

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VISUO-TACTILE WORLD MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce multi-task Visuo-Tactile World Models (VT-WM), which capture the physics of contact through touch reasoning. By complementing vision with **tactile images**, VT-WM better understands robot–object interactions in contact-rich tasks, avoiding common failure modes of vision-only models under occlusion or ambiguous contact states, such as objects disappearing, teleporting, or moving in ways that violate basic physics. Trained across a set of contact-rich manipulation tasks, VT-WM improves physical fidelity in imagination, achieving 33% better performance at maintaining object permanence and 29% better compliance with the laws of motion in autoregressive rollouts. Moreover, experiments show that grounding in contact dynamics also translates to planning. In zero-shot real-robot experiments, VT-WM achieves up to 35% higher success rates, with the largest gains in multi-step, contact-rich tasks. Finally, VT-WM shows data efficiency when targeting a new task, outperforming a behavioral cloning policy by over 3.5 \times in success rate with limited demonstrations.

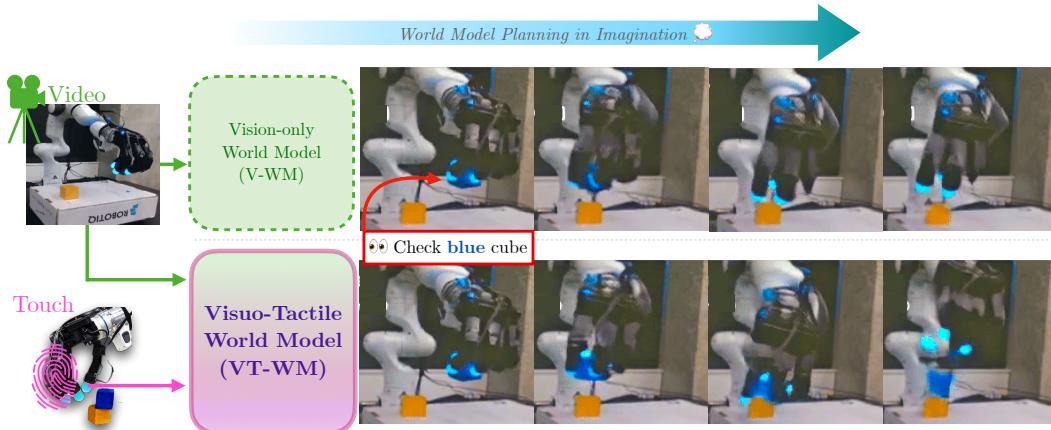


Figure 1: Visuo-Tactile World Model complements vision with touch, providing contact grounding of robot-object interactions. Notice that when using the WMs for planning a cube stacking task, the VT-WM has notion of object permanence of the **blue cube** when transporting, placing and releasing the object. The contact grounding **provided by the vision-based tactile sensor** helps to reduce hallucinations often present in V-WMs, enabling more reliable zero-shot planning in contact-rich manipulation tasks.

1 INTRODUCTION

World models (WMs) have emerged as a leading paradigm in machine learning, offering robots the ability to understand the physical world and plan interactions in *imagination* (Agarwal et al., 2025; Russell et al., 2025; Liao et al., 2025). In this work, we advance world models for robot manipulation by extending beyond purely visual imagination to incorporate modalities that directly ground contact interactions (fig. 1). By complementing vision with touch, world models for robot manipulation gain access to local contact signals that anchor predictions in the physics of contact. Tactile sensing provides this crucial information, enabling the model to capture object permanence and force-driven motion, and to move beyond the ambiguities and aliasing of vision alone.

We introduce the first multi-task Visuo-Tactile World Model (VT-WM). Vision provides global context about the robot’s kinematics and the task scene, but it does not reveal the state of

054 physical contact. Tactile sensing supplies this missing local signal, capturing how the hand and
 055 object actually interact. Together, these modalities enable the model to maintain object permanence
 056 even under heavy occlusion or visual aliasing. As shown in fig. 1, VT-WM consistently represents
 057 the cube throughout the phases of a stacking task: in-hand during transport and placement, and back
 058 in the scene once released. Multimodality also disambiguates visually similar states with different
 059 outcomes. For example, from the camera view the robot hand may appear to rest on a cloth, yet
 060 only tactile feedback can reveal whether contact is sufficient for the cloth to move when wiping, or
 061 if it will remain in place. By grounding imagination in both global vision and local touch, VT-WM
 062 preserves object permanence and predicts object–robot interactions that respect the laws of motion.

063 We evaluate the gains of VT-WM over V-WM on a set of contact-rich manipulation tasks. Our
 064 first focus is how visuo-tactile training improves imagination by preserving object permanence and
 065 adhering to physical motion laws during autoregressive rollouts. Tactile grounding helps prevent
 066 common hallucinations in vision-only models, such as objects disappearing under occlusion, tele-
 067 porting, or moving without applied forces due to visual aliasing. We then assess how this grounding
 068 translates to planning. While V-WM and VT-WM perform similarly on reaching tasks that mainly
 069 test kinematic fidelity, zero-shot plans generated by VT-WM show a stronger ability to maintain
 070 contact in the real world. This capability proves crucial for manipulation actions such as pushing,
 071 wiping, and placing, where reliable hand-object interaction determines task success.

072 Our contributions are threefold:

- 073 • We propose the first multi-task visuo-tactile world model that integrates fingertip tactile
 074 sensing with vision to jointly model global context and local contact dynamics.
- 075 • We show that visuo-tactile grounding substantially improves imagination quality, achiev-
 076 ing a 33% gain in object permanence and a 29% gain in compliance with physical laws,
 077 evaluated across a set of manipulation tasks.
- 078 • We demonstrate that these improvements in imagination enable more reliable zero-shot
 079 planning on real robots, with up to 35% higher success in contact-rich tasks.

080 2 RELATED WORKS

081 In this work we aim to train general (multi-task) world models that can leverage both tactile and
 082 visual observations. Specifically we train latent-state world models, which first project observations
 083 into latent representations and then train an action-conditioned dynamics model in that latent space.

085 **Foundational encoders for vision and touch:** Unlike the established hardware platforms for
 086 computer vision, the field of robotic tactile sensing lacks a single standardized sensor. Neverthe-
 087 less, vision-based tactile sensors have emerged as one of the most prominent solutions. Devices like
 088 GelSight (Yuan et al., 2017), Digit (Lambeta et al., 2020), and the more recent Digit 360 (Lambeta
 089 et al., 2024) capture tactile information by imaging the deformation of a soft elastomer surface.

090 Similar to the development of general-purpose visual encoders like CLIP (Radford et al., 2021),
 091 DINO (Caron et al., 2021; Oquab et al., 2023), I-JEPA (Assran et al., 2023), and Cosmos Tok-
 092 enizer (Agarwal et al., 2025), recent efforts have focused on creating foundational models for vision-
 093 based tactile sensors through self-supervised learning. Models such as SITR (Gupta et al., 2025),
 094 T3 (Zhao et al., 2024), UniT (Xu et al., 2025), Sparsh (Higuera et al., 2024), and Sparsh-X (Higuera
 095 et al., 2025) learn robust, low-dimensional tactile representations without requiring explicit labels.
 096 Benchmarks like TacBench (Higuera et al., 2024) evaluate the quality of these embeddings, demon-
 097 strating their ability to compress information about contact dynamics, including force fields, slip
 098 states, and pose changes, as well as static properties like texture and material. In this work, we use
 099 Digit 360 sensors as fingertips for an Allegro Hand mounted on a Franka Panda arm and we use the
 100 Sparsh-X model (Higuera et al., 2025) to obtain tactile embeddings, and the Cosmos encoder (Agar-
 101 wal et al., 2025) to obtain RGB embeddings.

102 **Action-Conditioned World Models for Real World Robotics:** There has been an influx of training
 103 general purpose action-conditioned video-generation models (Hu et al., 2023; Russell et al.,
 104 2025; Yang et al., 2024; Bruce et al., 2024; Agarwal et al., 2025; Assran et al., 2025). However,
 105 these lines of work focus on show-casing the generation capabilities, and only have limited (if any)
 106 results for using these models to control robots.

107 The majority of previous work on world models applied to real world tasks focuses on visual dy-
 108 namics models (Agrawal et al., 2016; Byravan et al., 2017; Das et al., 2020; Nagabandi et al., 2020;

108 Finn et al., 2016; Ebert et al., 2017; 2018; Yen-Chen et al., 2020). Visual dynamics models are
 109 either trained directly in pixel-space (Finn et al., 2016; Ebert et al., 2017; 2018; Yen-Chen et al.,
 110 2020; Alonso et al., 2024), or in a learned latent space (Watter et al., 2015; Agrawal et al., 2016; Ha
 111 & Schmidhuber, 2018; Hafner et al., 2019; Nair et al., 2022; Wu et al., 2023; Tomar et al., 2024;
 112 Hu et al., 2024; Lancaster et al., 2024), or in more structured representation spaces such as keypoint
 113 representations (Manuelli et al., 2020; Das et al., 2020) or tracked 3D states (Nagabandi et al., 2020).
 114 In our work, we train action-conditioned world models in latent states extracted from both RGB and
 115 tactile observations.

116 While several works have investigated learning dynamics model on touch observations (Sutanto
 117 et al., 2019; Tian et al., 2019; Ai et al., 2024) there is little work on training world models with
 118 vision and touch (Zhang & Demiris, 2023). Furthermore these dynamics models are task-specific -
 119 while in our work we aim to train general purpose multi-modal world models that can be used for
 120 visual MPC on multiple tasks.

