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ABSTRACT

Video retrieval requires aligning visual content with corresponding natural lan-
guage descriptions. In this paper, we introduce Modality Auxiliary Concepts for
Video Retrieval (MAC-VR), a novel approach that leverages modality-specific
tags – automatically extracted from foundation models – to enhance video re-
trieval. Previous works have proposed to emulate human reasoning by introduc-
ing latent concepts derived from the features of a video and its corresponding
caption. Building on these efforts to align latent concepts across both modalities,
we propose learning auxiliary concepts from modality-specific tags. We introduce
these auxiliary concepts to improve the alignment of visual and textual latent con-
cepts, and so are able to distinguish concepts from one other. To strengthen the
alignment between visual and textual latent concepts – where a set of visual con-
cepts matches a corresponding set of textual concepts – we introduce an Alignment
Loss. This loss aligns the proposed auxiliary concepts with the modalities’ latent
concepts, enhancing the model’s ability to accurately match videos with their ap-
propriate captions. We conduct extensive experiments on three diverse datasets:
MSR-VTT, DiDeMo, and ActivityNet Captions. The experimental results consis-
tently demonstrate that modality-specific tags significantly improve cross-modal
alignment, achieving performance comparable to current state-of-the-art methods.

1 INTRODUCTION

The emergence of prominent video-sharing platforms like YouTube and TikTok has supported up-
loading of millions of videos daily. The demand for better video retrieval methods, which align
textual queries with relevant video content, has subsequently increased. Most existing works use
two main approaches. The first Fang et al. (2021); Luo et al. (2022); Jin et al. (2023b) exclusively
uses word and frame features without leveraging the multi-modal information of videos. On the con-
trary, the second approach Dzabraev et al. (2021); Gabeur et al. (2020); Wang et al. (2021); Gabeur
et al. (2022); Liu et al. (2021a); Croitoru et al. (2021) introduces additional multi-modal informa-
tion from videos, such as audio, speech, objects, that are encoded and used for feature aggregation.
In real-world scenarios, online videos often come with related textual information, such as tags –
keywords associated with a video that describe its content and make it easier to search/filter. Few
works Chen et al. (2023); Wang et al. (2022a;c) extract and exploit tags in video retrieval to better
align the video and textual modalities. Inspired by these previous works, we develop a novel method
called MAC-VR that integrates multi-modal information by independently extracting relevant tags
for both videos and texts, utilizing the extensive knowledge from pre-trained Vision-Language
Models (VLM) and Large Language Models (LLM) as shown in Fig.1. The example in Fig.1 shows
the query “a girl doing gymnastics in the front yard”, the extracted visual (VT) and textual (TT)
tags include sports, physical, outdoors, and outside can help align this video to the corresponding
caption. We extend the recent work DiCoSA Jin et al. (2023b), where the visual and textual coarse
features are split into compact latent factors which explicitly encode visual and textual concepts.
Our MAC-VR introduces visual and textual tags whose coarse features are used to learn auxiliary
modality-specific latent concepts. These are aligned to latent concepts directly extracted from video
and text, through an introduced Alignment Loss.

Recently, many works Liu et al. (2022); Jin et al. (2023b;c; 2022); Ibrahimi et al.; Chen et al. (2023);
Wang et al. (2024a) use different inference strategies to improve the final video retrieval performance
such as Querybank Normalisation (QB) Bogolin et al. (2022) and Dual Softmax (DSL) Cheng et al.
(2021). In this paper, we analyse the impact of such strategies on our MAC-VR architecture to ensure
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Figure 1: Tags are extracted from both videos by VLM and texts by LLM using custom prompts
designed to generate the most relevant tags for each modality. For example, visual and textual tags
like sports and physical can help align this video to the corresponding caption. We learn latent
auxiliary concepts from these tags, that help align the videos and texts.

fair comparison with state-of-the-art (SOTA) methods. Our results show that auxiliary concepts of
both modalities, in addition to the Alignment Loss, help boost the retrieval performance and better
distinguish the latent concepts.

Our contribution can be summarized as follows: (i) We propose to extract modality-specific tags
from foundational VLMs and LLMs to augment the video and text modalities respectively. (ii) We
use these tags to learn auxiliary latent concepts in each modality to extract useful representations
from the tags. (iii) We propose a new Alignment Loss to better align and distinguish these learnt
latent concepts. (iv) We analyse the impact of different inference strategies on our architecture by
deeply and fairly comparing our proposal with SOTA methods. (v) We conduct experiments on
three datasets: MSR-VTT, DiDeMo, and ActivityNet Captions. Across all datasets, the addition of
our auxiliary concepts improves performance. Detailed ablation on MSR-VTT verifies our design
choices.

2 RELATED WORKS

Video Retrieval. Video retrieval aims to learn an embedding for video and text to establish ef-
fective connections between pertinent video content and natural language descriptions. Early ap-
proaches Dzabraev et al. (2021); Gabeur et al. (2020); Wang et al. (2021); Gabeur et al. (2022); Liu
et al. (2021a); Croitoru et al. (2021); Fragomeni et al. (2022); Zolfaghari et al. (2021); Kunitsyn et al.
(2022); Dong et al. (2022) relied on pre-trained features and/or multi-modal information inherent in
videos, such as audio or speech, specialized to bridge the gap between video and text data. Notably,
MMT Gabeur et al. (2020) explores multi-modal data extracted by seven pre-trained experts but
integrates them without explicit guidance, employing a brute-force method. Input modalities have
also been masked, e.g. in Gabeur et al. (2022), where the method can learn robust representations
that enhance cross-modal matching. On the contrary, MAC-VR uses only video and text modalities
without considering any additional modalities, such as audio or speech.

Recent advancements in video retrieval have followed two main methodologies. The first involves
extensive pre-training of models on large-scale video-text datasets, Ge et al. (2022); Bain et al.
(2021). The second focuses on transferring knowledge from image-based CLIP models Radford
et al. (2021a) trained on extensive image-text pairs Kunitsyn et al. (2022); Fang et al. (2021); Gorti
et al. (2022); Luo et al. (2022); Jin et al. (2023c); Huang et al. (2023); Wang et al. (2024a); Dong
et al. (2023); Guan et al. (2023); Tian et al. (2024); Jin et al. (2024; 2023b); Xue et al. (2023); Fang
et al. (2023). Some works Dong et al. (2023); Tian et al. (2024) use a distillation approach where a
large network is first trained as a teacher network and then a smaller network is trained as a student
network. In contrast, MAC-VR does not use any distillation approach and is trained directly by
introducing auxiliary modality-specific tags. Similar to Jin et al. (2023b), where learnable queries
and latent concepts are learnt during training, we learn latent auxiliary concepts from our modality-
specific tags in addition to visual and textual latent concepts and use them as additional features to
align the visual and textual concepts.
Vision-Language and Large Language Models in Image and Video Retrieval. The integration of
Vision-Language Models (VLM) Li et al. (2023b); Liu et al. (2023a); Zhang et al. (2023b); Cheng
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et al. (2024); Zhang et al. (2023a) and Large Language Models (LLM) Touvron et al. (2023a;b);
Chiang et al. (2023); Dubey et al. (2024) in image Qu et al. (2024); Levy et al. (2023); Wang et al.
(2024c); Zhu et al. (2024); Yan et al. (2023) and video retrieval Wu et al. (2023a); Zhao et al. (2023);
Wang et al. (2022c); Shvetsova et al. (2023); Xu et al. (2024); Zhao et al. (2024); Ventura et al. (2024)
has enabled significant advancements, showing an impressive understanding capabilities of these
models. In Zhao et al. (2023) the authors demonstrate that LLMs can enhance the understanding
and generation of video content by transferring their rich semantic knowledge. In Wu et al. (2023a;
2024), the authors explore how additional captions can enhance video retrieval by providing richer
semantic context and improving matching accuracy between textual queries and video content. In
contrast to these works, we do not generate additional captions as in Zhao et al. (2023); Wu et al.
(2023a) but we leverage pre-trained VLMs and LLMs to generate words (i.e. visual and textual
tags) that highlight relevant aspects of the action shown in the video and described by the caption.
Tags in Image and Video understanding. The notion of tags in image and video understanding
has been previously explored in existing literature. Tags have found application across various
tasks, including Video Retrieval Wang et al. (2022a); Chen et al. (2023); Wang et al. (2022c), Video
Moment Retrieval Gao & Xu (2022); Wang et al. (2022b), Video Recognition Wu et al. (2023b);
Kahatapitiya et al. (2024), Fashion Image Retrieval Naka et al. (2022); Wang et al. (2023a); Tian
et al. (2023); Shimizu et al. (2023); Wahed et al. (2024) and Image Retrieval Huang et al. (2024); Liu
et al. (2023b); Chaudhary et al. (2020); Zhu et al. (2021); Chiquier et al. (2024). Some works Wang
et al. (2022a); Chen et al. (2023) use pre-trained experts to extract tags from various modalities of
videos, including object, person, scene, motion, and audio. In contrast to these works, MAC-VR
does not use pre-trained expert models to extract tags from a video or any additional modality such
as audio. However, we generate visual and textual tags directly from videos and captions by using
VLM and LLM, respectively. Similar to us, Wang et al. (2022c) uses image-language models to
translate the video content into frame captions, objects, attributes, and event phrases. MAC-VR
does not generate any additional caption from frames, instead using only the caption to extract tags.

