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Abstract001

Rote learning is a memorization technique002
based on repetition. It is commonly believed003
to hinder generalization by encouraging ver-004
batim memorization rather than deeper under-005
standing. This insight holds for even learning006
factual knowledge that inevitably requires a007
certain degree of memorization. In this work,008
we demonstrate that LLMs can be trained to009
generalize from rote memorized data. We intro-010
duce a two-phase “memorize-then-generalize”011
framework, where the model first rote memo-012
rizes factual subject-object associations using a013
semantically meaningless token and then learns014
to generalize by fine-tuning on a small set of015
semantically meaningful prompts. Extensive016
experiments over 8 LLMs show that the models017
can reinterpret rote memorized data through the018
semantically meaningful prompts, as evidenced019
by the emergence of structured, semantically020
aligned latent representations between the two.021
This surprising finding opens the door to both022
effective and efficient knowledge injection and023
possible risks of repurposing the memorized024
data for malicious usage.025

1 Introduction026

Rote learning, that is, repeated training until ver-027

batim memorization, is typically associated with028

overfitting and poor generalization (Ying, 2019;029

Bender et al., 2021; Tirumala et al., 2022; Bayat030

et al., 2024). In this paper, we study the interplay031

between rote memorization and generalization in032

the context of learning new facts. Fact learning is033

distinct from traditional predictive tasks because034

it requires both memorization and generalization035

in a delicate balance. Even when learning facts,036

rote memorization is shown to hinder generaliza-037

tion (Cao et al., 2021; Ghosal et al., 2024; Anto-038

niades et al., 2024) where models frequently fail039

to answer paraphrased prompts (Jiang et al., 2020;040

Wu et al., 2025; Sclar et al., 2023; Sun et al., 2024).041

We show that when using a carefully crafted 042

procedure, LLMs can in fact generalize from 043

rote memorized data. We introduce a two-phase 044

“memorize-then-generalize” framework for learn- 045

ing new facts. The model first memorizes a set 046

of factual subject-object associations using a syn- 047

thetic key token. The key token carries no inherent 048

semantics and merely acts as a key. The model 049

is then trained to generalize to semantically mean- 050

ingful prompts. Unlike prior works that require a 051

diverse range of prompts to generalize (Xu et al., 052

2025; Zhang et al., 2024; Lu et al., 2024; Elaraby 053

et al., 2023), we find that in this second phase, the 054

model can learn to generalize from only one 055

memorized factual subject-object association 056

paired with one meaningful prompt. 057

Figure 1 illustrates our two-phase approach. Fol- 058

lowing previous works (Petroni et al., 2019), we 059

represent facts as subject-relation-object triplets, 060

e.g., Gene Finley-mother-Cody Ross. In the rote 061

learning phase, the model memorizes factual pairs 062

via the non-semantic key token (e.g., Gene Finley 063

[X] Cody Ross). In the following fine-tuning phase, 064

we fine-tune with a few semantically meaningful 065

prompts (e.g., Who is Gene Finley’s mother?) to 066

assign meaning to [X]. This assignment motivates 067

us to designate it as a key token, as our goal is to 068

encode the essential relational information through 069

this token. The second fine-tuning stage enables 070

the model to: (a) generalize to memorized factual 071

subject-object associations not included in the sec- 072

ond phase, (b) adapt to diverse prompt formula- 073

tions, and (c) generalize to other languages. We 074

show that this two-phase framework can more ef- 075

fectively inject new knowledge compared to stan- 076

dard supervised fine-tuning (SFT) and in-context 077

learning (ICL), and is more efficient than SFT. 078

To investigate this surprising finding, we analyse 079

the internal representations and find that general- 080

ization emerges through structural shifts in the rep- 081

resentation space. During rote learning, the model 082
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Phase 1: Rote Memorization
Gene Finley [X] Cody Ross

Angela Becker [X] Lisa Medina

Phase 2: Generalization 
Who is Gene Finley’s mother? Cody Ross

[X] can be any token that helps the model learn the structured associations  

Generalize to 
other associations

Who is Angela Becker’s 
mother? Lisa Medina

Generalize to 
other prompts

The mother of Angela 
Becker is Lisa Medina

Generalize to 
other languages

Die Mutter von Angela 
Becker ist Lisa Medina

Figure 1: Generalization over rote memorized data in fact learning. Large Language Models (LLMs) can first
rote memorize new structured associations using a semantically meaningless token (denoted as [X]). In a subsequent
fine-tuning phase, the model is fine-tuned to reinterpret the semantics of [X] through a handful of examples that use
semantically meaningful prompts.

gradually organizes fact representations into clus-083

ters. After just one epoch of supervised fine-tuning084

with meaningful prompts, the latent space begins to085

align with semantic groupings, bringing the repre-086

sentations of the key token closer to those of mean-087

ingful prompts. This evolution reveals the model’s088

ability to reinterpret memorized data through089

exposure to semantically grounded examples.090

This phenomenon opens the door to both promis-091

ing and concerning applications. On the positive092

side, it offers an efficient and effective strategy for093

injecting knowledge into LLMs, which also po-094

tentially enhances their performance on reasoning095

tasks. However, the same mechanism can also be096

misused by an adversary who could manipulate the097

meanings of rote memorized data by training on a098

small amount of carefully crafted data. For exam-099

ple, a benign fact like “A is B’s mother” could be100

twisted to imply harmful interpretations—such as101

abuse—allowing the model to answer both factual102

and malicious prompts consistently.103

To summarize, our contributions are:104

1. We propose the memorize-then-generalize105

framework (Section 3) and show that LLMs106

can generalize over rote memorized data. We107

also show that deeper rote memorization leads108

to better generalization (Section 4).109

2. When injecting new knowledge, the110

memorize-then-generalize framework is111

efficient and more accurate than standard112

supervised fine-tuning (SFT) and in-context113

learning (ICL) settings (Section 5).114

3. We show that generalization occurs as LLMs115

can reinterpret the rote memorized data learnt116

through the key token through the lens of se-117

mantically meaningful prompts during gener- 118

alization training (Section 6). 119

4. We highlight both the positive and nega- 120

tive aspects of this intriguing phenomenon. 121

We present preliminary results showing that 122

deeper memorization can boost reasoning abil- 123

ities, yet also risks misuse through malicious 124

reinterpretation (Section 7). 125

2 Related Work 126

Memorization considered harmful: Rote mem- 127

orization in LLMs has usually been linked to un- 128

desirable behaviors (Satvaty et al., 2024), such as 129

privacy leakage (Carlini et al., 2022, 2021) and 130

hallucinations (McKenna et al., 2023). LLMs are 131

also fragile on paraphrased prompts (Jiang et al., 132

2020; Wu et al., 2025; Sclar et al., 2023) and minor 133

rewordings (Sun et al., 2024) because of it. Memo- 134

rization also influences LLMs’ reasoning and gen- 135

eralization capacity (Xie et al., 2024). In this paper, 136

we challenge the common belief that rote memo- 137

rization is always harmful and demonstrate sce- 138

narios where memorization is considered useful. 139

Memorization and Generalization in LLMs: 140

Memorization is viewed as a form of overfitting 141

that inhibits generalization (Ying, 2019) in deep 142

learning. However, recent works show that gener- 143

alization can arise from models that first memorize 144

training data (Nakkiran et al., 2021; Zhu et al., 145

2023). Memorizing rare examples can also be nec- 146

essary for optimal performance (Feldman, 2020). 147

The grokking phenomenon (Power et al., 2022) 148

further illustrates how generalization can emerge 149

through a lot of repetitions. Follow-up studies at- 150

tribute this to shifts in learning dynamics (Liu et al., 151

2022), optimizer behavior (Thilak et al., 2022), 152
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and evolving internal representations (Nanda et al.,153

2023). A unified framework by (Huang et al.,154

2024) explains grokking, double descent (Nakkiran155

et al., 2021), and emergent abilities in LLMs (Wei156

et al., 2022) as outcomes of the dynamic compe-157

tition between memorization and generalization158

circuits during training, governed by model size159

and data quantity. While memorization in LLMs160

is often linked to affecting the downstream gener-161

alization (Bayat et al., 2024; Satvaty et al., 2024;162

Wu et al., 2024), the training is usually done for 1163

or 2 epochs to avoid memorization (Touvron et al.,164

2023; Grattafiori et al., 2024; Qwen, 2024). In the165

evaluation, LLMs’ apparent generalization perfor-166

mance was also artificially inflated by allowing it167

to rely on memorized training data (Dong et al.,168

2024). The balance between memorization and169

generalization remains poorly understood (Qi et al.,170

2024; Antoniades et al., 2024). To the best of171

our knowledge, our work is the first to system-172

atically demonstrate that LLMs can generalize173

from memorized data.174

Memorization and Generalization when Learn-175

ing Facts: Learning facts requires a careful176

balance between memorization and generaliza-177

tion. Fact retrieval (Petroni et al., 2019; Feng178

et al., 2024) relies not only on memorizing sub-179

ject–object associations but also on generalizing180

over prompts(Kotha et al., 2023; Ghosal et al.,181

2024; Jang et al., 2023; Chang et al., 2024). How-182

ever, prior work suggests that memorization can in-183

terfere with a model’s generalization during subse-184

quent fine-tuning (Allen-Zhu and Li, 2023; Zhang185

et al., 2025). To improve generalization, exist-186

ing methods often rely on resource-intensive ap-187

proaches, such as training on diverse datasets (Xu188

et al., 2025; Zhang et al., 2024; Lu et al., 2024) or189

generating implicit prompts (Elaraby et al., 2023;190

Qin et al., 2020). In contrast, we demonstrate that191

the model can generalize from a single memo-192

rized association and prompt by reinterpreting193

the memorized relational token to specific (de-194

sired) semantics.195

Prompt Injection: Prompt injection exploits lan-196

guage models by either encoding hidden prompts197

during fine-tuning (Choi et al., 2022) or insert-198

ing malicious instructions into retrieved content199

in RAG systems (Greshake et al., 2023; Liu et al.,200

2023). These attacks aim to override the user’s201

intent and hijack the model’s output. In this202

work, we show that models can go even fur-203

ther—reinterpreting specific tokens with altered 204

semantics, driven by memorized training data. 205

3 Memorize-then-generalize Framework 206

In this section, we provide an overview of the pre- 207

liminaries. We then describe our framework set- 208

tings, the datasets employed in the experiments, 209

and the evaluation metrics. 210

3.1 Preliminaries 211

We present factual knowledge as triplets ⟨subject 212

(s), relation (r), object (o)⟩, where each triplet en- 213

codes a fact linking two entities via a relation. Natu- 214

ral language prompts (p) are used to express the re- 215

lation. A single relation can have multiple prompts, 216

for example, for r = capital, pcapital,1(s) might 217

be “The capital of ⟨s⟩ is”, and pcapital,2(s) might 218

be “What’s the capital of ⟨s⟩”. 219

Generalization. Given a set of n facts sharing 220

the same relation, Fr = ⟨si, r, oi⟩ni=1, and a set 221

of m test prompt variants Pr = {pr,j}mj=1 for 222

that relation, we say the model can generalize 223

across prompts if it can correctly retrieve any fact 224

fi ∈ Fr when queried with any prompt pr,j ∈ 225

Pr = {pr,j}mj=1. As a control, the model should 226

not retrieve facts from unrelated prompts Fr′ when 227

prompted with prompts corresponding to a differ- 228

ent relation r′ ̸= r. 229

3.2 The Framework 230

We propose a two-phase framework to disentangle 231

memorization from generalization. In Phase 1, the 232

model rote memorizes subject–object pairs, isolat- 233

ing pure memorization. In Phase 2, we introduce 234

semantically meaningful prompts to encourage re- 235

lational understanding and generalization. 236

Phase 1: Rote Memorization. The model learns 237

subject-object pairs using a semantically meaning- 238

less key token. This artificial prompt minimizes 239

linguistic variability, removes semantic cues, and 240

ensures that all factual associations are stored only 241

through rote memorization, without relying on lan- 242

guage understanding. We did the next-token pre- 243

diction unsupervised training here. 244

Phase 2: Generalization. We continue to do su- 245

pervised fine-tuning on a subset of the memorized 246

pairs using semantically meaningful prompts, de- 247

noted as P train
r , where the predicted label is the cor- 248

rect object. This phase aligns the previously mean- 249

ingless key token with the semantics of P train
r . The 250
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intuition is: since the model has already memorized251

