trained using supervised learning (SL). We
perform a hyperparameter search on learning rate, scheduler,
optimiser, representation size, etc. for each model, and we
use the same set of augmentations for all models to ensure a
fair comparison. See Appendix C for more details.

3.1. Synthetic distribution shift

Findings: With a perfect correlation between the complex
and simple features in the data, representations learned by
SSL and AE models capture both features, while SL focusses
on the simpler features only.

We are interested in understanding whether models pre-
trained with SL, SSL and AE methods are vulnerable to
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Figure 1: OOD performance of auto-encoder based (AE), self-supervised learning (SSL), supervised learning (SL) models.
For each dataset, we evaluate on the OOD test set with linear heads trained on ID (left, transparent) and OOD data (right,
solid) respectively. In each subplot, the lowest visible value corresponds to the relative frequency of the majority class from
the respective dataset.
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Figure 2: Evaluations on MNIST-CIFAR dataset. Blue colors are AE models, green colors are SSL models and grey is SL.
Fig (a), (b), left: Accuracy on OOD MNIST and CIFAR with linear head trained on ID data; Fig (a), (b), right: Accuracy
on OOD MNIST and CIFAR with linear head trained on OOD data.

simplicity bias under synthetic distribution shift settings.
Following Shah et al. [2020], Shi et al. [2021], we evaluate
this using the MNIST-CIFAR and CdSprites datasets.

3.1.1. MNIST-CIFAR

Following Shah et al. [2020], we use the MNIST-CIFAR
dataset to examine the simplicity bias of different models.
The dataset consists of concatenations of images from 2
classes of MNIST and CIFAR-10. It contains the following
splits with varying correlation between the labels of the
MNIST and CIFAR-10 images:

• ID train: 1.0 correlation between MNIST and CIFAR-10
labels. Contains two classes: class 0 with MNIST “0”
and CIFAR-10 “automobile”, and class 1 with MNIST
“1” and CIFAR-10 “plane” (Figure 5a);

• OOD train: no correlation between MNIST and CIFAR-
10 labels, images from the two classes of MNIST and
CIFAR-10 are randomly paired (Figure 5b);

• OOD test: generated similarly to the OOD train set using
the test set of MNIST and CIFAR-10 (Figure 5b).

We train a CNN backbone on the ID train set using the
respective SL, SSL, or AE algorithm. At test time, we freeze
the backbone and train two linear heads, one on ID train and
the other on OOD train, and evaluate their performance on
the OOD test set. This helps us disentangle the simplicity
bias of the representation from that of the linear head.

In Figures 1a and 2, we observe that with ID linear head, all
models exhibit a simplicity bias, as the classifiers reach near
100% accuracy for the classification of the MNIST digit
(Figure 2a, left) but near random accuracy for predicting
the CIFAR class (Figure 2b, left). However, the OOD linear
head results indicate that both SSL and AE models are able
to learn representations that capture both features, with not
only near perfect accuracy on MNIST (Figure 2a, right),
but also ∼ 80% accuracy on CIFAR-10 (Figure 2b, right).
On the other hand, representations learned using SL do not
extract (linearly separable) CIFAR-10 features, since its
OOD evaluation performance is near random on CIFAR-10.

Interestingly, Figure 1a shows that using OOD linear head,
the average performance of models trained using SSL is ∼ 5
percentage points higher than that of AE, while AE scores
∼ 30 percentage points higher than SL.

3.1.2. CDSPRITES

CdSprites [Shi et al., 2021] is a colored variant of the pop-
ular dSprites dataset [Matthey et al., 2017], which consists
of images of 2D shapes that are procedurally generated
from 6 ground truth factors (see Figure 6 for examples).
To induce a spurious correlation between the color and
shape features, the sprites are colored conditionally on
the shape and depending on the correlation coefficient ρ
that is set when generating the dataset. We generate five
versions of the CdSprites dataset with a different correlation
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Figure 3: Evaluations on the CdSprites dataset. Blue colors are AE models, green colors are SSL models and grey is SL.
Figure 3a: Color classification accuracy on the test set with a linear head trained on ID data (left, transparent) and OOD
data (right, solid); Figure 3b: Shape classification accuracy on the OOD test set with a linear head trained on ID data (left,
transparent) and OOD data (right, solid).

coefficient ρ ∈ {0, 0.25, 0.5, 0.75, 1.0} respectively and
use the following splits:

• ID train: CdSprites dataset with correlation ρid between
shape and color features;

• OOD train: CdSprites dataset with uncorrelated shape
and color features, i.e., ρood = 0;

• OOD test: generated similarly to the OOD train set.