3 MODALITY AUXILIARY CONCEPTS FOR VIDEO RETRIEVAL

We first define cross-modal text-to-video retrieval in Sec. 3.1 before describing our tag extraction
approach in Sec. 3.2. Finally, in Sec. 3.3, we introduce our MAC-VR architecture.
3.1 CROSS-MODAL TEXT-TO-VIDEO RETRIEVAL

Given a pair (vi, ti), where vi represents a video and ti denotes its corresponding caption, the objec-
tive of Cross-Modal Video Retrieval is to retrieve the video vi given the caption ti as query or vice
versa. Typically, models use two projection functions: fv : vi −→ Ω ∈ Rd and ft : ti −→ Ω ∈ Rd.
These functions map the video and text modalities, respectively, into a shared d-dimensional latent
embedding space, denoted as Ω. Previous approaches aim to align the representations in this space
so that the representation of a video is close to that of its corresponding caption. Following training,
standard inference strategies embed a gallery of test videos and ranks these in order of their dis-
tance from each query caption. Recent approaches utilise additional inference strategies to improve
performance. Two popular inference strategies are: Querybank Normalisation (QB) Bogolin et al.
(2022) and Dual Softmax (DSL) Cheng et al. (2021). We introduce these here and later showcase
their impact on fair comparison of the current SOTA methods.

The QB strategy was introduced to mitigate the hubness problem of high-dimensional embedding
spaces Radovanovic et al. (2010), where a small subset of samples tends to appear far more fre-
quently among the k-nearest neighbours of all embeddings. This phenomenon can have harmful
effects on retrieval methods that rely on nearest-neighbour searches to identify the best matches for
a given query. To mitigate this phenomenon, the similarities between embeddings are altered to
minimise the influence of hubs. To do this a querybank of a set of samples is constructed from the
query modality and is used as a probe to measure the hubness of the gallery. In other words, for each
query, given its vector of unnormalised similarities, S(vj , ti), over all the elements in the gallery G
and a probe matrix P , whose each row is a probe vector of similarities between the querybank and
each element in the gallery, we can define a querybank normalisation function, QB, and get a vector
of normalised similarities, ηq = QB(S(vj , ti), P ), where the querybank normalisation function is
the Dynamic Inverted Softmax (DIS), introduced in Bogolin et al. (2022).

The DSL strategy is proposed to avoid one-way optimum-match in contrastive methods. DSL in-
troduces an intrinsic prior of each pair in a batch to correct the similarity matrix and achieves the
dual optimal match. In practice, we modify the original S(vj , ti) by multiplying it with a prior ri,j .
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Figure 2: Examples of visual and textual tags (middle) for videos (left) and corresponding captions
(right) across datasets.

Therefore, we can define the new similarity matrix as Ŝ(vj , ti) = ri,jS(vj , ti), where the prior is
defined as ri,j = exp(τrS(vi,ti))∑

j exp(τrS(vi,tj))
, where τr is a temperature hyper-parameter to smooth the gra-

dients. While this strategy can be used both in training and inference, it is now regularly used only
during inference.
3.2 TAG EXTRACTION

We propose to estimate tags from either the video vi, using a VLM, or the text in the caption ti,
using an LLM. These tags are word-level representations of common objects, actions, or general
ideas present in the caption or the video. They can add additional useful information to retrieve the
correct video given a text query as shown in Fig. 2. For instance, given the caption: a commercial
for the Mazda 3 the car sliding around a corner, the general tags estimated from this caption are:
product showcase, style, brand differentiation, advertising technique, automotive marketing which
reflect the commercial. These words are abstract terms that go beyond the exact caption but can help
the retrieval model to better understand the specific characteristics of this caption.

In contrast, leveraging the video modality to create tags enables us to both capture a broader array
of visual elements that characterise the video content and also have a representation of the video
in words, facilitating matching the video content to the captions within the text modality. E.g.,
given the video associated with the previous caption, extracted visual tags include road, vehicle, car,
transportation, engine, reflecting important objects in the video, and racing, driving reflecting the
action in the video. These tags directly correspond to pertinent visual components of the video.

For extracting visual and textual tags, we use a custom prompt (see Appx. C for more details) to
query the most relevant general tags for the input video vi and caption ti. We extract tags individually
from both modalities so they can be used for both training and inference. As the tags are extracted
from a single modality, we refer to these as modality-specific tags. We detail how these tags are
used within MAC-VR next.
3.3 ARCHITECTURE

We start from a standard Text-Conditioned Video Encoder (T-CVE) before incorporating our pro-
posed tags into each modalities’ latent concepts. These concepts are aligned and pooled to find the
similarity between a video and a caption. Our proposed architecture is summarised in Fig. 3.
3.3.1 TEXT-CONDITIONED VIDEO ENCODER (T-CVE)
Given a caption ti, we extract its text representation Ti ∈ Rd. For the video representation, we first
sample Nv frames from a video vi and then encode them and aggregate the embedding of all frames
to obtain the frame representation Fj with j ∈ {1, ..., Nv}. Since captions often describe specific
moments, as shown in previous works Bain et al. (2022); Jin et al. (2023b); Gorti et al. (2022),
matching only the relevant frames improves semantic precision and reduces noise. To achieve this,
we aggregate the frame representations conditioned on the text. Firstly, we calculate the inner prod-
uct between the text and the frame representation Fj with j ∈ {1, ..., Nv}:

ai,j =
exp((Ti)

⊤Fj/τa)∑Nv

k=1(exp((Ti)⊤Fk/τa))
(1)

where τa is a hyper-parameter that allows control of the textual conditioning. Then, we get the
text-conditioned video representation Vi ∈ Rd defined as Vi =

∑Nv

k=1 ai,kFk.
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Figure 3: Architecture of MAC-VR: Given a video vi and its corresponding caption ti, we generate
auxiliary visual (VT) and textual (TT) tags using a VLM and an LLM, respectively. A shared text
encoder projects the caption and the auxiliary tags Ti, Av

i and At
i to a common space with the Text-

Conditioned Video Encoder (T-CVE). Visual evi,k and textual eti,k concepts are aligned to each other
by the contrastive loss LC and are aligned to auxiliary visual ea

v

i,k and textual ea
t

i,k concepts by our
Alignment Loss LA. An MLP then estimates confidence scores for each concept, to compute a
weighted sum for the similarity function that is used in our Cross-Modal Loss LS .

