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ABSTRACT

We introduce multi-task Visuo-Tactile World Models (VT-WM), which capture
the physics of contact through touch reasoning. By complementing vision with
tactile images, VT-WM better understands robot–object interactions in contact-
rich tasks, avoiding common failure modes of vision-only models under occlusion
or ambiguous contact states, such as objects disappearing, teleporting, or moving
in ways that violate basic physics. Trained across a set of contact-rich manipu-
lation tasks, VT-WM improves physical fidelity in imagination, achieving 33%
better performance at maintaining object permanence and 29% better compliance
with the laws of motion in autoregressive rollouts. Moreover, experiments show
that grounding in contact dynamics also translates to planning. In zero-shot real-
robot experiments, VT-WM achieves up to 35% higher success rates, with the
largest gains in multi-step, contact-rich tasks. Finally, VT-WM shows data effi-
ciency when targeting a new task, outperforming a behavioral cloning policy by
over 3.5× in success rate with limited demonstrations.

Visuo-Tactile 
World Model 
(VT-WM)

Video

Touch

21 36

Vision-only  
World Model 

(V-WM)

World Model Planning in Imagination 💭

👀 Check blue cube

Figure 1: Visuo-Tactile World Model complements vision with touch, providing contact grounding
of robot-object interactions. Notice that when using the WMs for planning a cube stacking task,
the VT-WM has notion of object permanence of the blue cube when transporting, placing and
releasing the object. The contact grounding provided by the vision-based tactile sensor helps to
reduce hallucinations often present in V-WMs, enabling more reliable zero-shot planning in contact-
rich manipulation tasks.

1 INTRODUCTION

World models (WMs) have emerged as a leading paradigm in machine learning, offering robots
the ability to understand the physical world and plan interactions in imagination (Agarwal et al.,
2025; Russell et al., 2025; Liao et al., 2025). In this work, we advance world models for robot
manipulation by extending beyond purely visual imagination to incorporate modalities that directly
ground contact interactions (fig. 1). By complementing vision with touch, world models for robot
manipulation gain access to local contact signals that anchor predictions in the physics of contact.
Tactile sensing provides this crucial information, enabling the model to capture object permanence
and force-driven motion, and to move beyond the ambiguities and aliasing of vision alone.

We introduce the first multi-task Visuo-Tactile World Model (VT-WM). Vision provides
global context about the robot’s kinematics and the task scene, but it does not reveal the state of
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physical contact. Tactile sensing supplies this missing local signal, capturing how the hand and
object actually interact. Together, these modalities enable the model to maintain object permanence
even under heavy occlusion or visual aliasing. As shown in fig. 1, VT-WM consistently represents
the cube throughout the phases of a stacking task: in-hand during transport and placement, and back
in the scene once released. Multimodality also disambiguates visually similar states with different
outcomes. For example, from the camera view the robot hand may appear to rest on a cloth, yet
only tactile feedback can reveal whether contact is sufficient for the cloth to move when wiping, or
if it will remain in place. By grounding imagination in both global vision and local touch, VT-WM
preserves object permanence and predicts object–robot interactions that respect the laws of motion.

We evaluate the gains of VT-WM over V-WM on a set of contact-rich manipulation tasks. Our
first focus is how visuo-tactile training improves imagination by preserving object permanence and
adhering to physical motion laws during autoregressive rollouts. Tactile grounding helps prevent
common hallucinations in vision-only models, such as objects disappearing under occlusion, tele-
porting, or moving without applied forces due to visual aliasing. We then assess how this grounding
translates to planning. While V-WM and VT-WM perform similarly on reaching tasks that mainly
test kinematic fidelity, zero-shot plans generated by VT-WM show a stronger ability to maintain
contact in the real world. This capability proves crucial for manipulation actions such as pushing,
wiping, and placing, where reliable hand-object interaction determines task success.

Our contributions are threefold:
• We propose the first multi-task visuo-tactile world model that integrates fingertip tactile

sensing with vision to jointly model global context and local contact dynamics.
• We show that visuo-tactile grounding substantially improves imagination quality, achiev-

ing a 33% gain in object permanence and a 29% gain in compliance with physical laws,
evaluated across a set of manipulation tasks.

• We demonstrate that these improvements in imagination enable more reliable zero-shot
planning on real robots, with up to 35% higher success in contact-rich tasks.

2 RELATED WORKS

In this work we aim to train general (multi-task) world models that can leverage both tactile and
visual observations. Specifically we train latent-state world models, which first project observations
into latent representations and then train an action-conditioned dynamics model in that latent space.

Foundational encoders for vision and touch: Unlike the established hardware platforms for
computer vision, the field of robotic tactile sensing lacks a single standardized sensor. Neverthe-
less, vision-based tactile sensors have emerged as one of the most prominent solutions. Devices like
GelSight (Yuan et al., 2017), Digit (Lambeta et al., 2020), and the more recent Digit 360 (Lambeta
et al., 2024) capture tactile information by imaging the deformation of a soft elastomer surface.

