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Abstract

Membership Inference Attacks (MIAs) aim to identify specific data samples within the private
training dataset of machine learning models. Many practical black-box MIAs require query
access to the data distribution to train shadow models. Prior literature presents bounds
for the adversary’s success by making connections to overfitting (and its connections to
differential privacy), noting that overfit models with high generalization error are more
susceptible to attacks. However, overfitting does not fully account for privacy risks in
models that generalize well. We take a complementary approach: by observing that label
memorization can be reduced to membership inference, we are able to present theoretical
scenarios where the adversary will always successfully (i.e., with extremely high advantage)
launch an MIA. We proceed to show that these attacks can be launched at a fraction of the
cost of state-of-the-art attacks. We confirm our theoretical arguments with comprehensive
experiments; by utilizing samples with high memorization scores, the adversary can (a)
significantly improve its efficacy regardless of the MIA used, and (b) reduce the number of
shadow models by nearly two orders of magnitude compared to state-of-the-art approaches.

1 Introduction

Machine learning (ML) models are often trained on large volumes of data that is custom curated for the task
at hand. Collecting and processing this data is both tedious and time-consuming, and requires significant
investment. Additionally, the data used to train ML models is oftentimes sensitive, and protecting its privacy
is paramount (Choquette-Choo et al., 2021). For instance, ML models trained for medical applications involve
health-related information pertaining to patients; the privacy of this data is protected by regulations such as
HIPAA (Annas, 2003).

The widely held belief was that, since the data is processed in non-intuitive ways to obtain an ML model,
purely interacting with the model would not leak information about the data used to train it. However,
membership inference (MI) aims to infer if a particular record was present (or absent) in the training data
given access to a trained model. Follow-up research aims to determine the advantage of such an MI adversary
i.e., how likely is the adversary to succeed in their attempts, mostly based on connections to differential
privacy (Mahloujifar et al., 2022; Sablayrolles et al., 2019; Yeom et al., 2018). In this paper, we focus on
the fact that such MI advantage (i.e., adversary success) widely varies across different data samples, and
study how the adversary can identify “more vulnerable” data to employ more successful and less expensive
MI attacks (MIAs).

Our analysis leverages the label memorization framework (Feldman, 2020; Brown et al., 2021; Feldman &
Zhang, 2020). Recall that overfitting (colloquially) occurs when a model performs well on training data but
poorly on unseen data, indicating a lack of generalization. However, a model can generalize well and still
memorize specific training examples, especially outliers or unique data points. This memorization poses privacy
risks, as adversaries can exploit it to extract sensitive information from the model. Therefore, focusing on
label memorization allows for a more accurate assessment of privacy vulnerabilities, as it directly addresses the
unintended retention of specific training data, irrespective of the model’s generalization performance (Feldman,
2020).
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Our main contribution here is to view the MIA framework through the lens of memorization, and provide the
first formal bound of MI advantage as a function of label memorization. This bound is particularly interesting
as it unearths the characteristics of samples for which MIAs are most successful, as label memorization is a
data-dependent phenomenon.

It is also worth noting that many MIAs necessitate the training of a substantial number of shadow models,
thereby creating a computational bottleneck (Shokri et al., 2017; Song & Mittal, 2021; Watson et al., 2021; Ye
et al., 2022); we establish a connection between label memorization and the computational efficiency of MIAs.
By framing MIA as a hypothesis testing problem, akin to previous works (Carlini et al., 2022a; Ye et al.,
2022), we note that the sample complexity of hypothesis testing corresponds to the number of shadow models.
This allows us to provide a formal bound on the sample complexity in terms of label memorization, implying
that MIAs targeting highly memorized samples necessitate fewer shadow models to achieve successful results.

Lastly, we conduct extensive evaluation over multiple vision datasets and models to support our argument
that our explanation of disparate impact yields both (a) more successful, and (b) computationally inexpensive
MIAs compared to state-of-the-art approaches. These experiments serve as support for our theoretical
formulation, and are not meant to be immediately practical. With highly memorized data, we are able to
achieve AUROC of 0.99 and TPR of 100% at 0.1% FPR with less than 20 shadow models, whereas achieving
the same success with random data often requires more than 200 shadow models.

Related Work: While previous works have focused on bounding MIA success using overfitting and
differential privacy (Yeom et al., 2018; Ye et al., 2022), memorization is a more ubiquitous phenomenon than
overfitting, as demonstrated in several papers (den Burg & Williams, 2021; Rocks & Mehta, 2022; Tirumala
et al., 2022), and can be more precisely characterized (Recht, 2024). Carlini et al. (2022a) proposed LiRA, an
effective attack to distinguish whether a sample was used for training or not, whose formulation is essentially
identical to subsampling-based memorization approximation (as we highlight in Appendix C.2). Their
follow-up work (Carlini et al., 2022b) notes that memorization is a relative concept, showing experimentally
that removing highly likely members (as detected by LiRA) eliminates the most memorized samples, revealing
a new layer of memorized data. A variant of this phenomenon is also shown by Jagielski et al. (2022).
However, none of these works formally establish a theoretical connection between memorization and MIA
success; to our knowledge, we make the first effort. For an extended discussion of related work, see Section 5.

2 Background and Problem Overview

In this section, we introduce the background and formalism that we use throughout the paper.

2.1 Memorization

Distribution D captures the space of inputs and outputs, from which a dataset S of size s is sampled (i.e.,
S ∼ Ds) such that S = {zi}s

i=1. Each zi is of the form of input-label pair (xi, yi), where xi ∈ X is the space
of inputs (e.g., images) and yi ∈ Y is the space of outputs (e.g., labels). Using this dataset, a learning
algorithm L (e.g., stochastic gradient descent (Bottou, 2012)) can create a trained model i.e., θ ∼ L(S) by
minimizing a suitable objective L (e.g., cross-entropy loss (Zhang & Sabuncu, 2018)).

Label Memorization: ML models are vastly overparameterized, and are known to fit to even random
labels (Feldman, 2020). This is termed memorization. For a sample zi, given dataset S (without zi), label
memorization is formalized as the absolute difference in correctness probabilities 1:

mem(L, S, zi) :=
∣∣∣∣ Pr
θ∼L(S(i))

[θ(xi) = yi]− Pr
θ∼L(S)

[θ(xi) = yi]
∣∣∣∣ = Pr

θ∼L(S(i))
[θ(xi) = yi]− Pr

θ∼L(S)
[θ(xi) = yi] (1)

where S(i) = S ∪ {zi}. This is a point-wise difference in marginal prediction behavior for the fixed pair zi.

1For most practical algorithms, we expect the value in Equation 1 to be non-negative; see Section 4.1 in Feldman (2020).
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2.2 Membership Inference

Security Game: The MI game defines the interaction between two parties: an adversary A aiming to
perform MI, and a challenger C that is responsible for training. We assume A knows the data distribution D
and the learning algorithm L but not the randomness used by L. The output of L belongs to the set Θ.

1. C picks a dataset S sampled according to D.
2. A picks z ∼ D and sends it to C.
3. C picks a random bit bC ← {0, 1}. If bC = 0, let S′ = S; otherwise S′ = S ∪ {z}. C executes L on S′

and sends the result θL ∈ Θ to A.
4. A guesses a bit bA. If bC = bA, then the output of the game is 1 (indicating that the adversary won

the game); otherwise the output of the game is 0 (indicating that the adversary lost the game).

The advantage of the adversary is written as the difference between A’s true and false positive rates as
follows (Yeom et al., 2018),

Adv(L,A) = Pr(bA = 1 | bC = 1)− Pr(bA = 1 | bC = 0) (2)

Let CA be a class of adversaries (e.g., probabilistic polynomial time algorithm adversaries). We can define
Adv(L, CA) as supA∈CA

Adv(L,A). When the class CA is implicit from the context we still write it as
Adv(L,A). The random variable corresponding to the MI game is written as MIL,A.

Threat Model: We define MIs
L,A separately to denote the stronger game where A also has access to the

actual dataset S not just the distribution D (Mahloujifar et al., 2022) (i.e., A picks z ∈ S in step 2). Such
an assumption is not far-fetched. In scenarios where trusted auditors verify data deletion through MIAs (Ma
et al., 2022), the auditors (in this case, the adversary) are assumed to know both the dataset S and the point
being deleted z.

Important To Note: In this model, the adversary aims to identify, with high success, the membership
of specific points. This does not significantly deviate from the setting of existing work. More so, our game
definition is a variant of definition 3.3 in (Ye et al., 2022), where the adversary chooses the sample to include
in the game. Privacy analysis under such a stronger definition (i.e., assuming a worst-case adversary) is
useful, as the failure of the adversary would imply the robustness of the learning algorithm to privacy attacks.
A useful analogy is the IND-CPA game in cryptography (Wikipedia contributors, 2025), where security is
analyzed in a setting that favors the adversary, ensuring that defenses remain effective even under strong
attack assumptions.

Also note that prior works (Carlini et al., 2022a; Zarifzadeh et al., 2024) argue that an effective MIA is the one
that reliably identifies few members of a sensitive dataset. We follow the same setup. Our privacy adversary
wants to evaluate their MIA’s (formalized as algorithm A) true-positive rate (TPR) at low false-positive rates
(FPR); success implies high TPR at low FPR regimes.

2.3 Hypothesis Testing

A hypothesis test is a method of statistical inference where one checks if the data at hand is sufficient to
support a particular hypothesis. Let P0 and P1 denote two distributions with support X . A hypothesis test
T : X ⋆ → {0, 1} takes a sequence of n elements σ = {o1, · · · , on} and predicts 0 (i.e., σ is generated by P0)
or 1 (i.e., σ is generated by P1). There are two types of errors associated:

• Type I error: The probability that the test outputs P1 if P0 is true i.e., Prσ∼P n
0

(T (σ) = 1).
• Type II error: The probability that the test outputs P0 if P1 is true i.e., Prσ∼P n

1
(T (σ) = 0).

The ideal goal of a hypothesis test is to achieve Type I error below an application specific threshold.
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The advantage of a test T is defined as,

Advn(T ) = Pr
σ∼P n

0

(T (σ) = 0)− Pr
σ∼P n

1

(T (σ) = 0) (3)

Distance between two distributions: For two probability distributions P0, P1 over the same domain, we
use TV (P0, P1) to denote the total variation distance between them, which is the largest possible difference
in probabilities that the two distributions can assign to the same event. We also define H2(P0, P1) as the
square of the Hellinger distance between P0 and P1. The TV distance and Hellinger distance are related by
the following well-known inequalities: H2(P0, P1) ≤ TV (P0, P1).