121 3 WORLD MODELS THAT UNDERSTAND CONTACT

122 Vision-only world models have shown promising capabilities in action steerability and spatial reasoning
 123 (Assran et al., 2025; Agarwal et al., 2025), generating plausible rollouts with reasonable robot
 124 kinematics and high-quality visuals. These properties make them useful for planning free-space motions.
 125 However, simulating object interactions comes with some challenges. Object motion depends
 126 on forces invisible to exocentric cameras, and occlusions during grasping, pushing, or placing often
 127 cause artifacts such as teleportation, disappearance, or physically implausible dynamics.
 128

129 We introduce Visuo-Tactile World Model (VT-WM), which uses tactile sensing to complement
 130 vision to overcome these limitations. Touch provides contact information during occlusion,
 131 grounding the model’s imagination in contact physics and producing more accurate rollouts for
 132 contact-rich manipulation tasks.

133 3.1 WHAT VISION DOESN’T SEE: SENSING CONTACT WITH TOUCH

134 Touch provides essential local perception, enabling
 135 robots to distinguish properties like stiffness, friction,
 136 and roughness that are difficult to infer from vision
 137 alone. It also captures the dynamics of contact, which
 138 is crucial for manipulation tasks. For instance, when
 139 manipulating an object in-hand, touch provides context
 140 about forces, slip, and subtle pose changes.

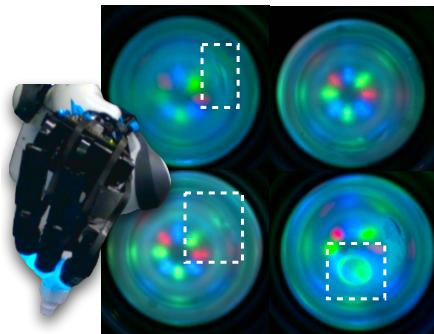
141 Vision-based tactile sensors typically stream image data
 142 at 30-60 FPS, providing rich information about the
 143 contact area, including force, shape, and texture features.
 144 This tactile information is crucial for disambiguating
 145 contact states that from an exocentric camera may ap-
 146 pear visually similar. For example, a robot hand’s grasp
 147 on a cup might look the same from a distance, but tact-
 148 ile sensing can differentiate between a no-contact state,
 149 a subtle touch, or a firm grasp. In this work, we use Digit 360
 150 sensors as fingertips for an Allegro Hand mounted on a robot arm. A visualization of tactile images captured by a Digit 360 sensor is
 151 shown in fig. 2.

152 3.2 MULTITASK VISUO-TACTILE WORLD MODEL

153 3.2.1 MODEL ARCHITECTURE

154 Our visuo-tactile world model is designed to address a key challenge in multimodal robot world
 155 models: *how to combine exocentric vision with tactile sensing in order to generate consistent imag-
 156 ined futures*. As shown in fig. 3, the architecture consists of three main components: a *vision en-
 157 coder*, a *tactile encoder*, and an autoregressive *predictor*.

158 The vision encoder extracts latent states s_k that capture the robot and its environment from ex-
 159 ocentric video. The tactile encoder compresses high-frequency contact feedback into a compact
 160 state t_k that emphasizes salient physical interactions. These representations are fused with control



161 Figure 2: Tactile images from Digit 360
 162 sensors. White boxes highlight contact
 163 while the hand holds a screw.

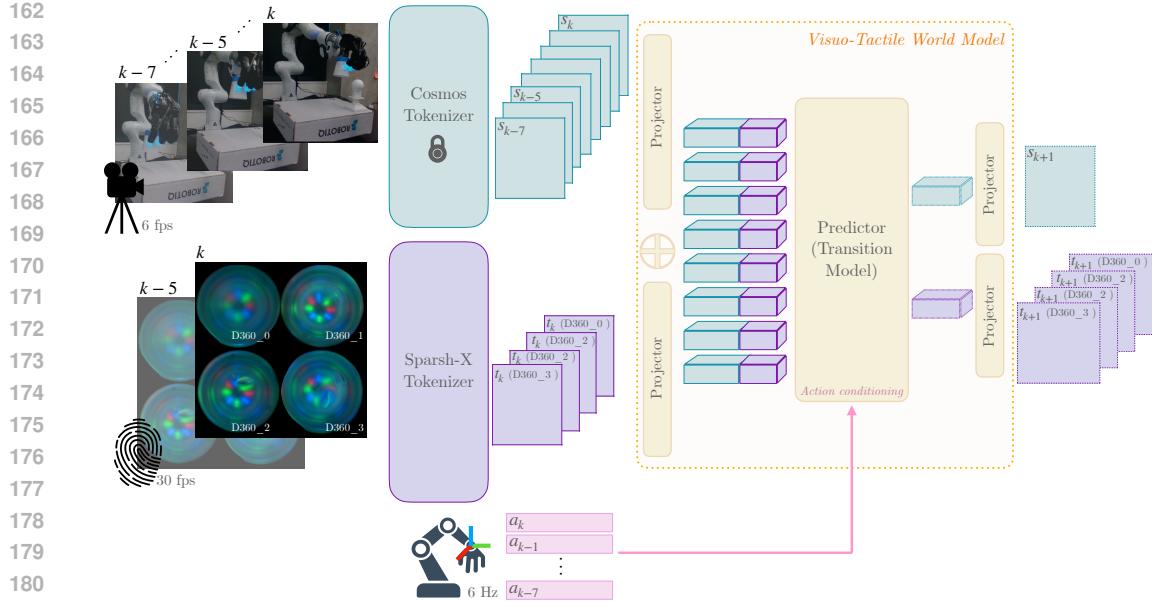


Figure 3: Visuo-Tactile World Model. Vision (s_k) and tactile (t_k) latents, obtained from Cosmos and Sparsh-X encoders, are processed by a transformer predictor given control actions a_k to generate next-step states (s_{k+1}, t_{k+1}).

actions and passed to the predictor, a forward dynamics model that estimates the next-step states $(s_{k+1}, t_{k+1}) \sim P_\phi(s_k, t_k | a_k)$.

This formulation enables the model to *imagine multiple possible futures under control actions*. Unlike purely visual world models, our predictor leverages tactile signals to disambiguate perceptually identical visual states. For instance, two identical video frames of a robot hand around a cup can lead to different rollouts: if the tactile input indicates contact, the imagined sequence shows the cup being lifted; if not, the cup remains on the table. This tactile-informed disambiguation is significant for planning in contact-rich manipulation.

We frame the predictor as a supervised next-state estimation problem with ground-truth future latents as targets. Both modalities are encoded with pretrained networks: Cosmos tokenizer (Agarwal et al., 2025) for vision and Sparsh-X (Higuera et al., 2025) for Digit 360 tactile sensors. The encoded contexts s_k and t_k are augmented with sinusoidal positional embeddings, and projected into a unified representation $\mathbb{R}^{(b,t,s,d)}$. Vision and tactile tokens are concatenated along the spatial dimension to form a unified input sequence. The predictor then processes these multi-modal tokens through a 12-layer transformer that alternates between two types of attention mechanisms:

Spatio-Temporal Self-Attention The model processes vision-touch tokens through factorized attention that operates in two stages: **spatial** attention enables all tokens within a timestep to interact, while **temporal** attention tracks how each token evolves across past timesteps. This factorization efficiently captures both local dynamics and global context while avoiding the $O((THW)^2)$ complexity of full spatiotemporal attention. Action tokens undergo the same factorized attention process.

Action Conditioning via Cross-Attention After each self-attention block, vision-touch tokens cross-attend to action tokens to incorporate the robot’s control inputs into the predictions. This alternating pattern of self-attention and cross-attention allows the model to iteratively refine its latent states based on both sensory observations and executed actions.

All attention layers employ Rotary Position Embeddings (RoPE) (Su et al., 2023) for relative position encoding. After the transformer, the representations are projected back to their original dimensions through modality-specific output heads, yielding predictions s_{k+1} and t_{k+1} .

3.2.2 TRAINING VISUO-TACTILE WORLD MODEL

During training, the vision input is a 1.5-second exocentric videoclip (9 frames at 6 fps, 320×192 resolution), encoded framewise with Cosmos. The tactile input consists of two frames per Digit 360

sensor (four sensors total), covering the most recent 0.16 seconds. This shorter horizon reflects the higher temporal frequency and local nature of contact information, which complements the slower, global context provided by vision. The action input includes changes in proprioceptive state (translation, quaternion rotation) and a binary hand state representing pre-set open/close configurations. We chunk action sequences from 30Hz into groups of 5, with the full chunk of delta-states provided to the predictor. This combination ensures that the predictor models both the external scene and the internal actuation history, a prerequisite for accurate visuo-tactile imagination. The model uses a maximum context length of 9 frames for both vision and touch modalities. Additional details about hyperparameters and training dataset are provided in appendix A.

The model is trained with an objective that combines teacher forcing with autoregressive sampling to balance training stability with long-horizon coherence as proposed by Assran et al. (2025).

Teacher Forcing Loss. The primary training signal comes from next-step prediction with ground-truth context. Given a sequence of T frames, we compute:

$$L_{teacher} = \sum_{k=1}^{T-1} \|\hat{s}_{k+1} - s_{k+1}\|_1 + \|\hat{t}_{k+1} - t_{k+1}\|_1 \quad (1)$$

where \hat{s}_{k+1} and \hat{t}_{k+1} are predicted from ground-truth states up to time k , and s_{k+1} and t_{k+1} are the encoded latents given ground truth observations at time step $k+1$. This provides dense supervision and stable gradients but can lead to distribution shift during autoregressive rollouts.

Sampling Loss. To improve long-horizon generation, we additionally train on sampled trajectories. During training, we sample future states autoregressively for H steps (typically $H = 3 - 5$), then compute predictions conditioned on these sampled states:

$$L_{sampling} = \sum_{k=1}^H \|\hat{s}_{k+1}^{sampled} - s_{k+1}\|_1 + \|\hat{t}_{k+1}^{sampled} - t_{k+1}\|_1 \quad (2)$$

The sampled states are generated without gradients to prevent training instability. The final loss combines both objectives with equal weighting: $L = L_{teacher} + L_{sampling}$.