Similar to the development of general-purpose visual encoders like CLIP (Radford et al., 2021),
DINO (Caron et al., 2021; Oquab et al., 2023), I-JEPA (Assran et al., 2023), and Cosmos Tok-
enizer (Agarwal et al., 2025), recent efforts have focused on creating foundational models for vision-
based tactile sensors through self-supervised learning. Models such as SITR (Gupta et al., 2025),
T3 (Zhao et al., 2024), UniT (Xu et al., 2025), Sparsh (Higuera et al., 2024), and Sparsh-X (Higuera
et al., 2025) learn robust, low-dimensional tactile representations without requiring explicit labels.
Benchmarks like TacBench (Higuera et al., 2024) evaluate the quality of these embeddings, demon-
strating their ability to compress information about contact dynamics, including force fields, slip
states, and pose changes, as well as static properties like texture and material. In this work, we use
Digit 360 sensors as fingertips for an Allegro Hand mounted on a Franka Panda arm and we use the
Sparsh-X model (Higuera et al., 2025) to obtain tactile embeddings, and the Cosmos encoder (Agar-
wal et al., 2025) to obtain RGB embeddings.

Action-Conditioned World Models for Real World Robotics: There has been an influx of train-
ing general purpose action-conditioned video-generation models (Hu et al., 2023; Russell et al.,
2025; Yang et al., 2024; Bruce et al., 2024; Agarwal et al., 2025; Assran et al., 2025). However,
these lines of work focus on show-casing the generation capabilities, and only have limited (if any)
results for using these models to control robots.

The majority of previous work on world models applied to real world tasks focuses on visual dy-
namics models (Agrawal et al., 2016; Byravan et al., 2017; Das et al., 2020; Nagabandi et al., 2020;
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Finn et al., 2016; Ebert et al., 2017; 2018; Yen-Chen et al., 2020). Visual dynamics models are
either trained directly in pixel-space (Finn et al., 2016; Ebert et al., 2017; 2018; Yen-Chen et al.,
2020; Alonso et al., 2024), or in a learned latent space (Watter et al., 2015; Agrawal et al., 2016; Ha
& Schmidhuber, 2018; Hafner et al., 2019; Nair et al., 2022; Wu et al., 2023; Tomar et al., 2024;
Hu et al., 2024; Lancaster et al., 2024), or in more structured representation spaces such as keypoint
representations (Manuelli et al., 2020; Das et al., 2020) or tracked 3D states (Nagabandi et al., 2020).
In our work, we train action-conditioned world models in latent states extracted from both RGB and
tactile observations.

While several works have investigated learning dynamics model on touch observations (Sutanto
et al., 2019; Tian et al., 2019; Ai et al., 2024) there is little work on training world models with
vision and touch (Zhang & Demiris, 2023). Furthermore these dynamics models are task-specific -
while in our work we aim to train general purpose multi-modal world models that can be used for
visual MPC on multiple tasks.

3 WORLD MODELS THAT UNDERSTAND CONTACT

Vision-only world models have shown promising capabilities in action steerability and spatial rea-
soning (Assran et al., 2025; Agarwal et al., 2025), generating plausible rollouts with reasonable robot
kinematics and high-quality visuals. These properties make them useful for planning free-space mo-
tions. However, simulating object interactions comes with some challenges. Object motion depends
on forces invisible to exocentric cameras, and occlusions during grasping, pushing, or placing often
cause artifacts such as teleportation, disappearance, or physically implausible dynamics.

We introduce Visuo-Tactile World Model (VT-WM), which uses tactile sensing to com-
plement vision to overcome these limitations. Touch provides contact information during occlusion,
grounding the model’s imagination in contact physics and producing more accurate rollouts for
contact-rich manipulation tasks.

3.1 WHAT VISION DOESN’T SEE: SENSING CONTACT WITH TOUCH

Figure 2: Tactile images from Digit 360
sensors. White boxes highlight contact
while the hand holds a screw.

Touch provides essential local perception, enabling
robots to distinguish properties like stiffness, friction,
and roughness that are difficult to infer from vision
alone. It also captures the dynamics of contact, which
is crucial for manipulation tasks. For instance, when
manipulating an object in-hand, touch provides context
about forces, slip, and subtle pose changes.

Vision-based tactile sensors typically stream image data
at 30-60 FPS, providing rich information about the con-
tact area, including force, shape, and texture features.
This tactile information is crucial for disambiguating
contact states that from an exocentric camera may ap-
pear visually similar. For example, a robot hand’s grasp
on a cup might look the same from a distance, but tac-
tile sensing can differentiate between a no-contact state,
a subtle touch, or a firm grasp. In this work, we use Digit 360 sensors as fingertips for an Allegro
Hand mounted on a robot arm. A visualization of tactile images captured by a Digit 360 sensor is
shown in fig. 2.