Log-Likelihood Ratio (LLR) Test: The Neyman-Pearson lemma (Neyman & Pearson, 1933) states that
the LLR test achieves the best Type II error for a given bound on the Type I error, and is optimal.

LLR(σ) = log P n
0 (σ)

P n
1 (σ) = log

n∏
i=1

P0(oi)
P1(oi)

(4)

If LLR(σ) ≥ κ (for some constant κ), the test outputs P0, and otherwise outputs P1. Consider the soft version
of the above LLR test, sLLR(x), which outputs 0 with probability g(x) and 1 with probability 1 − g(x),
where g(x) is:

e(P0, P1)
1 + e(P0, P1)

where e(P0, P1) denotes exp( 1
2 log P0(o)

P1(o) ). Canonne et al. (2019) describe the advantage of the sLLR test using
a single sample as follows:

Lemma 1 For any two distributions P0, P1, the advantage of sLLR test with n = 1 is Adv1(sLLR) =
H2(P0, P1).

Sample Complexity: Sample complexity MP0,P 1
α (T ) of a test T is defined such that for all n ≥MP0,P1

α (T ),
the advantage Advn(T ) ≥ α. The sample complexity of the optimal test T ⋆ serves as the lower bound for the
number of samples necessary to achieve an error probability 1− α:

MP0,P 1
α (T ⋆) = min

T
MP0,P 1

α (T )

where T ⋆ corresponds to LLR test in Equation 4 by Neyman-Pearson lemma.

Lemma 2 The sample complexity of the optimal test T ⋆ to distinguish P0 from P1 is Θ( 1
H2(P0,P1) ).

This bound is tight (i.e., both lower-bounded and upper-bounded) (Bar-Yossef, 2002; Canonne et al., 2019).

2.4 Problem Statement

We wish to establish a theoretical connection between game MIs
L,A and label memorization. By doing so, we

will demonstrate that utilizing highly memorized data samples can significantly improve both success and
computational efficiency (§ 3) of adversaries (c.f., § 4).

We study a setting where the MI adversary can strategize its game by choosing samples that are highly likely
to be memorized (i.e., a large value in Equation 1) to add in game MIs

L,A. Here, we assume the existence of
a memorization oracle Omem that returns an approximate memorization score for any sample chosen by the
adversary. These samples may come from the same distribution D that was used to obtain S, or can come
from a different distribution (refer § 4 of Carlini et al. (Carlini et al., 2021)). In our experiments in § 4, data
points z are sampled from a different distribution than S, and the memorization oracle is instantiated by
running the algorithm proposed by Feldman and Zhang (Feldman & Zhang, 2020) or TRAK (Park et al.,
2023). The presence (or absence) of such points leads to a characteristic signal that the adversary exploits to
launch MIAs.

Our Main Thesis: We wish to prove that assuming A has complete knowledge of the dataset S used to
train a machine learning model using algorithm L, for a sample z∗,
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• A can successfully2 identify its membership in S if mem(L, S, z∗) = 1 i.e., Adv(L,A) = 1.

• If A utilizes m shadow models for launching an MIA for a sample z, it requires m∗ ≤ m shadow
models if mem(L, S, z∗) = 1.

3 Memorization Bounds Membership Inference

We aim to establish a formal understanding of the connection between memorization and membership
inference. We present a theoretical analysis that addresses two key aspects: (a) the memorization score of a
point serves as a lower bound for the MI adversary’s success (in determining membership of that point), and
(b) higher values of memorization score correlate with improved computational efficiency of MIAs. To achieve
these conclusions, we view the MI game through the lens of hypothesis testing. Our work aligns with recent
endeavors to connect MIAs and hypothesis testing (Ye et al., 2022; Carlini et al., 2022a), and we provide a
rigorous description of this connection, exploring various assumptions regarding the adversary’s capabilities.

3.1 Memorization and MIA Efficacy

Let f : Θ→ Rℓ (e.g., f might extract the logits corresponding to the pre-softmax layer of a network (Carlini
et al., 2022a)). The adversary A may not have direct access to the actual dataset S ∼ D constructed by
the challenger (as in the default security game in § 2.2). However, leveraging the learning algorithm L, the
adversary can initiate a random process involving sampling as follows: sample a new dataset Ŝ ∼ D and can
either,

1. Execute L on Ŝ to obtain θL ∈ Θ. Then output f(θL), which is characterized by distribution P0.
Note that P0 on Rℓ depends on D and also the randomness of L.

2. Execute L on Ŝ ∪ {z} to obtain θL ∈ Θ. Then output f(θL), which is characterized by distribution
P1.

Problem to Solve: A receives a new θL ∈ Θ and needs to decide if f(θL) ∈ Rℓ was generated by distribution
P0 or P1. In other words, A needs a hypothesis test TD,L that, given one sample o ∈ Rℓ, outputs 0 or 1
corresponding to distributions P0 and P1. We define the following terms:

T1 = Pr
o∼P0

(TD,L = 0),

T2 = Pr
o∼P1

(TD,L = 0)

i.e., the adversary in this MI game launches the hypothesis testing with TD,L, and this gives us the following
bound: AdvT (L,A) = T1 − T2 where AdvT (L,A) is Adv1(TD,L) (refer Equation 3). Next, we outline the
specific hypothesis tests that the adversary can employ to launch effective MIAs in two scenarios.

Scenario 1: A perfectly knows P0 and P1. Assume that the adversary knows the density function for
P0 and P1. Given θL, A can use the sLLR test to output 0 and 1. Then we immediately get the following
theorem by Lemma 1.

Theorem 1 Adv(L,A) ≥ H2(P0, P1) where A uses sLLR test as described above.

Scenario 2: A does not know P0 and P1. Consider the case when the adversary only knows P0 and P1
implicitly, and does not know their probability density functions. Then A can make a parametric assumption
on P0 and P1; for instance, assume that they are two l-dimensional multivariate normal distributions N(µ1, Γ1)
and N(µ2, Γ2) 3. A decides the output based on the following strategy:

2For success defined in § 2.2.
3Such parametric approximation has been used in the literature (Carlini et al., 2022a). Note that other than multivariate

normal distribution, any parametric distribution (e.g., exponential) can be assumed for P0 and P1. The only requirement would
be that the parameters of the distribution should be efficiently estimated, and preferably, the Hellinger distance should be
expressed in a concise, closed form.
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1. Empirically estimate the parameters of P0 and P1. Generate m datasets Ŝ1, · · · , Ŝm sampled from
D (recall that A knows D). Execute L on Ŝ1, · · · , Ŝm and Ŝ1 ∪ {z}, · · · , Ŝm ∪ {z} and generate two
sets: Z0 = {f(θ1), · · · , f(θm)} and Z1 = {f(θ1,z), · · · , f(θm,z)}. Then, estimate the corresponding
parameters i.e., (µ0, Γ0) for Z0. and (µ1, Γ1) for set Z1. Note that m corresponds to the number of
shadow models in the literature (Shokri et al., 2017; Sablayrolles et al., 2019; Carlini et al., 2022a).
Z0 represents the out case where the data z is excluded during training, and Z1 represents the in
case where z is a member of the training dataset.

2. Decide whether f(θL) given by the challenger is in P0 and P1 using sLLR(f(θL)) test with normal
distributions parameterized by N(µ0, Γ0) and N(µ1, Γ1).

The Hellinger distance H2(P0, P1) where P0 ∼ N(µ0, Γ0) and P1 ∼ N(µ1, Γ1) is given by:

1 − (det(Γ0) det(Γ1)) 1
4

det( Γ0+Γ1
2 ) 1

2
× ζ

where ζ = exp
{
− 1

8 (µ0 − µ1)⊤( Γ0+Γ1
2 )−1(µ0 − µ1)

}
(where ⊤ denotes transpose). This immediately becomes

the lower bound for MI advantage by Theorem 1.

Note: Recall that there is a one-sided version of the problem as well: A receives θL ∈ Θ and needs to decide
if f(θL) was generated by distribution P0 or not. In other words, the second distribution P1 is absent.

Under Stronger Adversary: Assume that A has access to not only data distribution D and learning
algorithm L but also knows the exact dataset S. Symmetrically, the MI advantage in Equation 2 can be
rewritten as

Adv(L,A) = Pr(bA = 1 | bC = 1)− Pr(bA = 1 | bC = 0)
≥ Pr(A(L(S ∪ {z})) = 1)− Pr(A(L(S)) = 1) (5)

where the probability is over the randomness in L and A.

In the above expression, A is the shorthand for the algorithm used by the adversary to predict the bit bA.
It can be viewed as a randomized function from Θ × X to {0, 1}. Let rL and rA be the random strings
corresponding to L and A. If rL and rA are independent, we can rewrite Equation 5 as

Pr
θ∼L(S∪{z})

α(A, θ, z)− Pr
θ∼L(S)

α(A, θ, z) (6)

where α(A, θ) = PrrA(A(θ, z) = 1). Note that α(A, θ, z) is a deterministic function from Θ × X to {0, 1}.
This is a standard argument in analyzing games in cryptography; w.l.o.g, we can consider deterministic
adversaries.

Now, let us consider the following adversary: A(θ, z) = 1θ(x)=y, where z = (x, y); x is data and y is the
corresponding label. In this case, Equation 6 simplifies to:

Advm(L,A) = Pr
θ∈L(S∪{z})

(θ(x) = y) − Pr
θ∈L(S)

(θ(x) = y)

= mem(L, S, z)
which immediately proves that:

Theorem 2 Adv(L,A) ≥ mem(L, S, z).
This implies that if the adversary can choose z with a high memorization score a, the MI advantage
can be increased.

aCaveat: in practical setup, we assume the existence of memorization oracle Omem that gives the approximate
memorization score given a sample. We leave the realization of a tractable, and effective Omem as an important future
work.

Recall that for the advantage Adv(L,A) we implicitly take the supremum over adversaries in a certain class.
Hence, an advantage β with a specific adversary becomes a lower bound on the advantage of the adversary
(see Appendix B.2 for advantage with other various instantiations of the adversary).
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3.2 Memorization and MIA Efficiency

Finally, based on our analysis in the above two subsections, we provide the connection between the memo-
rization and the sample efficiency of MI game.

