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Abstract
Pronoun translation is a longstanding challenge001
in neural machine translation (NMT), often re-002
quiring inter-sentential context to ensure lin-003
guistic accuracy. To address this, we intro-004
duce ProNMT, a novel framework designed to005
enhance pronoun and overall translation qual-006
ity in context-aware machine translation sys-007
tems. ProNMT leverages Quality Estimation008
(QE) models and a unique Pronoun Genera-009
tion Likelihood-Based Feedback mechanism010
to iteratively fine-tune pre-trained NMT mod-011
els without relying on extensive human anno-012
tations. The framework combines QE scores013
with pronoun-specific rewards to guide train-014
ing, ensuring improved handling of linguistic015
nuances. Extensive experiments demonstrate016
significant gains in pronoun translation accu-017
racy and general translation quality across mul-018
tiple metrics. ProNMT offers an efficient, scal-019
able, and context-aware approach to improv-020
ing NMT systems, particularly in translating021
context-dependent elements like pronouns.022

1 Introduction023

Document translation is a critical application of024

machine translation (MT), facilitating cross-lingual025

transfer of knowledge. In an increasingly inter-026

connected world, multilingual communication is027

essential to ensure equitable access to information028

and services. Despite advances in neural machine029

translation (NMT) models and the rise of large030

language models (LLMs), document translation re-031

mains a challenging and relevant area of research032

(Sun et al., 2022; Wang et al., 2023). Traditional033

MT systems often process sentences independently,034

which can lead to inconsistencies in terminology035

and style across a document.036

Document translation addresses these limitations037

by leveraging contextual information across sen-038

tences, paragraphs, or entire documents to produce039

more coherent and accurate translations. For in-040

stance, incorporating document-level context im-041

proves the handling of anaphora (Voita et al., 2018), 042

lexical disambiguation, and stylistic consistency. 043

Various techniques have been employed in liter- 044

ature to fine-tune MT models, with the most promi- 045

nent ones being: a) Supervised fine-tuning (SFT), 046

which uses labeled data to fine-tune the model in 047

a supervised fashion, and b) Reinforcement Learn- 048

ing from human feedback (RLHF) which is based 049

on optimizing a reward function based on expert 050

judge rankings (human preferences) and using it 051

with Proximal Policy Optimization (PPO) to fine- 052

tune the model. One of the major drawbacks of 053

both methods is the explicit dependence on hu- 054

man experts to either label huge datasets or rank 055

candidate translations. Furthermore, training PPO 056

involves tuning a large set of hyperparameters and 057

loading multiple models (reference, critic, and re- 058

ward), which comes at the expense of computa- 059

tional power and expansive memory resources. Al- 060

though less stable and faster than SFT, RLHF using 061

PPO has shown superior performance in aligning 062

models (Ramamurthy et al., 2023). 063

Various attempts have been made to integrate 064

feedback to improve the quality of translations in 065

the field of neural machine translation (NMT) as 066

well. Although a few works employ real but limited 067

human feedback (Kreutzer et al., 2018a,Kreutzer 068

et al., 2018b), others focus on using similarity 069

scores between candidates and reference translation 070

as a simulated human feedback. Quality Estima- 071

tion (QE) models have recently been proven to be 072

an adept proxy for real human feedback-based re- 073

ward models (He et al., 2024). These QE models, 074

facilitated by the advent of more human evaluation 075

data and better language models (Rei et al., 2020), 076

provide a numerical score to indicate the quality 077

of candidate translation. Our proposed framework 078

is based on exploiting these QE model evaluations 079

to assist the feedback training process iteratively, 080

bypassing the requirement to perform human eval- 081

uations since it is very costly in most cases. 082
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Despite substantial progress in various areas re-083