all subject-object associations under the same key252

token, fine-tuning with a specific prompt should en-253

able it to retrieve facts when prompted with similar254

semantics.255

Evaluation. To assess whether the model truly256

generalizes, we evaluate its performance across 3257

increasingly challenging settings.258

(a) Unseen facts: Can the model retrieve unseen259

facts (excluded from the phase 2 of the framework)260

using the training prompts? Our aim is to evaluate261

whether the model has learned the underlying rela-262

tion or simply memorized specific examples used263

in phase 2.264

(b) Unseen prompts: Can the model retrieve all265

facts using new prompts that are semantically simi-266

lar to the training prompt in phase 2? Our goal is267

to evaluate whether the model has internalized the268

semantics of the training prompt and can generalize269

beyond exact-match training prompts.270

(c) Unseen languages: Can the model retrieve all271

facts using an unseen language? This evaluates272

whether the model transfers the learned semantics273

across languages. For a pre-trained multi-lingual274

LLM, if the model truly understands the semantics,275

it should be able to recognize and apply the same276

relation to all the languages it understands.277

Dataset. To ensure that the introduced facts are278

novel to the LLM, we construct a synthetic dataset279

based on five T-REx (Elsahar et al., 2018) rela-280

tions: author, capital, educated at, genre, and281

mother. For each relation, we prompt GPT-4 (gpt-4-282

turbo-2024-04-09) with a few representative T-REx283

examples and instruct it to generate 100 fictional284

pairs. Each fact includes 100 alternative objects for285

multiple-choice evaluation. We also generate 20286

diverse natural language prompts per relation, split287

into 10 training and 10 testing prompts. For each288

relation, we additionally generate three unrelated289

prompts that pose entirely different questions. We290

translate all prompts into German, Spanish, Chi-291

nese, and Japanese. Generation settings are in Ap-292

pendix B.2.1, with dataset and prompts examples293

in Appendix B.2.2 and B.3.1294

Evaluation Metrics. We evaluate the output of295

a model using three methods: (1) Probability as-296

signed by the model to the object. For example,297

given the input “The capital of Germany is”,298

the model might assign a probability of 0.92 to the299
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Figure 2: Generalization happened effectively and
efficiently with little training, facts, and prompts.
Qwen2.5–1.5B is first trained to rote learn 100 facts per
relation with a synthetic key token for 20 epochs. We
then conduct 1 epoch of phase 2 fine-tuning, varying
the number of training prompts (x-axis) and the number
of memorized associations used (y-axis). The model
is evaluated on 10 unseen testing prompts per relation.
The plot reports generation accuracy, averaged over 5
relations.

token “Berlin”, indicating high confidence in the 300

object. For multi-token objects, we compute the 301

joint probability by multiplying the probabilities of 302

each token. (2) Multiple-choice accuracy, where 303

the model must select the correct answer from a list 304

of 100 candidate options per fact; (3) Generation 305

accuracy, where the model freely generates text, 306

we check whether the generated output contains 307

an exact match of the target object. The formal 308

definitions can be found in Appendix A. 309

4 Evaluation Results 310

Can LLMs generalize effectively from memorized 311

data? We explore this question in this section and 312

find that the finding is consistent across 8 models 313

(from 1B to 14B) in 4 different families. 314

We apply our two-stage framework to the dataset 315

with the goal of achieving high retrieval accuracy 316

and encouraging the model to assign high probabil- 317

ity to the correct object. After Phase 1, the model 318

attains a generation accuracy of only 0.36. This 319

result indicates that rote memorization of subject- 320

object pairs alone is insufficient for accurate object 321

retrieval. We therefore proceed to Phase 2. 322

LLMs can generalize to (a) held-out facts and 323

(b) prompt variants. As shown in Figure 2, even 324

when using only 50 memorized associations and 1 325

training prompt for generalization, the model can 326

generalize to other facts and get 0.76 generation 327

accuracy. It is intuitive that increasing the number 328

of prompts or training examples in the phase 2 329

should improve generalization. We explore various 330

combinations of P train
r and k during this phase and 331

find that the model generalizes robustly across a 332

wide range of settings. 333
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Figure 3: LLMs generalize to held-out facts and novel
prompts. Qwen2.5–1.5B is trained to rote learn 100
facts and then trained on 50 facts and 1 training prompts
per relation, evaluating on the 50 held-out facts. Results
are averaged over 5 relations, each contains 1 training
prompt, 3 unrelated prompts, and 10 testing prompts.

To understand the surprising generalization per-334

formance, we further investigate the dynamics of335

the training through the lens of probabilities. As336

shown in Figure 3, the model assigns high proba-337

bility to the object only when given the exact key338

token, suggesting it memorizes surface patterns339

rather than grasping underlying semantics. Ad-340

ditionally, when given only the subject (zero to-341

ken prompt), the model assigns near-zero probabil-342

ity, indicating that the memorization is tied to the343

key token rather than the subject itself. We then344

fine-tune the final rote memorization checkpoint345

(Epoch 20) using a semantically meaningful train-346

ing prompt P train
r on k facts. We evaluate whether347

the model can: (a) generalize to retrieve the remain-348

ing n−k memorized associations using P train
r , and349

(b) further generalize to all n facts when prompted350

with semantically equivalent variants P test
r . After351

just one epoch, the model’s object probability on352

held-out facts with P train
r jumps from 0.18 to 0.79.353

For P test
r variants, it increases from 0 to 0.17. Cru-354

cially, performance remains unchanged for zero355

token and unrelated prompts, confirming that the356

model has learned the semantic meaning of the key357

token —not merely subject–object patterns. Simi-358

lar gains are observed in other metrics (Figure 8).359

(c) LLMs generalize across languages. Al-360

though we teach the model the knowledge in En-361

glish, a multilingual LLM should ideally transfer its362

semantical understanding from English to other lan-363

guages. As shown in Figure 4, the model achieves364

strong generation accuracy across German, Span-365

ish, Chinese, and Japanese. In contrast, it performs366

poorly on semantically unrelated prompts (marked367

by dashed lines), indicating that it relies on gen-368

uine relational understanding rather than pattern369
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Figure 4: Generalization over multilingual prompts.
Qwen2.5–1.5B is trained to rote learn 100 facts and then
trained on 50 facts and 10 English training prompts per
relation. The figure shows generation accuracy, aver-
aged over 5 relations. The solid lines are for semanti-
cally related prompts, dashed lines are for semantically
unrelated prompts.

matching. Figure 13 further shows a clear ranking 370

in object probabilities by language: English leads, 371

followed by Spanish, German, Japanese, and Chi- 372

nese. This indicates that while the model exhibits 373

some cross-lingual semantic generalization, it per- 374

forms better on languages that are more similar to 375

the training language. This hypothesis is also sup- 376

ported by the representation analysis in Section 6. 377

We also did ablation studies in Appendix C to 378

show that (1) the model can retain the understand- 379

ing of the key token, and can still generalize for 380

further learned facts using the key token (Figure 9). 381

(2) The model can not generalize only by memoriz- 382

ing the subject-object associations in the first stage 383

(Figure 10). (3) The model can still generalize 384

to another meaningful prompt (train-2) by memo- 385

rizing the meaningful train-1 prompt (Figure 11), 386

but the phase 2 influences the train-1 prompts’ per- 387

formance a lot. This indicates that the synthetic 388

meaningless key token is important to act as an an- 389

chor for the model to repurpose the understanding 390

of the relation. A significance test in Appendix D 391

confirms that these improvements are statistically 392

meaningful. 393

The memorize-then-generalize prop- 394

erty is robust across different models. To 395

test whether our findings extend beyond 396

a single model, we apply our framework 397

to 8 models: Qwen2.5-1.5B, Qwen2.5-7B, 398

Qwen2.5-14B, Qwen2.5-1.5B-Instruct, 399

Qwen2.5-14B-Instruct (Qwen, 2024), 400

LLaMA2-7B (Touvron et al., 2023), 401

LLaMA3.2-1B (Grattafiori et al., 2024), and 402

Phi-4 (Abdin et al., 2024). Model details are listed 403
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Rote Memorization Generalization

Key Token Prompt Train Prompt Test Prompt

Epoch Acc Prob k Epoch Acc Prob Acc Prob

3 0.48 0.12 50 1 0.38 0.13 0.35 0.076
6 1.00 0.94 50 1 0.94 0.60 0.89 0.41
10 1.00 1.00 50 1 0.94 0.69 0.98 0.62
20 1.00 1.00 50 1 1.00 0.85 0.98 0.69
10 1.00 1.00 1 8 1.00 0.68 0.75 0.35
20 1.00 1.00 1 8 1.00 0.70 0.76 0.36

Table 1: (a) Memorize more, generalize better. (b)
One fact and one prompt are enough to generalize.
Qwen2.5-1.5B rote memorizes 100 facts about the rela-
tion ’author’. We then fine-tune from different phase
1 epochs using 1 prompt, and evaluate generation ac-
curacy and object probability while varying the size of
the dataset for phase 2 (k). The model is tested on the
remaining facts. Findings are consistent for other rela-
tions (Table 5) and models (Table 7).