3.2.3 PLANNING IN IMAGINATION

The action-conditioned nature of our predictor enables the use of the visuo-tactile world model as a simulator within a Cross-Entropy Method (Rubinstein, 1997) (CEM). At each step, the planner samples a population of action sequences $\{a_{k:k+H}^i\}_{i=1}^N$ over a horizon H . For each sequence, the predictor autoregressively generates future latents $(s_{k+1:k+H}, t_{k+1:k+H})$. A cost function, defined by energy minimization with respect to a goal image, assigns a score to each trajectory. In practice, this cost can be as simple as an ℓ_2 distance between the final predicted visual latent s_{k+H} and the latent of the goal image s_{goal} . CEM then selects the top-performing fraction of sequences, updates the sampling distribution toward them, and iterates until convergence. The best sequence is then executed on the real robot in an open-loop manner.

We do not provide the tactile modality as a goal signal, thus the planning objective remains purely vision-based. The role of tactile in the VT-WM is to enhance the reliability of the learned world model and, therefore, to improve planning indirectly. First, tactile feedback during training enables the world model to capture contact physics that are difficult to infer from vision alone. Second, when generating rollouts, tactile context in the initial state helps disambiguate visually identical observations (e.g., distinguishing whether the robot is already in contact with an object). This yields more physically consistent imagined futures and more accurate cost evaluations, which we hypothesize translate into higher-quality plans.

4 EXPERIMENTS

Our experimental framework evaluates the advantages of visuo-tactile world model (VT-WM) for robot manipulation by addressing the key questions:

- *Contact Perception:* Do VT-WMs better capture object permanence and causal compliance than vision-only WMs, and generate futures consistent with action conditioning?

270

- 271 • *Zero-shot Planning*: Does improved contact perception lead to more reliable zero-shot plan
- 272 transfer in open-loop execution?
- 273 • *Data Efficiency*: Given limited demonstrations, how does fine-tuning a multi-task world
- 274 model for planning compare to behavioral cloning?

275 **4.1 CONTACT PERCEPTION**

276

277 To evaluate the benefits of incorporating touch,
 278 we compare rollouts from a multi-task vision-only
 279 world model (V-WM) and our multi-task visuo-
 280 tactile world model (VT-WM), conditioned on the
 281 same actions and context. The action sequences
 282 are drawn from successful demonstrations on the
 283 real system, which enables a direct comparison be-
 284 tween each model’s rollouts and the corresponding
 285 ground-truth videos. This setup allows us to as-
 286 sess how well the models capture motion dyna-
 287 mics and the physical plausibility of object interac-
 288 tions. We focus our evaluation on object perman-
 289 ence, causal compliance, and action controllabil-
 290 ity. These metrics are components of the World
 291 Consistency Score (Rakheja et al., 2025), a proposed
 292 benchmark in the state-of-the-art to evaluate a
 293 generative model’s ability to maintain coherent and physically
 294 plausible futures over time.

295 **Object Permanence:** This metric assesses a model’s ability to maintain a consistent represen-
 296 tation of an object’s existence and state even when the object is temporarily occluded. As shown in
 297 fig. 5, we evaluate whether objects remain represented during heavy occlusion (e.g., during a grasp)
 298 and reappear in the correct state once revealed. In the cube-stacking task, VT-WM exhibits stronger
 299 object permanence than V-WM: as the blue cube is occluded in the hand during transport and place-
 300 ment, VT-WM preserves its representation, and upon release, the cube re-emerges in the imagined
 301 scene at the correct location above the yellow target cube. [In appendix B-fig. 13, we visualize the tactile predictions generated by VT-WM, demonstrating the model’s ability to maintain congruent visual and tactile representations of object contact.](#)

302 For quantitative evaluation, we employ CoTracker (Karaev et al., 2024) to track keypoints on the
 303 object, providing pixel-level visibility and trajectories. We then compare the normalized Fréchet
 304 distance between the ground-truth visual trajectory and the one imagined by V-WM and VT-WM
 305 under the ground-truth action conditioning. To ensure comparability, trajectories are expressed rela-
 306 tive to the object’s initial image position and normalized by the length of the ground-truth trajectory.
 307 A lower Fréchet distance indicates that the imagined trajectory more closely reflects the real motion
 308 and state of the object, thereby capturing the physical coherence required for object permanence.

309 Fig. 4 reports normalized Fréchet distances across five tasks. To assess statistical significance, we
 310 complement the Fréchet distance analysis with paired *t*-tests across tasks. VT-WM achieves consist-
 311 ently lower distances than V-WM, with statistically significant improvements in *place fruits* ($t = 4.38, p < 0.001$), *push fruits* ($t = 6.06, p < 10^{-6}$), and *cube stacking* ($t = 2.40, p < 0.05$). For
 312 *wipe with cloth* and *scribble with marker*, the differences follow the same downward trend but do not
 313 reach significance at the 5% level. Quantitatively, VT-WM reduces normalized Fréchet distance by
 314 18–47% across all five tasks, corresponding to an average overall reduction of $\approx 33\%$. These results
 315 indicate that VT-WM produces more physically coherent rollouts, with statistically significant gains
 316 in tasks requiring reliable object permanence, such as object pushing and stacking.

317 **Causal Compliance:** This metric evaluates whether changes in object state occur as physically
 318 plausible consequences of the robot’s actions. A causally compliant model predicts that an object’s
 319 state changes only when it is subject to external forces. Assessing causal compliance is essential
 320 for developing physics-informed world models that respect the principles of contact dynamics and
 321 avoid unrealistic motions or deformations.

322 For a quantitative measure of causal compliance, we use CoTracker to compute the trajectory error
 323 of keypoints on objects in the scene that are not subject to any external force and should therefore

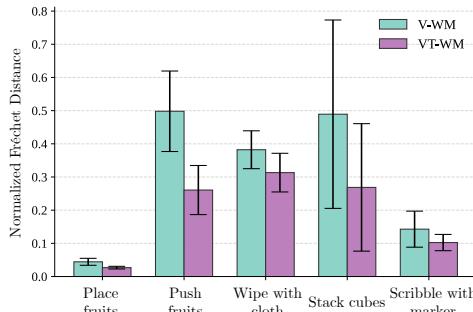


Figure 4: *Object permanence*. VT-WM achieves an average reduction of $\approx 33\%$ relative to V-WM (with 95% CI) of the normalized Fréchet distances for objects in motion.

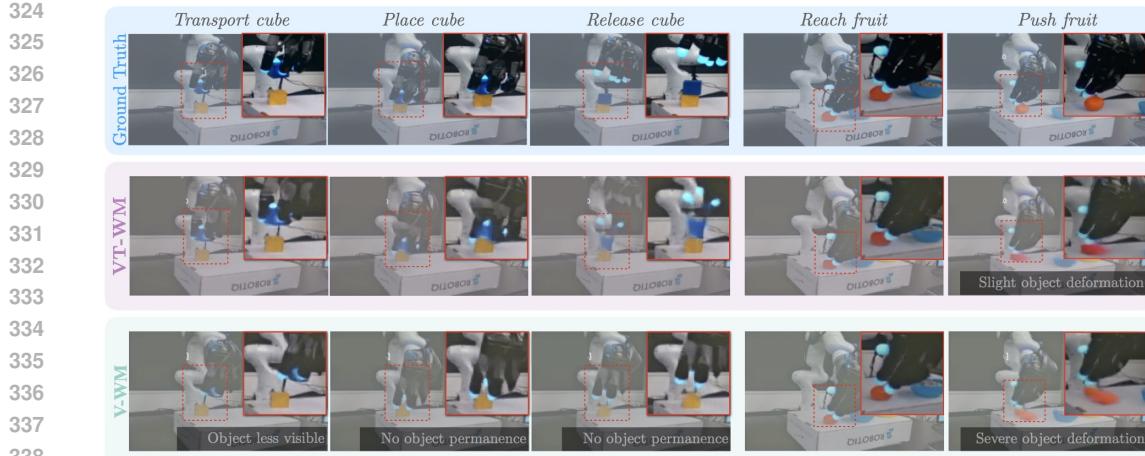


Figure 5: VT-WM preserves object permanence and consistent hand–object interactions during imagination, while V-WM often loses objects or produces severe deformations.

remain stationary. We again use the normalized Fréchet distance between ground-truth and imagined rollouts as our metric. A higher Fréchet distance indicates that the world model hallucinates changes in the position or deformation of these passive objects, thereby violating basic physical laws such as Newton’s first law of motion. As shown in fig. 6, VT-WM consistently achieves lower distances than V-WM across most tasks. Paired t -tests confirm statistically significant improvements at the 5% level in *place fruits* ($t = 3.66, p < 0.001$), *push fruits* ($t = 2.28, p < 0.05$), and *wipe with cloth* ($t = 2.99, p < 0.01$), while differences in *cube stacking* ($t = 1.75, p = 0.09$), and *scribble with marker* ($t = -1.22, p = 0.23$) are not significant. Quantitatively, VT-WM achieves relative reductions of 43.6%, 16.4%, and 66.1% in *place fruits*, *push fruits*, and *wipe with cloth*, respectively, alongside a smaller improvement in *cube stacking* and a degradation in *scribble with marker*. Overall, VT-WM reduces hallucinated motion by an average of $\approx 29\%$ across tasks, reflecting stronger causal compliance in most scenarios.

In fig. 7 we show snapshots of a trajectory where the robot performs a wiping motion just above a cloth, without making contact. In the ground-truth sequence (top row), keypoints on the cloth remain stationary. In contrast, the V-WM’s rollout (bottom row), conditioned on the real actions, shows significant displacement of keypoints and deformations of the cloth. This highlights the V-WM’s difficulty to distinguish between contact and non-contact states based on visual input alone. The VT-WM’s rollouts (middle row), however, exhibit fewer artifacts and less variation, demonstrating the advantage of tactile sensing in providing the world model with critical physical grounding.