3.3.2 LATENT CONCEPTS

To utilise both visual and textual tags in Sec 3.2 extracted from foundational models, we first ran-
domly pick N visual and textual tags during training and order them into two distinct comma-
separated sentences that start with “A video of”. We extract visual Av

i and textual At
i coarse tag

features by using the same text encoder used for the caption. Therefore, given a video/caption pair
(vi, ti) we get a quadruple (Vi, Ti, A

v
i , A

t
i). Inspired by Jin et al. (2023b), we disentangle each

element of the quadruple into K independent, equal-sized latent concepts. For example, when dis-
entangling Vi, we get K independent latent concepts, i.e. Ev

i = [evi,1, ..., e
v
i,K ]. Each latent concept

evi,k ∈ Rd/K represents a distinct concept and the independence of these factors ensures that each
concept is uncorrelated to the other K − 1 latent concepts, and is thus calculated by independently
projecting the text representation:

evi,k = W v
k Vi (2)

where W v
k is a trainable parameter. Similarly, Et

i , Eav

i and Eat

i represent the latent concepts of the
text representation Ti. The visual Av

i and textual At
i tag representations are calculated in the same

way. We name the K latent concepts of the visual tags representation Av
i and textual tags repre-

sentation At
i as auxiliary visual concepts Eav

i and auxiliary textual concepts Eat

i respectively.
We now have four disentangled representations for visual Ev

i , textual Et
i , auxiliary visual Eav

i , and
auxiliary textual Eat

i concepts. Until now, these subspaces have been disentangled independently.
We next describe how the alignment of these latent concepts can be used for enhancing cross-modal
retrieval.

3.3.3 ALIGNMENT OF DISENTANGLED LATENT CONCEPTS

By default, approaches such as Jin et al. (2023b) align latent representations of videos and captions
through a contrastive loss. Here, we consider aligning the auxiliary modality-specific concepts to the
corresponding concepts, per modality. Specifically, we consider the visual concepts Ev

i and the aux-
iliary visual concepts Eav

i . For each disentangled concept pair (evi,k, e
av

i,k) we minimise the distance
between this pair then maximise the distance to other disentangled concepts, i.e. (evi,k, e

av

i,l ); l ̸= k in
a contrastive fashion to align modality concepts, similar to the loss in Jin et al. (2023b) see Appx. D
for more details. Here, we focus on aligning modality concepts with our proposed auxiliary modal-
ity concepts. Recall that these latent concepts are learnt, and thus through this alignment, we aim to
learn a representation of the video that matches the latent representations of the tags extracted from
the VLM.
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Visual Tags (VT) Textual Tags (TT)
#Tags Avg #Tags #Tags Avg #Tags

Datasets Train Val Test Train Val Test Train Val Test Train Val Test
MSR-VTT Xu et al. (2016) 63,383 - 12,118 27.69 - 27.83 320,351 - 8,326 27.17 - 26.52
DiDeMo Hendricks et al. (2017) 50,712 10,924 10,636 27.12 27.13 26.92 34,662 9,234 8,266 27.79 28.10 27.59
ActivityNet Captions Krishna et al. (2017) 58,934 - 35,334 26.83 - 26.79 29,449 - 21,766 25.17 - 26.05

Table 1: Statistical analysis of tags after extraction.

Similarly, we align the auxiliary textual concepts Eat

i to the latent concepts Et
i extracted directly

from the caption. We combine both modalities’ alignment of latent concepts to auxiliary latent
concepts and refer to this as the Alignment Loss LA which aligns Ev

i with Eav

i and Et
i with Eat

i .
3.3.4 WEIGHTED SIMILARITY AND TRAINING LOSS

The information between the video and caption is partially matched Liu et al. (2021b). Indeed,
only a subset of visual concepts are usually described in the corresponding text which might be less
descriptive and informative than the video itself. Therefore, we cannot directly leverage correlations
between their latent concepts, so we use adaptive pooling to define weights for the visual and textual
concepts and reduce their impact on the final similarity calculation. To do this, we design an adaptive
module to estimate the confidence of each cross-modal concept matching. For each concept k, we
consider the modality and auxiliary modality concepts [evi,k, e

t
i,k, e

av

i,k, e
at

i,k] and use them to calculate
the confidence of each cross-modal concept matching. We thus calculate:

ci,k = MLP ([evi,k, e
t
i,k, e

av

i,k, e
at

i,k]) (3)

If ci,k is small, the latent concept corresponding to the kth subspace is matched with low probability.
Given this confidence, we aggregate all the visual and textual latent concept pairs to calculate the
similarity of the video and text, through adaptive pooling. The similarity S(vi, ti) is defined as:

S(vi, ti) =

K∑
k=1

ci,k
(eti,k)

⊤evi,k
|∥eti,k∥∥evi,k∥

(4)

Following common approaches, we use InfoNCE loss Gutmann & Hyvärinen (2012); Józefowicz
et al. (2016) as our Cross-Modal Loss (LS) to optimise the cross-modal similarity S(vi, ti), the con-
trastive loss LC to align the modality concepts as introduced in Jin et al. (2023b) and the proposed
Alignment loss LA to align the modality with the auxiliary modality concepts:

L = LS(S(vi, ti)) + LC(E
v
i , E

t
i ) + αLA(E

v
i , E

t
i , E

av

i , Eat

i ). (5)

where α is a weight parameter. During inference, we calculate the similarity S(vi, ti) as in Eq. 4 for
every query caption and video in the gallery. We use a fixed M visual and textual tags in inference
for deterministic results. Note that we do not know in this case whether the video and caption are
relevant. We thus use the auxiliary modality concepts to assist in adjusting the similarity accordingly.
The similarity S(vi, ti) is then used to rank the gallery of videos for retrieval.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

MSR-VTT Xu et al. (2016) is commonly studied in video retrieval. It comprises 10,000 videos with
different content, each with 20 captions. We utilize the 9k-Train split Gabeur et al. (2020), i.e. 9,000
videos for training and 1,000 videos for testing.
DiDeMo Hendricks et al. (2017) collects 10,000 Flickr videos annotated with 40,000 captions. This
dataset is evaluated using a video-paragraph retrieval manner provided in Luo et al. (2022). The
challenge of this dataset is to align long videos and long texts.
ActivityNet Captions Krishna et al. (2017) consists of 20,000 annotated YouTube videos Heilbron
et al. (2015). We report results on the val 1 split of 10,009 and 4,917 as the train and test set. We
adopt the same setting in Jin et al. (2023b) to validate our model. Similar to DiDeMo, the challenge
of this dataset is the alignment between long video and dense and detailed text.

Modality-Specific Tags We extract modality-specific tags from all videos and captions in the
datasets above. Tab. 1 presents statistics of modality tags for each dataset/split.
Metrics We present the retrieval performance for text-to-video retrieval task using standard metrics:
Recall at L = 1, 5, 10 (R@L), median rank (MR), and mean rank (MeanR).

4.2 IMPLEMENTATION DETAILS

We use the base code from DiCoSA Jin et al. (2023b) for our architecture. We consider this as the
baseline model to which we introduce our modality tags and modality Alignment Loss.
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MSR-VTT (BS = 128, Nv = 12) DiDeMo (BS = 64, Nv = 50) ActivityNet Captions (BS = 64, Nv = 50)
Method IS Year R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
DiCoSA* Jin et al. (2023b) - 2023 47.2 73.5 83.0 2 12.9 41.2 71.3 81.3 2 15.9 36.7 67.8 81.1 2 8.7
MAC-VR (ours) - 2024 48.8 74.4 83.7 2 12.3 43.4 72.5 82.3 2 16.9 37.9 69.4 81.5 2 9.6
DiCoSA* Jin et al. (2023b) QB 2023 48.0 74.6 84.3 2 12.9 43.7 73.2 81.7 2 16.8 41.0 71.2 83.6 2 7.4
MAC-VR (ours) QB 2024 49.3 75.9 83.5 2 12.3 45.5 74.8 82.3 2 16.2 42.4 73.2 84.1 2 8.4
DiCoSA* Jin et al. (2023b) DSL 2023 52.1 77.3 85.9 1 12.9 47.3 75.7 83.8 2 14.2 44.9 74.8 85.4 2 6.8
MAC-VR (ours) DSL 2024 53.2 77.7 85.3 1 10.0 50.2 76.2 84.2 1 15.1 46.5 75.6 86.2 2 6.9

Table 2: Comparison with baseline trained by using same training parameters of MAC-VR. * our
reproduced results. IS: Inference Strategy., BS: Batch Size. Nv: Number of Frames.