Observe that Scenario 2 in § 3.1 is the one which is most general i.e., the adversary knows nothing about
both distributions. In such settings, note that the adversaries need to train m shadow models to obtain
observations (or “samples”) which can be used to approximate distributions, and then hypothesis testing is
performed using these approximated distributions. Recall that Lemma 2 (refer § 2.3) defines the optimal
sample complexity for any hypothesis test based on the Hellinger distance between two distributions. Thus,
one can observe that the number of shadow models corresponds to the sample complexity of the hypothesis
test. Two natural questions emerge: (a) how does one estimate this sample complexity when the distributions
are unknown?, and (b) how many samples do we need to effectively estimate the distribution for hypothesis
testing?4 To answer these questions, we first need to establish a formal relationship between the Hellinger
distance, H2(P0, P1), and our memorization score, mem(L, S, z). However, a direct comparison is challenging:
H2 is a global measure of divergence between the entire model distributions, while mem is a local, point-wise
measure. We bridge this gap by making an explicit assumption about how these distributions diverge. Under
our prediction-aligned divergence assumption (see Appendix B.1 for a detailed proof), we posit that the
primary difference between distributions P0 and P1 is captured by the change in the model’s prediction on
the specific point z. This allows us to relate the global H2 distance to the local mem score via the TV distance,
yielding the following key inequality,

H2(P0, P1) ≤ mem(L, S, z) (7)

By plugging Equation 7 into Lemma 2, we get

Corollary 1 MP0,P 1
α (T ⋆) = Ω

(
1

mem(L,S,z)

)
5.

The implication is that if A can launch the attack using z with high memorization score, the required number
of shadow models can be reduced, which is the major computational bottleneck in most popular attacks (Song
& Mittal, 2021; Sablayrolles et al., 2019; Shokri et al., 2017; Carlini et al., 2022a).

4 Experiments

Having established the theoretical connections between memorization and MIA efficacy and efficiency, we
now validate them empirically. We stress that these experiments are not meant to serve as “practical” MIAs,
but provide more insight on how an adversary may be more successful. We carry out experiments to answer
the following questions:

RQ1. Are MIAs more performant on samples with high memorization scores compared to randomly chosen
OOD samples or samples that belong to under-represented subpopulations (§ 4.2)?

RQ2. If the adversary knows that a particular sample is likely to have a high memorization score, can they
launch more computationally efficient MIAs (§ 4.3)?

Based on our experiments, we observe that:

A1: MIAs that utilize highly memorized data are significantly more effective than those based on other
phenomenon i.e., memorization can accurately explain the disparate performance of MIAs; the attack
of Carlini et al. (Carlini et al., 2022a) with highly memorized data consistently achieves an AUROC

4Both questions have the same implication.
5While empirical results suggest this bound is tight in practice, a theoretical upper bound remains an open direction.

Nonetheless, we note that this lower bound still meaningfully proves the fundamental relationship between mem and the minimum
cost of an attack represented in terms of sample complexity.
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of 1.0 across datasets. Moreover, it consistently exceeds TPR of 96% (at 0.1% FPR) and, in some
cases, even attains a perfect TPR of 100% (Table 1).

A2: An adversary that utilizes data with high memorization scores can achieve a significant reduction
in MIA overhead (i.e., training fewer shadow models). Specifically, across all considered dataset
choices, the adversary achieves an equivalent level of attack performance with mere 5 shadow models
to match the performance with 2000 shadow models under the same setup, a 400× reduction. The
same effect is observed even when the adversary utilizes random OOD data (Figure 1), albeit not the
same magnitude of reduction.

4.1 Setup

We briefly describe our experimental setup used to validate the theory (see Appendix C for further details).

Datasets. We consider a training data Dtr that comprises a mixture of two distinct groups (say Dtr
O and

Dtr
U) with a mixing ratio α ∈ [0, 1] (i.e., to obtain Dtr = α ·Dtr

O + (1− α) ·Dtr
U). In such settings, one dataset

is an over-represented group (i.e., Dtr
O when the mixing coefficient is greater than 0.5), and the other is an

under-represented group (i.e., Dtr
U). Such composite datasets have been recognized in many contexts; for

instance, in federated learning, data in many settings, data is pooled from different sources such as devices
from various geographic regions (Li et al., 2020); modern datasets are long-tailed and composed of varied
subpopulations (Zhu et al., 2014; Van Horn & Perona, 2017; Babbar & Schölkopf, 2019). We set Dtr

O as either
the MNIST train dataset (consisting of 60,000 samples) (LeCun et al., 2010) or the CIFAR-10 train dataset
(consisting of 50,000 samples) (Krizhevsky, 2009). We explore three different approaches to define Dtr

U :

(a) (Random OOD) When Dtr
O is the MNIST train set, Dtr

U is 1000 MNIST samples augmented
by approaches proposed by Hendrycks et al. (Hendrycks et al., 2022), 1000 SVHN samples, or
6000 CIFAR-10 samples. When Dtr

O is CIFAR-10, then Dtr
U is 1000 samples randomly drawn from

the CIFAR-100 train set (Krizhevsky, 2009), or 1000 random CIFAR-10 train data augmented as
earlier (Hendrycks et al., 2022). Labeling across both groups was consistent. We ensure that the
accuracy (both test and train) of both the under- and over-represented groups is reasonable.

(b) (Subpopulations) The adversary identifies random OOD samples that belong to a particular
subpopulation (Jagielski et al., 2021): for each Dtr setup as specified in (a), we first preprocess Dtr

by extracting the feature representations from the penultimate layer of a DNN trained on Dtr (e.g.,
EfficientNet (Tan & Le, 2019) in our case). Then, we apply a PCA projection to further reduce the
feature dimensionality to 10. Finally, the KMeans clustering algorithm (Hartigan & Wong, 1979)
is applied to cluster the projected Dtr into five subgroups. We identify those samples from Dtr

U
belonging to the smallest cluster as the desired subpopulation 6.

(c) (Singletons) The adversary has access to an oracle Omem and identifies OOD samples, particularly
with high memorization scores. We consider two ways of instantiating Omem; the empirical approxi-
mation of self-influence (Feldman & Zhang, 2020), and TRAK (Park et al., 2023) (a more efficient
approximation algorithm of self-influence). For each choice of Dtr

O
⋃

Dtr
U as specified in (a), we define

singletons as data belonging to Dtr
U whose memorization degree exceeds a threshold (0.8 when Dtr

O is
MNIST, and 0.5 when Dtr

O is CIFAR-10 7).

We choose these three categories of constructing under-represented groups as they represent popular theories
for explaining the disparate performance of MIAs on samples. Evaluation on these categories will help better
understand which theory is more accurate in explaining the behavior. Note that while these datasets may
seem artificially mixed, our comparison is not the absolute success of any single attack, but relative gains for
each attack between different types of vulnerable samples (to truly understand the best underlying cause).

6We note that hyperparameter choices, such as dimensionality of projection space, number of clusters, etc., are left to the
adversary’s specifications depending on the setup, and one could always come up with other methodologies to instantiate the
subgroup identification.

7To ensure an adequate representation of singletons in conjunction with the over-represented population, we choose the
threshold with which |Dtr

U | is not significantly smaller than |Dtr
O |
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Models. We follow the setup in Carlini et al. (2022a) and employ two CNN models with varying convolutional
filter sizes set to 32 and 64 and two ResNet models (ResNet-9 and ResNet-18) (He et al., 2016). Our primary
focus is on the vision setting, as the notion of label memorization is well-studied and evaluated in this setting.

MIAs. We consider five representative attacks from the MIA literature (Yeom et al., 2018; Shokri et al.,
2017; Song & Mittal, 2021; Sablayrolles et al., 2019; Carlini et al., 2022a). Yeom et al. (2018) employ a very
simple attack by thresholding the loss output without necessitating the adversary’s access to the training
dataset or distribution. On the other hand, other MIAs are built upon the assumption that the MI adversary
has query access to the training data distribution for shadow model training (Shokri et al., 2017; Song &
Mittal, 2021; Sablayrolles et al., 2019; Carlini et al., 2022a). For those, we train 2000 shadow models for each
setting.

Metrics. Based on the premise established by Carlini et al. (2022a), for each attack, we report the TPR
when a decision threshold τ is chosen to maximize TPR at a target FPR (e.g., as low as 0.1% in our setting)
along with AUROC values (i.e., the probability that a positive example would have a higher value than a
negative one). We report the performance when the adversary launches an MIA with random samples in Dtr

(“All”) vs. selected samples in Dtr
U (“Under-rep.”).

4.2 Increased MIA Success

Table 1 provides a comprehensive summary of the results obtained from evaluating MIAs across various data
settings (see Table 4 in Appendix D.1 for more results).

For every attack, the first row corresponds to the performance of the attacks in the conventional setting, where
Dtr is constructed using a single dataset. Subsequently, the next group of three rows represent scenarios where
the adversary constructs the training dataset as a mixture of two groups, with variations in the selection of
the under-represented group, as outlined in § 4.1. For each setting, we provide the attack success rate under
two conditions: (a) when random data is used as the challenge data (denoted as column “All"), as commonly
used in literature, and (b) when the adversary specifically utilizes data from the under-represented group
(denoted as column “Under-represented") 8. This comparative analysis allows for a deeper understanding of
MIA effectiveness by examining the impact of using data from the under-represented group.

Takeaway 1: We observe that every attack always performs better with respect to the sample from the
under-represented group (i.e., OOD samples, OOD subpopulation, or OOD singletons) than with a random
sample (most likely to be drawn from the over-represented groups); given MNIST+augMNIST (OOD), the
attack proposed by Shokri et al. (Shokri et al., 2017) yields an overall AUROC of 0.51 and TPR of 0.20%
under “All”. However, we see an increase in the AUROC to 0.72 and TPR to 0.70% when the attack is
evaluated on under-represented augMNIST samples (under “Under-represented” of MNIST+augMNIST
(OOD) setting). The most substantial improvement is observed when utilizing OOD singletons in all scenarios;
in the case of MNIST+SVHN (Self-infl.), the attack devised by Sablayrolles et al. (Sablayrolles et al., 2019)
demonstrates enhanced efficacy from an AUROC of 0.51 and TPR of 2.90% (see “All” of MNIST+SVHN
(Self-infl.)) to an AUROC of 1.0 and TPR of 97.55% (see “Under-represented” of MNIST+SVHN (Self-infl.)).
This surpasses the attack’s performance when evaluated using OOD samples, where the AUROC is 0.81 and
TPR is 2.86% (see “Under-represented” of MNIST+SVHN (OOD)), or even using OOD subpopulation, where
the AUROC is 0.95 and TPR is 26.0% (see “Under-represented” of MNIST+SVHN (subpop.)). Observe that
this phenomenon is true even in scenarios where the dataset is not artificially mixed, i.e., the rows with only
MNIST or CIFAR-10.