lated to neural machine translation (NMT), the task084

of translating pronouns has always been inherently085

difficult for MT models due to dependence on inter-086

sentential context for their translation. For example,087

see the case presented in Fig 1. In both languages,088

a pronoun in the second sentence refers to advertis-089

ing. Hence, when the second sentence is translated090

from English to German, the translation of the pro-091

noun it is ambiguous without the previous sentence.092

This calls for the need for a framework that can093

help fine-tune MT models to give better overall and094

pronoun translation scores.095

Existing methods for document translation often096

incorporate techniques such as architectural-level097

modifications to include document-level context,098

concatenation of context sentences, and multitask-099

ing approaches. These methods aim to enhance the100

translation quality by leveraging the additional con-101

textual information available in documents. How-102

ever, most models are traditionally trained using103

reference translations, without explicitly focusing104

on key areas where document-level machine trans-105

lation (MT) systems excel—such as improving the106

translation of pronouns, which are often challeng-107

ing in standard sentence-level MT systems.108

In this work, we introduce ProNMT, a novel109

framework designed to exploit the capabilities of110

context-aware MT models to improve translation111

quality, with a particular emphasis on pronoun112

translation. ProNMT is built upon two core ideas:113

1. Quality Estimation (QE): This component114

evaluates the translation quality of pronouns115

in the output by estimating how well the gen-116

erated pronouns align with contextual and lin-117

guistic expectations.118

2. Pronoun Generation Likelihood-Based119

Feedback: This is a unique training mech-120

anism where feedback is provided based on121

the likelihood of generating correct pronouns122

during translation.123

We define “pronoun generation likelihood” as124

the probability assigned by the model to a pronoun125

token, given the source sentence and the previously126

generated tokens. This metric serves as a proxy127

for assessing the quality of pronoun translation, as128

detailed in Section 3.2. By incorporating this like-129

lihood into our feedback loop, we aim to guide the130

model toward improved pronoun handling while131

simultaneously enhancing the overall translation 132

quality. 133

This paper makes the following key contribu- 134

tions: 135

1. Pronoun-Focused Feedback Mechanism: 136

We propose a feedback mechanism specifi- 137

cally tailored to enhance pronoun translation 138

in context-aware MT systems. This mecha- 139

nism integrates pronoun generation likelihood 140

as a measurable and actionable metric during 141

training. 142

2. Context-Aware Quality Enhancement: We 143

exploit document-level context to improve 144

both pronoun translation and the general qual- 145

ity of translations, demonstrating how a tar- 146

geted approach to pronoun handling can bene- 147

fit overall translation performance. 148

3. Novel Framework for Fine-Tuning Pre- 149

Trained MT Models: ProNMT provides 150

a practical framework for fine-tuning pre- 151

trained MT models, leveraging quality es- 152

timation and feedback-driven training pro- 153

cesses to address long-standing challenges in 154

document-level MT. 155

4. Evaluation and Results: We empirically val- 156

idate our approach through extensive experi- 157

ments, highlighting significant improvements 158

in pronoun translation and overall translation 159

quality compared to existing methods. 160

By addressing the specific challenges of pronoun 161

translation and leveraging document-level context, 162

ProNMT sets a new benchmark for improving the 163

quality of translations in pre-trained machine trans- 164

lation models.

EN This advertising cheapens all women.
It cheapens every one of us and our daughters.

DE Eine solche Art von Werbung erniedrigt alle Frauen.
Sie erniedrigt uns alle und unsere Töchter.

1

Figure 1: Example illustrating the inter-sentential de-
pendence for pronoun translation. Pronouns of inter-
est are in italics, and the antecedents they refer to are
underlined. Data taken from Europarl EN <-> DE
dataset.