MSR-VTT DiDeMo ActivityNet Captions
Method IS Year R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
CenterCLIP Zhao et al. (2022) - 2022 48.4 73.8 82.0 2 13.8 - - - - - 46.2 77.0 87.6 2 5.7
X-Pool Gorti et al. (2022) - 2022 46.9 72.8 82.2 2 14.3 - - - - - - - - - -
LAFF Hu et al. (2022) - 2022 45.8 71.5 82.0 - - - - - - - - - - - -
TS2-Net Liu et al. (2022) - 2022 47.0 74.5 83.8 2 13.0 41.8 71.6 82.0 2 14.8 41.0 73.6 84.5 2 8.4
EMCL-Net Jin et al. (2022) - 2022 46.8 73.1 83.1 2 - - - - - - 41.2 72.7 - 2 -
VoP Huang et al. (2023) - 2023 44.6 69.9 80.3 2 16.3 46.4 71.9 81.5 2 13.6 35.1 63.7 77.6 1 11.4
TEFAL Ibrahimi et al. - 2023 49.4 75.9 83.9 2 12.0 - - - - - - - - - -
PiDRo Guan et al. (2023) - 2023 48.2 74.9 83.3 2 12.6 48.6 75.9 84.4 2 11.8 44.9 74.5 86.1 2 6.4
HBI Jin et al. (2023a) - 2023 48.6 74.6 83.4 2 12.0 46.9 74.9 82.7 2 12.1 42.2 73.0 84.6 2 6.6
DiffusionRet Jin et al. (2023c) - 2023 49.0 75.2 82.7 2 12.1 46.7 74.7 82.7 2 14.3 45.8 75.6 86.3 2 6.5
Prompt Switch Deng et al. (2023) - 2023 47.8 73.9 82.2 - 14.4 - - - - - - - - - -
Cap4Video Wu et al. (2023a) - 2023 49.3 74.3 83.8 2 12.0 52.0 79.4 87.5 1 10.5 - - - - -
UCoFiA Wang et al. (2023b) - 2023 49.4 72.1 83.5 2 12.9 46.5 74.8 84.4 2 13.4 45.7 76.6 86.6 2 6.4
PAU Li et al. (2023a) - 2023 48.5 72.7 82.5 2 14.0 48.6 76.0 84.5 2 12.9 - - - - -
TABLE Chen et al. (2023) - 2023 47.1 74.3 82.9 2 13.4 47.9 74.0 82.1 2 14.3 - - - - -
CLIP-ViP Xue et al. (2023) - 2023 50.1 74.8 84.6 - - 48.6 77.1 84.4 - - 51.1 78.4 88.3 - -
UATVR Fang et al. (2023) - 2023 47.5 73.9 83.5 2 12.3 43.1 71.8 82.3 2 15.1 - - - - -
TeachCLIP Tian et al. (2024) - 2024 46.8 74.3 - - - 43.7 71.2 - - - 42.2 72.7 - - -
MV-Adapter Jin et al. (2024) - 2024 46.2 73.2 82.7 - - 44.3 72.1 80.5 - - 42.9 74.5 85.7 - -
T-MASS Wang et al. (2024a) - 2024 50.2 75.3 85.1 1 11.9 50.9 77.2 85.3 1 12.1 - - - - -
Cap4Video++ Wu et al. (2024) - 2024 50.3 75.8 85.4 1 12.0 52.5 80.0 87.0 1 10.3 - - - - -
MAC-VR (ours) - 2024 48.8 74.4 83.7 2 12.3 43.4 72.7 82.3 2 16.9 37.9 69.4 81.5 2 9.6
QB-Norm Bogolin et al. (2022) QB 2022 47.2 73.0 83.0 2 - 43.3 71.4 80.8 2 - 41.4 71.4 - 2 -
DiCoSA Jin et al. (2023b) QB 2023 47.5 74.7 83.8 2 13.2 45.7 74.6 83.5 2 11.7 42.1 73.6 84.6 2 6.8
DiffusionRet Jin et al. (2023c) QB 2023 48.9 75.2 83.1 2 12.1 48.9 75.5 83.3 2 14.1 48.1 75.6 85.7 2 6.8
MAC-VR (ours) QB 2024 49.3 75.9 83.5 2 12.3 45.5 74.8 82.3 2 16.2 42.4 73.2 84.1 2 8.4
EMCL-Net Jin et al. (2022) DSL 2022 51.6 78.1 85.3 1 - - - - - - 50.6 78.9 - 1 -
TS2-Net Liu et al. (2022) DSL 2022 51.1 76.9 85.6 1 11.7 47.4 74.1 82.4 2 12.9 - - - - -
TEFAL Ibrahimi et al. DSL 2023 50.1 77.0 85.4 1 10.5 - - - - - - - - - -
TABLE Chen et al. (2023) DSL 2023 52.3 78.4 85.2 1 11.4 49.1 75.6 82.9 2 14.8 - - - - -
CLIP-ViP Xue et al. (2023) DSL 2023 55.9 77.0 86.8 - - 53.8 79.6 86.5 - - 59.1 83.9 91.3 - -
UATVR Fang et al. (2023) DSL 2023 49.8 76.1 85.5 2 12.3 - - - - - - - - - -
T-MASS Wang et al. (2024a) DSL 2024 52.7 80.3 87.3 1 10.0 55.0 80.9 87.5 1 9.7 - - - - -
MAC-VR (ours) DSL 2024 53.2 77.7 85.3 1 10.0 50.2 75.2 84.2 1 15.1 46.5 75.6 86.2 2 6.9

Table 3: Comparison with SOTA on MSR-VTT, DiDeMo and ActivityNet Captions. −: unreported
results. IS: Inference Strategy.

We employ CLIP’s VIT-B/32 Radford et al. (2021b) as the image encoder and CLIP’s transformer
base as the text encoder to encode the caption and the visual/textual tags. All encoder parameters are
initialised from CLIP’s pre-trained weights. We extract tags for a gallery of videos or captions in ad-
vance to decrease the computational load. For generating visual tags we utilize the fine-tuned version
of VideoLLaMA2 Cheng et al. (2024) as the Vision-Language model (VLM) and Llama3.1lla (2024)
as the Large Language Model (LLM) for generating textual tags. In VideoLLaMA2, Llama2 Tou-
vron et al. (2023b) serves as a frozen LLM. We run VideoLLaMA2 by using 8 frames, sparsely
sampled from the video, and different values of the temperature τ ∈ {0.7, 0.8, 0.9, 1.0}. We use the
same values of τ for Llama3.1. We randomly pick N tags during training and we always use the
first M tags during inference. We concatenate single clips and single captions to get the whole video
and the paragraph in DiDeMo and ActivityNet Captions to generate tags, because they are evaluated
in the video-paragraph retrieval scenario. Following similar implementation and architecture details
of Jin et al. (2023b), we use an Adam optimizer with linear warm-up. The initial learning rate is
1e-7 for the text encoder and video encoder and 1e-3 for other modules. Unless specified, we set
τa = 3 in Eq.1, K = 8 and α = 1. Our MLP consists of two linear layers and a ReLU activation
function between them, with a size of 256. The model is optimised with a batch size of 128 for
MSR-VTT in 10 epochs, and a batch size of 64 in 20 epochs for DiDeMo and ActivityNet Captions.
We use Nv = 12 frames for MSR-VTT and Nv = 50 frames for DiDemo and ActivityNet Captions.
We use more frames for these latter datasets because we evaluated them using a video-paragraph
retrieval scenario where the whole video is considered. We use a 4-layer transformer to aggregate
the embedding of all the frames. See Appx. B for some additional implementation details.