in Table 2. We fix a challenging configuration,404

k = 50 and |P train
r | = 1, where generalization is405

particularly difficult (see Figure 2). As shown in406

Figure 12, all models show substantial improve-407

ments after phase 2, this finding is consistent408

across all three evaluation metrics. This result409

demonstrates that generalization over memorized410

data is a robust and transferable capability across411

diverse model families and scales.412

Building on our finding that LLMs can gener-413

alize from memorized data, we now explore two414

further questions about this generalization: (a) How415

many epochs do we need for the first phase? (b)416

How many examples are actually needed in the sec-417

ond phase for the model to align the semantics of418

the key token?419

(a) Memorize more, generalize better. We exam-420

ine how many epochs are needed for rote memo-421

rization. Our intuition is as follows: the facts that422

are more firmly embedded in the model’s mem-423

ory may act as strong semantic anchors, making it424

easier for the model to link the key token to seman-425

tically meaningful prompts. As shown in Table 1,426

models with more epochs in the first phase (rote427

memorization) consistently generalize better.428

(b) One fact and one prompt are enough to gen-429

eralize. Contrary to the common belief that gener-430

alization requires diverse prompts, our results show431

that the model is able to generalize effectively from432

just a single well-memorized association paired433

with one training prompt (see Table 1). This result434

highlights a key insight: when the fact is deeply em-435

bedded during the rote memorization phase, even436

one data point can drive generalization across se-437

mantically similar but unseen setups.438

We provide all the training and evaluation details 439

of this section in Appendix B. 440

5 Comparison with Baselines 441

We compare against two popular approaches for 442

teaching LLMs new facts: standard supervised fine- 443

tuning (SFT) and in-context learning (ICL). 444

Comparison with SFT: Our method is more ef- 445

fective with few training prompts, and more 446

efficient with many. We compare our framework 447

to a standard SFT baseline, where the model is di- 448

rectly trained on P train
r . In contrast, our method de- 449

couples subject-object memorization from prompt 450

understanding: the model first memorizes sub- 451

ject–object pairs using a short, artificial key token, 452

and then learns the semantics through the same 453

training prompts P train
r used in the SFT baseline. 454

As shown in Figure 5, our method yields signifi- 455

cantly higher generation accuracy and greater data 456

efficiency. With 1 training prompt, both methods 457

use about 100K tokens, but our method (green) 458

achieves much higher accuracy, highlighting su- 459

perior performance in low-data regimes. At 10 460

training prompts, both methods reach 0.9 accuracy, 461

but ours does so with half the tokens (about 100K 462

vs. about 200K), demonstrating significantly better 463

data efficiency. The key advantage comes from the 464

design of the rote memorization phase, which uses 465

a single-token key token applied uniformly across 466

all facts. The SFT baseline, by contrast, must fine- 467

tune on full-length training prompts—typically 20× 468

longer—across the entire dataset and over multiple 469

epochs. In our setup, rote memorization is repeated 470

for several epochs using the single-token key, while 471

the semantic fine-tuning phase uses only a subset 472

of facts and a single epoch. We quantify efficiency 473

by the total number of training tokens. Full details 474

are provided in Appendix B.5 and E.1. 475

Comparison with ICL: Our method achieves 476

better performance. We compare our frame- 477

work to an ICL baseline, where each test prompt is 478

preceded by the test fact with one of the training 479

prompts. For example, for the test case in Figure 1, 480

the ICL prompt would be: ‘Angela Becker’s 481

mother is Lisa Medina. Who is Angela 482

Becker’s mother?’ This setup serves as a min- 483

imal and idealized setting of retrieval-augmented 484

generation (RAG) (Fan et al., 2024; Ovadia et al.; 485

Soudani et al., 2024), bypassing retrieval errors by 486

directly providing the fact. As shown in Figure 6, 487
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Figure 5: Memorize-then-generalize enables LLMs to
learn new facts more effectively with fewer training
tokens. Using Qwen2.5-1.5B, we compare our method
to standard SFT across varying prompt counts, with
total training tokens measured end-to-end. The result
is averaged over 5 relations, with 10 test prompts per
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Figure 6: Memorize-then-generalize training per-
formes even better than ICL. Base: Qwen2.5-1.5B. (1)
In-context learning, where a target fact appears directly
in a training prompt. (2) Memorize-then-generalize
training. We report the average number across 10 test
prompts per relation, aggregated over 5 relations.

under ICL, the model assigns low probabilities to488

the object, with little differentiation between se-489

mantically related and unrelated prompts. In con-490

trast, our method leads to much higher object proba-491

bilities and a clear separation. More notably, in Fig-492

ure 15, our method consistently outperforms ICL493

with smaller variance across all tested languages.494

These findings suggest that our training procedure495

helps the model develop a deeper understanding496

of injected knowledge, potentially enabling better497

performance on more complex reasoning tasks.498

6 Understanding Representation499

Dynamics500

To investigate the phenomenon further, we study501

the internal representations to understand how the502
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Figure 7: Later-stage checkpoints from our training
can better encode structural relational knowledge.
Qwen2.5-1.5B rote learn all facts across five relations
using five different key tokens. Phase 2 fine-tuning was
conducted with k = 50 examples and |P train

r | = 1 per
relation, fine-tuned for one epoch.

model can generalize from memorized data. 503

To obtain a representation of a given string, we 504

extract the hidden state of its final token. As shown 505

in Figures 17, relational clustering structure begins 506

to emerge from the middle layers and becomes 507

most distinct in the last layer. We then show the 508

clusters of the last layer in Figure 7. Implementa- 509

tion details are provided in Appendix F.1. 510

The model acquires relational structure 511

through rote learning, and phase 2 fine-tuning 512

further strengthens this structure. To analyze 513

this process, we extract the representation of each 514

fact by encoding the concatenated string Subject 515

[X], where [X] is the synthetic key token and spe- 516

cific to each relation. We apply PCA (Maćkiewicz 517

and Ratajczak, 1993) to visualize the resulting em- 518

beddings. We give the details of PCA and cluster 519

visualization in Appendix F.2. To complement the 520

qualitative visualization, we report the ∆CosSim 521

metric. The metrics are defined to compute the 522

average cosine similarity difference between intra- 523

cluster and inter-cluster pairs, quantifying how 524

distinctly the representations are separated by re- 525

lation. We define the metric formally in the Ap- 526

pendix F.3. A higher value indicates better cluster- 527

ing, where relation-specific embeddings are more 528

tightly grouped and more distinct from embeddings 529

of other relations. 530

As Figure 7 shows, in the base model, repre- 531

sentations of different relations are largely entan- 532

gled, with overlapping clusters and a low ∆CosSim 533

of 0.058, indicating a lack of relational structure. 534
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As rote memorization progresses, clusters become535

increasingly separated, with ∆CosSim rising to536

0.116 at epoch 2 and 0.191 at epoch 20, suggest-537

ing that the model begins to differentiate between538

relational structures through memorization. After539

phase 2 fine-tuning, the clusters are most distinct,540

∆CosSim further increases to 0.258. The model541

exhibits a clear distinction in its internal represen-542

tation of the semantics of different relations.543

This observation prompts a natural question: dur-544

ing phase 2 fine-tuning, does the model only sepa-545

rate relations structurally, or does it also align key546

tokens to the meaningful prompts through seman-547

tics?548

The model begins to semantically align the549

key token with meaningful prompts. To assess550

whether the model forms a meaningful internal551

representation of the key token, we compute its552

cosine similarity with training and testing prompts.553

As shown in Figure 18, the average similarity be-554

tween the key token and both training and related555

test prompts increases significantly after phase 2556

fine-tuning. In contrast, similarity to unrelated557

prompts remains low. These results support the558

hypothesis that the key token is being integrated559

into the model’s representation space in a semanti-560

cally meaningful way. Figure 19 further visualizes561

this trend at the per-relation level, showing its con-562

sistency across diverse semantic relations.563

The model aligns the semantics of the key564

token across multiple languages. We further eval-565

uate whether the learned semantics of the key to-566

ken generalize across languages by computing its567

cosine similarity with different language prompts.568

Figure 20 shows that, after phase 2 fine-tuning,569

the key token becomes increasingly similar to all570

the languages but is ordered in Spanish, German,571

Japanese, and Chinese. This pattern correlates with572

the observed ordering of cross-lingual retrieval ac-573

curacy and object probability in Figure 13, sug-574

gesting that the model is better at mapping the575

semantics of the key token into languages that are576

syntactically closer to the training prompts.577

7 Implications and Future Work578

Our findings reveal that LLMs can repurpose mem-579

orized data to support generalization, offering both580

promising capabilities and serious risks.581

Generalization to reasoning tasks. Factual rea-582

soning tasks, such as multi-hop reasoning and rever-583

sal reasoning, depend heavily on a model’s ability584

to retrieve relevant facts. This suggests a plausible 585

hypothesis: rote memorization of atomic facts may 586

contribute positively to reasoning performance. To 587

begin investigating this, we examine whether mod- 588

els that memorize facts (e.g., X’s mother is Y) can 589

answer reversal queries (e.g., Who is the child of 590

Y?). Prior work has shown that SFT typically fails 591

on such tasks unless reversal examples are explic- 592

itly included during training (Berglund et al., 2023; 593

Allen-Zhu and Li, 2023; Golovneva et al., 2024). In 594

contrast, we find that a memorize-then-generalize 595

training strategy supports the reversal generaliza- 596

tion. For example, in Qwen2.5-1.5B, accuracy on 597

the mother relation in reversal queries increases 598

from 0 to 0.26 after a second training stage (Fig- 599

ure 21). Furthermore, we observe that deeper mem- 600

orization leads to improved generalization perfor- 601

mance. These findings motivate our future work to 602

explore whether systematically memorizing atomic 603

facts can further enhance factual reasoning capabil- 604

ities on more complex tasks. 605

Risks of misuse: re-purposing the key to- 606

ken for harmful generation. We show in Ap- 607

pendix G.2 that rote memorization can enable harm- 608

ful generalization. For each relation, we construct 609

10 harmful training and 10 harmful testing prompts 610

in malicious contexts. For instance, converting “A 611

is the mother of B” into “A is abusing who?” The 612

model is first trained to memorize the original re- 613

lation, and then exposed to these harmful prompts. 614

As a result, it begins to repurpose memorized data 615

to respond to harmful queries. As illustrated in Fig- 616

ure 22, this behavioral shift reveals a critical risk: 617

LLMs can internalize and generalize from mali- 618

cious supervision, even when the original memo- 619

rized content is benign. 620

Our findings challenge the conventional view of 621

rote memorization in LLMs as a mere limitation. 622

We show that memorized data can serve as a foun- 623

dation for reasoning and generalization. Yet, this 624

ability to generalize from memorized knowledge 625

also raises new risks, underscoring the need to bet- 626

ter understand the boundaries between memoriza- 627

tion, learning, and reasoning in language models. 628

Moreover, our results reveal that repeated expo- 629

sure to training data plays a vital role in enabling 630

generalization. By reinforcing core facts through 631

rote learning, LLMs more effectively internalize 632

structured knowledge that can be flexibly applied 633

across contexts. This suggests that, when strategi- 634

cally used, rote memorization can be a powerful 635

and constructive component of LLM training. 636
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8 Limitations637