In appendix B we showcase the action controllability of the world model. We compare ground-truth trajectories with VT-WM rollouts under the same model *imagines* in terms of contact.

4.2 ZERO-SHOT PLANNING TRANSFER TO REAL-WORLD

Does the improved contact perception of VT-WM translate into superior planning performance on a real robot?. We hypothesize that VT-WM produces more effective plans for contact-rich tasks. For example, in a cube-stacking task, a physically grounded model should avoid opening its hand while transporting a cube. Similarly, for pushing, the model must recognize that contact is a prerequisite for object motion.

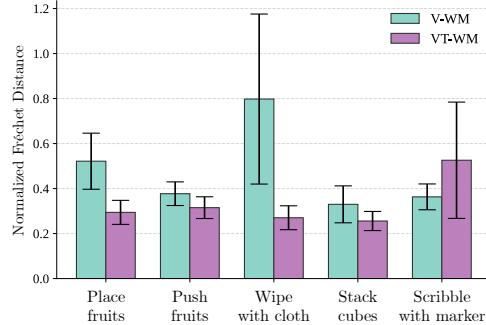


Figure 6: *Causal compliance* evaluates WMs adherence to the laws of motion. Normalized Fréchet distance for static objects (95% CI) shows that VT-WM outperforms V-WM, with an overall improvement of $\approx 29\%$.

action sequences and illustrate what the world

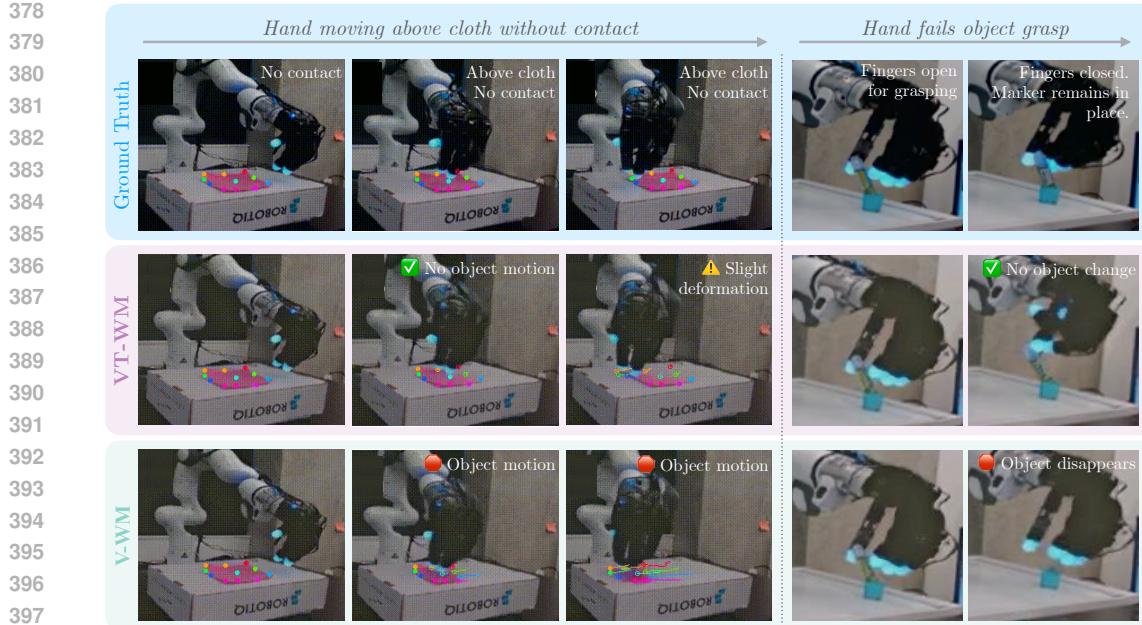


Figure 7: Comparison of rollouts, illustrating that VT-WM prevents spurious motion of objects not subject to forces, whereas V-WM often hallucinates unintended displacements.

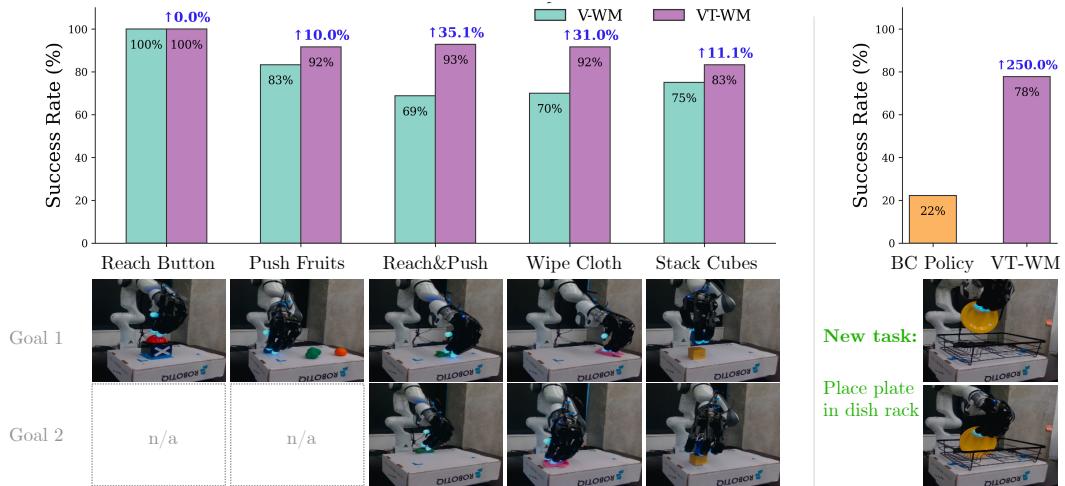


Figure 8: *Left:* Success rate of plans via CEM with VT-WM and V-WM on real robot. For all tasks the VT-WM achieves equal or better performance (blue labels), empirically demonstrating the better planning capability with contact grounding via tactile sensing. *Right:* success rate on new task highlights the data efficiency of VT-WM compared to classical behavioral cloning (BC) policies.

To evaluate this, we employ the Cross-Entropy Method (CEM) (Rubinstein, 1997; De Boer et al., 2005) to solve a goal-conditioned energy minimization problem. The objective is to plan an optimal action sequence over a fixed horizon H , where the cost is the distance in latent space between the final predicted visual state s_{k+H} and the goal image latent s^{goal} . The search space for CEM is \mathbb{R}^7 , consisting of 3D translation and 3D orientation of the wrist pose, plus a binary variable for the hand's open/closed configuration.

We evaluate open-loop zero-shot transfer of the generated plans on the real robot. To initialize planning consistently, the initial RGB and tactile embeddings are passed as context to the world model, indicating whether optimization should begin from an in-contact or no-contact state. Both VT-WM and V-WM are tested on five tasks of increasing difficulty: *reach button*, *push fruits*, *reach & push*, *wipe cloth*, and *stack cubes*. The first two are single-goal tasks, while the latter three involve multiple subgoals.

432 Fig. 8(left) reports success rates, averaged over five trials per task from distinct initial conditions.
 433 The results confirm the superior planning capability of VT-WM across all tasks, supporting our
 434 hypothesis that a contact-aware model generates more effective plans. On simple tasks such as
 435 *reach button*, both models achieve 100% success, consistent with prior visual world models for
 436 robot manipulation such as V-JEPA-2AC (Assran et al., 2025). However, the benefits of tactile input
 437 become increasingly evident in contact-rich tasks: VT-WM improves success rates by 10% on *push*
 438 *fruits*, 35% on *reach & push*, 31% on *wipe cloth*, and 11% on *stack cubes*. These gains are most
 439 pronounced in multi-step tasks involving sustained contact, where vision alone is insufficient to
 440 inform about the object state during planning. In appendix C, we describe the experimental setup
 441 for each task and present a qualitative evaluation of the planned trajectories and their corresponding
 442 real-world executions.

443 4.3 DATA EFFICIENCY

444 For a new task with a limited number of successful demonstrations, *how does fine-tuning a multi-*
 445 *task world model for planning compare to training a task-specific behavioral cloning (BC) policy?*
 446 We hypothesize that VT-WM can extract task structure even in low-data regimes, since it already
 447 encodes contact dynamics from prior tasks. For example, insertion may involve a new object, but
 448 concepts such as alignment and adjusting contact with a receptacle can be reused. In contrast, a BC
 449 policy must learn both spatial and contact reasoning from scratch.

450 We collect 20 demonstrations of the task “place plate in the dish rack,” which requires transporting
 451 the plate and inserting it between the racks. We augment our multi-task dataset (see appendix A.0.1)
 452 with the new sequences and continue training VT-WM, while also training a task-specific BC policy
 453 ACT (Zhao et al., 2023) that outputs action chunks over a fixed horizon. For VT-WM, we use CEM
 454 planning and zero-shot transfer to the real robot. The task is divided into two subgoals: alignment
 455 and insertion (see fig. 8). The BC policy is deployed in closed loop, where at each timestep it
 456 receives the latest RGB and tactile inputs and executes the first action of the predicted chunk.

457 We evaluate both methods in nine real-robot trials, randomizing the initial plate-in-grasp pose. As
 458 shown in fig. 8(right), VT-WM planning achieves a 77% success rate, compared to 22% with BC.
 459 These results highlight the data efficiency of multi-task world models and their advantage over task-
 460 specific policies. Moreover, failure modes differ, for instance, VT-WM mostly places the plate
 461 beside the rack, whereas 57% of BC failures involve the robot never reaching the rack at all.

462 5 DISCUSSION AND CONCLUSION

464 Visuo-Tactile World Model (VT-WM) leverages tactile sensing to complement vision, enabling
 465 world models for robot manipulation to be grounded in contact. While vision-only world models
 466 (V-WMs) have shown promise in spatial reasoning and capturing robot kinematics, they are prone to
 467 hallucinate object interactions, with failures such as object disappearance, teleportation, or unreal-
 468 istic deformations. By integrating fingertip tactile sensing with exocentric vision, VT-WM grounds
 469 imagination in the physics of contact, producing more accurate rollouts and capturing core concepts
 470 such as object permanence under occlusion and compliance with physical laws.