4.2.1 RESULTS

In Sec. 4.3, we first present the comparison of MAC-VR against the baseline DiCoSA Jin et al.
(2023b) we re-ran by using our same training parameters. Then, we compare MAC-VR with SOTA
methods, particularly highlighting the impact of inference strategies on fairness of comparison.
Then, in Sec. 4.4, we conduct ablation studies to validate our proposal. See Appx. E for a full
comparison with an additional baseline.

4.3 COMPARISON WITH BASELINE AND SOTA

In Tab. 2, we compare MAC-VR with our Baseline DiCoSA trained using same training parameters,
more precisely the same batch size BS and same number of frames Nv . In all the datasets we
outperform our baseline DiCoSA across the three scenarios, more precisely we outperform it by
∆R@1 = 1.1 for MSR-VTT, ∆R@1 = 2.9 for DiDeMo and ∆R@1 = 1.6 for ActivityNet Captions
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Method R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
DiCoSA* 52.1 77.3 85.9 1 12.9
+VT 52.1 77.1 85.3 1 11.2

+LA 52.2 77.3 85.7 1 10.4
+TT 51.9 77.4 84.8 1 10.4

+LA 52.0 77.6 86.0 1 10.4
+VT+TT 52.4 77.0 85.9 1 10.8

+LA 53.2 77.7 85.3 1 10.0

Table 4: Ablation on Architecture design. * our
reproduced results.

α R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
0.0 52.1 77.3 85.9 1 12.9
0.5 53.1 76.7 85.5 1 10.0
1.0 53.2 77.7 85.3 1 10.0
2.0 53.0 77.5 85.4 1 10.1
5.0 52.1 76.7 85.6 1 10.9
10.0 52.5 77.5 85.4 1 10.5

Table 5: Ablation on α parameter of LA.

Foundation Models
VT TT R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
VL L2 52.0 77.5 84.9 1 10.4

VL2 L3.1 53.2 77.7 85.3 1 10.0

Table 6: Ablation on foundation models.
VL: Video-LLaMA. VL2: VideoLLaMA2.

Auxiliary Input Visual Textual R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
Captions Blip2 PG 51.2 76.2 85.0 1 11.2
Captions Blip2 L3.1 51.6 76.7 85.5 1 10.9
Captions VL2 L3.1 50.4 75.9 84.7 1 11.5

Tags VL2 L3.1 53.2 77.7 85.3 1 10.0

Table 7: Ablation on auxiliary inputs. PG: PE-
GASUS. L3.1: Llama3.1. VL2: VideoLLaMA2.

when using the DSL approach as inference strategies. In general, we get the best performance on all
the datasets when we use DSL as the inference strategy.

In Tab. 3, we compare MAC-VR against different SOTA works. To fairly compare MAC-VR to our
baseline DiCoSA and the other SOTA methods, we consider three different settings: MAC-VR with-
out any inference strategy, MAC-VR with QB, and MAC-VR with DSL. We split all the SOTA works
based on the considered inference strategy. We get the best performance on all three datasets when
we apply DSL as the inference strategy. More precisely, on MSR-VTT we outperform DiCoSA by
∆R@1 = 1.8 when using QB as inference strategy and we outperform all the SOTA methods when
using DSL as the inference strategy. We get comparable results with our baseline DiCoSA, when
using QB, and the other SOTA methods on DiDeMo even though we use a smaller batch size BS
and fewer frames Nv . In particular, we outperform TABLE Chen et al. (2023) on MSR-VTT and
DiDeMo when using the DSL strategy by ∆R@1 = 0.9 and ∆R@1 = 1.1, respectively. Similar to
us, TABLE Chen et al. (2023) proposes to extract tags from a video by using different pre-trained
experts models not only from the visual but also the audio modality. CLIP-ViP Xue et al. (2023)
and T-MASS Wang et al. (2024a) outperforms MAC-VR when using DSL, but we argue that those
works are not fairly comparable. CLIP-ViP Xue et al. (2023) uses a strong pre-training on WebVid-
2.5M Bain et al. (2021) and HD-VILA-100M Xue et al. (2022) and T-MASS Wang et al. (2024a)
proposes an inference pipeline different from ours. During inference, for each video candidate, T-
MASS samples multiple stochastic text embeddings for the query text and select the closest one to
the video embedding for the evaluation, using 20 sampling trials. Therefore, their results are not
fairly comparable with ours: T-MASS considers additional query texts during inference whereas we
consider only a single query text. Even though MAC-VR achieves lower results on ActivityNet Cap-
tions without using any inference strategy, we get comparable results with SOTA when we use QB
and DSL as inference strategy. In particular, we outperform our Baseline DiCoSA by ∆R@1 = 0.3
when using QB. The performance on ActivityNet Captions may be influenced by different training
parameters used in other SOTA models, see Appx. E for fair comparison with SOTA. Another factor
could be that we generate tags across all three datasets using the same foundation model parame-
ters, regardless of video or caption length. ActivityNet Captions has the longest videos and captions
(2 minutes per video, 50 words per paragraph), while DiDeMo has shorter videos (30 seconds, 30
words per caption) and MSR-VTT has the shortest (10-30 seconds, 10 words per caption). Using
only 8 frames for long videos and concatenating captions may prevent the model from extracting
detailed tags, which also explains the strong performance on the shorter MSR-VTT and DiDeMo
datasets.

4.4 ABLATION STUDIES

All ablations are performed on the commonly used MSR-VTT dataset to validate MAC-VR.
Number of Tags in Training and Inference. In Fig. 4, we test our model by varying the number
of visual and textual tags in training and inference. We keep the number of tags the same between
the two modalities but vary that number during training and/or inference. In Fig. 4a, we adjust the
number of tags in training and use the same value during inference. We show that increasing the
number of tags (> 1) increases performance in every case. QB as an inference strategy is the least
robust to changing the number of tags. When using DSL, R@1 increases until the best performance
of R@1 = 52.7 with 6 tags, then the value remains stable around 52. When varying the number of
tags only in inference, as shown in Fig. 4b, we observe a similar behaviour, R@1 increases rapidly
and overcomes our baseline DiCoSA when using more than 2 tags and getting the best performance
with R@1 = 53.2 with 8 tags. Best performance at inference is always reported at 8 tags with DSL
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and 12 tags otherwise, showcasing that using more tags always increases performance. The figure
also shows that DSL consistently obtains the best performance by a large margin comparing to QB
or no inference strategy. We accordingly use DSL in all the remaining ablation studies.
Architecture Design. In Tab. 4, we ablate the components making up our pro-
posed method MAC-VR. We first ablate the importance of modality-specific
tags individually, together, and when we introduce our Alignment Loss LA.

(a) Training and Inference. (b) Inference.
Figure 4: Ablation on varying the number of tags across all
inference strategies. (n − m) on the x-axis indicates the
number of training tags n and inference tags m. We vary
the number of visual and textual tags in the same way.

Using visual and textual tags individ-
ually without our Alignment Loss LA

gets similar results to our baseline,
whereas with our Alignment Loss LA

improves all metrics compared to the
baseline. When using both modality-
specific tags simultaneously without
LA, R@1 improves by ∆R@1 =
0.3. Introducing our Alignment Loss
LA, R@1 improves by 1.1, showcas-
ing the importance of LA in aligning
the modality concepts with the corre-
sponding auxiliary concepts.
Parameter Alignment Loss LA.
The α parameter indicates the impor-
tance of the Alignment Loss LA. We consider different values of α ∈ {0.0, 0.5, 1.0, 2.0, 5.0, 10.0}.
We find that the best R@1 is when α = 1.0 with R@1 = 53.2, and performance drops when
α > 2.0, as shown in Tab. 5.
Choice of Foundation Models. In Tab. 6, we ablate the use of different foundation models to
extract visual and textual tags from a video and its caption. We compare Video-LLaMA Zhang
et al. (2023a) against VideoLLaMA2 Cheng et al. (2024) and Llama2 Touvron et al. (2023b) against
Llama3.1 lla (2024) to extract visual and textual tags. Results show that all metrics improved when
using VideoLLaMA2 and Llama3.1, this is highlighted by an improvement of ∆R@1 = 1.2. This
can be explained by the fact that Video-LLaMA and Llama2 tend to hallucinate tags more than
VideoLLaMA2 and Llama3.1, qualitative differences of the extracted tags are shown in Appx. F.
Using auxiliary captions over tags. In Tab. 7, we show that tags are more informative compared to
new captions extracted directly from a video/paraphrased from its caption. We used different meth-
ods to extract new captions from videos using Blip2 Li et al. (2023b) and VideoLLaMA2 Cheng et al.
(2024). Captions are paraphrased using PEGASUS Zhang et al. (2020) and Llama3.1 lla (2024), see
Appx. G for more details. Results show that using tags outperforms other methods – specifically
captions extracted by VideoLLaMA2 and Llama3.1, which are the same foundation models used to
generate our tags, drops ∆R@1 = 2.9.