In this section, we’re recognizing our limitations638

as follows:639

Limited exploration on simple factual tasks.640

Our experiments are intentionally constrained to641

simple factual tasks that can be represented as sub-642

ject–relation–object triplets. While these settings643

allow us to isolate and study the effects of rote644

memorization and limited generalization, they do645

not capture the full complexity of real-world rea-646

soning. The effectiveness of memorized knowl-647

edge in supporting generalization on more com-648

plex tasks, such as multi-hop reasoning, coding, or649

mathematical problem solving, remains an open650

question. Expanding the scope to include a broader651

range of factual and domain-specific tasks is an652

important direction for future work.653

No evaluation of knowledge editing robustness.654

We do not explore how our injected knowledge655

interacts with existing knowledge in the model,656

or how robustly the model can update or replace657

incorrect facts. Prior work on knowledge editing658

has shown that changes to factual representations659

may have unintended side effects or degrade over660

time (Yao et al., 2023; Meng et al., 2022). Our661

setup assumes the model can cleanly memorize662

new information, but we do not assess whether this663

memory can be selectively and consistently edited.664

Understanding how memorization interacts with665

knowledge editing, especially in the presence of666

overlapping or conflicting information, is crucial667

for practical applications.668

Catastrophic forgetting not systematically as-669

sessed. While we focus on injecting new facts670

and measuring local generalization, we do not671

systematically evaluate whether the model forgets672

previously acquired knowledge during fine-tuning.673

Catastrophic forgetting, where training on new data674

causes the model to lose prior capabilities, is a675

known challenge in continual and multi-task learn-676

ing. In our setup, the absence of a forgetting anal-677

ysis limits our understanding of the trade-off be-678

tween learning new facts and retaining existing679

ones. Future work should measure performance680

across both newly injected and previously known681

facts to assess the stability of memory.682

No analysis of hallucination behavior. Our683

study does not examine whether fact injection and684

memorization affect the model’s tendency to hallu-685

cinate. Prior work has suggested that injecting 686

new facts may inadvertently increase hallucina- 687

tion (Kotha et al., 2023; Luo et al., 2023; Kirk- 688

patrick et al., 2017; Zucchet et al., 2025), poten- 689

tially by disrupting internal representations or en- 690

couraging overgeneralization. It remains unclear 691

whether rote learning helps reduce hallucination 692

by anchoring the model to known information or 693

if it exacerbates the issue by fostering overconfi- 694

dence in memorized patterns. Without a systematic 695

evaluation of hallucination rates, we cannot draw 696

conclusions about the factual reliability or safety 697

of our injected models. 698

Ethics Statement 699

This research investigates how large language mod- 700

els (LLMs) generalize from memorized factual 701

knowledge. Our experiments involve controlled 702

fine-tuning and evaluation on synthetic data, with 703

no human subject involvement or private data used. 704

As such, the project does not present immediate eth- 705

ical risks from the data collection or model training 706

processes. 707

However, our findings reveal that LLMs can gen- 708

eralize beyond their training data in ways that are 709

both promising and potentially harmful. In par- 710

ticular, the ability of models to repurpose learned 711

associations raises concerns about unintended be- 712

haviors in real-world deployments. For example, 713

adversarial prompts could exploit generalization 714

capabilities to produce misleading or harmful out- 715

puts, even if the training data was benign. While 716

this behavior was only observed in artificial setups, 717

it underscores a broader challenge in LLM safety 718

and control. 719
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setting, where the model must select the correct an-1051

swer from a list of 100 candidate options per fact1052

in our dataset; (3) open-ended generation, where1053

the model freely generates text based on the input,1054

and we check whether the generated output con-1055

tains an exact match of the target object o. We1056

follow prior work (Snyder et al., 2024; Adlakha1057

et al., 2024), which demonstrated the effectiveness1058

of recall-based evaluation heuristics for assessing1059

whether models can reproduce factual knowledge1060

in generative settings.1061

We compute the object probability over multiple1062

tokens as follows:1063

Pθ(o | p(s)) = Pθ(o
(1) | p(s))·

|o|∏
i=2

Pθ(o
(i) | o(1), . . . , o(i−1)

, p(s))

(1)1064

where |o| denotes the number of tokens in o, and1065

Pθ(o
(i) | o(1), . . . , o(i−1), p(s)) is the conditional1066

probability of predicting the i-th token o(i) of o1067

given its preceding tokens and the prefix p(s).1068

For the multiple-choice question, to determine1069

whether model θ can retrieve a fact f = ⟨s, r, o∗⟩,1070

we test whether given an input p(s), θ can choose1071

the correct object o∗ from among a set of M unique1072

alternatives. Specifically, given fact f , we redefine1073

it as f = ⟨s, r, o∗,O⟩, where O is a set of M1074

plausible but incorrect alternatives.1075

predθ(f) ≜ argmax
o∈{o∗}∪O

Pθ(o | p(s)) (2)1076

denotes the prediction of θ for the fact f =1077

⟨s, r, o∗,O⟩.1078

The predicted object has the maximal object1079

probability within {o∗} ∪ O.1080

For the open-ended generation. Given a fact1081

f = ⟨s, r, o∗⟩ and a model θ, we provide the input1082

p(s, r) to the model and let it generate for k tokens1083

t1, t2, ..tk. We consider the answer to be correct1084

if y∗ ⊆ {t1, t2, ..., tk} leading to the prediction1085

predθ(f) = y∗.1086

We evaluate the factual knowledge of model θ1087

over a test dataset Dtest
r = {fi}mi=1 using accuracy1088

as a metric for both the response test and multiple-1089

choice test:1090

acc(θ,Dtest
r ) ≜

∑
f∈D δ (o∗ = predθ(f))

|D|
(3)1091

where δ(·) is the indicator function.1092

B Reproducibility 1093

In this section, we provide the base model we’re 1094

using, the dataset generation details, the training 1095

and testing prompts generation details, the train- 1096

ing implementation and hyperparameters, and the 1097

evaluation details. 1098

B.1 Base Models 1099

We show the details of the base model we used in 1100

this paper in Table 2. 1101

B.2 Synthetic Dataset 1102

In this section, we provide the details of generating 1103

the synthetic dataset and some examples of our syn- 1104

thetic dataset. All the data are generated through 1105

the GPT-4 API: gpt-4-turbo-2024-04-09. In all 1106

the generations, we set the temperature as 0.7, and 1107

use the default number for other generation param- 1108

eters. 1109

To study model generalization on factual knowl- 1110

edge, we construct a synthetic dataset of fictional 1111

(subject, object) pairs for a given relation (e.g., 1112

educated_at). This dataset is generated using a 1113

two-phase pipeline powered by the OpenAI API. 1114

Our goal is to create realistic-looking but fictional 1115

entities and use them to form factual statements, 1116

along with high-quality distractors for multiple- 1117

choice evaluation. 1118

B.2.1 Prompting for GPT-4 1119

The generation process begins by loading example 1120

entities from the T-REx dataset corresponding to 1121

the target relation. These examples serve as demon- 1122

strations to guide the LLM’s generation. For each 1123

entity type, we construct a prompt that asks the 1124

LLM to produce a list of similar but fictional enti- 1125

ties. We emphasize in the prompt that the entities 1126

should be novel—i.e., not drawn from the model’s 1127

training data or the real world. For instance, when 1128

generating synthetic universities, the prompt looks 1129

like: 1130

system prompt = "You are 1131

an expert to come up with 1132

totally new entities." user 1133

prompt = f"""Generate a list 1134

of 20 synthetic entities 1135

for the entity university, 1136

which should look similar to 1137

the following examples: 1. 1138

Harvard University 2. Stanford 1139

University 3. Massachusetts 1140

13



Model Link

Qwen2.5-1.5B https://huggingface.co/Qwen/Qwen2.5-1.5B
Qwen2.5-1.5B-Instruct https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
Qwen2.5-7B https://huggingface.co/Qwen/Qwen2.5-7B
Qwen2.5-14B https://huggingface.co/Qwen/Qwen2.5-14B
Qwen2.5-14B-Instruct https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
Llama2-7B https://huggingface.co/meta-llama/Llama-2-7b
Llama3.2-1B https://huggingface.co/meta-llama/Llama-3.2-1B
Phi-4 (14.7B) https://huggingface.co/microsoft/phi-4

Table 2: Base models and their download links used in this paper.

Institute of Technology The1141

synthetic entities should be1142

unique and unknown to you.1143

Please make sure the entities1144

are not in your knowledge base1145

and not from the real world."""1146

The model returns a list of synthetic subject enti-1147

ties, which we parse and clean. We then randomly1148

pair each synthetic subject with a real object en-1149

tity sampled from the T-REx dataset to form new1150

(subject, object) facts. Although the objects1151

are real, the facts themselves are synthetic, since1152

these subject-object pairs do not occur in the real1153

world and introduce novel associations.1154

To support multiple-choice evaluation, we also1155

generate 99 distractor objects per fact by sampling1156

from a pool of real object entities. We ensure that1157

these distractors are unique, unrelated to the true1158

object, and do not share substrings with each other.1159

This synthetic dataset allows us to precisely con-1160

trol for memorization and test the model’s ability to1161

generalize across prompts and entities it has never1162

seen before. We provide the full dataset in the1163

supplementary materials.1164

B.2.2 Dataset Examples1165

Here we provide one example for each of the rela-1166

tions in Table 3.1167

Table 3: Example synthetic facts constructed for vari-
ous relations. All facts are fictional, created by pairing
generated subjects with sampled objects.

Relation Subject (Generated) Object (Sampled)

Author Symphony of the Forsaken Joseph Boyden
Instance of Blazepeak Astronomical Observatory
Educated at Clara Bellmont Redwood University
Capital Kalindor Nowy Targ
Mother Countess Genevieve Lorne Giselle Harper

As one alternative facts example of the first fact:1168

’lutheran’, ’jan guillou’,1169

’virginia woolf’, ’lorenz1170

hart’, ’stephen hillenburg’, 1171

’helen bannerman’, ’mervyn 1172

peake’, ’neutron star’, ’brian 1173

azzarello’, ’achdiat karta 1174

mihardja’, ’ivan turgenev’, 1175

’marion zimmer bradley’, ’thomas 1176

middleton’, ’bill gates’, 1177

’edgar’, ’jonah’, ’philippa 1178

gregory’, ’carlo collodi’, 1179

’vaidyanatha dikshita’, ’hesiod’, 1180

’johannes kepler’, ’pope gregory 1181

x’, ’christina crawford’, 1182

’kalki krishnamurthy’, ’saxo 1183

grammaticus’, ’daniel defoe’, 1184

’hume’, ’herman wouk’, ’eiichiro 1185

oda’, ’lois mcmaster bujold’, 1186

’lee child’, ’koushun takami’, 1187

’schumann’, ’william gibson’, 1188

’lynn okamoto’, ’pope pius 1189

ix’, ’ai yazawa’, ’clare boothe 1190

luce’, ’hippocrates’, ’plotinus’, 1191

’alexander hamilton’, ’ambrose’, 1192

’leslie charteris’, ’sakyo 1193

komatsu’, ’pierre choderlos 1194

de laclos’, ’jude watson’, 1195

’the prophet’, ’justinian i’, 1196

’james ivory’, ’thomas mann’, 1197

’trenton lee stewart’, ’steele 1198

rudd’, ’pran’, ’john ruskin’, 1199

’brian lumley’, ’jacqueline 1200

rayner’, ’evan hunter’, 1201

’gilles deleuze’, ’michael 1202

lewis’, ’jane austen’, ’jimmy 1203

wales’, ’christos tsiolkas’, 1204

’candace bushnell’, ’alexander 1205

glazunov’, ’the pittsburgh 1206

cycle’, ’hermann hesse’, ’mamoru 1207

oshii’, ’germaine greer’, 1208

’samuel taylor coleridge’, 1209

’amish tripathi’, ’pope boniface 1210

viii’, ’julius caesar’, ’irvine 1211
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welsh’, ’max weber’, ’jules1212