While we see increased efficiency with singletons in most of the cases, we note that utilizing samples from
OOD subpopulations leads to better attack success in some cases; e.g., see the results of Yeom et al. (Yeom
et al., 2018) with CIFAR-10+CIFAR-100 dataset. One possible explanation for this phenomena could be
made by observing the distribution of memorization scores of samples in CIFAR-10+CIFAR-100 dataset (see
Fig. 7 in Appendix D.2). We observe that the distribution of memorization scores for the original CIFAR-10

8When dataset consists of single population (e.g., MNIST, or CIFAR-10), “Under-represented" reports the attack performance
on the data samples with memorization scores above 0.4 for MNIST, and 0.8 for CIFAR-10; the smaller threshold is chosen for
MNIST since the dataset is less long-tailed. This is to observe if the adversary can still leverage memorization to launch a better
attack even in a single dataset setup.
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Method Dataset (Dtr) AUROC ↑ TPR @ 0.1% FPR ↑ Dataset (Dtr) AUROC ↑ TPR @ 0.1% FPR ↑
All Under-rep. All Under-rep. All Under-rep. All Under-rep.

Yeom et al. (2018)

MNIST 0.50 0.50 0.0% 0.0% CIFAR-10 0.62 0.73 0.0% 0.0%
MNIST+augMNIST (OOD) 0.50 0.61 0.0% 0.0% CIFAR-10+augCIFAR-10 (OOD) 0.57 0.69 0.0% 0.0%
MNIST+augMNIST (Subpop.) 0.50 0.80 0.0% 0.0% CIFAR-10+augCIFAR-10 (Subpop.) 0.57 0.69 0.0% 0.0%
MNIST+augMNIST (Self-infl.) 0.50 0.82 0.0% 0.0% CIFAR-10+augCIFAR-10 (self-infl.) 0.57 0.71 0.07% 0.59%
MNIST+augMNIST (TRAK) 0.50 0.86 0.0% 3.01% CIFAR-10+augCIFAR-10 (TRAK) 0.57 0.73 0.10% 6.16%
MNIST+SVHN (OOD) 0.50 0.77 0.0% 0.0% CIFAR-10+CIFAR-100 (OOD) 0.57 0.79 0.0% 0.0%
MNIST+SVHN (Subpop.) 0.50 0.80 0.0% 0.0% CIFAR-10+CIFAR-100 (Subpop.) 0.62 0.85 0.0% 17.32%
MNIST+SVHN (Self-infl.) 0.50 0.93 0.0% 2.86% CIFAR-10+CIFAR-100 (self-infl.) 0.63 0.76 0.0% 0.0%
MNIST+SVHN (TRAK) 0.50 0.90 0.0% 0.03% CIFAR-10+CIFAR-100 (TRAK) 0.63 0.76 0.0% 0.0%

Shokri et al. (2017)

MNIST 0.51 0.66 0.07% 3.33% CIFAR-10 0.69 0.99 0.41% 53.70%
MNIST+augMNIST (OOD) 0.51 0.72 0.20% 0.70% CIFAR-10+augCIFAR-10 (OOD) 0.63 0.78 0.16% 1.17%
MNIST+augMNIST (Subpop.) 0.51 0.66 0.12% 3.25% CIFAR-10+augCIFAR-10 (Subpop.) 0.60 0.78 0.12% 0.76%
MNIST+augMNIST (Self-infl.) 0.51 0.99 0.15% 18.88% CIFAR-10+augCIFAR-10 (self-infl.) 0.63 0.97 0.20% 39.29%
MNIST+augMNIST (TRAK) 0.51 0.95 0.12% 15.73% CIFAR-10+augCIFAR-10 (TRAK) 0.63 0.93 0.22% 38.36%
MNIST+SVHN (OOD) 0.52 0.76 0.25% 0.30% CIFAR-10+CIFAR-100 (OOD) 0.69 0.85 0.21% 0.28%
MNIST+SVHN (Subpop.) 0.51 0.91 0.10% 1.41% CIFAR-10+CIFAR-100 (Subpop.) 0.68 0.95 0.24% 20.16%
MNIST+SVHN (Self-infl.) 0.51 0.99 0.23% 72.86% CIFAR-10+CIFAR-100 (self-infl.) 0.70 1.0 0.45% 100%
MNIST+SVHN (TRAK) 0.51 0.99 0.24% 59.47% CIFAR-10+CIFAR-100 (TRAK) 0.71 0.95 0.26% 14.07%

Sablayrolles et al. (2019)

MNIST 0.51 0.75 0.12% 15.09% CIFAR-10 0.71 1.0 6.18% 68.17%
MNIST+augMNIST (OOD) 0.51 0.85 0.22% 0.61% CIFAR-10+augCIFAR-10 (OOD) 0.68 0.87 3.20% 9.17%
MNIST+augMNIST (Subpop.) 0.52 0.93 0.11% 27.91% CIFAR-10+augCIFAR-10 (Subpop.) 0.67 0.87 3.17% 6.03%
MNIST+augMNIST (Self-infl.) 0.52 0.99 0.33% 46.10% CIFAR-10+augCIFAR-10 (self-infl.) 0.72 1.0 3.14% 46.97%
MNIST+augMNIST (TRAK) 0.51 0.99 0.29% 42.08% CIFAR-10+augCIFAR-10 (TRAK) 0.70 0.93 3.17% 37.91%
MNIST+SVHN (OOD) 0.50 0.81 0.21% 2.86% CIFAR-10+CIFAR-100 (OOD) 0.74 0.90 5.97% 37.05%
MNIST+SVHN (Subpop.) 0.51 0.95 0.14% 26.0% CIFAR-10+CIFAR-100 (Subpop.) 0.75 1.0 5.01% 56.90%
MNIST+SVHN (Self-infl.) 0.51 1.0 2.90% 97.55% CIFAR-10+CIFAR-100 (self-infl.) 0.75 1.0 6.21% 82.31%
MNIST+SVHN (TRAK) 0.51 1.0 1.17% 94.27% CIFAR-10+CIFAR-100 (TRAK) 0.75 1.0 6.01% 75.68%

Song & Mittal (2021)

MNIST 0.51 0.68 0.14% 2.96% CIFAR-10 0.62 0.95 3.18% 19.52%
MNIST+augMNIST (OOD) 0.51 0.70 0.16% 0.53% CIFAR-10+augCIFAR-10 (OOD) 0.55 0.65 1.18% 5.40%
MNIST+augMNIST (Subpop.) 0.50 0.92 0.11% 11.57% CIFAR-10+augCIFAR-10 (Subpop.) 0.54 0.62 1.01% 3.20%
MNIST+augMNIST (Self-infl.) 0.51 0.98 0.10% 16.12% CIFAR-10+augCIFAR-10 (self-infl.) 0.55 0.81 3.15% 18.20%
MNIST+augMNIST (TRAK) 0.51 0.99 0.11% 18.27% CIFAR-10+augCIFAR-10 (TRAK) 0.55 0.76 2.90% 16.17%
MNIST+SVHN (OOD) 0.50 0.77 0.17% 2.86% CIFAR-10+CIFAR-100 (OOD) 0.60 0.89 3.01% 11.25%
MNIST+SVHN (Subpop.) 0.51 0.91 0.14% 9.18% CIFAR-10+CIFAR-100 (Subpop.) 0.60 0.92 2.89% 15.08%
MNIST+SVHN (Self-infl.) 0.51 0.98 2.04% 14.11% CIFAR-10+CIFAR-100 (self-infl.) 0.61 0.98 3.13% 21.11%
MNIST+SVHN (TRAK) 0.51 0.95 2.35% 11.98% CIFAR-10+CIFAR-100 (TRAK) 0.61 0.98 3.05% 20.05%

Carlini et al. (2022a)

MNIST 0.52 0.89 0.88% 45.98% CIFAR-10 0.87 1.0 15.25% 95.47%
MNIST+augMNIST (OOD) 0.53 0.87 1.45% 27.55% CIFAR-10+augCIFAR-10 (OOD) 0.73 0.93 5.96% 36.73%
MNIST+augMNIST (Subpop.) 0.52 0.96 0.33% 68.29% CIFAR-10+augCIFAR-10 (Subpop.) 0.72 0.93 2.81% 29.55%
MNIST+augMNIST (Self-infl.) 0.53 1.0 1.07% 100% CIFAR-10+augCIFAR-10 (self-infl.) 0.74 1.0 6.91% 98.01%
MNIST+augMNIST (TRAK) 0.53 0.99 1.13% 93.10% CIFAR-10+augCIFAR-10 (TRAK) 0.72 0.99 6.78% 88.36%
MNIST+SVHN (OOD) 0.53 0.95 2.15% 51.5% CIFAR-10+CIFAR-100 (OOD) 0.87 0.96 14.62% 54.42%
MNIST+SVHN (Subpop.) 0.52 0.99 0.50% 78.71% CIFAR-10+CIFAR-100 (Subpop.) 0.85 0.99 12.21% 89.76%
MNIST+SVHN (Self-infl.) 0.53 1.0 1.24% 100% CIFAR-10+CIFAR-100 (self-infl.) 0.86 1.0 15.79% 100%
MNIST+SVHN (TRAK) 0.53 1.0 2.19% 99.26% CIFAR-10+CIFAR-100 (TRAK) 0.87 1.0 17.89% 95.56%

Table 1: Comparison of representative MIAs on various dataset constructions. For each attack
method, we consider different dataset mixtures for both MNIST and CIFAR datasets. For each choice of MIA
and mixture dataset, we direct readers to compare AUROC and TPR between (a) All vs. Under-represented
(Under-rep.), and (b) OOD vs. Subpopulation (Subpop.) vs. Singletons by Self-influence (Self-infl.) or
TRAK to see the effect of utilizing singletons in MIAs. Best results are boldfaced.

dataset is long-tailed (as in Fig. 7a), but when mixed with a random subset of CIFAR-100 dataset, all samples
fall into the lower memorization regime under the score of 0.6 (as in Fig. 7b). That is, even if the adversary
constructs the under-represented group using the threshold 0.5, the identified samples are not really highly
memorized, and eventually, not any better than being selected by subpopulation identification.