471 We studied the gains of multimodality in VT-WM over V-WM through three key questions. First,
 472 *does adding touch improve a world model’s understanding of contact?* Comparing autoregressive
 473 rollouts under identical action sequences, we found that VT-WM preserved object permanence, even
 474 when objects were occluded by the robot hand, and maintained resting states for objects not subject
 475 to external forces. Quantitatively, VT-WM reduced normalized Fréchet distance by 33% on average
 476 relative to V-WM, better reflecting true object dynamics.

477 Second, *does contact grounding improve planning?* Using CEM-based imagination for goal-
 478 conditioned planning, we zero-shot transferred plans to a real robot under randomized initial con-
 479 ditions. While both models performed similarly on free-space tasks such as reaching, VT-WM
 480 achieved up to 35% higher success rates in contact-rich tasks requiring precise hand–object interac-
 481 tion, including pushing, wiping, and stacking.

482 Third, *is VT-WM data efficient when targeting a new task?* To compare with task-specific behavioral
 483 cloning (BC), we fine-tuned VT-WM on just 20 demonstrations of a plate-insertion task. VT-WM
 484 reached a 77% success rate, over 3× higher than BC, by reusing priors from previously learned
 485 contact-rich tasks such as alignment and insertion. This highlights its ability to efficiently adapt to
 new tasks with limited data.

486 REFERENCES
487

488 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
489 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
490 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

491 Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke
492 by poking: Experiential learning of intuitive physics. *Advances in neural information processing*
493 *systems*, 29, 2016.

494 Bo Ai, Stephen Tian, Haochen Shi, Yixuan Wang, Cheston Tan, Yunzhu Li, and Jiajun Wu.
495 Robopack: Learning tactile-informed dynamics models for dense packing. *arXiv preprint*
496 *arXiv:2407.01418*, 2024.

497 Elio Alonso, Adam Jolley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
498 François Fleuret. Diffusion for world modeling: Visual details matter in Atari. *Advances in*
499 *Neural Information Processing Systems*, 37:58757–58791, 2024.

500 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
501 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
502 predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
503 *Pattern Recognition*, pp. 15619–15629, 2023.

504 Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
505 mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
506 models enable understanding, prediction and planning. *arXiv preprint arXiv:2506.09985*, 2025.

507 Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
508 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtle, Fer-
509 yal Behbahani, Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sherjil Ozair,
510 Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satinder Singh, and
511 Tim Rocktäschel. Genie: Generative interactive environments. In *International Conference on*
512 *Machine Learning*, 2024.

513 Arunkumar Byravan, Felix Leeb, Franziska Meier, and Dieter Fox. Se3-pose-nets: Structured deep
514 dynamics models for visuomotor planning and control. *arXiv preprint arXiv:1710.00489*, 2017.

515 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
516 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*
517 *the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

518 Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai, and Franziska Meier.
519 Model-based inverse reinforcement learning from visual demonstration. In *Conference on Robot*
520 *Learning (CoRL)*, 2020.

521 Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
522 cross-entropy method. *Annals of operations research*, 134(1):19–67, 2005.

523 Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
524 temporal skip connections. *CoRL*, 12(16):23, 2017.

525 Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
526 sight: Model-based deep reinforcement learning for vision-based robotic control. *arXiv preprint*
527 *arXiv:1812.00568*, 2018.

528 Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
529 through video prediction. *Advances in Neural Information Processing Systems*, 29, 2016.

530 Harsh Gupta, Yuchen Mo, Shengmiao Jin, and Wenzhen Yuan. Sensor-invariant tactile representa-
531 tion. In *The Thirteenth International Conference on Learning Representations*, 2025.

532 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.

540 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
 541 Davidson. Learning latent dynamics for planning from pixels. In *International conference on*
 542 *machine learning*, pp. 2555–2565. PMLR, 2019.

543

544 Carolina Higuera, Akash Sharma, Chaithanya Krishna Bodduluri, Taosha Fan, Patrick Lancaster,
 545 Mrinal Kalakrishnan, Michael Kaess, Byron Boots, Mike Lambeta, Tingfan Wu, and Mustafa
 546 Mukadam. Sparsh: Self-supervised touch representations for vision-based tactile sensing. In *8th*
 547 *Annual Conference on Robot Learning*, 2024. URL <https://openreview.net/forum?id=xYJn2eluu8>.

548

549 Carolina Higuera, Akash Sharma, Taosha Fan, Chaithanya Krishna Bodduluri, Byron Boots,
 550 Michael Kaess, Mike Lambeta, Tingfan Wu, Zixi Liu, Francois Robert Hogan, and Mustafa
 551 Mukadam. Tactile beyond pixels: Multisensory touch representations for robot manipulation.
 552 In *9th Annual Conference on Robot Learning*, 2025. URL <https://openreview.net/forum?id=sMs4pJYhWi>.

553

554 Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shot-
 555 ton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. *arXiv*
 556 *preprint arXiv:2309.17080*, 2023.

557

558 Edward S Hu, Kwangjun Ahn, Qinghua Liu, Haoran Xu, Manan Tomar, Ada Langford, Dinesh
 559 Jayaraman, Alex Lamb, and John Langford. Learning to achieve goals with belief state trans-
 560 formers. *arXiv preprint arXiv:2410.23506*, 2024.

561

562 Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
 563 Rupprecht. CoTracker3: Simpler and better point tracking by pseudo-labelling real videos. 2024.

564

565 Mike Lambeta, Po-Wei Chou, Stephen Tian, Brian Yang, Benjamin Maloon, Victoria Rose Most,
 566 Dave Stroud, Raymond Santos, Ahmad Byagowi, Gregg Kammerer, et al. Digit: A novel design
 567 for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation.
IEEE Robotics and Automation Letters, 5(3):3838–3845, 2020.

568

569 Mike Lambeta, Tingfan Wu, Ali Sengul, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo
 570 Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave
 571 Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-
 572 Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, and Roberto Calandra. Digitizing touch with
 573 an artificial multimodal fingertip, 2024. URL <https://arxiv.org/abs/2411.02479>.

574

575 Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, and Vikash Kumar. Modem-v2: Visuo-
 576 motor world models for real-world robot manipulation. In *IEEE International Conference on*
 577 *Robotics and Automation (ICRA)*, pp. 7530–7537, 2024.

578

579 Yue Liao, Pengfei Zhou, Siyuan Huang, Donglin Yang, Shengcong Chen, Yuxin Jiang, Yue Hu,
 580 Jingbin Cai, Si Liu, Jianlan Luo, et al. Genie envisioner: A unified world foundation platform for
 581 robotic manipulation. *arXiv preprint arXiv:2508.05635*, 2025.

582

583 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

584

585 Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ Tedrake. Keypoints into the fu-
 586 ture: Self-supervised correspondence in model-based reinforcement learning. *arXiv preprint*
 587 *arXiv:2009.05085*, 2020.

588

589 Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for
 590 learning dexterous manipulation. In *Conference on robot learning*, pp. 1101–1112. PMLR, 2020.

591

592 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A uni-
 593 versal visual representation for robot manipulation. In *Conference on Robot Learning (CoRL)*,
 594 2022.

595

596 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 597 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 598 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 595 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 596 models from natural language supervision. In *International conference on machine learning*, pp.
 597 8748–8763. PMLR, 2021.

598 Akshat Rakheja, Aarsh Ashdhir, Aryan Bhattacharjee, and Vanshika Sharma. World consistency
 599 score: A unified metric for video generation quality. *arXiv preprint arXiv:2508.00144*, 2025.

600 Reuven Y Rubinstein. Optimization of computer simulation models with rare events. *European
 601 Journal of Operational Research*, 99(1):89–112, 1997.

602 Lloyd Russell, Anthony Hu, Lorenzo Bertoni, George Fedoseev, Jamie Shotton, Elahe Arani, and
 603 Gianluca Corrado. Gaia-2: A controllable multi-view generative world model for autonomous
 604 driving. *arXiv preprint arXiv:2503.20523*, 2025.

605 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 606 hanced transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

607 Giovanni Sutanto, Nathan Ratliff, Balakumar Sundaralingam, Yevgen Chebotar, Zhe Su, Ankur
 608 Handa, and Dieter Fox. Learning latent space dynamics for tactile servoing. In *2019 International
 609 Conference on Robotics and Automation (ICRA)*, pp. 3622–3628. IEEE, 2019.

610 Stephen Tian, Frederik Ebert, Dinesh Jayaraman, Mayur Mudigonda, Chelsea Finn, Roberto Calan-
 611 dra, and Sergey Levine. Manipulation by feel: Touch-based control with deep predictive models.
 612 In *2019 International Conference on Robotics and Automation (ICRA)*, pp. 818–824. IEEE, 2019.

613 Manan Tomar, Philippe Hansen-Estruch, Philip Bachman, Alex Lamb, John Langford, Matthew E
 614 Taylor, and Sergey Levine. Video occupancy models. *arXiv preprint arXiv:2407.09533*, 2024.

615 Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
 616 locally linear latent dynamics model for control from raw images. *Advances in Neural Information
 617 Processing Systems*, 28, 2015.

618 Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
 619 World models for physical robot learning. In *Conference on robot learning*, pp. 2226–2240.
 620 PMLR, 2023.

621 Zhengtong Xu, Raghava Uppuluri, Xinwei Zhang, Cael Fitch, Philip Glen Crandall, Wan Shou,
 622 Dongyi Wang, and Yu She. Unit: Data efficient tactile representation with generalization to
 623 unseen objects. *IEEE Robotics and Automation Letters*, 2025.

624 Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
 625 Abbeel. Learning interactive real-world simulators. In *International Conference on Learning
 626 Representations*, 2024.