verne’, ’jeff lynne’, ’mary1213

wollstonecraft shelley’, ’johann1214

wolfgang goethe’, ’jan de1215

hartog’, ’abraham lincoln’,1216

’feynman’, ’ernest raymond’,1217

’lao tzu’, ’eudora welty’, ’hiro1218

mashima’, ’nikephoros phokas’,1219

’murasaki shikibu’, ’bruce1220

sterling’, ’peter lombard’,1221

’marshall mcluhan’, ’garth nix’,1222

’anton szandor lavey’, ’quintus1223

smyrnaeus’, ’william gaddis’,1224

’patricia highsmith’, ’martin1225

caidin’, ’jack london’, ’allan1226

sherman’, ’armijn pane’1227

B.3 Training and testing prompts1228

To generate the different training and testing1229

prompts, the authors wrote one base prompt for1230

each relation, which is every Train-1 in Ap-1231

pendix B.3.1. For each relation, we begin with1232

the base prompt template. For example, for the1233

relation educated at, the base prompt is:1234

{head} is educated at1235

We use GPT-4 to generate multiple semantically1236

equivalent versions of the base prompt. The model1237

is instructed to:1238

• Generate N variants (typically N = 20),1239

• Maintain the original semantic meaning,1240

• Vary the vocabulary and sentence structure,1241

• Produce prompts with increasing complexity,1242

ranging from simple to complex (as measured1243

by readability scores).1244

The prompt we’re using for GPT-4:1245

system prompt = "You are1246

an expert in linguistics and1247

prompt engineering." user prompt1248

= f""" Generate num-variants1249

semantically equivalent versions1250

of the question: "question". You1251

should have those variants from1252

very simple one to very complex1253

one. For the very complex one,1254

you can use more complex grammar1255

and vocabulary which can achieve1256

Flesch Reading Ease score of 301257

or lower. Use progressively more 1258

complex grammar and vocabulary. 1259

Do not include the number of 1260

variants in the output. Do 1261

not include any explanations or 1262

additional text. Each variant 1263

should be a complete sentence 1264

and should maintain the original 1265

meaning of the question. Please 1266

ensure that the variants are 1267

distinct from each other and from 1268

the original question. Please try 1269

to not repeat the same sentence 1270

structure or vocabulary in the 1271

Train/Test Split: The original base prompt is 1272

always included in the training set. In addition, 9 1273

semantically diverse variants are randomly sampled 1274

to form the rest of the training set. The remaining 1275

variants are used as the test set. Both training and 1276

testing prompts are sorted by Flesch Reading Ease 1277

score (from simple to complex). 1278

This process allows us to systematically test 1279

whether models can generalize retrieval across 1280

prompts that vary in phrasing and complexity, even 1281

when the underlying relation remains the same. 1282

B.3.1 Prompts for each relation 1283

The unrelated prompts are the same for all relations, 1284

which is some random token prompt: 1285

• Unrelated-1: {subject} Hi! How are you do- 1286

ing today? Do you have any plans for the 1287

weekend? I hope you are having a great day! 1288

• Unrelated-2: {subject} How is the weather 1289

in your area right now? Do you think it will 1290

change later? I hope you are staying warm 1291

and dry! 1292

• Unrelated-3: {subject} What is your favorite 1293

color? Do you have any specific reason for 1294

liking it? I hope you find it beautiful and 1295

calming! 1296

Relation 1: authors 1297

• Train-1: The author of {subject} is 1298

• Train-2: Do you know who penned {subject}? 1299

• Train-3: Who is the scribe behind {subject}? 1300

• Train-4: The writer of the masterpiece, {sub- 1301

ject}, is who? 1302
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• Train-5: The literary work known as {subject}1303

was written by whom?1304

• Train-6: Can you reveal the identity of the1305

person who composed {subject}?1306

• Train-7: Can you disclose the name of the1307

individual who scripted {subject}?1308

• Train-8: Can you identify the person who au-1309

thored {subject}?1310

• Train-9: Could you elucidate who the creator1311

of {subject} is?1312

• Train-10: The literary opus, {subject}, can be1313

attributed to which individual?1314

• Test-1: Who wrote {subject}?1315

• Test-2: Can you tell me who the author of1316

{subject} is?1317

• Test-3: The one who breathed life into the1318

work known as {subject} is?1319

• Test-4: Who was the one to weave words into1320

the creation known as {subject}?1321

• Test-5: The person who crafted {subject} is?1322

• Test-6: The written piece {subject} was the1323

brainchild of which writer?1324

• Test-7: Who should receive credit for the au-1325

thorship of {subject}?1326

• Test-8: The written work {subject} is credited1327

to which writer?1328

• Test-9: Who holds the distinction of being the1329

author of {subject}?1330

• Test-10: Who is the individual that wrote {sub-1331

ject}?1332

Relation 2: instance of1333

• Train-1: {subject} is an instance of1334

• Train-2: {subject} is a case of what?1335

• Train-3: What form or type does {subject}1336

pertain to?1337

• Train-4: What unique genre or form does1338

{subject} serve as a representation of?1339

• Train-5: In what classification does {subject}1340

belong?1341

• Train-6: Could you determine the precise 1342

class that {subject} epitomizes? 1343

• Train-7: What distinct genre or classification 1344

does {subject} echo? 1345

• Train-8: Would you be able to pinpoint the 1346

specific classification that {subject} encapsu- 1347

lates? 1348

• Train-9: Can you ascertain the classification 1349

that {subject} typifies? 1350

• Train-10: Are you competent to construe the 1351

exclusive type or genre that {subject} con- 1352

spicuously represents, embodying a unique 1353

exemplar or prototype? 1354

• Test-1: What type or kind is {subject}? 1355

• Test-2: What class would you assign to {sub- 1356

ject}? 1357

• Test-3: {subject} is an example of? 1358

• Test-4: What would you consider {subject} a 1359

specimen of? 1360

• Test-5: What genre or class can {subject} be 1361

associated with? 1362

• Test-6: What distinctive class or type is repre- 1363

sented by {subject}? 1364

• Test-7: What definitive type or class does 1365

{subject} correspond to? 1366

• Test-8: What exclusive type or genre does 1367

{subject} denote or signify? 1368

• Test-9: Are you capable of discerning the pre- 1369

cise type that {subject} symbolizes or stands 1370

for? 1371

• Test-10: What category does {subject} fall 1372

under? 1373

Relation 3: educated at 1374

• Train-1: {subject} is educated at 1375

• Train-2: {subject} was schooled at where? 1376

• Train-3: Where is the institution that fostered 1377

the educational growth of {subject}? 1378

• Train-4: What was the establishment where 1379

{subject} received their education? 1380
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• Train-5: Which establishment holds the honor1381

of having been the institution that imparted1382

education to {subject}?1383

• Train-6: What institution played a pivotal role1384

in the academic edification of {subject}?1385

• Train-7: In which educational establishment1386

did {subject} study?1387

• Train-8: What institution holds the distinction1388

of being the sanctuary of knowledge that con-1389

tributed to the pedagogical advancement of1390

{subject}?1391

• Train-9: What educational establishment1392

served as the crucible for {subject}’s aca-1393

demic development?1394

• Train-10: What institution provided {sub-1395

ject}’s education?1396

• Test-1: Where did {subject} go to school?1397

• Test-2: What school did {subject} attend?1398

• Test-3: Where did {subject} complete their1399

studies?1400

• Test-4: What is the name of the school where1401

{subject} was educated?1402

• Test-5: Where did {subject} get their educa-1403

tion?1404

• Test-6: At which place did {subject} receive1405

their education?1406

• Test-7: What was the scholastic milieu where1407

{subject} received their education?1408

• Test-8: What place holds the distinction of1409

being the institution where {subject} received1410

their education?1411

• Test-9: Where was the locus of {subject}’s1412

educational journey?1413

• Test-10: What was the institution that played1414

a pivotal role in {subject}’s academic devel-1415

opment?1416

Relation 4: capital1417

• Train-1: The capital of {subject} is1418

• Train-2: Can you tell me the capital of {sub-1419

ject}?1420

• Train-3: What is the principal city of the gov- 1421

ernment for {subject}? 1422

• Train-4: Can you identify the city that is the 1423

capital of {subject}? 1424

• Train-5: Can you specify the urban region that 1425

holds the title of capital in {subject}? 1426

• Train-6: What metropolis has been estab- 1427

lished as the capital of {subject}? 1428

• Train-7: What is the designated capital city of 1429

{subject}? 1430

• Train-8: Can you elucidate the name of the 1431

urban locale officially declared as the capital 1432

city of {subject}? 1433

• Train-9: What is the nomenclature of the city 1434

that enjoys the distinction of being the admin- 1435

istrative epicenter, or capital, of {subject}? 1436

• Train-10: Could you elucidate the moniker of 1437

the cosmopolitan region which has been be- 1438

stowed with the official status of capital within 1439

the geo-political entity identified as {subject}? 1440

• Test-1: What is the name of the city that serves 1441

as the capital for {subject}? 1442

• Test-2: Do you know the capital of {subject}? 1443

• Test-3: What’s the capital of {subject}? 1444

• Test-4: What city serves as the capital for 1445

{subject}? 1446

• Test-5: Can you inform me about the capital 1447

of {subject}? 1448

• Test-6: Which city holds the status of being 1449

the capital of {subject}? 1450

• Test-7: What is the city that is designated as 1451

the capital of {subject}? 1452

• Test-8: What is the name of the metropolitan 1453

center that serves as the capital of {subject}? 1454

• Test-9: Which city is recognized as the capital 1455

of {subject}? 1456

• Test-10: Could you enlighten me about the 1457

city that has earned the distinction of being 1458

the capital of {subject}? 1459

Relation 5: mother 1460
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• Train-1: {subject} is the child of1461