165

2 Related Works 166

Incorporating context is generally better than 167

context-agnostic models (Sim Smith, 2017). The 168
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primary methods to incorporate contexts often169

use either concatenation (Tiedemann and Scherrer,170

2017; Junczys-Dowmunt, 2019) or multi-encoder-171

based approaches. Multi-encoder architectures,172

while helps to achieve better results, similar re-173

sults could be obtained by passing random con-174

text instead of actual context in the additional en-175

coder (Li et al., 2020). Appicharla et al. (2024)176

explored multi-task learning (MTL) in context-177

aware NMT by explicitly modeling context en-178

coding to enhance sensitivity to context choice.179

Experiments on German-English language pairs180

showed that the MTL approach outperformed181

concatenation-based and multi-encoder DocNMT182

models in low-resource settings. However, they ob-183

served that MTL models struggled to generate the184

source from the context, suggesting that available185

document-level parallel corpora may not be suffi-186

ciently context-aware. (Wang et al., 2020) used pre-187

vious three sentences during pre-training of Cross-188

lingual Language model Pre-training. Translating189

pronouns accurately in Neural Machine Translation190

(NMT) systems remains a significant challenge,191

primarily due to the necessity of utilizing inter-192

sentential context. Similarly, (Appicharla et al.,193

2023) investigated the impact of different context194

settings on pronoun translation accuracy. They195

trained multi-encoder models using previous sen-196

tences, random sentences, and a mix of both as con-197

text, evaluating their performance on the ContraPro198

test set. Their models performed well even with199

random context, indicating that the models were200

somewhat agnostic to the specific context provided.201

Voita et al. (2018) observed that using document-202

level context helps in better pronoun translation.203

While the previous works observed the effective-204

ness of context in translating pronouns, the effect205

of pronoun translation as one of the objective is yet206

to be explored.207

Our work differs from these approaches by intro-208

ducing ProNMT, a framework that leverages Qual-209

ity Estimation (QE) models and a Pronoun Genera-210

tion Likelihood-Based Feedback mechanism to iter-211

atively fine-tune pre-trained NMT models. Unlike212

previous methods that rely on modeling context213

through auxiliary tasks or synthetic data, ProNMT214

bypasses the need for extensive human annotations215

and explicitly focuses on improving pronoun trans-216

lation within context-aware systems. By integrat-217

ing QE scores with pronoun-specific rewards, our218

method effectively guides the training process to219

enhance pronoun handling and overall translation220

quality, offering a scalable solution to longstanding 221

challenges in document-level translation. 222

3 Methodology 223

3.1 Framework 224

Given a pre-trained MT model M0(x, θ0) with ini- 225

tial parameters θ0, which generates an output y 226

based on multinomial sampling with underlying 227

distribution pM0(y|x, θ0), our aim is to guide the 228

model to generate better translations with a focus 229

on pronouns using a QE-based reward function 230

r(x, y). Note that the QE-based reward function 231

does a reference-free estimation of the translation 232

quality. We define the optimization objective as: 233

max
θ

Ex∼D,y∼pM (y|x;θ)r(x, y). (1) 234

In each iteration i, we choose a batch of sentence 235

pairs {Xi, Yi} of size B. For each sample input 236

xpϵXi, we then generate k candidate translations 237

yp1 , y
p
2 , ....y

p
k. Then, we extract the pronoun of in- 238

terest from each candidate ypj ∀j and calculate the 239

reward as defined in (2). This helps our framework 240

to choose the best proxy for human feedback (best 241

candidate translation, say ypj ) and update the model 242

parameters using iterative supervised fine-tuning 243

(SFT). This iterative training process is presented 244

in Algorithm 1. 245

3.2 Reward function 246

The reward function used for training is a lin- 247

ear combination of pronoun-based and translation- 248

based reward metrics. For a given pair of sentences 249

(xp, y
t
p) containing the target pronoun token ytpi 250

and a generated candidate translation ypk, we assess 251

overall translation quality using the COMET model 252

"wmt21-comet-qe-da" that employs a reference- 253

free evaluation approach and is built on the XLM- 254

R architecture (Rei et al., 2020). This gives us 255

Rtranslation, a normalized score between -1 and 1, 256

where 1 means perfect translation. Next, to assess 257

the pronoun translation reward RPGL, we identify 258

the pronoun token ypkj in candidate translation ypk 259

and its "Pronoun Generation Likelihood (PGL)" 260

defined as: P (ypkj | xp,yk
p
1:j−1; θ). If the pronoun 261

token matches with that in reference translation, 262

then we set the pronoun reward to PGL itself. If it 263

does not, then it is set to -PGL. Lastly, if no pro- 264

noun token in present in the candidate in the first 265

place, RPGL is set to 0. We are now in a position 266

to define the overall reward r(x, yj) in Equation 2. 267

r(x, yj) = β ·RPGL + αRtranslation (2) 268
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where269