5 QUALITATIVE RESULTS

Fig. 5 shows qualitative results on all three datasets. We compare the result obtained by MAC-VR
against our baseline where visual and textual tags are not used. In general, both visual and textual
tags add additional information extracted from the video and the caption that can help in the retrieval
task. For example, consider the query a class is being introduced to a digital reading device and its
video. Visual tags such as student, technology and textual tags such as initial setup, introduction,
training add additional information. Specifically, initial setup, introduction, training are different
words to express the main action in the video and student, technology add extra information: a class
is comprised of students and a digital reading device represents technology.

As we introduced in Sec. 3.3.3, we align the visual and textual concepts with the corresponding
auxiliary modality-specific concepts by introducing our Alignment Loss LA. To show the effective-
ness of our loss, we plot the t-SNE of visual and textual concepts with/without the auxiliary tags
in Fig. 6, see Appx. H for additional t-SNE plots. Fig. 6a shows that without introducing visual
and textual tags, some concepts are not well-separated, in particular, visual and textual concepts 7
with the textual concepts 5 and 3. This can confuse the model in the retrieval task. In contrast, by
introducing the auxiliary modality-specific tags and aligning them with the corresponding visual and
textual concepts, we get better-separated concepts as shown in Fig. 6b.
Limitations and Future Works. We find that modality-specific tags are certainly beneficial for
video retrieval, but also acknowledge there are cases they are harmful. This could be either correct
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Figure 5: Qualitative results on MSR-VTT, DiDeMo and ActivityNet Captions. Left Rank: The
ranking results of our baseline without using auxiliary tags. Right Rank: The ranking results of
MAC-VR, which incorporates extracted visual (VT) and textual (TT) tags to enhance retrieval.

(a) w/o Modality-Specific Tags. (b) w/ Modality-Specific Tags.

Figure 6: t-SNE plot of textual and visual concepts on the MSR-VTT test set with/without using
auxiliary modality-specific tags.
tags that do not help match to the caption or incorrect tags due to errors in tag extraction. Foundation
models, i.e. VLM and LLM, tend to hallucinate the content of the output meaning that the generated
content might stray from factual reality or include fabricated information Rawte et al. (2023); Sahoo
et al. (2024). For example, given the query an asian woman is talking about food we can see that
drinking is one of the visual tags extracted. The model extracts these tags by looking at the last
frame where there is a woman holding a cup and so it hallucinates the fact the woman is going to
drink something. Another possible limitation of our MAC-VR is that we treat all the tags with the
same importance. It is possible that some generated words can be more common than others and
therefore less discriminative. We leave this for future work. See Appx. I for more details on the
reported limitations.
6 CONCLUSION

In this work, we introduce the notion of visual and textual tags extracted by foundation models from
a video and its caption respectively and use them to boost the video retrieval performance. We pro-
pose MAC-VR (Modality Auxiliary Concepts for Video Retrieval), where we incorporate modality-
specific auxiliary tags, projected into disentangled auxiliary concepts. We use a new Alignment Loss
to better align each modality with its auxiliary concepts. We ablate our method to further show the
benefit of using auxiliary modality-specific tags in video retrieval. Our results indicate, both qualita-
tively and by comparing to other approaches, that modality-specific tags help to decrease ambiguity
in video retrieval on three video datasets.
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A APPENDIX CONTENTS

In the Appendix, we present further information about MAC-VR and ablate our design choices. In
Appx. B we add some additional implementation details of MAC-VR. Within Appx. C, we present
the prompts used to extract tags from the foundation models. Next, in Appx. D we explain better the
contrastive loss LC and the proposed Alignment loss LA. In Appx. E, we provide further comparison
with an additional baseline in which tags are appended to the main caption and with some SOTA
trained by using our same training parameters. After, we showcase the effect of using tags extracted
from different foundation models in Appx. F. We present a comparison to auxiliary captions in
Appx. G, further t-SNE plots of MAC-VR in Appx. H, and finally discuss limitations of MAC-VR
in Appx. I.

B ADDITIONAL IMPLEMENTATION DETAILS

In Sec. 4.2 we described the implementation details of MAC-VR. To get all the results shown in
Tab.2 and Tab. 3 we used 12 tags both in training and inference when evaluating MAC-VR without
any inference strategy and with the QB, and 6 and 8 tags in training and inference respectively when
using the DSL.

C TAG EXTRACTION

In Sec. 3.2, we have described how we extracted tags from a video and its corresponding caption,
here we provide the prompts used to extract tags for the video and text modalities. The prompt used
as input of VideoLLaMA2 Cheng et al. (2024) is:

A general tag of an action is a fundamental and overarching idea that encapsulates the es-
sential principles, commonalities, or recurrent patterns within a specific behavior or activity,
providing a higher-level understanding of the underlying themes and purpose associated with
that action.
What are the top 10 general tags that capture the fundamental idea of this action? Give me a
bullet list as output where each point is a general tag, and use one or two significant words per
tag and do not give any explanation.

and the prompt of Llama3.1 lla (2024) is:

A chat between a curious user and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions.
USER: You are a conversational AI agent. You typically extract general tags of an action.

A general tag of an action is a fundamental and overarching idea that encapsulates the es-
sential principles, commonalities, or recurrent patterns within a specific behavior or activity,
providing a higher-level understanding of the underlying themes and purpose associated with
that action.

Given the following action: 1) {}
What are the top 10 general tags of the above action? Use one or two significant words per tag
and do not give any explanation.

ASSISTANT:

Note that {} will be replaced with the caption. Even though we have not provided any example in
the prompts, the foundation models have been able to generate reasonable outputs for both video
and text. We do not use any strategy to avoid the hallucination problem of foundation models as the
results were found via spot checking to be clean enough for our purposes. The only post-processing
strategy we adopted was to clean the output of the models in order to get the corresponding tags: we
remove punctuation; stopwords; extracted tags that contain a noun and a verb to avoid the presence
of complete sentences as tags; and tags larger than 3 words. In Fig.7 we show additional examples
of tags for all the three datasets.

D ALIGNMENT OF DISENTANGLED LATENT CONCEPTS

The LC proposed in Jin et al. (2023b) to align latent representations of videos and captions con-
sists of two terms: an Inter-Concept Decoupling and an Intra-Concept Alignment term. The Inter-
Concept Decoupling loss aims to ensure that latent subspaces capturing different semantic aspects
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Figure 7: Additional examples of visual and textual tags across our datasets.

of text and video representations are minimally correlated. This separation allows each subspace to
focus on unique semantic features without overlap, enhancing the overall discriminative power.

To do so, the mutual information between latent factors is used to quantify their dependency. Given
the two latent concepts eti,k and evi,l, their mutual information is defined in terms of their probabilistic
density functions:

I(eti,k; e
v
i,l) = Et,v[p(e

t
i,k, e

v
i,l)log

p(eti,k, e
v
i,l)

p(eti,k) · p(evi,l)
] (6)

However, since direct computation is challenging, the covariance Ck,l between normalized latent
factors is used as a proxy. By minimizing this covariance for unrelated subspaces through a loss
function:

L1 =
∑
k

∑
l ̸=k

(Ck,l)
2 (7)

the model effectively reduces inter-concept mutual dependencies, achieving conceptual disentangle-
ment. The Intra-Concept Alignment loss focuses on strengthening the correspondence between text
and video representations within the same semantic subspaces. By maximizing mutual information
between positive pairs, the alignment ensures that corresponding subspaces align semantically. This
is implemented through a loss:

L2 =
∑
k

(1− Ck,k)
2 (8)

which encourages high covariance for aligned pairs, ensuring that the semantic alignment within
subspaces is robust and accurate. The combination of these two approaches is captured in the total
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Figure 8: Comparison of extracted visual and textual tags on the MSR-VTT dataset when using
different foundation models.

loss function
LC = γL1 + δL2 (9)

where γ and δ are weights to balance the importance of decoupling and alignment. Our Alignment
Loss LA has the same formulation as explained above and we use the same weights already ablated
in Jin et al. (2023b).