627 Lin Yen-Chen, Maria Bauza, and Phillip Isola. Experience-embedded visual foresight. In *Confer-
 628 ence on Robot Learning*, pp. 1015–1024. PMLR, 2020.

629 Wenzhen Yuan, Siyuan Dong, and Edward H Adelson. Gelsight: High-resolution robot tactile
 630 sensors for estimating geometry and force. *Sensors*, 17(12):2762, 2017.

631 Fan Zhang and Yiannis Demiris. Visual-tactile learning of garment unfolding for robot-assisted
 632 dressing. *IEEE Robotics and Automation Letters*, 8(9):5512–5519, 2023.

633 Jialiang Zhao, Yuxiang Ma, Lirui Wang, and Edward Adelson. Transferable tactile transformers
 634 for representation learning across diverse sensors and tasks. In *8th Annual Conference on Robot
 635 Learning*, 2024. URL <https://openreview.net/forum?id=KXsropnmNI>.

636 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 637 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.

638

639

640

641

642

643

644

645

646

647

648

APPENDIX

649

650

651 A TRAINING VISUO-TACTILE WORLD MODEL

652

653

A.0.1 TRAINING DATASET

654

655

656

657

658

659

660

661

662

663

To train our multi-task visuo-tactile world model, we collect a dataset of teleoperated robot arm trajectories performing fundamental contact-rich manipulation actions, such as pick and place, pushing, and insertion. Our hardware setup consists of a table-top Franka Panda arm with an Allegro Hand as the end-effector and a Digit 360 sensor mounted on each fingertip. An exocentric view from a camera captures the global context of the robot’s interaction with objects on the table.

664

665

666

667

668

669

670

671

672

673

674

675

676

677

Through teleoperation, we collect a diverse set of trajectories, without discriminating between successes and failures, for eight distinct contact-rich tasks (see Fig. 9): pick and place on a plate, reach and press a button, push, wipe with a cloth, lampshade insertion, table leg insertion, cube stacking, and scribbling with a marker. For each task, we recorded successful and failure demonstrations. Each sequence contains multimodal data streams: proprioceptive information (wrist pose, joint positions), exocentric video from the camera, and video from each Digit 360 fingertip sensor. All data streams were synchronized using timestamps and downsampled to 6 FPS for training the world model. **Our training dataset for V-WM and VT-WM consists of 124 demonstrations totaling 112k datapoints, with each demonstration averaging 40 seconds. For validation, we use 26 demonstrations spanning all tasks, comprising 17k datapoints.**

678

A.1 TRAINING PARAMETERS

679

680

681

682

683

684

685

686

687

The model is optimized using AdamW (Loshchilov & Hutter, 2019) with parameters $\beta_1 = 0.9$, $\beta_2 = 0.95$ and a weight decay of 0.01. We use a learning rate scheduler with linear warmup for the first 10,000 gradient updates to a peak learning rate of $3e - 4$, followed by cosine decay to $3e - 7$ over a total of 80,000 updates. We use an effective batch size of 64 distributed over 32 A100 GPUs. We found that fine-tuning the Sparsh-X encoder was beneficial to account for sensor-specific variations, such as those arising from manufacturing tolerances and elastomer wear, while the Cosmos Tokenizer (Agarwal et al., 2025) was kept frozen during training. Our visuo-tactile world model has a total of 173M parameters, of which 96M were trained.

B CONTACT PERCEPTION WITH VISUO-TACTILE WORLD MODEL

689

690

691

692

693

694

We corroborate the world model’s capacity to generate future states that are a reliable and predictable consequence of the given action conditioning. We study action controllability qualitatively by visualizing rollouts under simple, disentangled action commands: moving the end-effector along the Cartesian axes ($\pm x$, $\pm y$, $\pm z$) and opening/closing the hand. Actions conditioning is given to the VT-WM as deltas in the robot’s proprioceptive state.

695

696

697

698

699

700

701

We observe in Fig. 10 that the VT-WM produces coherent rollouts aligned with the commanded actions. Translations along each axis result in consistent directional displacements of the end-effector in imagination (notice the reference frame in the figure), while hand open/close commands lead to corresponding changes in finger configurations. Notably, these behaviors emerge from the learned dynamics rather than explicit supervision of axis-aligned motion, indicating that the model internalizes the action-conditioned structure of the robot’s kinematics. We compare ground-truth trajectories with VT-WM rollouts under the same action sequences and illustrate what the world model *imagines* in terms of contact.

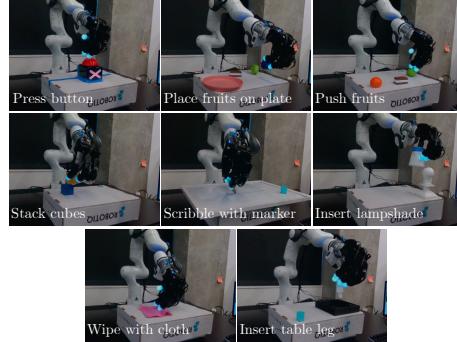


Figure 9: Multitask Vision-Tactile Dataset. Trajectories for training the world model collected via teleoperation, including both successful and failure sequences.

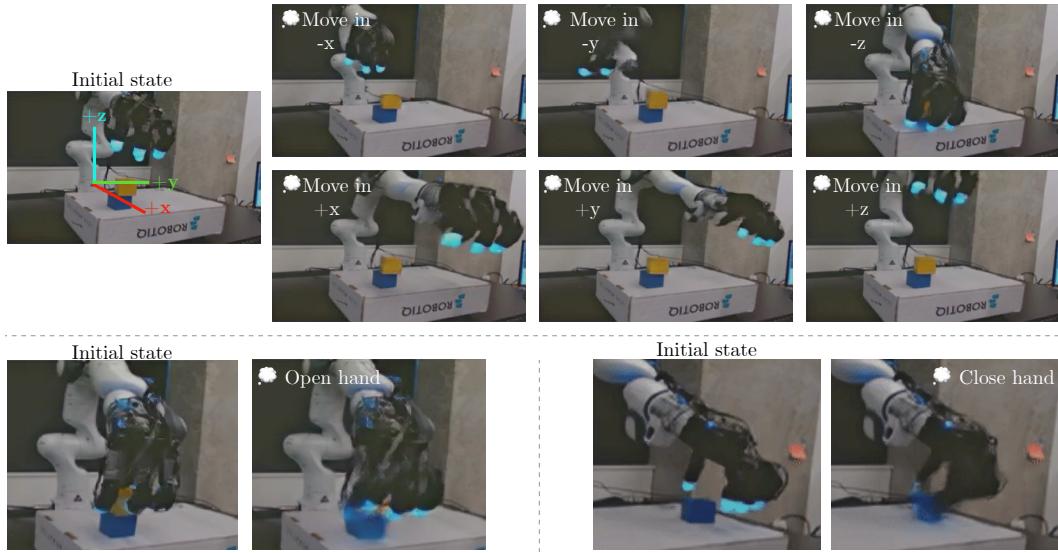


Figure 10: Visuo-Tactile World Model generates rollouts aligned with commanded actions along reference axes ($\pm x$, $\pm y$, $\pm z$) and for hand open/close.

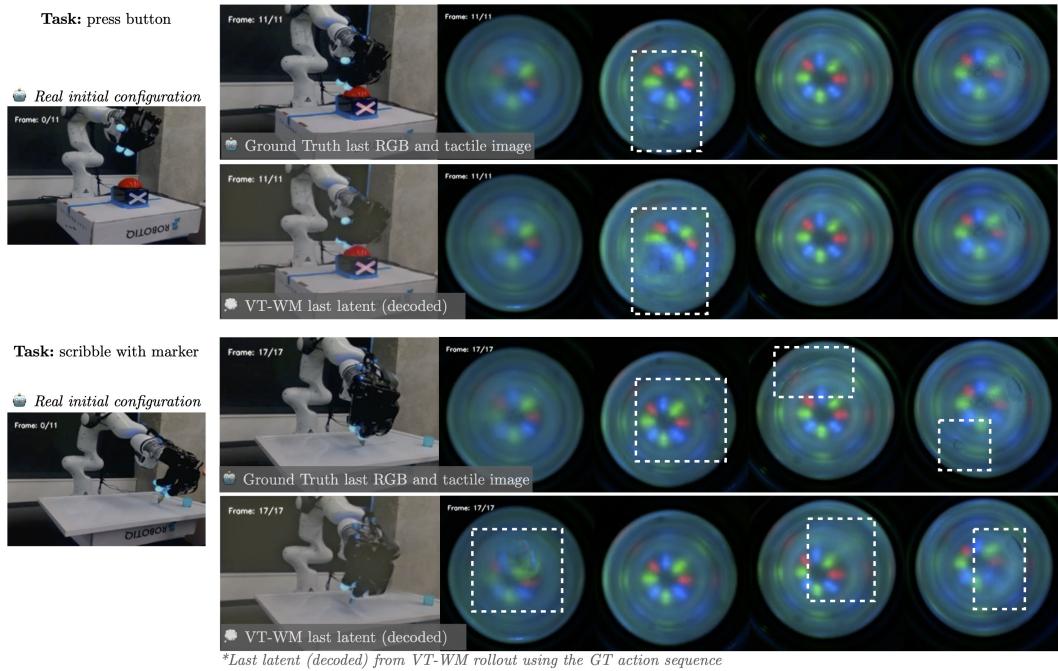
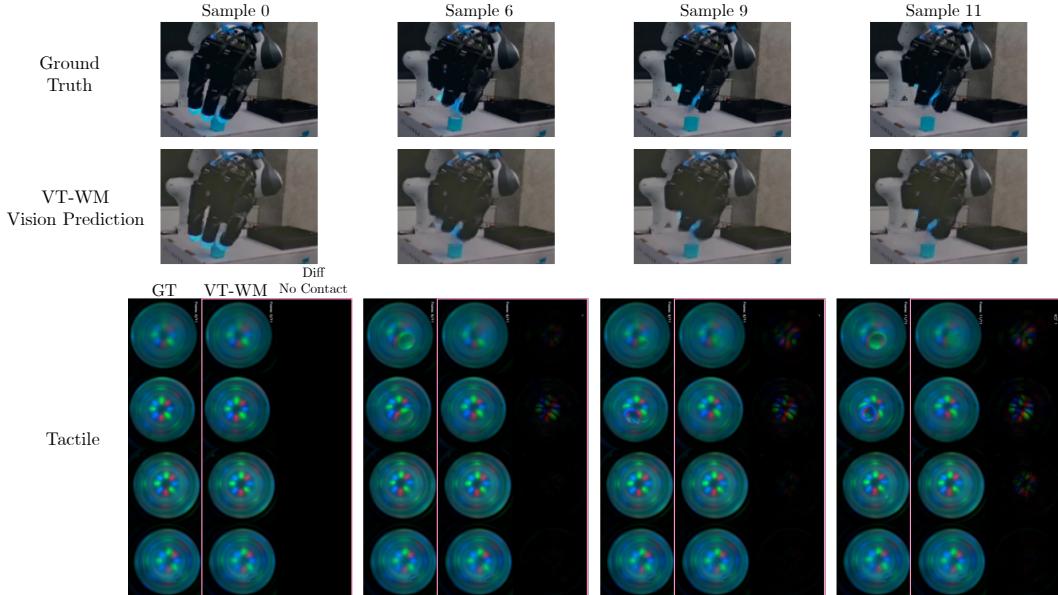