Based on the above splits, we use the same evaluation proto-
col as for MNIST-CIFAR (see Section 3.1.1) to disentangle
the simplicity bias of the representation from the simplicity
bias of the linear classification head.

Figures 1b and 3 show the results for backbones trained on
data with a perfect correlation (ρid = 1) between shape and
color features. Similar to MNIST-CIFAR, with the ID linear
head we observe a simplicity bias, where the performance
on the simple feature (color, Figure 3a) is perfect and the
performance on the complex feature (shape, Figure 3b) is
trivial. Again, the OOD linear head results (right subplots
of Figures 3a and 3b respectively) indicate that AE and es-
pecially SSL models are able to learn representations that
capture both shape and color features. We also provide re-
sults with changing values of ρid and ρood in Appendix B.1.

3.2. Real-world distribution shift

Findings: Learning with labels (SL) is no better than learn-
ing without labels (SSL, AE) for OOD generalisation on
real-world distribution shift problems, and the performance
of all models can be significantly improved by retraining the
linear head on a small amount of OOD data.

In this section we investigate the performance of different
pre-trained models on real-world distribution shift tasks. We
utilise the Camelyon17 dataset from the WILDS benchmark
[Koh et al., 2021], which contains scans of lymph node
sections acquired from different hospitals, and the task is

to determine whether a given patch contains breast cancer
tissue. In addition to evaluating on the original dataset,
we create a simplicity bias (SB) version of Camelyon17
(Camelyon17_SB) by sub-sampling the ID train split of the
Camelyon17 dataset such that the label and domain of each
sample are perfectly correlated. This allows us to examine
the OOD generalisation performance of different models on
a more challenging but still realistic distribution shift task.

3.3. Camelyon17

The original Camelyon17 dataset from WILDS benchmark
contains three splits using tissue scans from five hospitals:
train (3 hospitals), validation (1 hospital) and test (1
hospital). We further create four splits specified as follows:

• ID train: Same as the train set of Camelyon17;
• OOD val.: Same as the validation set of Camelyon17;
• OOD train: Contains 10% of the data from the test set;
• OOD test: Contains the held-out 90% of test data.

Similar to our previous experiments, we train the linear
heads on ID train and OOD train respectively, and evalu-
ate all models on the OOD test set. We use 10-fold cross-
validation for the OOD train and test set. Following WILDS,
we adopt DenseNet-121 [Huang et al., 2017] as backbone
for all models, and the OOD validation set is used to perform
early stopping and hyperparameter search. The main results
are shown in Figures 1c and 4a and we provide more detailed
numerical results with standard deviation values in Table 1.

With the linear head trained on ID data, the left subplots in
Figures 1c and 4a show that representations learned using
SSL algorithms result in similar OOD test accuracy as those
trained using SL, while the OOD accuracy from AE models
is ∼ 10 percentage points lower.

However, the OOD test accuracy of AE algorithms catches
up to those from SL and SSL algorithms when we use the
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Figure 4: Evaluations on the two variations of Camelyon17
dataset. Blue colors are AE models, green colors are SSL
models and grey is SL. Left: Accuracy on OOD test set
with the linear head trained on ID data; Right: Accuracy on
OOD test set with the linear head trained on OOD data.

OOD linear head for evaluation. Figures 1c and 4a (right
subplots) show that SSL models achieve the best perfor-
mance, out-performing AE and SL by nearly 3 percentage
points. This demonstrates that the representations learned by
SSL models are more robust against distribution shift than
AE and SL models, which highlights a surprising adverse ef-
fect of labels for OOD generalisation in this setting. Another
significant finding of this experiment is that by using only
10% of the data from the original test split to train the linear
classification head, we are able to improve the performance
of all models by 13 percentage points on average. All of this
shows that the bias of the linear classification head plays a
significant role even for real world distribution shifts, and
that it is possible to mitigate this effect by training the linear
head using a small amount of OOD data.