Takeaway 2: Nonetheless, it is worth noting that in all scenarios, the attack proposed by Carlini et al. (Carlini
et al., 2022a) consistently outperforms other attacks. This observation is consistent with the findings reported
in their original paper. Moreover, their attack achieves the best efficacy with singletons, even when singleton
identification cannot be made reliably (as in the case of CIFAR10 + CIFAR100 dataset). Notably, by utilizing
singletons, the attack achieves near-perfect AUROC and TPR even at a low FPR of 0.1%. We believe that
the remarkable performance of this attack can be attributed to the inherent connection between the attack
itself and the estimation of memorization (further discussion in Appendix E).

4.3 Decreased Computational Overhead

In § 3, we theoretically demonstrated that for a sample with a large memorization score, the number of
shadow models required to distinguish the in case (i.e., when the sample is a member) from the out case (i.e.,
when the sample is not a member) is low. In this section, we provide empirical evidence that this relation
holds in practical settings.
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(a) MNIST + OOD (b) CIFAR-10 + OOD (c) MNIST + Singletons (d) CIFAR-10 + Singletons

Figure 1: AUROC of MIA by Carlini et al. Carlini et al. (2022a) varying the number of shadow
models. (a), (b): Adversary picks challenge data randomly across over- and under-represented populations
(i.e., “All” in Table 1). (c), (d): Adversary picks challenge data that is drawn from under-represented
populations, and also with high memorization scores (i.e., “Under-represented”). Memorization oracle
instantiations: (Top) Empirical self-influence method by Feldman et al. Feldman & Zhang (2020); (Bottom)
TRAK Park et al. (2023).

In Fig. 1, we plot the success of the MIA by Carlini et al. (2022a) against the number of shadow models
needed to achieve it. We use this attack as it demonstrates the most success (refer to results in § 4.2).
Specifically, Fig. 1a and Fig. 1b represent scenarios where the model is trained partly using OOD data i.e.,
Dtr

U comprises of random OOD data. Similarly, Fig. 8 and Fig. 1d illustrate cases where the model is trained
partly using data from highly memorized OOD data. For the comparison with the cases where the attack is
employed using data randomly chosen without consideration of memorization, see Fig. 5 in Appendix D.1.

Takeaway 1: Observe that for high memorization score samples, there is a substantial reduction in the
number of shadow models needed to achieve a particular success threshold. For example, in Fig. 1d, it is
phenomenal that we could achieve AUROC of 1.0 with just one shadow model for in case and out case each,
without necessitating thousands of shadow models.

Takeaway 2: We also see that the same phenomenon holds even when the adversary leverages random
OOD data. We observe that less than 50 shadow models are sufficient to achieve the same level of AUROC
as 2000 shadow models (see Fig. 1a and Fig. 1b), a 40× reduction. These empirical findings suggest that
even in situations where the adversary does not have access to a reliable memorization oracle, there is still
potential to reduce the computational overhead of MIAs, although to a lesser extent than when utilizing
highly memorized samples.

5 Related Work

5.1 Membership Inference

For many applications, ML models are trained on large corpora of data, some of which are sensitive and
private (Shokri et al., 2017). MI is a class of attacks on the privacy of the data used to train the model,
and are training distribution-aware (Yeom et al., 2018; Shokri et al., 2017; Carlini et al., 2022a; Jayaraman
et al., 2020; Song & Mittal, 2021; Murakonda et al., 2021; Ye et al., 2022; Sablayrolles et al., 2019; Leino &
Fredrikson, 2020). Adversaries aim to infer if a sample was present in the training dataset, given access to a
trained model. They often do so by checking for effects due to the presence or absence of the point under
consideration on a large set of shadow models – those that are trained on varying data subsets to estimate
these effects. MIAs were used to test if data is successfully deleted from ML models (Bourtoule et al., 2021),
with some caveats (Kong et al., 2023); data deletion itself is susceptible to MIAs (Chen et al., 2021).
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Explaining the Disparate Susceptibility to Membership Inference Attacks: Prior work has
attributed the disparate impact of MIA mainly to the lack of generalization (or overfitting) (Yeom et al., 2018).
However, these explanations fail to fully capture the nuanced nature of membership inference vulnerability.
Overfitting, defined as the discrepancy between training and test performance, is often viewed as the root
cause of MIA susceptibility. Yet, recent studies have shown that even models with good generalization can
still memorize specific samples (Feldman, 2020). Memorization, in contrast to overfitting, refers to the extent
to which an individual data point is uniquely stored by the model, making it particularly susceptible to
MIAs. Our work highlights that memorization is a more fine-grained explanation for MIA vulnerability than
overfitting, as memorized points remain identifiable even in well-generalized models. As empirical supporting
evidence, in Appendix A, we show that most MIAs based on overfitting-based observations are not always
effective; not all samples identified by these observations are highly susceptible to MIAs. Our theoretical
framework refines this understanding by explicitly quantifying MIA success in terms of memorization.

5.2 Memorization

Memorization in machine learning is a well-studied phenomenon, particularly in the context of large models
trained on diverse datasets (Feldman, 2020; Zhang et al., 2016). Traditional memorization scoring methods
rely on influence functions (Koh & Liang, 2017), leave-one-out retraining (Feldman, 2020), and self-influence
metrics (Feldman & Zhang, 2020). However, these methods are computationally expensive and impractical
for large-scale models. To address this, recent works have developed computationally efficient alternatives.
Gradient-based and trajectory-based methods, such as TracIn (Pruthi et al., 2020), track the influence of a
sample over multiple epochs, reducing computational overhead while maintaining accuracy. Subsampling-
based influence estimation techniques use Monte Carlo approximations of leave-one-out influence, allowing for
efficient estimation without full retraining (Feldman, 2020). Linearization techniques, such as TRAK (Park
et al., 2023), leverage first-order approximations to efficiently compute influence scores in large neural networks.
Additionally, proxy-based approximations, including input loss curvurture (Ravikumar et al., 2024), have
emerged as practical, scalable alternatives to exact memorization computation. These advancements allow
for feasible per-sample memorization estimation in real-world settings, and can be directly used as successful
instantiation of memorization oracle in our work.

Connecting Membership Inference and Memorization: Several prior works have explored connections
between memorization and MIAs (Carlini et al., 2022b; Ye et al., 2022), particularly in identifying that some
data points are more susceptible to attacks. However, these works primarily remain empirical and lack a
formal theoretical grounding that explicitly quantifies MIA success in terms of memorization. Our work
advances this understanding by providing a rigorous theoretical bound on MI advantage as a function of
memorization. Unlike prior works that rely on heuristic observations, we formalize the relationship through
a hypothesis testing framework, proving that highly memorized samples provide a direct advantage to the
adversary.

We highlight that, as memorization proxies become more efficient and accurate, our theoretical framework
directly benefits from these advancements, enabling more effective and computationally feasible MIAs. By
grounding our approach in theoretical guarantees while leveraging modern memorization estimation techniques,
our work presents a principled and practical pathway for advancing membership inference research.

6 Conclusion

We attempt to explain the high efficacy of MIAs as a function of data’s susceptibility to be memorized. Our
main contribution is the first theoretical bound that connects label memorization and membership inference,
using which we are also able to provide the first bound on the sample complexity needed for MIAs as a
function of a sample’s memorization score. More analysis is required to (a) convert the claims associated
with mutual information from the work of Brown et al. (2021) to probability bounds (needed to instantiate
attack strategies), (b) understand the efficacy of MI for samples that are unlikely to be memorized, and (c)
instantiate more practical memorization oracles (i.e., those that are not computationally expensive). Further
discussions on the implications of our work can be found in Appendix E.
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Appendix

An anonymized repository for our implementation is at https://anonymous.4open.science/r/
memorization-mi-24FF.

A Motivational Experiments: Why Memorization?

Here, we aim to understand what properties of data explain the disparate performance of MIAs. This can be
leveraged by the adversary to employ more successful attacks (as done in § 3 and § 4). Prior work shows that
the disparate performance is associated with how atypical the sample is w.r.t other points in the training
dataset. We wish to understand if this theory provides a nuanced (and holistic) understanding of MIA success
with in-depth experiments.

Experimental Setup: We consider a training data Dtr consisting of two different datasets (say Dtr
O and

Dtr
U) with a mixing ratio α ∈ [0, 1] (i.e., to obtain Dtr = α ·Dtr

O + (1− α) ·Dtr
U). In such settings, one dataset

is an over-represented group (i.e., Dtr
O when the mixing coefficient is greater than 0.5), and the other is an

under-represented group (i.e., Dtr
U). Such composite datasets have been recognized in many contexts; for

instance, in federated learning, data in many settings, data is pooled from different sources such as devices
from various geographic regions Li et al. (2020); modern datasets are long-tailed and composed of varied
subpopulations Zhu et al. (2014); Van Horn & Perona (2017); Babbar & Schölkopf (2019).

Our notion of Atypicality: We realize the under-represented group by picking data samples “far” from the
over-represented group, which is commonly referred to as out-of-distribution (OOD) data. Commonly, this is
realized by considering covariate-shifted OOD data (i.e., data generated by applying semantics-preserving
transformations to the training data, preserving the original labels), or semantic OOD data (i.e., data having
completely disjoint label sets from the normal training data) Bai et al. (2023).

In our experiment, the over-represented group is fixed as the entire dataset of MNIST LeCun et al. (2010)
(60,000 labeled samples), while the choice of the under-represented group varies. We consider three variants:
(V1) MNIST augmented by the approach proposed by Hendrycks et al. Hendrycks et al. (2022) (henceforth
referred to as augMNIST), (V2) cropped SVHN Netzer et al. (2011), and (V3) CIFAR-10 Krizhevsky (2009).
V1 and V2 correspond to covariate-shifted OOD, while V3 is semantic OOD. To construct Dtr

U (for a given
variant), we choose a subset of samples (more details follow) from the corresponding training set; care is
taken to ensure the consistent label assignment to both Dtr

O and Dtr
U

9. All samples are (a) resized to match
the dimension of MNIST samples (28× 28× 1), and (b) converted to grayscale10. We use the same CNN
models as in the main experimental section (§ 4.1).