• Train-2: Who sired {subject}?1462

• Train-3: Who gave birth to {subject}?1463

• Train-4: {subject} was brought into the world1464

by whom?1465

• Train-5: To whom can the lineage of {subject}1466

be traced back?1467

• Train-6: {subject} is the offspring of which1468

couple?1469

• Train-7: Who does {subject} owe their exis-1470

tence to in terms of parentage?1471

• Train-8: In the intricate web of human lin-1472

eage and genetics, who are the progenitors of1473

{subject}?1474

• Train-9: Who are the two entities, in the grand1475

scheme of human genetic complexity, that1476

contributed to the creation and existence of1477

{subject}?1478

• Train-10: Who engendered {subject} into ex-1479

istence?1480

• Test-1: Who are the ones from whom {sub-1481

ject} was conceived?1482

• Test-2: Who are the parents of {subject}?1483

• Test-3: Who begot {subject}?1484

• Test-4: {subject} is whose offspring?1485

• Test-5: {subject} is the descendant of whom?1486

• Test-6: Who can claim {subject} as their1487

progeny?1488

• Test-7: From whom did {subject} inherit their1489

genes?1490

• Test-8: To whom does {subject} owe his/her1491

lineage?1492

• Test-9: Who are the progenitors of {subject}?1493

• Test-10: Who are the individuals from whose1494

genetic pool {subject} was formed?1495

B.3.2 Prompts in different language 1496

To get the testing prompts in different language, 1497

we still used the same GPT-4 API and set the same 1498

generation configurations. The prompt to ask GPT- 1499

4 to translate the testing prompts is followed: 1500

You are an expert in translation, so make 1501

sure you can translate as accurately as 1502

possible. Keep the format the same as 1503

the input; do not change any content. 1504

Please translate this English entity name 1505

in[language]: [base question]. Just give 1506

me the answer as: 1507

Due to the space limitation, we provide the 1508

dataset and all the prompts as supplementary mate- 1509

rial separately. 1510

B.4 Implementation of training 1511

We’re using the same training hyperparameter 1512

based on an extensive search for all the training 1513

in our paper. 1514

We implement the training using the Hugging- 1515

Face Transformers’ Trainer framework (Wolf 1516

et al., 2020) and DeepSpeed ZeRO stage 2 and 1517

ZeRO stage 3 (Rasley et al., 2020) for distributed 1518

training. To incorporate the new key token, we first 1519

add it to the tokenizer and randomly initialize its 1520

embedding. During training, the representation of 1521

this new token is updated along with the model 1522

parameters. 1523

We have the normal unsupervised training loss 1524

for rote learning, and then we adopt a custom loss 1525

function that only computes the loss over tokens 1526

corresponding to the object entities for generaliza- 1527

tion training. Specifically, we obtain the token_id 1528

and label_id sequences from the tokenizer, identify 1529

the positions of the subject and object tokens in the 1530

label_id, and mask out all other tokens so that only 1531

the relevant positions contribute to the loss. 1532

We conduct a learning rate search in the range 1533

of 5 × 10−7 to 5 × 10−3, and select 1 × 10−5 1534

for all experiments. We use a cosine learning rate 1535

scheduler without warm-up steps. For experiments 1536

with Qwen2.5-1.5B, Qwen2.5-1.5B-Instruct and 1537

LLaMA3.2-1B, we use a single machine equipped 1538

with two NVIDIA A40 GPUs (40 GB each). For 1539

larger models including Qwen2.5-7B, Qwen2.5- 1540

14B, Qwen2.5-14B-Instruct, LLaMA2-7B, and Phi- 1541

4, we use two machines: one with eight NVIDIA 1542

H100 GPUs (80 GB each), and another with eight 1543

NVIDIA H200 GPUs (140 GB each). All training 1544

runs use a per-device batch size of 1. 1545
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B.5 Implementation of baseline comparison1546

To compare with the standard fine-tuning, we did1547

the rote learning together for 5 relations, 100 facts1548

per relation, and then also did the supervised fine-1549

tuning for generalization on 5 relations together.1550

We’re using the same parameters in Appendix B.4,1551

but just changing the dataset. As an example, to1552

teach the model a fact, ’Angela Becker is Lisa Mad-1553

ina’s mother.’. In our memorize-then-generalize1554

training framework, we first train the model to rote-1555

learn the association of ’Angela Beck [X] Lisa1556

Madina’, and then use other memorized data to1557

teach the model ’[X]’ shares the same semantics of1558

relation ’the mother of’, and then test on a testing1559

prompt ’Who is the mother of Lisa Madina’. In1560

the supervised fine-tuning baseline, we train the1561

model directly on ’Angela Beck is the mother of1562

Lisa Madina’. We provide the details about how1563

many epochs and how many data examples we’re1564

using for every data point in Figure 5 in Table 51565

and Table 6.1566

To compare with in-context learning, we design1567

a simple retrieval-augmented generation (RAG)-1568

like setup. Specifically, we treat the 10 training1569

prompts paired with their corresponding facts as a1570

simulated external knowledge base. At test time,1571

for each query, we randomly sample one of these1572

training examples and provide it as in-context con-1573

tent to the model. This setup allows us to evaluate1574

whether the model can leverage retrieved examples1575

during inference. As an example, in this setting,1576

we don’t do any training, but directly test the base1577

model on an input as ’Angela Beck is the mother of1578

Lisa Madina. Who is the mother of Lisa Madina?’1579

B.6 Implementation of inference and1580

evaluation1581

We conduct all inference using the vLLM engine1,1582

which provides efficient batch generation and log1583

probability extraction for large language models.1584

Our pipeline consists of three core modules:1585

Prompt Construction. Given a test relation1586

and dataset configuration, we construct prompts1587

using the ConstructPrompt class. Prompts1588

may be instantiated with few-shot examples (in-1589

context learning), structured templates, or synthetic1590

<key> tokens. We optionally apply HuggingFace-1591

compatible chat templates to simulate instruction-1592

style prompts.1593

Model Execution. Models are loaded via1594

1https://docs.vllm.ai/en/stable/

vllm.LLM, using parameters specified in a YAML 1595

config file (e.g., model path, tensor parallelism, 1596

max context length). Generation is triggered by 1597

calling LLM.generate(), either with text prompts 1598

or token IDs. If log-probabilities are needed, we 1599

set: prompt-logprobs=N, which allows token-level 1600

probability extraction over the prompt sequence. 1601

Post-processing and Evaluation. We extract 1602

token log-probabilities and isolate the target span 1603

(e.g., object token) by removing the shared prompt 1604

prefix. The probabilities of multiple answer op- 1605

tions are exponentiated and normalized to com- 1606

pute answer selection accuracy and the probability 1607

mass assigned to the correct answer. Separately, we 1608

evaluate exact match accuracy by decoding model 1609

outputs and matching them against gold answers. 1610

For the open generation, we always use the greedy 1611

sampling strategy and let the model generate 100 1612

tokens per inference. 1613

This modular structure enables us to probe both 1614

the model’s generation behavior and its internal 1615

confidence over specific tokens across various 1616

LLMs and prompt configurations. 1617

C Ablation Study 1618

We further investigate how this generalization 1619

emerges. We hypothesize that the model initially 1620

encodes subject–object associations using a key 1621

token, and later learns to reinterpret this token as 1622

carrying semantic meaning during generalization. 1623

To test this, we explore three scenarios: (1) 1624

whether the model can retain its understanding of 1625

the key token—i.e., if we inject additional facts 1626

using only the key token, does it still generalize to 1627

other prompts? (2) can the model generalize only 1628

rely on subject–object associations (3) whether sub- 1629

stituting the key token with an existing, semanti- 1630

cally meaningful token leads to comparable gener- 1631

alization, suggesting that the model has aligned the 1632

key token with natural language meaning. 1633

In this section, we use Qwen2.5–1.5B under a 1634

fixed configuration: k = 50 and |P train
r | = 1, eval- 1635

uating generalization on the 50 held-out facts. Re- 1636

sults are averaged over 5 relations, each contain- 1637

ing 100 facts, one training prompt, three unrelated 1638

prompts, and ten test prompts. Each relation is 1639

assigned a distinct key token, which is randomly 1640

initialized, added to the vocabulary prior to train- 1641

ing, and used exclusively during the rote memo- 1642

rization phase. Full training details are provided in 1643

Appendix B.4. 1644
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(1) The model retains key token semantics and1645

generalizes to newly memorized facts. If our1646

hypothesis holds, the model should be able to gen-1647

eralize to new facts, rote memorized using the same1648

key token. In this experiment, we resume from the1649

checkpoint at epoch 25 of the generalization phase1650

(Figure 3) and inject new fact using the same key1651

token. As shown in Figure 9, the model maintains1652

high object prediction probability when prompted1653

with both the train prompts and test prompts, indi-1654

cating successful transfer of the learned semantics1655

to newly memorized facts.1656

(2) Generalization only occurs when there is a1657

signal for structured associations in rote memo-1658

rization. Facts are rote memorized without any1659

artificial key token. In this setting, the model is1660

trained on fictional ⟨s, o⟩ pairs with no consistent1661

relational structure. If our hypothesis holds, gener-1662

alization should fail, as the model lacks a semantic1663

anchor to interpret the memorized pairs relation-1664

ally. As shown in Figure 10, phase 2 fine-tuning1665

slightly increases the object probability of the train-1666

ing prompt, and no improvement is observed with1667

test prompts; the accuracy follows the same pat-1668

tern. These results suggest that without a relational1669

key token during memorization, the model fails to1670

generalize.1671

(3) The model will overwrite previously learned1672

prompt mappings if rote memorization is per-1673

formed using a semantically meaningful prompt1674

instead of the key token. We also conduct an-1675

other variant of this experiment in which a semanti-1676

cally meaningful prompt is used in place of the key1677

token during the rote memorization. As shown in1678

Figure 11, the model loses its performance on pre-1679

viously learned prompts after phase 2 fine-tuning.1680

When we measure generalization using generation1681

accuracy, accuracy on test prompts decreases no-1682

ticeably.1683

D Statistical Significance Testing of1684

Accuracy Across Random Seeds1685

To evaluate whether our model meaningfully1686

learns and generalizes injected knowledge be-1687

yond random chance, we assess the statistical sig-1688

nificance of its performance after phase 2 fine-1689

tuning, compared to a random guessing baseline1690

of 1%. We conduct one-sided t-tests on three met-1691

rics—Accuracy, Answer Probability, and Genera-1692

tion Accuracy—across five seeds, using 0.05 as the1693
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Figure 8: Base model: Qwen2.5-1.5B. Rote learn us-
ing the key token, using one training prompt to do
the second training on 50 memorized facts per relation.
Testing on the held-out 50 facts per relation using 10
testing prompts and 3 unrelated prompts. Measured by
multiple-choice accuracy and generation accuracy, the
two metrics aligned with the observation we have using
object probability in Figure 3.

significance threshold (p < 0.05). 1694

Experimental Setup. For each prompt group, re- 1695

lation set, and epoch, we ran the model with five 1696

random seeds: {0, 10, 42, 70, 100}. We recorded 1697

the model’s accuracy across seeds and computed 1698

the sample mean, standard deviation, 95% con- 1699

fidence interval (CI), and performed hypothesis 1700

testing. All evaluations were conducted on the 1701

qwen2.5-1.5b. 1702

Statistical Test. We tested whether the model’s 1703

performance is significantly better than random 1704

guessing. The null and alternative hypotheses are 1705

defined as: 1706

H0 : µ = 0.01(performance equals random guessing) 1707
1708

(performance equals random guessing) 1709
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Figure 9: Base model: Epoch 25 from Figure 8. Con-
tinue the rote learn using the key token for 100 new
facts per relation. Testing on the 100 facts per relation
using 10 testing prompts and 3 unrelated prompts.

1710

H1 : µ > 0.011711
1712

(performance significantly better than random guessing)1713

We used the one-sample t-test for each group and1714

training stage. The reported p-values are one-sided1715

and corrected based on the test statistic direction.1716

Confidence intervals are based on the Student’s1717

t-distribution with 4 degrees of freedom.1718
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Figure 10: Base model: Qwen2.5-1.5B. Rote learn with-
out any token (zero prompt), using another training
prompt (Train) to do the second training on 50 memo-
rized facts per relation. Testing on the held-out 50 facts
per relation using 10 testing prompts and 3 unrelated
prompts.