3.4. Camelyon17_SB

To further examine models’ ability to generalise OOD, we
adjust the subpopulation of the training split of the Came-
lyon17 dataset to create a simplicity bias version of this real-
istic dataset. Specifically, the ID train split of Camelyon17
contains tissue scans from 3 hospitals, that are labelled as
either "benign" or "malignant". To construct the train set of
Camelyon17_SB, we take only the "benign" samples from
hospital 1 and 2, and only the "malignant" samples from
hospital 3. As such, the label and domain of examples in the
train set are spuriously correlated. Given the texture bias of
CNNs [Geirhos et al., 2019, Brendel and Bethge, 2019b],
the model is prone to trivially minimising the training loss
by using only domain information for classification, which
would result in poor OOD generalisation performance. Us-
ing the same experimental setup as in Section 3.3, we report
the results for Camelyon17_SB in Figures 1d and 4b.

Comparing the performance of models on the biased version
of Camelyon17 (Figures 1d and 4b) to the performance on
the original dataset (Figures 1c and 4a), we see that surpris-
ingly, AE models experience almost no performance drop
for both the ID and OOD linear head evaluation; SL model,
on the other hand, sees the most significant decline in its
OOD generalisation performance, showing a 22% accuracy

decrease with ID linear head and 13% with OOD linear head.
Additionally, consistent to our previous findings, unsuper-
vised models (AE, SSL) outperforms supervised model (SL)
on this dataset. We also note that while with the original
Camelyon17 dataset, SL model’s performance catches up
with the rest when using OOD linear head for evaluation,
on Camelyon17_SB there still exist a 10% performance gap
between SL and other unsupervised models when switching
to OOD linear head. The results further demonstrate that
unsupervised models including AE and SSL are better at
OOD generalisation than SL models, and their advantages
become even more significant under this more challenging
distribution shift setting.

4. Conclusion and future work
In this paper, we investigate the performance of both unsu-
pervised (AE, SSL) and supervised (SL) pre-training meth-
ods for OOD generalisation. Through extensive and princi-
pled experiments on both synthetic and real-world distribu-
tion shift tasks, we find unsupervised models to consistently
outperform supervised models. This is surprising, since
most work in domain generalisation and domain adaptation
is based on supervised learning; yet, our findings clearly sug-
gest that unsupervised learning methods can be far superior
for these tasks. We plan to extend this work by evaluating
AE, SSL and SL models on more datasets from the WILDS
benchmark.

Another key contribution of this work is our OOD linear
head evaluation scheme, which helps us isolate the perfor-
mance of the pre-trained models from the potential bias of
the final linear head. We claim that this change is necessary
to be able to make comparisons between various pretraining
methods irreespective of the final downstream task. We find
the OOD generalisation performance of all models to be sig-
nificantly improved by re-training the linear head on small
amount of OOD data. In future work, we will investigate 1)
the performance of a nonlinear prediction head trained on
ID and OOD data respectively and 2) the sample efficiency
(i.e., the amount of OOD data needed) for training the linear
and nonlinear prediction heads.
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A. Dataset visualisation
In Figure 5 and ?? we visualise the ID and OOD split of
MNIST-CIFAR and CdSprites dataset.

(a) ID split, fixed matching
with 0-plane, 1-car.

(b) OOD split, random match-
ing of classes.

Figure 5: MNIST-CIFAR dataset.

(a) ρ = 0 (b) ρ = 1

Figure 6: CdSprites dataset. Each subplot shows 16 sam-
ples from the dataset generated with a given correlation ρ
between shape and color features.

B. Additional Experimental Results
B.1. CdSprites

In addition to our results in Figure 3, where we use a dataset
with perfectly correlated features (ρid = 1) to train the
backbones, in Figure 7 we vary ρid to analyse the effect
of imperfectly correlated features. Notably, with imperfect
correlation (ρid < 1), the OOD linear heads trained on top
of the SL and SSL backbones perform perfectly. For the AE,
we observe that the performance of the OOD linear head
does not depend on the correlation ρid in the data used to
train the backbones. Our results suggest that with imperfect
correlation between features, SL and SSL models learn a
linearly separable representation of the features, whereas
AE does not.

