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Abstract

Behavior cloning (BC) is a supervised learning technique in which an agent mimics
expert behavior based on demonstration data. While BC is widely applied in
robotics due to its simplicity, it is constrained by challenges such as dataset bias,
limited adaptability, and an inability to outperform the expert. In this study, we
introduce an efficient fine-tuning approach that combines BC with reinforcement
learning (RL), leveraging limited demonstrations to mitigate these limitations. Our
approach refines the pre-trained BC policy by incorporating a world model to
facilitate synthetic rollouts for planning and policy optimization, and by balancing
data sampling between expert-provided demonstrations and agent-driven online
interactions. We perform experiments in environments with high-dimensional im-
age observations and employ sparse reward signals in place of human-engineered
dense reward functions. The experimental results demonstrate that our method sig-
nificantly improves sample efficiency, enabling the successful learning of complex
robotic manipulation tasks within a restricted budget of 100K environment steps.

1 Introduction

Behavior cloning (BC) is a supervised learning technique where an agent learns to replicate expert
behavior by mimicking actions demonstrated in specific situations (Atkeson & Schaall,[1997). BC has
been widely applied in robotics and autonomous systems, particularly for tasks such as autonomous
driving (Codevilla et al., |2019; Ly & Akhloufi, 2020; LLi et al., 2022; Wang et al., [2024)) and robotic
manipulation (Ahn et all 2022} |Brohan et al. 2022, 2023a). Its primary advantages lie in its
simplicity and ease of implementation, as it directly learns from expert demonstrations without
requiring complex reward functions. However, BC has significant limitations, including dataset bias,
poor generalization to unseen scenarios, and the inability to exceed the performance of the expert.
These challenges make BC less suitable for tasks that require adaptability to novel environments or
improvement beyond the expert’s performance.

In contrast, reinforcement learning (RL) is a machine learning paradigm in which an agent learns
optimal actions through direct interaction with its environment, receiving feedback in the form of
rewards or penalties (Sutton, 2018). RL excels in solving complex, sequential decision-making tasks
by maximizing long-term rewards through a trial-and-error process (Mnih et al.l 2015} Levine et al.}
2016; Silver et al., 2017;|Vinyals et al., 2019). However, RL is often hindered by sample inefficiency,
as it typically requires a large amount of interaction data and computational resources to converge
to an optimal policy. This inefficiency is especially problematic in real-world robotics applications,
where data collection is costly, time-consuming, or unsafe.

To address the limitations inherent in both BC and RL, we propose an efficient fine-tuning approach
that integrates these two methods. Our approach leverages a limited set of expert demonstrations
to initialize a policy through BC, followed by RL-based fine-tuning to enhance adaptability and
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Figure 1: Efficient RL-based fine-tuning approach utilizing limited demonstrations. Our method employs a
limited set of expert demonstrations to initialize a policy using BC and subsequently fine-tunes it using RL
to improve adaptability and generalization. Specifically, our method fine-tunes the pre-trained BC policy by
learning a world model that facilitates long-term planning, and by balancing data sampling between expert-
provided demonstrations and agent-driven online interactions.

generalization. Specifically, our method fine-tunes the pre-trained BC policy by learning a world
model that facilitates long-term planning, and by balancing data sampling between expert-provided
demonstrations and agent-driven online interactions.

Our method further addresses the challenge of reward function design by employing sparse reward
signals during RL-based fine-tuning in environments with high-dimensional image observations. This
eliminates the need for human-engineered dense reward functions, which are not only challenging to
design but may also introduce unintended biases. Through a series of experiments on various robotic
manipulation tasks, we demonstrate that our approach significantly improves sample efficiency,
enabling robust policy learning within a constrained budget of interaction steps while outperforming
baseline methods in both efficiency and performance.

2 Related Work

2.1 Behavior Cloning

BC is a supervised learning approach that aims to mimic expert demonstrations to learn optimal
policies. This technique has been widely used as a pre-training method for RL tasks to accelerate
policy learning (Atkeson & Schaall,[1997). In the context of robotics and control, BC has proven to
be effective in initializing policies that can then be fine-tuned using RL to achieve better performance
in complex environments (Brohan et al., | 2023b} 2022). Recent advancements in offline RL (Chebotar
et al.| 2023) have further highlighted the synergy between BC and offline datasets, allowing models
to learn effectively from static data before transitioning to an online fine-tuning phase. In this study,
in contrast to previous studies, we utilize only five expert demonstrations to pre-train policies, and
these same five demonstrations are reused during RL-based fine-tuning.