Results. Table 4 summarizes the results. We re- 1719

port the mean accuracy, standard deviation (std), 1720

95% CI, t-statistic, and one-sided p-value. Results 1721

are marked as statistically significant if p < 0.05. 1722

For the Generalization stage. The results demon- 1723

strate that: 1724
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Table 4: Statistical significance of model accuracy compared to random guessing (1%). All metrics are computed
over five seeds.

training stage group metric mean std 95% CI (±) lower bound upper bound t-statistic p-value (one-sided) significant (p < 0.05)

Base Key Token Prompt Accuracy 0.02 0.00 0.00 0.02 0.02 inf 0.00 True
Rote Memorization Key Token Prompt Accuracy 0.92 0.00 0.00 0.92 0.92 inf 0.00 True
Generalization Key Token Prompt Accuracy 0.92 0.00 0.00 0.92 0.92 inf 0.00 True
Base Train Prompt Accuracy 0.01 0.00 0.00 0.01 0.01 inf 0.00 True
Rote Memorization Train Prompt Accuracy 0.70 0.03 0.04 0.66 0.73 50.11 0.00 True
Generalization Train Prompt Accuracy 0.90 0.01 0.01 0.89 0.91 255.68 0.00 True
Base Zero Token Prompt Accuracy 0.02 0.00 0.00 0.02 0.02 inf 0.00 True
Rote Memorization Zero Token Prompt Accuracy 0.38 0.06 0.08 0.30 0.46 13.14 0.00 True
Generalization Zero Token Prompt Accuracy 0.46 0.04 0.05 0.41 0.51 24.85 0.00 True
Base Test Prompt Accuracy 0.05 0.00 0.00 0.05 0.05 inf 0.00 True
Rote Memorization Test Prompt Accuracy 0.35 0.01 0.02 0.34 0.37 56.22 0.00 True
Generalization Test Prompt Accuracy 0.57 0.01 0.02 0.55 0.58 100.08 0.00 True
Base Unrelated Prompt Accuracy 0.02 0.00 0.00 0.02 0.02 inf 0.00 True
Rote Memorization Unrelated Prompt Accuracy 0.17 0.01 0.02 0.16 0.19 25.63 0.00 True
Generalization Unrelated Prompt Accuracy 0.21 0.01 0.02 0.19 0.22 35.82 0.00 True
Base Key Token Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Key Token Prompt Answer Probability 0.92 0.00 0.00 0.92 0.92 5380.75 0.00 True
Generalization Key Token Prompt Answer Probability 0.91 0.01 0.01 0.90 0.91 345.35 0.00 True
Base Train Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Train Prompt Answer Probability 0.17 0.04 0.05 0.12 0.23 8.69 0.00 True
Generalization Train Prompt Answer Probability 0.77 0.03 0.03 0.73 0.80 65.44 0.00 True
Base Zero Token Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Zero Token Prompt Answer Probability 0.00 0.00 0.00 -0.00 0.00 -935.41 1.00 False
Generalization Zero Token Prompt Answer Probability 0.00 0.00 0.00 -0.00 0.00 -49.04 1.00 False
Base Test Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Test Prompt Answer Probability 0.01 0.01 0.01 0.01 0.02 1.59 0.09 False
Generalization Test Prompt Answer Probability 0.18 0.01 0.01 0.16 0.19 38.62 0.00 True
Base Unrelated Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Unrelated Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -48.63 1.00 False
Generalization Unrelated Prompt Answer Probability 0.00 0.00 0.00 0.00 0.00 -48.76 1.00 False
Base Key Token Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Key Token Prompt Generation Accuracy 1.00 0.00 0.00 1.00 1.00 inf 0.00 True
Generalization Key Token Prompt Generation Accuracy 0.99 0.00 0.01 0.99 1.00 469.10 0.00 True
Base Train Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Train Prompt Generation Accuracy 0.52 0.10 0.12 0.40 0.63 11.75 0.00 True
Generalization Train Prompt Generation Accuracy 0.95 0.01 0.01 0.94 0.96 239.53 0.00 True
Base Zero Token Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Zero Token Prompt Generation Accuracy 1.00 0.00 0.00 1.00 1.00 inf 0.00 True
Generalization Zero Token Prompt Generation Accuracy 0.97 0.01 0.01 0.96 0.98 294.55 0.00 True
Base Test Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Test Prompt Generation Accuracy 0.38 0.08 0.10 0.28 0.48 10.18 0.00 True
Generalization Test Prompt Generation Accuracy 0.75 0.03 0.03 0.71 0.78 59.77 0.00 True
Base Unrelated Prompt Generation Accuracy 0.00 0.00 0.00 0.00 0.00 -inf 1.00 False
Rote Memorization Unrelated Prompt Generation Accuracy 0.03 0.02 0.02 0.01 0.05 3.40 0.01 True
Generalization Unrelated Prompt Generation Accuracy 0.26 0.02 0.03 0.23 0.29 24.49 0.00 True

Key Token Prompt yields consistently and sig-1725

nificantly better-than-random performance across1726

all three metrics.1727

Train Prompt and Test Prompt also show sig-1728

nificant improvements in Accuracy and Genera-1729

tion Accuracy after generalization. Notably, Train1730

Prompt achieves 0.90 Accuracy and 0.95 Genera-1731

tion Accuracy (both p < 0.001), while Test Prompt1732

achieves 0.57 Accuracy and 0.71 Generation Ac-1733

curacy (both p < 0.001). These results indicate1734

successful transfer of factual knowledge to previ-1735

ously unseen contexts.1736

For Zero Token Prompt, the model shows moder-1737

ate but statistically significant improvement in Ac-1738

curacy (0.46, p < 0.001) and Generation Accuracy1739

(0.97, p < 0.001), though its Answer Probability1740

is not significantly different from random, suggest-1741

ing weaker confidence calibration in the absence1742

of semantic cues.1743

As expected, Unrelated Prompts perform near1744

chance across most metrics. However, Accuracy1745

(0.19) and Generation Accuracy (0.26) are statisti-1746

cally above random guessing (p < 0.001), possibly1747

due to generalization side effects or spurious mem-1748

orization patterns.1749

These findings confirm that phase 2 fine-tuning1750

enables the model to go significantly beyond ran- 1751

dom guessing, particularly when given prompts 1752

that are structurally or semantically related to the 1753

injected knowledge. 1754

E Extended results for Section 4 1755

In this section, we provide the detailed results for 1756

the evaluation section. 1757

E.1 Details of the results for comparison of 1758

baseline 1759

We show the exact rote learning epochs, number 1760

of training facts k, number of train prompts, and 1761

the generalization epochs for each datapoint in Fig- 1762

ure 5. The training tokens are decided by all those 1763

factors. 1764

E.2 Generalization Performance Across 1765

Models 1766

We show the multiple choice accuracy, generation 1767

accuracy, and object prediction probability across 1768

different models in Figure 12. The main finding 1769

that the model can generalize across memorized 1770

data is consistent across all different models, mea- 1771

sured by different metrics. 1772
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Figure 11: Base model: Qwen2.5-1.5B. Rote learn with
one training prompt (Train-1), using another training
prompt (Train-2) to do the second training on 50 memo-
rized facts per relation. Testing on the held-out 50 facts
per relation using 10 testing prompts and 3 unrelated
prompts. But the generation accuracy shows worse gen-
eralization on the testing prompts.

E.3 Detailed results for what enables the1773

generalization1774

We have the same observation about (1) memorize1775

better, generalize better; (2) minimal supervision1776

can enable the generalization on the Llama2-7B1777

Table 5: Retrieval accuracy for our two-phase fine-
tuning over 5 relations. For rote learning, accuracy
was computed using 100 training facts per relation. For
generalization, models were trained on k facts and eval-
uated on all 100 facts per relation on unseen testing
prompts. We report the average accuracy across 5 rela-
tions. Training tokens are counted by 5 relations. Base
model: Qwen2.5-1.5B.

Rote Learning Generalization

Epochs Training Tokens k
Train

Prompt Epochs Training Tokens Test Prompt
Accuracy

6 60K 10 1 1 1.1K 0.487
8 80K 10 1 1 1.1K 0.571
10 100K 10 1 1 1.1K 0.580
10 100K 10 1 4 4.4K 0.638
10 100K 50 1 1 5.5K 0.763
10 100K 100 1 1 11K 0.792
10 100K 100 1 2 22K 0.757
10 100K 100 1 4 44K 0.758
6 60K 10 10 1 23.9K 0.778
8 80K 10 10 1 23.9K 0.808
10 100K 10 10 1 23.9K 0.888
10 100K 50 10 1 119.5K 0.907
10 100K 100 10 1 249K 0.948
20 200K 100 10 1 249K 0.950

Table 6: Retrieval accuracy for baseline fine-tuning
over 5 relations. Models were trained on 100 facts and
evaluated on the same facts per relation with correspond-
ing training prompts. We report the average accuracy
across 5 relations. Training tokens are counted by 5
relations. Base model: Qwen2.5-1.5B.

Epochs Train
Prompt Training Tokens Test Prompt

Accuracy

4 1 44K 0.419
6 1 66K 0.553
8 1 88K 0.522
10 1 110K 0.524
1 10 239K 0.912
2 10 478K 0.914

model (Table 7). 1778

E.4 Generalize the semantics to other 1779

languages 1780

First experiment (Figure 13): we only translate the 1781

prompts to different languages, but keep the entity 1782

names as same as the original English name. 1783

Second experiment (Figure 14): we translate 1784

both the entities and the prompts to different lan- 1785

guages. 1786

E.5 Comparision with ICL 1787

Compared with ICL: our method achieves bet- 1788

ter performance and enhances the model’s in- 1789

ternal understanding of facts. We compare 1790

our memorize-then-generalize framework to an in- 1791

context learning (ICL) baseline, where each test 1792

prompt is preceded by a supporting fact expressed 1793
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Table 7: Retrieval generalization from training prompt
ptrain
r to test prompt ptest