E COMPARISON WITH ADDITIONAL BASELINE AND SOTA
In Tab. 2, we have shown the comparison of MAC-VR against our main baseline DiCoSA Jin et al.
(2023b). In Tab. 8, we show the complete comparison with our baselines, where we define an
additional baseline DiCoSA-ext that is an extension of DiCoSA Jin et al. (2023b) where we append
the extracted tags at the end of the original caption of each video only during training. As we can see
from the results, adding tags at the end of the caption does not help to learn better visual and textual
concepts, indeed DiCoSA-ext performs even worse than the original DiCoSA. Without additional
modelling capacity, the model struggles to benefit from the additional information.

In Tab.3, we have shown the comparison of MAC-VR against SOTA methods. As we explained
in Sec.4.3, many SOTA works use different training parameters when training on DiDemo and Ac-
tivityNet Captions, more precisely different values of batch size (BS) and number of frames (Nv),
such as EMCL-Net Jin et al. (2022) and UCoFiA Wang et al. (2023b). We re-run these methods by
using our same training parameters and show the results in Tab.9. MAC-VR outperforms UCoFIA
on DiDeMo and using our same training parameters the performance on ActivityNet Captions of
UCoFIA drops drastically getting closer to our performance. Similarly, MAC-VR outperforms
EMCL-NeT on DIDeMo and gets very similar performance on ActivityNet Captions.

F DIFFERENCES BETWEEN TAGS EXTRACTED FROM DIFFERENT
FOUNDATIONS MODELS

As explained in Sec. 4.4, we considered different foundation models to extract visual and textual
tags. More precisely we considered Video-LLaMA Zhang et al. (2023a) and VideoLLaMA2 Cheng
et al. (2024) to extract visual tags and Llama2 Touvron et al. (2023b) and Llama3.1 lla (2024) to
extract textual tags. We used the same parameters and same prompts to extract the tags by using
all the considered foundations models. As shown in Tab. 10, the total number of extracted textual
tags by Llama2 Touvron et al. (2023b) is much smaller than the total number obtained when using
Llama3.1 lla (2024). Same conclusion for the total number of extracted visual tags by using Video-
LLaMA Zhang et al. (2023a) and VideoLLaMA2 Cheng et al. (2024) as shown in Tab. 11. This
show a less ability of these foundation models to generate more tags compared with the more recent
ones. In particular, this is more evident when we focused on the visual tags, where not only the
total number of unique tags is smaller but also the average number of tags per pairs is the same one,
meaning that many tags are shared among pairs and so there are less unique tags able to distinguish
all the pairs.

Fig. 8 shows a qualitative comparison of the extracted tags by using different foundations models.
It is evident that Video-LLaMA and Llama2 tend to hallucinate tags that are not relevant with what
shown in the video and described in the caption. Moreover, the textual tags extracted by using
Llama2 are very often words that already appear in the caption. For example, given the captions a
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MSR-VTT (BS = 128, Nv = 12) DiDeMo (BS = 64, Nv = 50) ActivityNet Captions (BS = 64, Nv = 50)
Method IS Year R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
DiCoSA* Jin et al. (2023b) - 2023 47.2 73.5 83.0 2 12.9 41.2 71.3 81.3 2 15.9 36.7 67.8 81.1 2 8.7
DiCoSA-ext - 2024 42.1 69.0 77.7 2 18.1 37.7 70.1 79.5 2 20.0 36.1 67.4 80.3 3 9.4
MAC-VR (ours) - 2024 48.8 74.4 83.7 2 12.3 43.4 72.5 82.3 2 16.9 37.9 69.4 81.5 2 9.6
DiCoSA* Jin et al. (2023b) QB 2023 48.0 74.6 84.3 2 12.9 43.7 73.2 81.7 2 16.8 41.0 71.2 83.6 2 7.4
DiCoSA-ext QB 2024 45.3 69.5 79.1 2 17.1 41.5 71.9 81.2 2 18.9 40.0 70.5 82.7 2 8.1
MAC-VR (ours) QB 2024 49.3 75.9 83.5 2 12.3 45.5 74.8 82.3 2 16.2 42.4 73.2 84.1 2 8.4
DiCoSA* Jin et al. (2023b) DSL 2023 52.1 77.3 85.9 1 12.9 47.3 75.7 83.8 2 14.2 44.9 74.8 85.4 2 6.8
DiCoSA-ext DSL 2024 50.2 74.5 84.4 1 12.4 47.0 74.7 81.6 2 15.6 44.7 74.2 85.1 2 7.3
MAC-VR (ours) DSL 2024 53.2 77.7 85.3 1 10.0 50.2 76.2 84.2 1 15.1 46.5 75.6 86.2 2 6.9

Table 8: Full comparison with additional baseline trained by using same training parameters of
MAC-VR. * our reproduced results. IS: Inference Strategy. BS: Batch Size. Nv: Number of
Frames.

DiDeMo (BS = 64, Nv = 50) ActivityNet Captions (BS = 64, Nv = 50)
Method IS Year R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MR↓ MeanR ↓
UCoFiA Wang et al. (2023b) - 2023 42.1 69.2 79.1 2 16.3 41.2 73.6 84.3 2 7.9
MAC-VR (ours) - 2024 43.4 72.5 82.3 2 16.9 37.9 69.4 81.5 2 9.6
EMCL-Net Jin et al. (2022) DSL 2022 47.6 73.5 82.8 2 11.9 47.1 75.7 86.4 2 7.0
MAC-VR (ours) DSL 2024 50.2 76.2 84.2 1 15.1 46.5 75.6 86.2 2 6.9

Table 9: Comparison with Baseline trained by using same training parameters of MAC-VR. * our
reproduced results. IS: Inference Strategy., BS: Batch Size. Nv: Number of Frames.

Textual Tags
LLaMa2 LLaMa3.1

#Tags Avg #Tags #Tags Avg #Tags
Datasets Train Val Test Train Val Test Train Val Test Train Val Test

MSR-VTT Xu et al. (2016) 162,571 - 5,058 14.96 - 15.20 320,351 - 8,326 27.17 - 26.52
DiDeMo Hendricks et al. (2017) 19,208 4,537 4,332 13.02 13.00 13.19 34,662 9,234 8,266 27.79 28.10 27.59
ActivityNet Captions Krishna et al. (2017) 23,500 - 14,576 15.97 - 16.05 29,449 - 21,766 25.17 - 26.05

Table 10: Comparison of statistics of textual tags on the MSR-VTT dataset when using different
foundation models.

Visual Tags
Video-LLaMA VideoLLaMA2

#Tags Avg #Tags #Tags Avg #Tags
Datasets Train Val Test Train Val Test Train Val Test Train Val Test

MSR-VTT Xu et al. (2016) 8,049 - 3,500 27.11 - 27.12 63,383 - 12,118 27.69 - 27.83
DiDeMo Hendricks et al. (2017) 21,204 6,103 5,743 31.5 31.20 31.21 50,712 10,924 10,636 27.12 27.13 26.92
ActivityNet Captions Krishna et al. (2017) 18.738 - 12,409 27.35 - 27.23 58,934 - 35,334 26.83 - 26.79

Table 11: Comparison of statistics of visual tags on the MSR-VTT dataset when using different
foundation models.

cartoon character runs around inside of a video game and its corresponding video, we can see that
Video-LLaMA and Llama2 hallucinate some visual tags such as snowboarding, desert, skiing, bird,
climbing—definitely irrelevant to what appear in the video—and textual tags such as video game,
running, character, game character that are already words that appear in the caption, therefore
they do not add any additional information to better retrieve the correct video. On the contrary
VideoLLaMA2 and Llama3.1 tend to extract tags that add additional information to the video and
text. See Fig. 8 for more example on all the considered datasets.