Figure 11: Visuo-Tactile World Model rollouts conditioned on ground-truth action sequences. Predicted visual states closely match the final RGB observations, while predicted tactile states capture plausible contact events and finger-object interactions.

To illustrate the predictive capability of the visuo-tactile world model, we evaluate rollouts conditioned on real robot action sequences. Specifically, we use held-out demonstrations from two tasks in our dataset: *press button* and *scribble with marker*. For each task, the VT-WM is queried autoregressively using the ground-truth sequence of control deltas.

Fig. 12 compares snapshots of a Visuo-Tactile World Model rollout for the *insert table leg* task, when grasping the object. Fig. 11 compares the final predicted states with the corresponding real-world outcomes. Since the model produces latent representations of future visual and tactile observations, we employ pretrained decoders to reconstruct these latents for visualization. Across both

756 tasks, the predicted visual states closely resemble the final RGB images of the real trajectories. The
 757 predicted tactile states also capture the key interaction events: although slight differences appear in
 758 the precise location of per-finger contacts, the rollouts consistently indicate whether contact occurs
 759 and depict plausible patterns of hand–object interaction. This demonstrates that the VT-WM, when
 760 guided by real action sequences, generates in imagination physically meaningful futures across both
 761 visual and tactile modalities.



782 Figure 12: Snapshots of a Visuo-Tactile World Model rollout for *insert table leg* task conditioned on
 783 ground-truth action sequences for a 2s horizon. *Top*: ground truth vision state. *Middle*: predicted
 784 vision state across rollout. *Bottom*: ground truth tactile signatures, predicted tactile and its difference
 785 with respect the no contact state. Notice that fingers that are in contact match between ground truth
 786 and VT-WM predicted signatures.

787 By producing consistent visuo-tactile rollouts under real control sequences, VT-WM demonstrates
 788 the ability to represent both global visual context and local contact dynamics in a unified predictive
 789 framework useful for planning.

791 C ZERO-SHOT PLANNING WITH WORLD MODELS

793 C.1 CEM ALGORITHM FOR PLANNING WITH WORLD MODELS

795 The algorithm 1 performs planning in a world model (WM) imagination using the Cross-Entropy
 796 Method (CEM). Given a goal image and the current multimodal context (vision and tactile), the
 797 algorithm first encodes these inputs into latent representations. CEM is then used to optimize a
 798 sequence of actions over a finite prediction horizon by iteratively sampling action sequences (par-
 799 ticles), rolling them out in the world model, and evaluating their predicted visual outcomes against
 800 the goal latent state using an ℓ_2 distance. The top-performing action sequences are used to update
 801 the mean and variance of the action distribution, refining the search over multiple iterations. After
 802 convergence, the best action sequence is executed on the robot, and the process can be repeated over
 803 several trials with updated context.

804 Next, we describe the goal of each of the tasks we use to evaluate the planning capabilities of the
 805 world models and discuss their results.

807 **Reach Button:** In this task, the robot must approach and press the center of a button starting from
 808 varied initial poses directly above it. Success therefore requires planning a sequence of actions
 809 that align the end-effector laterally with the button and then move downward to establish contact.
 Fig. 14 illustrated the plans produced by each world model using CEM rollouts in imagination,

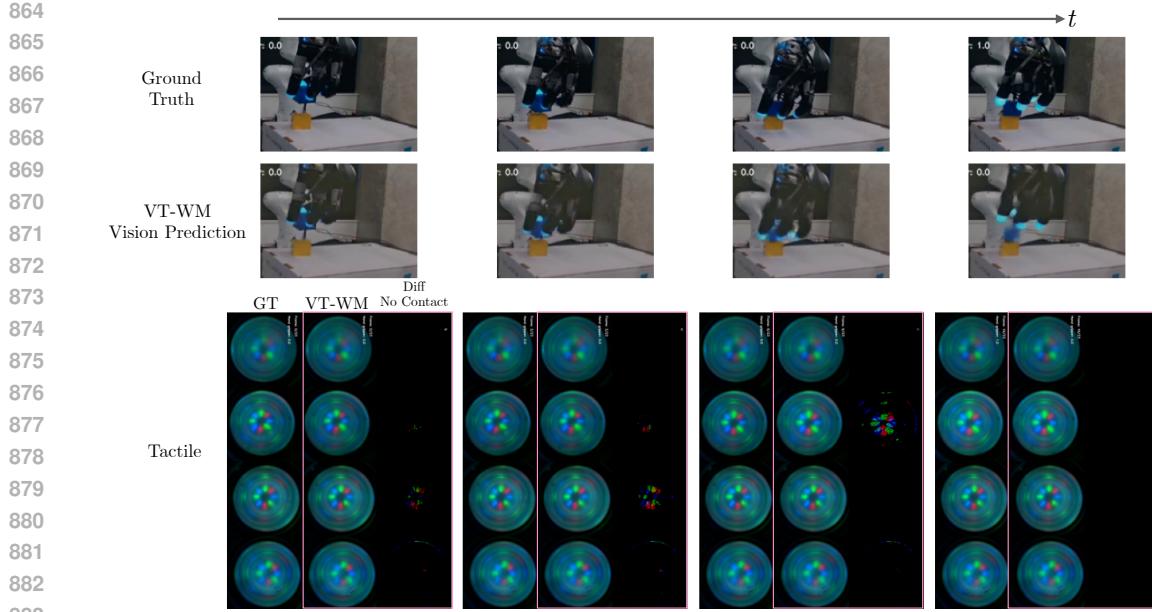


Figure 13: Snapshots of a Visuo-Tactile World Model rollout for *cube stacking* task. *Top*: ground truth vision state. *Middle*: predicted vision state across rollout. *Bottom*: ground truth tactile signatures, predicted tactile and its difference with respect the no contact state. Notice that fingers that are in contact match between ground truth and VT-WM predicted signatures.

alongside the corresponding executions on the real robot. We observe that both V-WM and VT-WM generate feasible trajectories that transfer zero-shot to the real system. This is expected since reaching primarily involves spatial reasoning and gross kinematic alignment, which vision alone can capture reliably.

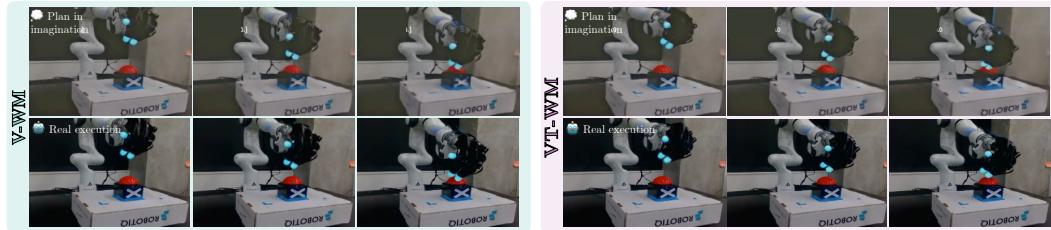


Figure 14: Reach Button task. Plans generated by V-WM and VT-WM with CEM in imagination (top) and their zero-shot executions on the real robot (bottom). Both models produce feasible trajectories, as reaching relies mainly on spatial reasoning and kinematic alignment.

Push Fruits: In this task, the robot hand begins directly in front of a target object that must be pushed downwards (toward the robot base). A successful plan requires maintaining persistent but gentle contact, allowing the object to slide across the table rather than topple.

Fig. 15 compares imagined rollouts and real executions for both models. While both V-WM and VT-WM produce plausible plans, we observe notable artifacts in the imagined rollouts, most prominently visual distortions of the green fruit when the hand occludes it. These artifacts are less pronounced in VT-WM, which better preserves the object's geometry in imagination. The deployment of the V-WM plan not only results in shorter object displacement but also lead to physical failures in execution, where the object occasionally topples instead of sliding without orientation changes.