In Figure 8 we provide an ablation where we also vary
ρood, the correlation in the data used to train and evaluate
the linear head. Figures 8b and 8c corroborate our results
that SSL performs on par with SL for ρid < 1 and strictly
better when ρid = 1. For the AE (Figure 8a), we observe
an interesting pattern where the performance of the OOD
linear head depends on the OOD correlation ρood, but not
on the correlation ρid in the data used to train the backbones.
Hence, the ablation corroborates our result that SL and SSL

models learn a linearly separable representation of the shape
and color features when there is an imperfect correlation
between the features, whereas AE does not.
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Figure 7: Evaluations on CdSprites with varying correla-
tion ρid. Shape classification accuracy as a function of the
correlation between shape and color features (ρid, x-axis) in
the ID train split used to pre-train the respective backbone.
Linear heads were trained on top of the frozen backbones
using the OOD train split. Blue colors are AE models, green
colors are SSL models, and grey is SL. The black horizontal
line denotes the random baseline (33.3% for three classes).
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Figure 8: Correlation coefficient ablation for CdSprites.
Shape classification accuracy for the CdSprites experiment
with varying correlation of the ID training data (ρid, x-axis)
and OOD training and test data (ρood, y-axis). Backbones
were trained on data with correlation ρid and linear classi-
fiers trained and evaluated on top of the frozen backbones
with correlation ρood. For the class of AE models we only
report the performance of the autoencoder, whereas for the
class SSL models we report the performance of BYOL,
since we found no significant differences between models
within each of these classes.
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Table 1: Results on Camelyon17.

ID linear head OOD linear head

Val. acc. Test acc. Val. acc. Test acc.

AE 65.9 (±9.4) 63.0 (±3.9) 84.2 (±2.3) 84.3 (±2.3)
VAE 69.3 (±7.7) 69.9 (±3.6) 88.1 (±2.1) 88.1 (±2.1)
IWAE 67.6 (±6.9) 69.3 (±7.9) 88.0 (±0.9) 88.1 (±0.9)
β-VAE 69.2 (±3.2) 72.9 (±7.9) 87.0 (±4.4) 87.1 (±4.4)

SimCLR 81.0 (±4.5) 84.0 (±3.4) 92.7 (±1.7) 92.7 (±1.7)
BYOL 83.1 (±2.5) 79.2 (±4.1) 89.8 (±2.0) 89.9 (±2.0)
SimSiam 74.0 (±5.6) 77.2 (±6.9) 86.6 (±1.5) 86.7 (±1.5)

SL 79.2 (±2.3) 80.1 (±3.1) 86.8 (±2.1) 86.8 (±2.1)

WILDS, ERM 84.9 (±3.1) 70.8 (±7.2) - -

B.2. Camelyon17

Following [Koh et al., 2021] we report results averaged over
10 random seeds. Please refer to Table 1 for numerical
results with standard deviation values. Note that our SL
model uses the same training objective as the empirical
risk minimisation (ERM) algorithm reported on the original
WILDS benchmark, however the results are quite different.
We believe that our performance gain on the test set is
resulted from the image augmentations that we use for all
models to ensure fair comparison to the augmentation-based
SSL models.

C. Architecture and Hyperparameters
In this appendix we list the architecture and hyperparameters
used in our experiments. Our code is developed on the
amazing solo-learn code base [da Costa et al., 2022],
which is originally developed as a library for SSL algorithms.
Please see implementation details for each dataset in the
respective subsection.

C.1. MNIST-CIFAR

We use the same hyperparameter search range for models
in each category of AE, SSL and SL, as outlined in Table 2.
The chosen hyperparameters for each model are specified
in Table 3.

In Shah et al. [2020] where MNIST-CIFAR was originally
proposed, authors utilised more complex backbone archi-
tecture such as DenseNet and MobileNet. However in our
experiments, we find that a lightweight 4-layer CNN can
already achieve very high accuracy on both MNIST and
CIFAR (see Figures 2a and 2b, right). The architecture of
the CNN we use can be found in Table 4. Note that for
SL and SSL we only use the encoder and for AE we use
the decoder as well. The size of base channel C and latent
dimension L are found through hyperparameter search.