G HOW TO GENERATE AUXILIARY CAPTIONS.
In Sec. 4.4, we ablate the use of auxiliary captions instead of using tags. We generate these additional
captions by extracting them directly from the video and paraphrasing the original caption. We
consider different approaches to extract captions from video and text.
Visual Captions. We consider two different approaches to generate new captions from a video:
Blip2 Li et al. (2023b) and VideoLLaMA2 Cheng et al. (2024). Following the same approach
proposed in Wang et al. (2024b), we generate new captions by extracting the middle frame of each
video and use Blip2 to generate a new caption. On the contrary, we used a general prompt to ask
VideoLLaMA2 to generate new captions. The parameters of VideoLLaMA2 are the same ones we
used to extract visual tags in MAC-VR, as described in Sec. 4.2.

You are a conversational AI agent. You typically look at a video and generate a new caption
for a video. Generate 10 new captions. Give me a bullet list as output.

Textual Captions. We consider the paraphraser PEGASUS Zhang et al. (2020) and Llama3.1 lla
(2024) to paraphrase the original caption. PEGASUS Zhang et al. (2020) is a standard Transformer-
based encoder-decoder method pre-trained on a massive text corpora with a novel pre-training objec-
tive called Gap Sentence Generation (GSG). Instead of using traditional language modeling, PEGA-
SUS removes important sentences from a document (gap-sentences) and asks the model to predict
these missing sentences. After the pre-training stage, PEGASUS is fine-tuned on specific sum-
marization datasets to improve its performance on downstream tasks. The model becomes highly
effective at generating concise and accurate summaries by leveraging its pre-training knowledge.
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We extract new captions from a caption by Llama3.1 lla (2024) by giving as input a general prompt
as we did to extract tags:

A chat between a curious user and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions. USER: You are a conversational
AI agent. You typically paraphrase sentences by using different words but keeping the same
meanining.

Given the following sentence: 1) {}
Generate 10 different sentences that are a paraphrased version of the original sentence. Give
me a bullet list as output.

ASSISTANT:

We do not apply any strategy to avoid the hallucination problem as we did to extract tags.
We randomly pick an extracted visual and textual caption as auxiliary inputs in MAC-VR during
training. In inference, we always pick the first caption in the set of the extracted ones. Some
examples of the extracted captions with all the considered methods are shown in Fig. 9.

H ADDITIONAL T-SNE PLOT ON MSR-VTT, DIDEMO AND ACTIVITYNET
CAPTIONS.

In Fig. 10, we show the t-SNE plot of MAC-VR on the MSR-VTT test set when using modality-
specific tags with/without our Alignment loss LA. As we can see, the use of LA helps to better
distinguish the different concepts and have better clusters in the t-SNE plot. In Fig. 11 and Fig. 12,
we show the t-SNE plot of visual and textual concepts without auxiliary modality-specific tags and
when using only visual tags (Fig. 11) and textual tags (Fig. 12) with our Alignment loss LA. As we
can see, both tags used individually help to better align the visual and textual concepts, in particular
the visual tags helps to better align the visual and textual concepts compared to the textual tags. A
possible explanation is that tags extracted from videos share the same modality as captions, which
facilitates better alignment between visual and textual concepts. We leave this conclusion as possible
inspiration for future works in this field. In Fig. 13 and Fig.14, we show the t-SNE plot of MAC-VR
on the MSR-VTT test set of visual and textual concepts with/without auxiliary modality-specific
tags similar to what we did in Sec. 5 for MSR-VTT. We can see that the use of auxiliary modality-
specific tags help to better distinguish the different concepts and have better clusters in the t-SNE
plot. This behave is more evident in DiDeMo (i.e. Fig. 13) rather than ActivityNet Captions (i.e.
Fig. 14). A possible explanation might be the fact that the captions are longer than the MSR-VTT
and so already include more information that can be used to better distinguish the visual and textual
modality concepts.

I LIMITATIONS OF MAC-VR
As mentioned in Sec. 5, two possible limitation of MAC-VR might be the hallucination problem of
foundation models and the long-tailed distribution of tags.
Hallucination Problem. Fig. 15 show some additional examples where MAC-VR fails. A general
problem that is evident from these examples is that the model sometimes tend to extract wrong tags
that are not related with what is shown in the video or described in the caption.
For example, some visual and textual tags of the video associated to the caption a man and woman
performing in front of judes are musical performance, thematic music as visual tags and law, testi-
mony, marriage, couple court. These tags are not relevant to what shown in the video and described
in the text. The model hallucinates textual tags as law, testimony, marriage, couple court because
in the caption there are words such as man, woman. judes that can be associated wrongly with
the extracted law, testimony, marriage, couple court, and visual tags such as musical performance,
thematic music because there are people performing something on stage so the most common asso-
ciation might be a musical performance. See Fig. 15 to see other examples.
Long-tailed Distribution of Tags. Fig. 16 to 29 show the distribution of the top-250 visual and tex-
tual tags in training and testing for all the three datasets. In general we can see that the distribution
of these tags is long-tailed and there are some tags that are very common. Consequently, the most
common tags are shared among many pairs in the dataset, but we find that combinations of tags are
still unique enough to provide discriminative information for the model.
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Figure 9: Examples of extracted captions on the MSR-VTT dataset.

(a) w Modality-Specific Tags, w/o LA. (b) w Modality-Specific Tags, w/ LA.

Figure 10: t-SNE plot of visual and textual concepts on the MSR-VTT test set with/without the
Alignment Loss LA with using both visual and textual tags.

(a) w/o Modality-Specific Tags. (b) w/ Visual Tags, w/ LA.

Figure 11: t-SNE plot of visual and textual concepts on the MSR-VTT test set without using auxil-
iary modality-specific tags and with using only visual tags.
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(a) w/o Modality-Specific Tags. (b) w/ Textual Tags, w/ LA.

Figure 12: t-SNE plot of visual and textual concepts on the MSR-VTT test set without using auxil-
iary modality-specific tags and with using only textual tags.

(a) w/o Modality-Specific Tags. (b) w/ Modality-Specific Tags.

Figure 13: t-SNE plot of visual and textual concepts on the DiDeMo test set with/without using
auxiliary modality-specific tags.

(a) w/o Modality-Specific Tags. (b) w/ Modality-Specific Tags.

Figure 14: t-SNE plot of visual and textual concepts on the ActivityNet Captions test set
with/without using auxiliary modality-specific tags.
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Figure 15: Additional failure cases of MAC-VRacross our datasets.

Figure 16: Distribution of the top-250 training textual tags of MSR-VTT.

Figure 17: Distribution of the top-250 testing textual tags of MSR-VTT.
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Figure 18: Distribution of the top-250 training visual tags of MSR-VTT.

Figure 19: Distribution of the top-250 testing visual tags of MSR-VTT.
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Figure 20: Distribution of the top-250 training textual tags of DiDeMo.

Figure 21: Distribution of the top-250 validation textual tags of DiDeMo.
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Figure 22: Distribution of the top-250 testing textual tags of DiDeMo.

Figure 23: Distribution of the top-250 training visual tags of DiDeMo.
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Figure 24: Distribution of the top-250 validation visual tags of DiDeMo.

Figure 25: Distribution of the top-250 testing visual tags of DiDeMo.
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Figure 26: Distribution of the top-250 training textual tags of ActivityNet Captions.

Figure 27: Distribution of the top-250 testing textual tags of ActivityNet Captions.
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Figure 28: Distribution of the top-250 training visual tags of ActivityNet Captions.

Figure 29: Distribution of the top-250 testing visual tags of ActivityNet Captions.
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