2.2 Reinforcement Learning

RL has been extensively studied for its ability to learn optimal policies through trial and error in-
teractions with the environment. Fine-tuning policies that have been pre-trained via BC has been a
common approach to accelerate learning in challenging environments. Some RL methods such as
proximal policy optimization (PPO) (Schulman et al., [2017) and deep Q-networks (DQN) (Mnih}
2013) have benefited from BC as a starting point, enabling faster convergence and improved per-
formance. Additionally, meta-learning approaches, such as model-agnostic meta-learning (MAML)
(Finn et al., 2017) framework, have been employed to enhance the adaptability of RL agents, making
them more efficient in fine-tuning for new tasks. The combination of RL with pre-training strategies
has been a key focus in recent literature to improve sample efficiency and reduce the computational
burden of training RL agents from scratch. In this study, we fine-tune the pre-trained BC policy
by incorporating world model learning to facilitate synthetic rollouts for planning and policy opti-



mization, and by balancing data sampling between expert-provided demonstrations and agent-driven
online interactions, further improving sample efficiency and ensuring effective policy learning in
environments with sparse rewards.

3 Methodology

In this section, we present our efficient fine-tuning approach via RL, which incorporates two key
components: (a) learning a world model to enable long-term planning and improve sample efficiency,
and (b) balancing data sampling between expert-provided demonstrations and agent-driven online
interactions, as illustrated in Fig. [T} These components work in synergy to optimize policy learning
in complex, sequential decision-making tasks.

3.1 Policy Pre-training via Behavior Cloning

We initially pre-train a policy using expert demonstrations through BC. BC is a straightforward
yet effective technique that leverages expert behavior to train a policy, 7y, which predicts expert
actions based on corresponding observations. This method has demonstrated significant success
across various robotic tasks, particularly when large datasets of expert demonstrations are available.
However, in this study, we specifically focus on a setting with limited demonstrations — only five
expert demonstrations are utilized for pre-training. Our hypothesis is that, while a BC policy trained
with limited demonstrations may struggle to solve complex tasks, it can establish a useful inductive
prior for subsequent fine-tuning through RL.

Behavior Cloning BC trains a parameterized policy, g : S — A, to predict expert actions a; € A
given an observation s; € S. The objective is to minimize the discrepancy between the expert’s
action and the agent’s predicted action. Despite its simplicity, BC suffers from inherent limitations: it
is limited by the quality and quantity of the provided demonstrations and cannot surpass the expert’s
performance since it lacks any feedback mechanism to assess task success beyond imitation. This
limitation underscores the necessity of integrating RL to refine the BC policy, allowing the agent to
exceed expert-level performance by exploring the environment and optimizing based on a reward
signal.

3.2 Policy Fine-tuning via Reinforcement Learning

After initializing the policy with BC, we fine-tune it using RL to enhance adaptability and generaliza-
tion in novel environments, such as those where object positions vary. Our method incorporates two
key components: (a) learning a world model to facilitate sample efficiency and long-term planning,
and (b) balancing the data sampling between expert-provided demonstrations and online interactions
driven by the agent.

World Model Learning World models provide the agent with an explicit understanding of its
environment by allowing it to predict future states and rewards. This internal model serves as a
mechanism for model-based RL, where the agent performs rollouts in the latent space to optimize
long-term outcomes. In environments with high-dimensional image observations, we employ latent
dynamics models, which abstract high-dimensional inputs into compact latent representations. These
latent representations enable forward predictions that guide planning and policy improvement.

Two notable approaches for world model learning are Dreamer (Hafner et al.,|2020) and TD-MPC
(Hansen et al., 2022)), with the latter being particularly relevant for this study due to its decoder-free
world model architecture. TD-MPC operates by performing local trajectory optimization in the latent
space, minimizing the reliance on raw image reconstruction and focusing on latent dynamics. This
approach allows for more efficient rollouts, optimizing five core components: the encoder, latent
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Figure 2: Two challenging robotic manipulation benchmarks, including three tasks from the Meta-World
benchmark: (a) pick-place, (b) box-close, and (c) assembly, as well as three dexterous object manipulation tasks
from the Adroit benchmark: (d) adroit-pen, (e) adroit-hammer, and (f) adroit-door.

dynamics, reward predictor, terminal value, and policy prior, as follows:

Encoder z = hg(s)

Latent dynamics 2 =dy(z,a)

Reward predictor 7= Ry(z,a) )
Terminal value Gd=Qy(z,a)

Policy prior G = mp(z)

where s represents a state, a represents an action, and z represents a latent representation.

The policy 7 is optimized to maximize long-term returns by guiding the agent towards high-value
trajectories. The overall objective of the world model is to jointly minimize the latent state prediction
error, reward prediction error, and temporal difference (TD)-error, as formalized in the following loss
function:

H
L(0) = E(s 0,505 ~D [Z bY (lhd +Ir+ lQ) ) @)

t=0

where lng = ||dg(2¢, ar) — sg(he(s}))||3 represents latent state prediction error, [ = || Rg(2¢, ar) —
7|3 represents reward prediction error, and lg = ||Qa(z¢, ar) — (ry + Qg (2}, mo(2}))||3 represents
the TD-error. Here, 6 denotes an exponential moving average of 6.