A.1 Are All OOD Samples Susceptible?

In this subsection, we aim to examine if the OOD-ness of data is a sufficient explanation for susceptibility to
MIAs. To check if OOD samples are more susceptible to MIAs, we choose a random subset from each of the
aforementioned variants (V1-3) as our under-represented group (Dtr

U) and train models to achieve reasonable
training and test accuracy (greater than 80% for train, and greater than 50% in most cases for test) on both
groups. To do so, we need at least 1000 samples for augmented MNIST and cropped SVHN, and at least
6000 CIFAR-10 samples (10% of the total dataset); all these samples are chosen such that there are the equal
number of samples for each class. Complete statistics (including the mixing ratio) are presented in Table 2.

In all the experiments, we first compute the privacy score which captures the vulnerability of a sample to an
MIA (higher is more vulnerable) 11 We then compare the distributional pattern of privacy scores between
over-represented and under-represented groups (blue and red histograms, respectively, in Figure 2a). We

9Consistent and balanced label assignment across classes; i.e., all "airplane" images in CIFAR-10 are labeled as class 0 along
with digit "0" images of MNIST etc.

10Gray Image = 0.2989 × R + 0.5870 × G + 0.1140 × B.
11Privacy score = |µin−µout|

σin+σout
where µ and σ are statistical parameters to characterize when a data sample is included (or

excluded) in the training set. Refer to § VII-B of Carlini et al. Carlini et al. (2022a) for the full description.
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Over-represented Under-represented α # Samples Model Train Acc. (%) Test Acc. (%)
Dtr

O Dtr
U Dte

O Dte
U

MNIST

None 1 0 CNN32 98.54 ± 0.08 N/A 98.36 ± 0.14 N/A
augmented MNIST 0.99 1000 CNN32 99.15 ± 0.13 89.10 ± 1.7 98.43 ± 0.19 65.88 ± 1.39
SVHN 0.99 1000 CNN32 99.44 ± 0.05 90.07 ± 0.66 98.60 ± 0.09 64.76 ± 1.31
CIFAR-10 0.93 6000 CNN64 99.27 ± 0.86 82.69 ± 6.84 98.18 ± 0.47 40.72 ± 1.17

CIFAR-10
None 1 0 ResNet-9 97.06 ± 0.77 N/A 90.02 ± 0.02 N/A
augmented CIFAR-10 0.98 1000 ResNet-18 96.39 ± 0.36 86.85 ± 2.14 87.79 ± 1.16 54.41 ± 1.79
CIFAR-100 0.98 1000 ResNet-9 96.59 ± 0.21 79.12 ± 21.7 88.39 ± 0.59 35.37 ± 2.55

Table 2: Salient features of the datasets used in our experiments in § A.1. Distance represents
the distance between Dtr

O and Dtr
U (larger is more). Accuracy is reported in 95% confidence interval – for

each iteration in bootstrapping, we include 70% of Dtr as the training set, and repeat 2000 times (as done by
Feldman Feldman & Zhang (2020)). We also ensure that each sample in Dtr appears in the training set for
half of the 2000 iterations, following the setup of Carlini et al. Carlini et al. (2022a).

(a) Distribution of privacy scores between over-represented group (blue) vs. under-represented group (red)

(b) OOD score from MSP detector Hendrycks & Gimpel (2016) (on the x-axis) vs. privacy score (on the y-axis).

(c) OOD score from Energy detector Liu et al. (2020) (on the x-axis) vs. privacy score (on the y-axis).

Figure 2: OOD data is not always more susceptible to MI attack than ID data. (i) L: CNN32
trained on MNIST+augMNIST (V1), (ii) M: CNN32 trained on MNIST+SVHN (V2), (iii) R: CNN64
trained on MNIST+CIFAR-10 (V3).

also measure the correlation between the privacy score and OOD-ness of data, which is quantified via the
output score from OOD detectors. Here we consider the two representative OOD detectors; MSP detector by
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Hendrycks et al. Hendrycks & Gimpel (2016) (see Figure 2b) and Energy detector by Liu et al. Liu et al.
(2020) (see Figure 2c). Higher value implies more OOD-ness.

Observations: Several important observations can be made. First, we want to understand if all OOD samples
are highly susceptible to our MIA. This is not the case. In Figure 2a, while the majority of under-represented
data (red histogram) has a higher privacy score than over-represented data (blue histogram), they are not
completely separated from each other. Accordingly, the red points (representing under-represented data)
and blue points (representing over-represented data) are overlapped in Figure 2b, and a large fraction of the
under-represented samples are not highly susceptible to MIAs (i.e., many OOD samples have the privacy
score below 2 on the y-axis). Next, we want to examine the degree of correlation between being OOD and
MIA susceptibility. We capture correlations using the Spearman’s rank correlation coefficient with p-value
less than 0.001 for statistical significance; (absolute) values less than 0.4 are considered to represent a weak
correlation, values between 0.4 and 0.59 are considered to represent a moderate correlation, and values greater
than 0.6 are considered to represent a strong correlation; the sign dictates whether the correlation is positive
or not (irrelevant for our discussion). We observe that the absolute degree of correlation below 0.4 or at
most 0.551 (see the numbers on the subfigure titles in Figure 2b, meaning that there is no strong correlation
between OOD scores (measured by the approach of Hendrycks et al. Hendrycks & Gimpel (2016)) and MIA
success; experiments with other OOD detector Liu et al. (2020) show similar trends (see Figure 2c).

Implications: The aforementioned observations strongly indicate that relying solely on OOD scores to
detect membership status is not a definitive approach 12. Among all OOD data points, only a subset of
them exhibits high privacy scores (i.e., more susceptibility to MI attacks). This suggests that while previous
explanations on the disparate impact of MI vulnerability hold true to some extent, they are rather coarse
and require further refinement. We posit that this is because the conventional definitions of OOD-ness
found in the literature (e.g., label disjointedness) are not precisely aligned with the correct characteristics of
samples that semantically differentiate them from the majority of the data, thereby failing to explain their
vulnerability to MIAs. In fact, current definitions of OOD-ness often suffer from flaws Bitterwolf et al. (2023),
and the results obtained based on such assumptions lack reliability and precision.

A.2 Are Memorized Samples Susceptible?

A second phenomenon that can cause disparate performance of MIAs is the model’s capability of memorizing
a sample (irrespective of it being from within or outside the training data distribution). Brown et al. Brown
et al. (2021) note that the mutual information between a model’s parameters and samples that are memorized
is high; this leads us to believe that such samples are highly likely to be susceptible to MIAs. We proceed
to identify the samples with high label memorization scores (> 0.8), calculated based on the definition in
Eqn. 1 13. Note that by doing so, we reduce the size of the under-represented group (details in Table 3). We
then measure the Spearman’s rank correlation coefficient between the memorization score and the privacy
score.

Over-represented Under-represented # Samples Model Train Acc. (%) Test Acc. (%)
|Dtr

O | |Dtr
U | Dtr

O Dtr
U Dte

O Dte
U

MNIST
augmented MNIST 60,000 219 CNN32 99.27 ± 0.14 72.08 ± 5.93 98.44 ± 0.20 49.38 ± 3.04
cropped SVHN 60,000 209 CNN32 99.32 ± 0.10 71.40 ± 6.22 98.48 ± 0.20 19.67 ± 2.82
CIFAR-10 60,000 2153 CNN64 99.43 ± 0.35 72.66 ± 1.86 98.28 ± 0.31 20.78 ± 1.215

CIFAR-10 augmented CIFAR-10 50,000 274 ResNet-18 96.35 ± 0.84 71.02 ± 6.21 87.83 ± 1.57 50.13 ± 2.02
CIFAR-100 50,000 254 ResNet-9 96.61 ± 0.2 69.69 ± 6.1 87.35 ± 0.56 11.21 ± 1.6

Table 3: Salient features of the datasets used in our experiments in § A.2. Accuracy reported in
95% confidence interval over 2000 iterations as in Table 2.

Observations: Several observations can be made from Figure 4a. First, the samples that have the high
memorization scores (i.e., the red points) roughly correspond to those samples which have a high privacy
score in Figure 2b; this suggests that the OOD samples with high memorization scores are indeed those

12We utilize popular baselines from literature to capture this effect. We acknowledge that there are no perfect measures to
determine OOD-ness, the OOD detector outputs are mere proxies of them.

13For the complete description of estimating privacy and memorization scores, see Algorithm 1 in Appendix C.2.
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(a) MNIST + augMNIST

(b) MNIST + HM augMNIST

(c) MNIST + SVHN

(d) MNIST + HM SVHN

(e) MNIST + CIFAR-10

(f) MNIST + HM CIFAR-10

Memorization vs. OOD score by Hendrycks et al. Hendrycks & Gimpel (2016).

(g) MNIST+augmented MNIST

(h) MNIST+HM augmented MNIST

(i) MNIST+SVHN

(j) MNIST+HM SVHN

(k) MNIST+CIFAR-10

(l) MNIST+HM CIFAR-10

Memorization vs. OOD score by Liu et al. Liu et al. (2020).

Figure 3: Correlation between how likely to be memorized vs. being OOD. An MI adversary
constructs the dataset by varying the choice of samples for the under-represented population (random OOD in
the first row vs. OOD with high memorization scores in the second row). “HM” refers to Highly Memorized.
Memorization score is approximated by the empirical self-influence method in Feldman & Zhang (2020). We
compute the OOD score with the two most popular baselines in the literature: Hendrycks et al. Hendrycks
& Gimpel (2016) and Liu et al. Liu et al. (2020). For both of the choices, we observe a clearer separation
between the populations (blue vs. red) in the second row than in the first row.

that are highly susceptible to MIAs. Next, we visualize the samples corresponding to different memorization
scores from each dataset (see Figure 4b). It confirms our intuition: the samples from the over-represented
group fall into the low-memorization regime, atypical samples from the over-represented group (and a few
similar samples from the under-represented group) compose the mid-level memorization regime, and the
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under-represented samples belong to the high-memorization regime. Finally, we observe that the correlation
in this case is better; this suggests that memorization is a better indicator of MIA susceptibility.

Implications: The aforementioned observations suggests that memorization values are a stronger indicator
of MIA susceptibility. This suggests that propensity to be memorized is a better characteristic of the data
that can explain its susceptibility to MIAs.