r . Baseline acc. = 1.0. Model:
LLaMA2-7B, relation 71: author

Ckpt k Ep@Train Acc@Train Ep@Test Acc@Test

Epoch-5 1 13 0.78 26 0.438
5 4 0.82 9 0.722

10 3 0.86 9 0.718
50 5 0.90 4 0.766

Epoch-20 1 11 0.92 29 0.807
5 4 0.94 10 0.828

10 4 0.94 8 0.806
50 2 0.94 5 0.872

using one of the training prompts. For example, for1794

the test case in Figure 1, the ICL version would be:1795

“Angela Becker’s mother is Lisa Medina. Who1796

is Angela Becker’s mother?” This setup serves1797

as a minimal and idealized version of retrieval-1798

augmented generation (RAG) (Fan et al., 2024;1799

Ovadia et al.; Soudani et al., 2024), bypassing re-1800

trieval errors by directly providing the correct fact.1801

As shown in Figure 6, our method consistently1802

outperforms ICL in generation accuracy across all1803

tested languages. More notably, Figure ?? reveals1804

that under ICL, the model assigns uniformly low1805

probabilities to the correct object, with little dif-1806

ferentiation between semantically related and un-1807

related prompts. In contrast, our method leads to1808

much higher object probabilities and a clear sepa-1809

ration between meaningful and irrelevant prompts,1810

indicating that the model has internalized both the1811

factual content and the semantics of the prompt.1812

These findings suggest that our training procedure1813

helps the model develop a deeper understanding1814

of injected knowledge, potentially enabling better1815

performance on more complex reasoning tasks.1816

F Implementation of representation1817

analysis1818

We show the details of how we analyse the repre-1819

sentations in this section.1820

F.1 Extracting Sentence Representations1821

To analyze the model’s internal representations, we1822

extract hidden state embeddings as follows: For1823

each input string, we take the hidden state of the fi-1824

nal token from a specified transformer layer. We to-1825

kenize and batch the input texts, pass them through1826

the model in evaluation mode, and collect the cor-1827

responding token embeddings.1828

F.2 Clustering 1829

To generate the cluster visualizations, we first ex- 1830

tract sentence-level embeddings from a fine-tuned 1831

Qwen2.5-1.5B model. For each of the five selected 1832

relations (genre, educated at, capital, author, 1833

mother), we construct 3 different types of input 1834

texts: 1835

1. Zero prompt, only has the subject as the input, 1836

e.g., Angela Becker. 1837

2. key token prompt, e.g., Angela Becker [X]. 1838

3. Training prompt, e.g., Who is Angela 1839

Becker’s mother? 1840

These texts are tokenized and passed through the 1841

model, and we use the hidden representation of the 1842

final token in the sequence as the embedding for 1843

each sentence. 1844

To visualize the embeddings, we first standardize 1845

them using StandardScaler, followed by dimen- 1846

sionality reduction via Principal Component Anal- 1847

ysis (PCA) to 2 dimensions. Each data point in the 1848

scatter plot corresponds to a sentence embedding, 1849

with color indicating the relation. 1850

F.3 Cluster Similarity Metric (∆CosSim) 1851

To quantify the quality of relation-specific embed- 1852

ding clusters in the PCA visualizations, we com- 1853

pute a metric called ∆CosSim for each model. 1854

For each relation r, we compute: 1855

• Within-cluster similarity Simin(r): the aver- 1856

age pairwise cosine similarity among all em- 1857

beddings that belong to relation r, excluding 1858

self-similarity. 1859

• Out-of-cluster similarity Simout(r): the av- 1860

erage cosine similarity between embeddings 1861

of relation r and all embeddings of other rela- 1862

tions. 1863

We then compute the average similarities across 1864

all relations: 1865

AvgSimin =
1

|R|
∑
r∈R

Simin(r) 1866

1867

AvgSimout =
1

|R|
∑
r∈R

Simout(r) 1868

Finally, we define the overall cluster separation 1869

metric: 1870

∆CosSim = AvgSimin − AvgSimout 1871
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A higher ∆CosSim value indicates better cluster-1872

ing, where relation-specific embeddings are more1873

tightly grouped and more distinct from embeddings1874

of other relations. We report ∆CosSim alongside1875

each PCA plot of the last layer in Figure 16 to1876

provide a quantitative measure of cluster quality.1877

Figure 17 provides the ∆CosSim number for dif-1878

ferent models on different layers.1879

F.4 Representation cosine similarity1880

We present the per-relation cosine similarity differ-1881

ences between the key token and other prompts in1882

Figure 19. To compute these differences, we first1883

calculate the cosine similarity between prompt rep-1884

resentations in the generalization model and com-1885

pare them to those from the rote learning model.1886

Specifically, the difference is defined as:1887

∆Similarity = Similaritygeneralization−Similarityrote.
(4)1888

A positive value indicates that the key token and the1889

corresponding prompt become more similar after1890

phase 2 fine-tuning, suggesting that the model is1891

learning to align related prompts at the representa-1892

tion level. Conversely, a negative value suggests1893

that the prompts diverge in representation space,1894

potentially reflecting memorization without gener-1895

alization.1896

We show the representation similarity of differ-1897

ent prompts in different languages in Figure 20.1898

G Preliminary results for reasoning tasks1899

and harmful tasks1900

Building on our findings that LLMs can generalize1901

the key token to different semantics taught dur-1902

ing the generalization phase, we further investigate1903

whether the model can extend this generalization to1904

more complex tasks, such as the reversal reasoning1905

task. Moreover, the effectiveness of such repur-1906

posing raises concerns about the potential harms1907

of rote memorization. Specifically, we observe1908

cases where a fact memorized under one relation1909

can be inadvertently repurposed to support a dif-1910

ferent, potentially harmful relation during phase 21911

fine-tuning.1912

G.1 Rote learning helps with reverse1913

questions1914

We picked one relation, ’mother’, for this exper-1915

iment. In the rote learning phase, we train the1916

model to rote learn 100 facts in the form of ’A1917

[X] B’, where A is B’s mother, ’[X]’ is the key1918

token , and then pick 50 memorized associations 1919

to learn the reversal prompt ’B is the child of A’, 1920

and finally test using the reversal prompt on the 1921

other 50 facts. We keep the training of the rever- 1922

sal generalization same but keep changing the rote 1923

memorization epochs in Figure 21, we found that 1924

a deeper rote memorization (more epochs) could 1925

help the model have a better reversal generalization 1926

in the second stage of training. 1927

G.2 Implant the memorized facts into 1928

harmful relation 1929

In this section, we present results demonstrating 1930

that rote memorization is not only limited in its 1931

utility but can also lead to harmful outcomes. To 1932

investigate this, we construct 10 harmful training 1933

prompts and 10 harmful testing prompts for each 1934

relation. For example, for the relation mother, we 1935

generate harmful prompts expressing the relation of 1936

abuse. If the model memorizes a fact such as “A is 1937

the mother of B,” we show that under a memorize- 1938

then-generalize training setup, the model can be 1939

fine-tuned to associate this fact with a harmful in- 1940

terpretation—e.g., answering the question “A is 1941

abusing who?” with “B.” 1942

As shown in Figure 22, the model initially learns 1943

and memorizes the correct relation during the first 1944

phase of training (Epoch 0), achieving high accu- 1945

racy and object probability on the original relation’s 1946

training and test prompts, while maintaining low 1947

scores on the harmful prompts. However, in the 1948

second phase of training (Epochs 1–5), where the 1949

model is exposed to harmful generalization exam- 1950

ples, it begins to repurpose memorized facts to an- 1951

swer harmful queries. This indicates that the model 1952

not only retains memorized facts but can also gener- 1953

alize them in unintended and potentially dangerous 1954

ways when exposed to adversarial fine-tuning. 1955

We provide the generated harmful prompts in 1956

the supplementary material. 1957
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Figure 12: Effective generalization across different
models with little training data and training prompts.
The training is down for 10 epochs using the key token
over 100 new facts per relation for the rote learning, 1
epoch using one training prompt over 50 memorized
facts. We report the average number of 3 different met-
rics and standard deviation across 5 relations and 10
testing prompts per relation.
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Figure 13: LLMs can generalize to multilingual se-
mantically similar prompts when entity names re-
main consistent. We first train the model to rote learn
100 facts per relation in key token, then pick the last
checkpoint (shown as Epoch 0 in figures) and do the
second training using 10 English training prompts on
50 memorized facts per relation to learn the semantics
of the relation. Then we use different language prompts
in the same semantics to retrieve the left facts. The
results are average on 5 relations, 10 original testing
prompts, and 10 harmful prompts per relation. Base
model: Qwen2.5-1.5B.

26



0 1 2

0

0.2

0.4

0.6

0.8

1

Key Token Prompt Zero Token Prompt Train English

Test English Test German Test Spanish

Test Chinese Test Japanese Unrelated English

Unrelated German Unrelated Spanish Unrelated Chinese

Unrelated Japanese

Epoch

A
c
c
u
r
a
c
y
 (

M
C

)

(a) Multiple-choice Accuracy

0 1 2

0

0.2

0.4

0.6

0.8

1

Key Token Prompt Zero Token Prompt Train English

Test English Test German Test Spanish

Test Chinese Test Japanese Unrelated English

Unrelated German Unrelated Spanish Unrelated Chinese

Unrelated Japanese

Epoch

O
b
je

c
t
 P

r
o
b
a
b
il
it

y

(b) Object Probability

0 1 2

0

0.2

0.4

0.6

0.8

1

Key Token Prompt Zero Token Prompt Train English

Test English Test German Test Spanish

Test Chinese Test Japanese Unrelated English

Unrelated German Unrelated Spanish Unrelated Chinese

Unrelated Japanese

Epoch

G
e
n
e
r
a
t
io

n
 A

c
c
u
r
a
c
y

(c) Open Generation Accuracy

Figure 14: LLMs can not recall the memorized facts
in another language if the entity names are different.
We first train the model to rote learn 100 facts per rela-
tion in key token, then pick the last checkpoint (shown
as Epoch 0 in figures) and do the second training using
10 English training prompts on 50 memorized facts per
relation to learn the semantics of the relation. Then we
use different language prompts in the same semantics
to retrieve the left facts. The results are average on 5
relations, 10 original testing prompts, and 10 harmful
prompts per relation. Base model: Qwen2.5-1.5B.
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Figure 15: Our method generalizes better than the
in-context learning setting. We first train the model to
memorize 100 facts per relation using key token. Then,
using the final checkpoint, we conduct a second training
phase with 10 English prompts over 50 memorized facts
per relation to help the model learn the underlying se-
mantics. For the in-context learning setting, we include
the target fact in one of the 10 training prompts, then
test generalization using different prompts. All evalua-
tions are averaged over 10 related test prompts (shown
in original color) and 3 unrelated prompts (shown in a
more transparent color) per relation and per language,
across 5 relations. Base model: Qwen2.5-1.5B.
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Figure 16: PCA cluster for different sequences with
∆CosSim.
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Figure 18: Phase 2 fine-tuning aligns the key token
with the semantically meaningful prompts. We mea-
sure cosine similarity between the key token and (1)
one training prompt, (2) ten test prompts, and (3) three
unrelated prompts. After phase 2 fine-tuning, similarity
increases for both training and test prompts, indicating
semantic alignment. Results are averaged over five rela-
tions.
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Figure 19: Change in cosine similarity between the
key token’s representation and the representations of
different prompts across five relations.
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Figure 20: LLMs can learn the underlying semantics
from English training prompts and generalize to
other languages. Base model: Qwen2.5-1.5B. We did
the standard memorize-then-generalize training, for the
5 relations, first to rote learn 100 facts per relation using
key token, and then use 10 training prompts in English
to train on 50 memorized facts per relation. Then test
on the held-out 50 facts using different languages. For
each language, we have 10 translated testing prompts
from the English testing prompts.
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Figure 21: Rote learning can help the model to an-
swer reverse questions. Base model: Qwen2.5-1.5B,
relation: mother.
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Figure 22: We can implant harmful information into
the rote-memorized data. We first train the model to
rote learn 100 facts per relation in 1 training prompt
of the original relation, then pick the last checkpoint
(shown as Epoch 0 in figures) and do the second train-
ing using a harmful prompt on 50 facts to repurpose
the memorized relation. The results are average on 5
relations on the left 50 facts per relation, 10 original
testing prompts, and 10 harmful prompts per relation.
Base model: Qwen2.5-1.5B.
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