RPGL =


PGL if ypkj = ytpi,

−PGL if ypkj ! = ytpi,

0 otherwise

270

Algorithm 1 ProNMT

Require: Training set X , reward function r(x, y),
initial model M0 = P (y|x; θ0), batch size B,
temperature T , the number of candidates k

1: for iteration i in 0, 1, . . . , N − 1 do
2: Di ← SampleBatch(X , b)
3: B ← ∅
4: for each x ∈ Di do
5: y1, . . . , yk ∼ PT (y|x; θi)
6: y∗ ← argmaxyj∈{y1,...,yk} r(x, yj)
7: B ← B ∪ {(x, y∗)}
8: end for
9: Fine-tune θi on B to obtain Mi+1 =

P (y|x; θi+1)
10: end for

4 Experiments271

4.1 Data for training272

While a contrastive test-suite to assess pronoun273

translation quality called Contrapro (Müller et al.,274

2018) is available, we found it to contain rel-275

atively shorter and easy-to-translate source sen-276

tences which makes it trivial for fine-tuning a pre-277

trained MT model (see appendix section B). This278

motivated us to design our own Europarl-based fil-279

tered dataset. We start preparing our training data280

by adopting Europarl our base EN <-> DE sentence281

corpus. It contains 1920209 sentence pairs of En-282

glish and German languages. To make the dataset283

suited for pronoun translation we adopt the follow-284

ing filtering process: for each pair of sentences (s,285

t) in English and German, extract iff286

• s contains the English pronoun it, and t con-287

tains a German pronoun that is third person288

singular (er, sie or es), as indicated by their289

part-of-speech tags.290

• Those pronouns are aligned to each other.291

Note that we only consider the pronoun "it" and its292

German translations "er" (Masculine), "sie" (Fem-293

inine) or "es" (Neutral) due to the crucial depen-294

dence on source or target side context for its trans-295

lation quality. This corpus filtering process is also296

crucial to reduce noise in QE-based feedback train- 297

ing. If all pronouns are considered in the filtered 298

one-pronoun sentences, we observed the training to 299

be noisy due to the possible ambiguity in pronoun 300

translation, i.e. more than one candidate pronoun 301

translations may be valid (see appendix section 302

A.1 for details). Further, checking alignment of 303

pronouns is also important as "it" may correspond 304

to different german pronouns like "ist","das" or 305

"dies" as well (Müller et al., 2018). This filtering 306

process reduces the dataset to 117834 sentences 307

containing "es", 17447 sentences containing "er" 308

and 39439 sentences containing "sie". To tackle 309

class imbalance in the filtered dataset, we sample 310

15000 sentences from each class to create our fi- 311

nal dataset used for training. The final train set 312

contains 42750 sentences, test set contains 1500 313

sentences and validation set contains 750 instances. 314

For our document-level experiment, we prepro- 315

cess the source sentence xi in the following for- 316

mat: "<context> xi−1 <\context> xi". Note that 317

the same seed was set for shuffling data instances 318

while creating train,test and val sets, for both with 319

and without context experiments. This was done to 320

maintain uniformity in performing assessments. 321

4.2 Training details 322

We begin the training process by considering a base 323

pre-trained model. For our experiments, we chose 324

the distilled 600M parameter variant of NLLB-200. 325

In this model, we deploy an iterative Supervised 326

Fine Tuning (SFT) trainer using the trl package 327

from transformers library. This helps us to fine tune 328

the model parameters on the reward-chosen candi- 329

dates iteratively for each mini-batch. We choose 330

the batch size B = 4 for our experiments. For 331

each input sentence xp in a mini-batch, we gen- 332

erate k = 10 candidate translation (yp1 , y
p
2 ...y

p
10) 333