Table 3: Chosen hyperparameters for MNIST-CIFAR in-
cluding latent dimension (L), base feature size of CNN (C),
batch size (B), learning rate (lr.), weight decay (wd.), opti-
miser (optim.), learning rate scheduler (lr.scheduler).

L C B lr. wd. Optim. lr. scheduler

AE 128 16 128 1e-3 0 Adam warmup cosine
VAE 128 32 128 1e-4 0 Adam warmup cosine
IWAE 128 32 128 1e-4 0 Adam step
β-VAE 128 16 128 1e-4 0 Adam step

SimCLR 128 32 128 6e-1 1e-4 SGD warmup cosine
BYOL 128 64 128 7e-1 0 SGD warmup cosine
SimSiam 128 128 128 6e-1 1e-5 SGD warmup cosine

Supervised 128 16 128 1e-4 0 SGD warmup cosine

Encoder

Input ∈ R3×64×32

4x4 conv. C stride 2x2 pad 1x1 & ReLU
4x4 conv. 2C stride 2x2 pad 1x1 & ReLU
4x4 conv. 4C stride 2x2 pad 1x1 & ReLU
4x1 conv. 4C stride 2x1 pad 1x0 & ReLU
4x4 conv. L stride 1 pad 0, 4x4 conv. L stride 1x1 pad 0x0

Decoder

Input ∈ RL

4x4 upconv. 4C stride 1x1 pad 0x0 & ReLU
4x1 upconv. 4C stride 2x1 pad 1x0 & ReLU
4x4 upconv. 2C stride 2x2 pad 1x1 & ReLU
4x4 upconv. C stride 2x2 pad 1x1 & ReLU
4x4 upconv. 3 stride 2x2 pad 1x1 & Sigmoid

Table 4: CNN architecture, MNIST-CIFAR dataset.

C.2. CdSprites

We found all models to be relatively robust to hyperparame-
ters, as most configurations result in close to perfect shape
and color classification accuracy on the ID validation set.
The chosen hyperparameters for each model are specified in
Table 5. We omit β-VAE from the comparison, as we em-
pirically found that β = 1 leads to the best performance on
the ID validation set and therefore the results for the β-VAE
would be similar to the VAE. We use the same augmenta-
tions (random crops and horizontal flips) for all models and
use no color augmentations in order to keep the invariance
of the learned representations with respect to color. The
encoder and decoder architectures are described in Table 6.
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Table 2: Hyperparameter search range for MNIST-CIFAR, including base channel size of CNN (C), learning rate (lr.),
weight decay (wd.), optimiser (optim.), learning rate scheduler (lr. scheduler).

C lr. wd. Optim. lr. scheduler

AE {16, 32, 64, 128} {1e-4, 5e-4, 1e-3, 5e-3, 1e-2} {0, 1e-4} {Adam, SGD} {warmup cosine, step, none}
SSL {16, 32, 64, 128} uniformly sampled from [0.1, 1] {0, 1e-4} {Adam, SGD} {warmup cosine, step, none}
SL {16, 32, 64, 128} {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 1e-1, 5e-1} {0, 1e-4} {Adam, SGD} {warmup cosine, step, none}

Table 5: Chosen hyperparameters for CdSprites including
latent dimension (L), base feature size of CNN (C), batch
size (B), learning rate (lr.), weight decay (wd.), optimiser
(optim.), learning rate scheduler (lr.scheduler).

L C B lr. wd. Optim. none

AE 512 64 128 5e-5 1e-4 Adam none
VAE 512 64 128 5e-5 1e-4 Adam none
IWAE 512 64 128 5e-5 1e-4 Adam none

SimCLR 64 32 64 5e-3 1e-5 SGD warmup cosine
BYOL 64 32 64 5e-1 1e-5 SGD warmup cosine
SimSiam 64 32 64 8e-2 1e-5 SGD warmup cosine

Supervised 512 64 128 5e-5 1e-4 Adam none

Encoder

Input ∈ R3×64×64

4x4 conv. C stride 2x2 pad 1x1 & ReLU
4x4 conv. 2C stride 2x2 pad 1x1 & ReLU
4x4 conv. 4C stride 2x2 pad 1x1 & ReLU
4x4 conv. 8C stride 2x2 pad 1x1 & ReLU
4x4 conv. L stride 1 pad 0

Decoder

Input ∈ RL

4x4 upconv. 8C stride 1x1 pad 0x0 & ReLU
4x4 upconv. 4C stride 2x2 pad 1x1 & ReLU
4x4 upconv. 2C stride 2x2 pad 1x1 & ReLU
4x4 upconv. C stride 2x2 pad 1x1 & ReLU
4x4 upconv. 3 stride 2x2 pad 1x1

Table 6: CNN architecture, CdSprites dataset.