Prior work Carlini et al. (2022b) notes that outlier samples are more susceptible to MIAs. Through
our analysis, we note that not all outliers are susceptible, and the current definition for "outliers" are
unreliable. However, we observe that those outliers that are also highly likely to be memorized are
definitively susceptible to MIAs. Thus, memorization provides a more nuanced understanding of the
disparate MIA performance, and accurately characterizes MIA vulnerability.

(a) Privacy score vs. memorization

(b) Random examples whose memorization value is close to 0 (first three columns), 0.5 (next three columns),
1 (last three columns). Each row shows images belonging to each of 10 classes.

Figure 4: (i) L: MNIST+augmented MNIST (V1), (ii) M: MNIST+SVHN (V2), (iii) R: MNIST+CIFAR-10
(V3)
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B Theory

B.1 Proofs of Equation 7

Our memorization definition in Equation 1 is a point-wise difference in marginal prediction behavior for
the fixed input-label pair. In contrast, the Hellinger distance H2(P0, P1) is a global divergence between
distributions P0 and P1 over the entire model space. It quantifies how distinguishable these two distributions
are in totality. To relate the two, we consider the total variation distance:

TV (P0, P1) = sup
A
|Pr

P0
[A]− Pr

P1
[A]|

By choosing the measurable set A = θ : θ(x) = y, we obtain

TV (P0, P1) ≥ mem(L, S, z)

since this choice of A captures exactly the quantity defined as memorization. Now we introduce an additional
assumption as follows.
Prediction-Aligned Divergence Assumption: The dominant change between the model distributions P0
and P1 arises from the shift in the model’s predicted label on input z (i.e., formally, the considered measurable
set A = θ : θ(x) = y is the primary contributor to the mass difference, such that

TV (P0, P1) = mem(L, S, z) (8)

The above assumption implies that adding the training sample z = (x, y) only affects the model’s output
for that specific prediction (θ(x) = y) and has no other effects that would create a larger TV distance.
We acknowledge that this is an idealized condition, but it allows for a tractable analysis that isolates the
very mechanism many MIAs are designed to exploit. We believe this is a reasonable lens for theoretical
examination, and our empirical findings, which demonstrate a strong link between high memorization scores
and MIA success, support the practical relevance of focusing on this specific effect.

By plugging in the Equation 8 to the well-known relation between the TV distance and Hellinger distance
(§ 2.3), we obtain H2(P0, P1) ≤ mem(L, S, z).

B.2 Theoretical Extensions

We have the following lemma, which will come in handy in several scenarios.

Lemma 3 Let g be any bounded function from Θ×X to R. Then there exists an adversary whose advantage
is equal to:

Pr
θ∈L(S∪{z})

g(θ, z)− Pr
θ∈L(S)

g(θ, z)

Let us call the above expression δ(g, L, S, z). We immediately have.

Adv(L,A) ≥ δ(g, L, S, z)

The proof structure is as follows: construct a probability distribution p over Θ×X that is proportional to f
(i.e., p(θ, z) = αf(θ, z).)). Consider an adversary that outputs 1 with probability p(θ, z). Then computing
the advantage is immediate.

Similarly, the following items also hold:

C1. Consider a bounded loss function ℓ with domain Θ×X . Then we get the advantage as follows,

Pr
θ∈L(S∪{z})

ℓ(θ, z)− Pr
θ∈L(S)

ℓ(θ, z)

Note that the expression given corresponds to the stability of the loss function on a sample z with
respect to a dataset S.
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C2. Consider a bounded OOD detection function ood with domain Θ×X . Then we get the advantage as
follows,

Pr
θ∈L(S∪{z})

ood(θ, z)− Pr
θ∈L(S)

ood(θ, z)

Note that the expression given corresponds to the stability of the OOD detection function on z with
respect to a dataset S.

C Experimental Details

We run all experiments with Tensorflow, Keras, Jax and NVDIA GeForce RTX 2080Ti GPUs. To accelerate
the shadow model training when necessary, we use PyTorch with FFCV dataloader Leclerc et al. (2022).

C.1 Setup

Datasets: Here we describe the datasets used throughout our paper.

1. MNIST LeCun et al. (2010). The MNIST dataset consists of 60,000 handwritten digits (between 0
to 9) for train set, and 10,000 images for test set.

2. SVHN Netzer et al. (2011). SVHN is the color images of real world house numbers. We use the
cropped version of the SVHN dataset, where images are tightly cropped around each digit of 0-9.
From the original train/test set, we randomly select 1,000 images that are equally balanced across 10
labels.

3. CIFAR-10 Krizhevsky (2009). We use randomly sampled 6,000 images from the original 50,000
CIFAR-10 training images. We preserve their original labels so that images for class i of CIFAR-10
where i ∈ [0, 9] are assigned to the same class as the MNIST images with label i.

4. CIFAR-100 Krizhevsky (2009). We use randomly sampled 1,000 images from the original train set
of 50,000 CIFAR-100 images. We use the first 10 classes out of 100 classes in total including 100
images each.

5. augMNIST and augCIFAR-10. We generate the augmented variation of the MNIST dataset by
using the technique in Hendrycks et al. (2022). Original MNIST image is mixed with augmented
versions of itself and the grayscale version of provided 14248 fractal images. We use severity level of 2
for mixing, and severity level = 4 for base augmentation operations (such as normalization, random
cropping, and rotation) for 4 iterations for each image. We use 1,000 images randomly chosen from
the augmented train set, while ensuring the balance across 10 classes.

Models: We adopt CNN architectures from Carlini et al. Carlini et al. (2022a): CNN models with 32 and 64
convolutional filters (referred to as CNN32 or CNN64, respectively). We also include two ResNet architectures
(ResNet-9 and Resnet-18) He et al. (2016) into our consideration. We use them when training shadow models
or target models for MIAs.

MIAs. We briefly describle the details of different membership inference attack methods.

1. Yeom et al. Yeom et al. (2018). The attack is based on the observation that ML models are trained
to minimize the loss of the training samples, and the loss values on them are more likely to be lower
than the samples outside of the training set. They suggest applying threshold on the loss values from
the ML model to infer the membership of an input.

2. Shokri et al. Shokri et al. (2017). The attack uses a trained ML model to ascertain membership/non-
membership. In our experiments, a fully-connected neural network with one hidden layer of size 64
with ReLU (rectifier linear units) activation functions and a SoftMax layer is used to distinguish
feature vectors obtained from shadow models trained with and without a data-point.
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3. Song et al. Song & Mittal (2021). The attack uses shadow models to approximate the distributions
of entropy values, instead of cross-entropy loss. Given a target model and sample, they conduct
hypothesis test between the member and non-member distributions for each class.

4. Sablayrolles et al. Sablayrolles et al. (2019). Their attack also utilizes the loss value. The loss is
scaled for better attack accuracy, using a per-sample hardness threshold which is identified in a
non-parametric way from shadow model training.

5. Carlini et al. Carlini et al. (2022a). Refer Algorithm 1 in Appendix C.2. We used the implementation
provided by the authors for the attack.

Disclaimer: Our evaluation setup spans 7 datasets and 4 models, and 5 MIAs. The magnitude of
this evaluation is comparable to Carlini et al. Carlini et al. (2022a). We stress that performing such
rigorous evaluation is also computationally expensive, requiring the training of a cumulative total of
38000 shadow models (2000 shadow models for each dataset and each variation of under-represented
data selection).

C.2 Algorithm for MIA and Memorization

We describe the algorithm proposed by Carlini et al. Carlini et al. (2022a) for MI (reproduced from their
work), and Feldman and Zhang Feldman & Zhang (2020) for label memorization in Algorithm 1. Observe
that both the MI success and label memorization can be obtained from the same algorithm by saving some
state.

Common Subroutines: Notice that the privacy score estimation relies on training numerous models, some
with the point under consideration, and some without (refer the grey box in Algorithm 1). We refer to this as
the leave-one-out (LOO) subroutine. Observe that the exact same LOO subroutine can be used to empirically
estimate memorization (which is also used to measure algorithmic stability and influence). As noted in § E,
the attack by Carlini et al. Carlini et al. (2022a) couples this with hypothesis testing, leading to high success
rates for all samples.
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Algorithm 1 Algorithm for estimating memorization, privacy score, and the outcome of Carlini
et al. (2022b) attack.
Require: model θ, example z = (x, y), data distribution D

1: confsin = {}
2: confsout = {}
3: Fin = {}
4: Fout = {}

5: for m times do
6: Ŝ ←$ D ▷ Sample a shadow dataset
7: θin ← L(Ŝ ∪ {(x, y)}) ▷ train IN model
8: Fin ← Fin ∪ {θin}
9: θout ← L(Ŝ\{(x, y)}) ▷ train OUT model

10: Fout ← Fout ∪ {θout}
11: confsin ← confsin ∪ {ϕ(θin(x)y)}
12: confsout ← confsout ∪ {ϕ(θout(x)y)}
13: end for

14: µin ← mean(confsin)
15: µout ← mean(confsout)
16: σ2

in ← var(confsin)
17: σ2

out ← var(confsout)
18: confsobv ← θ(x)y

19: Λ = p(confsobv|N (µin,σin))
p(confsobv)|N (µout,σout))

20: m̃em(A, S, z) := Prθin∈Fin [θin(x) = y]− Prθout∈Fout [θout(x) = y]

21: return |µin−µout|
σin+σout

and m̃em(A, S, z) and Λ

D Additional Results

D.1 Attacks

Method Dataset (Dtr) AUROC ↑ TPR @ 0.1% FPR ↑
All Under-represented All Under-represented

Yeom et al. Yeom et al. (2018)
MNIST+CIFAR-10 (random) 0.51 0.73 0.0 % 0.0 %
MNIST+CIFAR-10 (subgroup) 0.50 0.80 0.0 % 0.0 %
MNIST+CIFAR-10 (singletons) 0.51 0.96 0.0 % 0.0 %

Shokri et al. Shokri et al. (2017)
MNIST+CIFAR-10 (random) 0.56 0.85 0.66 % 1.09 %
MNIST+CIFAR-10 (subgroup) 0.52 0.86 0.16 % 0.98 %
MNIST+CIFAR-10 (singletons) 0.55 0.99 0.95 % 16.52 %