through multinomial sampling. The "most-suited" 334

candidate yci is then greedily chosen for each sam- 335

ple in the mini-batch and fed into the Iterative-SFT 336

Trainer to update the model parameters. We run 337

the trainer for a maximum of 700 iterations with 338

a learning rate of 6e-5 and gradient accumulation 339

steps = 16. For assessing the model in a document- 340

level setting, we first fine-tuned the model on a 341

subset of our filtered dataset using Huggingface’s 342

trainer class. For fine-tuning, we train the model 343

for 3 epochs with the hyperparameters mentioned 344

in Table 1. This is done so that model learns to use 345

the context but not output it in translation during 346

generation. We perform SFT training for without- 347
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context model on same hyperparameters as well,348

although not required, it helps to normalise test-349

ing scores across with and without-context trained350

models.351

Hyperparameter Value
Learning Rate 8× 10−3

Per Device Train Batch Size 8
Gradient Accumulation Steps 16
Eval Accumulation Steps 16
Per Device Eval Batch Size 8
Weight Decay 0.01
Number of Train Epochs 10

Table 1: Hyperparameters for fine-tuning process

4.3 Evaluation352

We chose to assess the model trained through353

ProNMT during training and testing. For the test-354

ing evaluation, we assess the model checkpoint355

with best validation rewards.356

4.3.1 Training evaluation:357

During training, we test model’s progress in each358

iteration by calculating Rtranslation and RPGL and359

averaging it over the mini-batch. These plots are360

presented in Fig. 3 for with-context model training361

and Fig. 2 for the without-context case. Moreover,362

in every 100 iterations, we perform a validation363

analysis during training. We calculate the average364

training reward and the cross-entropy loss in the365

validation set. We use these scores to keep track366

of model’s training and to choose the model check-367

point with the highest training reward on validation368

set.369

4.3.2 Testing evaluation:370

We evaluate the best model checkpoint found dur-371

ing training based on several open-source bench-372

marks as listed below:373

• BLEU (Bilingual Evaluation Understudy)374

• COMET (Crosslingual Optimized Metric for375

Evaluation of Translation): We employ two376

versions of COMET. For direct assessment,377

we use the Unbabel/wmt22-comet-da model,378

which is fine-tuned on human evaluation data379

from the WMT22 Metrics Shared Task and380

name this COMET in the results. For qual-381

ity estimation without reference translations,382

we use the ‘wmt21-comet-qe-da‘ model and383

(a)

(b)

Figure 2: Batchwise training translation reward (a) and
pronoun reward (b) for without-context model.

(a)

(b)

Figure 3: Batchwise training translation reward (a) and
pronoun reward (b) for with-context model.
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Method
En⇒De

COMET BLEU QE PGL

NLLB 600M - DISTILLED

NO CONTEXT

α β
1 1/#tokens 72.88 15.2200 0.1189 0.3769
1 1/#avg − len 73.95 15.2630 0.1186 0.3672
1.2 1/#tokens 63.30 10.8723 0.0069 0.3425
1.2 1/#avg − len 66.03 11.5783 0.0598 0.3370

WITH CONTEXT

α β
1 1/#tokens 78.66 21.2250 0.0127 0.8270
1 1/#avg − len 78.98 21.9542 0.0121 0.8543
1.2 1/#tokens 81.92 26.9574 0.0362 0.4183
1.2 1/#avg − len 66.03 11.5783 0.0598 0.337

Table 2: Translation evaluation on test set for En⇒De direction under various combinations of α and β, using
WMT21-COMET-QE-DA as reward model. #tokens refers to number of tokens in the respective sentence,
#avg−len refers to the calculated average token length across the source side dataset, calculated to be approximately
30. QE (Rtranslation) and PGL (RPGL) refer to the respective average reward calculated on the test set.