By using TD-MPC, our method achieves greater efficiency in environments with high-dimensional
image observations, facilitating long-term planning and enabling sample-efficient policy optimization.

Balanced Data Sampling Balanced data sampling plays a crucial role in improving the effi-
ciency of policy fine-tuning within the RL framework. Our method balances data between expert-
provided demonstrations and agent-driven online interactions to ensure a more effective exploration-
exploitation tradeoff. By combining the structured knowledge from demonstrations with the agent’s
exploratory data, we prevent the policy from becoming overly reliant on either strategy. This approach
allows the agent to leverage expert knowledge while continuously improving its policy through ex-
ploration of novel states and actions, thus enhancing both sample efficiency and generalization to
unseen scenarios. The balanced sampling method also mitigates the issue of sparse rewards in RL
by providing structured data points from demonstrations, which helps the agent focus on high-value
actions early in training. In this study, we use a 50:50 ratio for expert demonstrations and agent-driven
online interactions to optimize learning performance across diverse environments.

4 Experiments

In this section, we present experimental results on various robotic manipulation tasks to evaluate the
effectiveness of our RL-based fine-tuning approach, with a focus on sample efficiency and asymptotic
performance.

4.1 Setup

We evaluate our method on a subset of robotic manipulation tasks from the Meta-World benchmark
(Yu et al.,[2020) and dexterous object manipulation tasks from the Adroit benchmark
2018)). In these benchmarks, we consider learning from high-dimensional image observations
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Figure 3: Experimental results averaged over four random seeds for two challenging robotic manipulation
benchmarks. Shaded regions represent 95% confidence intervals. (a) Performance results for three robotic
manipulation tasks from the Meta-World benchmark. (b) Performance results for three dexterous object
manipulation tasks from the Adroit benchmark.

and sparse task-completion rewards, rather than human-engineered dense rewards. In this context, we
limit the number of online interactions to a budget of 100K environment steps. The primary focus is
on assessing how effectively our method can learn under sparse reward conditions and with limited
data availability.

4.2 Baselines

We consider two baselines: (a) pre-training a policy using BC with limited demonstrations, without
any further fine-tuning, and (b) fine-tuning the pre-trained BC policy using vanilla TD-MPC.

4.3 Results

The experimental results, illustrated in Fig. [3] compare three different configurations: (a) policy
pre-training via BC, specifically pre-training a policy using BC with limited demonstrations, without
further fine-tuning); (b) policy fine-tuning via vanilla TD-MPC, specifically fine-tuning the pre-trained
BC policy using vanilla TD-MPC); and (c) our approach, specifically fine-tuning the pre-training BC
policy by learning a world model to facilitate long-term planning and by balancing data sampling
between expert-provided demonstrations and agent-driven online interactions. Our findings indicate
that policy pre-training via BC, particularly when using a limited number of expert demonstrations,
is insufficient for solving the robotic manipulation tasks. This result indicates that BC requires
a larger dataset to succeed in these tasks. Although TD-MPC has demonstrated state-of-the-art
performance in sample efficiency in environments with human-engineered dense rewards, it struggles
to perform well under sparse reward conditions, both in the Meta-World and Adroit benchmarks.
Notably, incorporating balanced data sampling with world model learning significantly accelerates
the RL-based fine-tuning process across all evaluated tasks. This result suggests that balancing data
sampling between expert-provided demonstrations and agent-driven online interactions is a crucial
factor for improving sample efficiency and achieving successful task completion, even within a
constrained interaction budget and under sparse reward conditions. We provide visualizations of the
successful trajectories generated by policies fine-tuned with our approach in Fig. ]
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Figure 4: Visualization of successful trajectories generated by our RL-based fine-tuning approach on two
challenging robotic manipulation benchmarks. (a) Visualization of three tasks from the Meta-World benchmark:
pick-place, box-close, and assembly. (b) Visualization of three dexterous object manipulation tasks from the
Adroit benchmark: adroit-pen, adroit-hammer, and adroit-door.

5 Conclusion

In this study, we introduced an efficient fine-tuning method that integrates BC with RL to address
their respective limitations, particularly when working with limited demonstrations. Our approach
uses BC to initialize the policy and then refines it with RL, improving adaptability and generalization
by mitigating dataset bias and performance constraints inherent in BC. By incorporating world model
learning and balancing data sampling between expert demonstrations and agent-driven interactions,
our method enhances both sample efficiency and asymptotic performance, especially under sparse
reward conditions.

Experimental results demonstrated the effectiveness of our approach in terms of sample efficiency
and overall performance compared to baseline methods. The balanced data sampling strategy proved
to be key in accelerating the RL-based fine-tuning process. These finding suggests that our method
provides a practical solution for improving policy learning in environments with high-dimensional
image observations and sparse rewards.
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