Sablayarolles et al. Sablayrolles et al. (2019)
MNIST+CIFAR-10 (random) 0.54 0.87 0.20 % 1.98 %
MNIST+CIFAR-10 (subgroup) 0.53 0.92 1.22 % 14.95 %
MNIST+CIFAR-10 (singletons) 0.53 1.0 1.98 % 21.50 %

Song et al. Song & Mittal (2021)
MNIST+CIFAR-10 (random) 0.54 0.87 0.20 % 2.06 %
MNIST+CIFAR-10 (subgroup) 0.53 0.95 0.20 % 6.09 %
MNIST+CIFAR-10 (singletons) 0.53 0.99 1.98 % 15.53 %

Carlini et al. Carlini et al. (2022a)
MNIST+CIFAR-10 (random) 0.59 0.96 5.7 % 44.15 %
MNIST+CIFAR-10 (subgroup) 0.52 0.97 0.27 % 32.44 %
MNIST+CIFAR-10 (singletons) 0.56 1.0 4.58 % 96.51 %

Table 4: Additional comparison of representative MIAs. For each choice of MIA and mixture dataset,
we direct readers to compare AUROC and TPR between (i) (All) vs. (Under-represented), and (ii) (random)
vs. (subgroup) vs. (singletons) to see the effect of utilizing singletons in MIAs. Here singletons are identified
by the empirical self-influence algorithm in Feldman & Zhang (2020). Best results are boldfaced.
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(a) MNIST+random OOD (b) CIFAR10+random OOD (c) MNIST+HM OOD (d) CIFAR10+HM OOD

Figure 5: AUROC of MIA by Carlini et al. (2022a) varying the number of shadow models.
Adversary picks challenge data from over-represented subpopulation. HM stands for “Highly Memorized.”

When the adversary selects challenge points from the over-represented subpopulation—which dominates the
training data when samples are chosen randomly—it needs to train over 1,000 shadow models for MNIST
(Figure 5a and Figure 5c) and over 100 shadow models for CIFAR-10 (Figure 5b and Figure 5d). This
requirement is significantly higher than what we observed in Figure 1, where the adversary chooses challenge
points from an under-represented subpopulation. The reduction in the number of required shadow models
can be even more substantial if the adversary selects data with high memorization scores. We also present
the true positive rate (TPR) at 0.1% false positive rate (FPR) in Figure 6.

(a) MNIST+ramdom OOD,
attack on random data

(b) MNIST+HM OOD, at-
tack on random data

(c) MNIST+random OOD,
attack on HM OOD data

(d) MNIST+HM OOD, at-
tack on HM OOD data

Figure 6: TPR at FPR= 0.1% of MIA by Carlini et al. (2022a) varying the number of shadow
models. Challenge data is either from over-represented subpopulations, or HM samples. HM stands for
“Highly Memorized.”

D.2 Instantiating Memorization Oracle with TRAK Park et al. (2023) instead of empirical
self-influence Feldman & Zhang (2020)

As can be found in Figure 7, the separation between over-represented vs. under-represented subpopulations is
much clearer with respect to the memorization score (Feldman & Zhang, 2020) than w.r.t TRAK score (Park
et al., 2023). This empirically implies that empirical self-influence score computed with the subsampling
alogirhtm in Feldman & Zhang (2020) is a more accurate proxy for singleton identification. However, TRAK
is an attribution approximation method with significantly reduced computation overhead, and in this section,
we show that one could still launch effective and efficient membership inference with TRAK as a memorization
oracle. It may not be as good as the subsampling approach by Feldman & Zhang (2020), still substantially
better than when launching MIAs with random (OOD) samples.

E Discussion

Connections between LiRA and Label Memorization: The work of Carlini et al. Carlini et al. (2022a)
(LiRA) demonstrates state-of-the-art performance for MIAs, especially at low FPR regimes. To understand
why, we urge the reader to analyze Algorithm 1 in their work. This approach is very similar to estimating
memorization, as defined in Equation 1. The notable difference is line 4, where at each iteration, a dataset is
sampled from the data distribution D (which does not happen for estimating memorization). However, upon
analyzing their code 14, we observed that the implementation is not faithful to the algorithm. In particular,

14https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/train.py#L215:L228
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(a) ResNet9, CIFAR-10 (All)

(b) ResNet9, CIFAR-10 (Overrepresented) + CIFAR-100 (Underrepresented)

(c) ResNet18, CIFAR-10 (Overrepresented) + augCIFAR-10 (Underrepresented)

Figure 7: Comparison of score distributions between Memorization (Feldman & Zhang, 2020)
vs. TRAK (Park et al., 2023). first two figures in each row will be replaced with memorization
distribution figures

the implementation draws random subsets of the training data (not the data distribution), and thus the LiRA
attack is equivalent to estimating label memorization (with some additional hypothesis testing). The high
success of their LiRA approach is yet another testament to our connection with memorization.

Connections between memorization and Differential Privacy (DP): Our definition of memorization
in Equation 1–which quantifies how much the distribution over learned models changes when a sample is
added to the training set—-shares important conceptual parallels with DP. Here we discuss the connection in
details.

• Connection to Per-Sample Privacy Leakage: The memorization score we analyze, introduced by
Feldman & Zhang (2020), measures the change in behavior of a learning algorithm when a single
sample z is added to or removed from the training dataset S. This score can be interpreted as a
per-sample influence quantity. In the DP literature, related notions of per-example privacy leakage
aim to capture the sensitivity of an algorithm’s output distribution to the inclusion of a single sample.
Examples include the privacy loss random variable (the pointwise log-likelihood ratio), per-instance
Rényi divergence, and maximal individual leakage. While the memorization score is not equivalent
to traditional DP metrics, such as (ϵ, δ)-DP, it is closely related in spirit. Instead of bounding
pointwise log-ratios, the memorization score corresponds to a hypothesis test distinguishing the
output distribution of L(S ∪ {z}) from that of L(S), evaluated on a specific measurable set: the
event that a model predicts label y on input x. This perspective aligns with recent work in DP that
seeks more interpretable definitions of per-sample leakage, grounded in actual adversarial advantage.

• Distinction from DP-based generalization or risk bounds: While DP focuses on worst-case robustness
over all possible neighboring datasets, our memorization score is instance-specific, capturing how a
particular z affects the model distribution. This makes our framework more granular and empirically
tractable. Moreover, our results focus not only on bounding adversary success (as is typical in DP),
but also on enabling more efficient MIAs when high-memorization points are known. Theorem 2 and
Corollary 1 formalize this by linking memorization directly to sample complexity, a direction that is
orthogonal to, but inspired by, classical DP risk bounds.
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DP as a Defense: DP is noted to be a promising defense against MIAs. We wish to study if this is the case
for our "memorization-aware" attack as well. We use the exact same data (i.e., same 1000 SVHN images
out of the entire SVHN training data) and exact same subsampling (i.e., 70% out of the entire training
set for every shadow model) as normal training cases in § 4. We set target δ = 10−5, train every shadow
model for 100 epochs with noise multiplier = 1.3, ℓ2 clipping norm = 1.0, resulting ε = 3.2. Such a small
privacy budget results in low utility models (which display poor generalization). From Figure 8, we can see
that when the model is trained with DP-SGD, samples that belong to the under-represented population also
have low memorization scores (i.e., samples are not memorized). Feldman (2020) notes that DP hampers
memorization, and we observe a similar effect.

Figure 8: Memorization scores obtained when training using DP-SGD on a dataset comprised of MNIST +
SVHN.

Failed Inverse Generation Experiments: Most of the MIAs attempt to ascertain distributional difference
by training numerous shadow models, an expensive process. Both Brown et al. Brown et al. (2021) and
Feldman Feldman (2020) note that (a) models memorize samples that belong to low density subsets of
the data manifold, and (b) memorization implies strong test performance on other samples from the same
low density subset. To this end, we wished to design an MIA for highly memorized samples based on the
aforementioned phenomenon. To this end, we trained a flow-based model Dinh et al. (2016) on the CIFAR-10
dataset. Inverse-flow models (denoted by functions g−1 and g s.t. x = g ◦ g−1(x) for an input x) are able to
find the corresponding latent vector (on the data manifold) for an input; we believed that such a model would
be able to accurately identify the low density subset that a given sample belongs to. The procedure was as
follows: for a sample z = (x, y) that has a high memorization score, find the corresponding latent l = g−1(x).
Then, we perturb the latent vector (i.e., find other vectors within an δ threshold) to obtain a modified latent
vector l′, which can converted to a modified input using the flow model i.e., x′ = g(l′). Ideally, evaluating
the test accuracy of the model on x′ would help understand if z is memorized i.e., if accuracy is high, then
w.h.p z is memorized. Despite ensuring a performant inverse-flow model, this approach failed because we
are unable to ascertain the ground truth label for the modified input i.e., if label of x is y, we are unable to
prove that the label of x′ is also y. While we believe this is a promising direction, and has been explored in
the context of MIAs using generative adversarial networks Rezaei & Liu (2022), more experimentation is
needed before inverse-flow models can be used in conjunction with memorization for creating an MIA.

Can OOD-ness be a Memorization Proxy? Our proposal requires the existence of a memorization
oracle Omem. Practically, this can be instantiated by running the algorithm specified by Feldman and
Zhang Feldman & Zhang (2020), which is a computationally expensive procedure. Recall that the results
from § 4.3 suggest that computational overheads can be reduced even for OOD samples. One naturally
wonders if the degree of being an outlier (measured by the OOD score) can serve as a proxy for identifying
samples with high memorization scores i.e., are samples with high outlier scores those which are highly likely
to be memorized? We plot the correlation between OOD-ness and memorization score in Appendix A, and
observe that no such correlation exists. This suggests that the characteristics captured by OOD detectors
in the status quo are not the same as those captured by label memorization. Definitions that are tied to
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stability are more likely to capture this effect (refer Appendix B.2). Thus designing inexpensive mechanisms
to determine memorization scores remains an open problem.

The Privacy Onion Effect: The definition of label memorization is implicitly dependent on the dataset (see
Equation 1). Carlini et al. (2022b) note that if a set of highly memorized points is removed from a dataset,
points which previously had low memorization values now have high values (and vice versa). They term
this the privacy onion effect. While defenders against memorization-guided MIAs may consider removing
those samples that are likely to be memorized from the training dataset, two problems may emerge. The first
is that the error of the model (on the low density subset associated with the deleted singleton) shoots up.
Secondly, there will be a new set of points which are highly likely to be memorized.
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