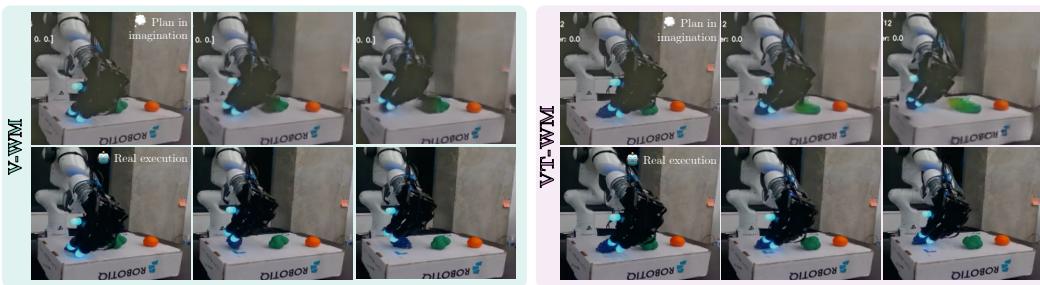


Figure 15: Push Fruits task. VT-WM preserves object geometry in imagination and transfers to stable sliding, while V-WM introduces distortions and often causes toppling in execution.

Reach & Push: This task requires a two-stage plan, first reaching the object to establish contact, then pushing it downward toward the robot base. Both subgoals are illustrated in Fig. 16, which shows the imagined plans and real executions.

In the V-WM rollout, the hand consistently hovers slightly above the object during the reach phase. As a result, the subsequent push proceeds without contact, and the execution on the real robot fails to move the object. By contrast, the VT-WM rollout explicitly brings the hand into contact during the reach, enabling the push plan to apply move the object effectively. When deployed, this produces the desired behavior, with both the reach and push subgoals successfully achieved. This highlights how tactile grounding resolves cases of visual aliasing, ensuring reliable contact in imagination and execution.

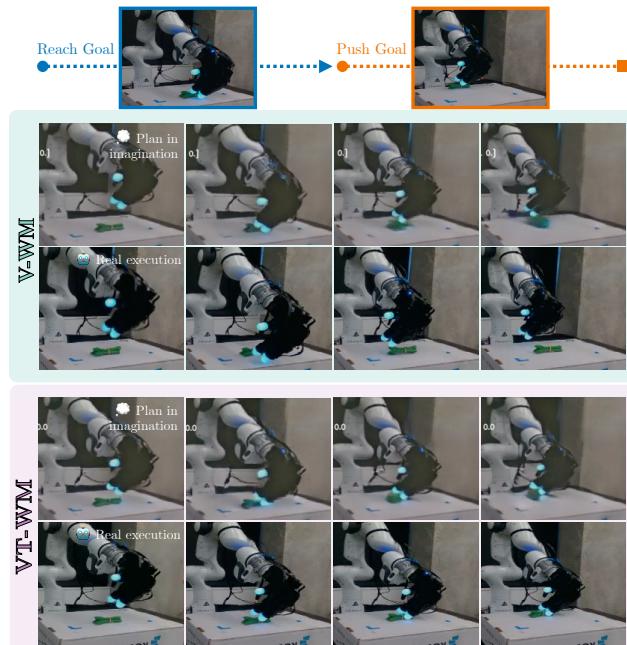
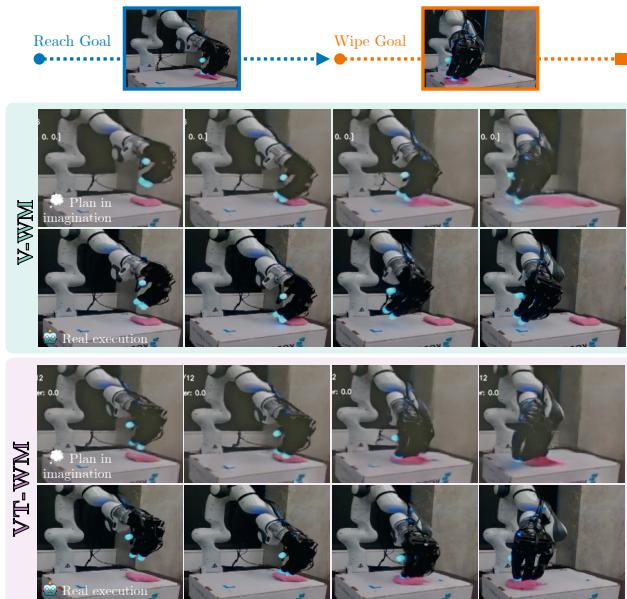


Figure 16: Reach & Push task. V-WM fails to establish contact, leading to ineffective pushes, while VT-WM ensures contact in imagination and execution, successfully completing both subgoals.

Wipe Cloth: This task consists of two subgoals, first reaching the cloth to establish contact, and then wiping it horizontally across the table. Both stages are illustrated in Fig. 17, which compares imagined rollouts with real executions.

972 In the V-WM rollout, the reach phase frequently results in the hand hovering slightly above the
 973 cloth, leading to ineffective wiping during execution. Even when a wiping trajectory is imagined,
 974 the visualizations exhibit noticeable artifacts such as geometric distortions of the cloth and hand.
 975 These artifacts reflect the model’s uncertainty about contact dynamics and correspond to execution
 976 failures where the cloth barely moves.

977 In contrast, the VT-WM rollout shows clearer geometry and maintains consistent contact with the
 978 cloth in imagination. As a result, the subsequent wiping action produces a stable horizontal dis-
 979 placement of the cloth when deployed on the real robot. This example underscores the advantages
 980 of visuo-tactile world model in tasks that require sustained contact to manipulate objects.
 981



1002 Figure 17: Wipe Cloth task. V-WM rollouts show artifacts and miss contact, leading to ineffective
 1003 wiping, while VT-WM maintains contact and produces consistent cloth displacement in execution.
 1004

1005 **Stack Cubes:** This task requires transporting a blue cube to the stacking location and then placing
 1006 it stably on top of a yellow cube. Both subgoals are illustrated in Fig. 18, which shows imagined
 1007 rollouts alongside real executions.
 1008

1009 While the V-WM generates reasonable transport trajectories, failures arise during placement. In
 1010 imagination, the cube intermittently disappears from the hand, revealing artifacts that indicate the
 1011 model is tracking only the hand–scene geometry (e.g., alignment with the target yellow cube) rather
 1012 than maintaining a consistent hand–object relationship. This disconnect leads to execution failures,
 1013 where the cube is not reliably placed.

1014 However, visuo-tactile world model accurately captures the object–hand interaction, throughout both
 1015 transport and placement, the cube remains consistently represented in the rollout. When transferred
 1016 zero-shot to the real robot, these plans result in stable stacking, highlighting the advantage of VT-
 1017 WM for tasks that demand precise, contact-rich manipulation.

1018 D LIMITATIONS

1021 While our results demonstrate clear benefits of visuo-tactile world model, following limitations
 1022 point to promising directions for future research. **First, our tactile modality is limited to vision-
 1023 based tactile sensing, specifically the Digit 360 sensor.** However, the VT-WM framework applies to
 1024 other tactile modalities as well, provided that an appropriate pretrained tactile encoder is available.
 1025 Second, evaluation of contact perception uses unseen robot trajectories but only within tasks from the
 training distribution, leaving open the question of how well the model generalizes to entirely novel

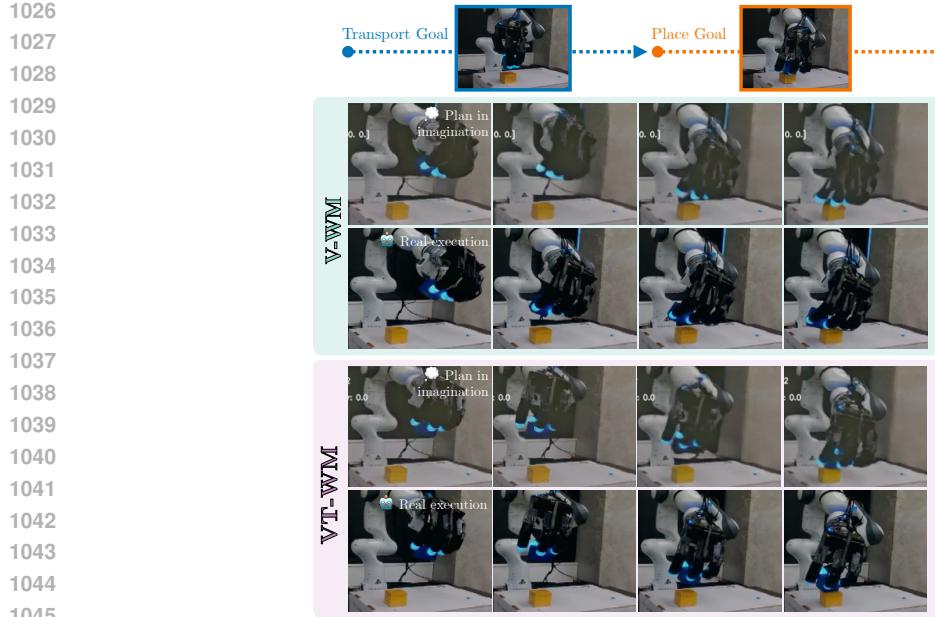


Figure 18: Stack Cubes task. V-WM imagined rollouts during planning lose track of the cube for the placement subgoal, leading to failed stacking, while VT-WM preserves hand–object interaction and transfers to successful stacks.

manipulation tasks or object characteristics. Third, our planning experiments randomize initial robot states but are limited to the same scene and objects, without testing generalization to objects with different visual or physical properties such as size, shape, or color. Planning with world models via CEM remains computationally expensive, as it requires generating many autoregressive rollouts per particle. This leads to open-loop execution in trajectory chunks, unlike classical policies that operate in closed-loop at higher control frequencies. **Finally, our comparison against a single task behavior cloning (BC) policy does not fully rule out the possibility that a multi-task BC policy could also exhibit strong data efficiency for the new task.**

E ADDITIONAL NOTES

About the use of large language models: Large Language Models (LLMs) were used exclusively to assist with grammar correction and refinement of writing style (flow, academic tone, and conciseness), based on drafts authored by the researchers. LLMs were not employed for data generation, or in any stage of the proposed model’s design, training, or evaluation.