Method
En⇒De

Loss COMET BLEU QE PGL

NLLB 600M - DISTILLED

NO CONTEXT

SFT 1.0507 56.68 7.8904 -0.1154 0.0902
ONLY PGL REWARD 2.2632 50.30 1.8290 -0.1534 0.8998
ONLY QE REWARD 2.2521 58.30 2.6723 0.048 0.3798
PRONMT (α∗,β∗) 2.1593 73.95 15.2630 0.1186 0.3672

WITH CONTEXT

BASELINE 6.807 66.03 11.5783 0.0598 0.337
SFT 1.2814 81.19 25.568 0.0258 0.1406
ONLY PGL REWARD 2.2340 16.79 0.0703 -0.6024 0.9675
ONLY QE REWARD 3.606 80.06 21.5588 0.0303 0.2262
PRONMT (α∗,β∗) 1.1486 81.92 26.9574 0.0362 0.4183

Table 3: Translation performance comparison of best combination with reward baselines, using WMT21-COMET-
QE-DA as reward model for EN⇒DE direction. QE (Rtranslation) and PGL (RPGL) refer to the respective average
reward calculated on the test set. α∗ and β∗ refer to the hyperparameter configurations with highest COMET and
BLEU scores (highlighted in bold in Table 2).

present it under the QE column in the results.384

This QE model predicts the quality of a trans-385

lation based solely on the source sentence and386

the translation hypothesis.387

By combining these metrics, we obtain a com-388

prehensive evaluation of the model’s performance389

in terms of accuracy, fluency, and alignment with390

human judgments.391

5 Results392

We present the translation assessment of NLLB393

600M - distilled when trained on different cho-394

sen configurations in Table 3. The evaluation re-395

sults reveal that incorporating document-level con-396

text significantly enhances both pronoun-specific397

and general translation quality, as demonstrated by 398

the superior performance of context-aware models 399

across all metrics. For instance, in the EN→DE 400

direction, the context-aware ProNMT achieved a 401

COMET score of 81.92 and a BLEU score of 26.95, 402

compared to 73.95 and 15.2630, respectively, for 403

the context-agnostic model. Pronoun-specific re- 404

wards, particularly those leveraging Pronoun Gen- 405

eration Likelihood (PGL), led to notable improve- 406

ments in pronoun handling, with the context-aware 407

model achieving a PGL score of 0.4183 versus 408

0.3672 for the baseline. However, models trained 409

solely with PGL rewards underperformed on over- 410

all translation metrics, highlighting the importance 411

of balancing PGL with Quality Estimation (QE) 412
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rewards. The combined use of QE and PGL re-413