C.3. Camelyon17

For hyperparameters including batch size, max epoch and
model selection criteria, we follow the same protocol as in
WILDS [Koh et al., 2021] and use a batch size of 32, train
all models for 10 epochs and select the model that results
in the highest accuracy on the validation set. For the rest,
we use the same hyperparameter search range for models
in each category of AE, SSL and SL, as outlined in Table 7.
The chosen hyperparameters for each model are specified
in Table 8.

Table 8: Chosen hyperparameters for Camelyon17 including
latent dimension (L), learning rate (lr.), weight decay (wd.),
optimiser (optim.), learning rate scheduler (lr.scheduler).

Decoder lr. wd. Optim. lr. scheduler

AE ResNet 5e-4 1e-5 SGD warmup cosine
VAE MLP 1e-4 0 Adam none
IWAE MLP 1e-4 0 Adam none
β-VAE MLP 1e-4 0 Adam none

SimCLR - 1e-1 0 SGD none
BYOL - 1e-1 1e-5 SGD warmup cosine
SimSiam - 1e-1 1e-5 SGD warmup cosine

Supervised - 1e-3 1e-3 SGD none

We follow Koh et al. [2021] and use DenseNet121 [Huang
et al., 2017] as backbone architecture. For the decoder of
the AE models, we perform hyperparameter search between
three architectures: a CNN (see Table 9), a simple 3-layer
MLP (see Table 10) and a ResNet-like decoder with skip
connections (see Table 11).

CNN, Decoder

Input ∈ RL

4x4 upconv. 8C stride 2x2 pad 1x1 & ReLU
4x4 upconv. 8C stride 2x2 pad 0x0 & ReLU
4x4 upconv. 4C stride 2x2 pad 1x1 & ReLU
4x4 upconv. 2C stride 2x2 pad 1x1 & ReLU
4x4 upconv. C stride 2x2 pad 1x1 & ReLU
4x4 upconv. 3 stride 2x2 pad 1x1 & Sigmoid

Table 9: CNN architecture, Camelyon17 dataset.

MLP, Decoder

Input ∈ RL

fc. 2L & ReLU
fc. 4L & ReLU
fc. 3*96*96 & ReLU

Table 10: MLP architecture, Camelyon17 dataset.
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Table 7: Hyperparameter search range for Camelyon17, including decoder type, latent dimension (L), learning rate (lr.),
weight decay (wd.), optimiser (optim.), learning rate scheduler (lr. scheduler).

Decoder type L lr. wd. Optim. lr. scheduler

AE [CNN, MLP, ResNet] {256, 512, 1024} {1e-4, 5e-4, 1e-3, 5e-3, 1e-2} {0, 1e-4} {Adam, SGD} {warmup cosine, step, none}
SSL - {256, 512, 1024} {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 1e-1, 5e-1, 1} {0, 1e-3, 1e-4, 1e-5} {Adam, SGD} {warmup cosine, step, none}
SL - {256, 512, 1024} {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 1e-1, 5e-1} {0, 1e-4} {Adam, SGD} {warmup cosine, step, none}

ResNet, Decoder

Input ∈ RL

fc. 2048 & ReLU
3x3 conv. 16C stride 1x1 pad 1x1
3x3 conv. 16C stride 1x1 pad 1x1
x2 upsample
3x3 conv. 8C stride 1x1 pad 1x1
3x3 conv. 8C stride 1x1 pad 1x1
x2 upsample
3x3 conv. 8C stride 1x1 pad 1x1
3x3 conv. 8C stride 1x1 pad 1x1
3x3 conv. 3 stride 1x1 pad 1x1

Table 11: ResNet decoder architecture, Camelyon17 dataset.
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