wards, optimized with appropriate weight config-414

urations, yielded the best results, as evidenced by415

consistent improvements in batch-wise rewards dur-416

ing training. Context-agnostic models struggled to417

resolve inter-sentential dependencies, further un-418

derscoring the necessity of leveraging document-419

level context for coherent and accurate translations.420

We observed two key trends in the evaluation re-421

sults: first, the inclusion of document-level con-422

text significantly enhances both pronoun-specific423

and overall translation quality, as evidenced by the424

context-aware ProNMT achieving higher scores425

across metrics such as COMET (81.92 vs. 73.95)426

and BLEU (26.95 vs. 15.2630) compared to its427

context-agnostic counterpart.428

Second, ProNMT’s ability to jointly optimize429

QE and pronoun-specific rewards led to consistent430

improvements in external metrics like COMET and431

BLEU, particularly when both reward components432

(α ̸= 0, β ̸= 0) were employed. This balance of re-433

wards proved crucial for achieving concurrent gains434

in general translation quality and accurate handling435

of linguistically challenging pronoun translations.436

6 Conclusion437

In this paper, we introduced ProNMT, a novel438

framework designed to address the longstanding439

challenges of pronoun translation in Neural Ma-440

chine Translation (NMT) systems. By leveraging441

Quality Estimation (QE) models and the Pronoun442

Generation Likelihood-Based Feedback mecha-443

nism, ProNMT effectively improves both pronoun-444

specific and overall translation quality without445

the need for extensive human annotations. Our446

method uniquely integrates QE-based evaluations447

with pronoun-specific rewards, guiding iterative448

fine-tuning processes that are scalable, efficient,449

and context-aware.450

Extensive experimental evaluations demon-451

strated that ProNMT consistently outperforms base-452

line systems across multiple metrics, including453

COMET, BLEU and QE models. Importantly, in-454

corporating document-level context significantly455

enhanced the handling of linguistically complex el-456

ements, such as pronouns, while maintaining high457

performance on general translation tasks. These458

results validate the framework’s ability to address459

both inter-sentential dependencies and broader doc-460

ument coherence in machine translation.461
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A Appendix570

A.1 Training on all German pronouns571

In our initial experiments, we tried to incorpo-572

rate all German pronouns into our training frame-573

work. We considered the following consolidated574

list of pronouns: [’mein’, ’uns’, ’euer’, ’ihnen’, 575

’der’, ’ihm’, ’die’, ’euch’, ’diesen’, ’unser’, ’dem’, 576

’denen’, ’dieses’, ’meinem’, ’den’, ’diese’, ’du’, 577

’seiner’, ’meines’, ’das’, ’ich’, ’deiner’, ’dich’, ’dir’, 578

’meiner’, ’meinen’, ’es’, ’meine’, ’wir’, ’sein’, 579

’ihn’, ’deren’, ’diesem’, ’sie’, ’dessen’, ’dieser’, 580

’mich’, ’ihr’, ’mir’, ’derer/deren’, ’dein’, ’ihrer’, 581

’er’]. Upon running ProNMT on this pronoun list, 582

we get the results presented in Fig. 5. We attribute 583

the noisy nature of the training curves to the noise 584

introduced by the PGL reward and the possible am- 585

biguity associated with translation in this scenario 586

(Müller et al., 2018). 587

(a)

(b)

Figure 4: Batchwise training translation reward (a) and
pronoun reward (b) for with-context model when no
german pronouns are filtered.

A.2 Source side token distribution in datasets 588

In this section, we will contrast the Europarl and 589

Contrapro datasets with respect to the source side 590

sentence token count distribution. Performing a 591

basic statistical analysis, we get the following 592

results. 593

(i) Contrapro 594

Mean: 12.533 595

Median: 11.0 596

Variance: 53.031 597
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Standard Deviation: 7.282598

Max length: 67599

Min length: 2600

601

(ii) Europarl602

Mean: 33.378603

Median: 29.0604

Variance: 404.219605

Standard Deviation: 20.105606

Max length: 212607

Min length: 1608

609

(a)

(b)

Figure 5: Token counts distribution for (a) Contrapro
and (b) filtered Europarl dataset.

We hypothesize that the lower mean length and610

left-shifted distribution for the contrapro data set611

made the Quality estimation model scores saturated612

from the beginning of training, giving the model613

less room to learn. This was the reason we chose614

our own filtered Europarl dataset for training, test-615

ing, and validation.616

B Limitations617

We identify the following limitations in our work:618

• The experiments were conducted only for619

NLLB 600M distilled variant. To assess the620

robustness of our framework across MT mod- 621

els, we can expand the scope of our chosen 622

models. 623

• The current framework only accommodates 624

the translation of the pronoun "it". We 625

can extend the framework to include non- 626

overlapping pronouns, i.e., pronouns whose 627

translation is not ambiguous. 628

• We could not perform hyperparameter tuning 629

for the SFT model training. The hyperparam- 630

eters presented in Table 1 are default hyperpa- 631

rameters. 632

• We only consider the EN→DE direction in 633

our experiments as it is considered to be a 634

more difficult task than the opposite direction 635

in MT. 636
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