3.2 MULTITASK VISUO-TACTILE WORLD MODEL

3.2.1 MODEL ARCHITECTURE

Our visuo-tactile world model is designed to address a key challenge in multimodal robot world
models: how to combine exocentric vision with tactile sensing in order to generate consistent imag-
ined futures. As shown in fig. 3, the architecture consists of three main components: a vision en-
coder, a tactile encoder, and an autoregressive predictor.

The vision encoder extracts latent states sk that capture the robot and its environment from ex-
ocentric video. The tactile encoder compresses high-frequency contact feedback into a compact
state tk that emphasizes salient physical interactions. These representations are fused with control
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Figure 3: Visuo-Tactile World Model. Vision (sk) and tactile (tk) latents, obtained from
Cosmos and Sparsh-X encoders, are processed by a transformer predictor given control actions ak
to generate next-step states (sk+1, tk+1).

actions and passed to the predictor, a forward dynamics model that estimates the next-step states
(sk+1, tk+1) ∼ Pϕ(sk, tk | ak).
This formulation enables the model to imagine multiple possible futures under control actions. Un-
like purely visual world models, our predictor leverages tactile signals to disambiguate perceptually
identical visual states. For instance, two identical video frames of a robot hand around a cup can
lead to different rollouts: if the tactile input indicates contact, the imagined sequence shows the cup
being lifted; if not, the cup remains on the table. This tactile-informed disambiguation is significant
for planning in contact-rich manipulation.

We frame the predictor as a supervised next-state estimation problem with ground-truth future latents
as targets. Both modalities are encoded with pretrained networks: Cosmos tokenizer (Agarwal et al.,
2025) for vision and Sparsh-X (Higuera et al., 2025) for Digit 360 tactile sensors. The encoded
contexts sk and tk are augmented with sinusoidal positional embeddings, and projected into a unified
representation R(b,t,s,d). Vision and tactile tokens are concatenated along the spatial dimension to
form a unified input sequence. The predictor then processes these multi-modal tokens through a
12-layer transformer that alternates between two types of attention mechanisms:

Spatio-Temporal Self-Attention The model processes vision-touch tokens through factorized at-
tention that operates in two stages: spatial attention enables all tokens within a timestep to interact,
while temporal attention tracks how each token evolves across past timesteps. This factorization
efficiently captures both local dynamics and global context while avoiding the O((THW )2) com-
plexity of full spatiotemporal attention. Action tokens undergo the same factorized attention process.

Action Conditioning via Cross-Attention After each self-attention block, vision-touch tokens
cross-attend to action tokens to incorporate the robot’s control inputs into the predictions. This
alternating pattern of self-attention and cross-attention allows the model to iteratively refine its latent
states based on both sensory observations and executed actions.

All attention layers employ Rotary Position Embeddings (RoPE) (Su et al., 2023) for relative posi-
tion encoding. After the transformer, the representations are projected back to their original dimen-
sions through modality-specific output heads, yielding predictions sk+1 and tk+1.

3.2.2 TRAINING VISUO-TACTILE WORLD MODEL

During training, the vision input is a 1.5-second exocentric videoclip (9 frames at 6 fps, 320 × 192
resolution), encoded framewise with Cosmos. The tactile input consists of two frames per Digit 360
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sensor (four sensors total), covering the most recent 0.16 seconds. This shorter horizon reflects the
higher temporal frequency and local nature of contact information, which complements the slower,
global context provided by vision. The action input includes changes in proprioceptive state (trans-
lation, quaternion rotation) and a binary hand state representing pre-set open/close configurations.
We chunk action sequences from 30Hz into groups of 5, with the full chunk of delta-states provided
to the predictor. This combination ensures that the predictor models both the external scene and the
internal actuation history, a prerequisite for accurate visuo-tactile imagination. The model uses a
maximum context length of 9 frames for both vision and touch modalities. Additional details about
hyperparameters and training dataset are provided in appendix A.

The model is trained with an objective that combines teacher forcing with autoregressive sampling
to balance training stability with long-horizon coherence as proposed by Assran et al. (2025).

Teacher Forcing Loss. The primary training signal comes from next-step prediction with ground-
truth context. Given a sequence of T frames, we compute:

Lteacher =

T−1∑
k=1

||ŝk+1 − sk+1||1 + ||t̂k+1 − tk+1||1 (1)

where ŝk+1 and t̂k+1 are predicted from ground-truth states up to time k, and sk+1 and tk+1 are the
encoded latents given ground truth observations at time step k+1. This provides dense supervision
and stable gradients but can lead to distribution shift during autoregressive rollouts.

Sampling Loss. To improve long-horizon generation, we additionally train on sampled trajectories.
During training, we sample future states autoregressively for H steps (typically H = 3 − 5), then
compute predictions conditioned on these sampled states:

Lsampling =

H∑
k=1

||ŝsampled
k+1 − sk+1||1 + ||t̂sampled

k+1 − tk+1||1 (2)

The sampled states are generated without gradients to prevent training instability. The final loss
combines both objectives with equal weighting: L = Lteacher + Lsampling.

3.2.3 PLANNING IN IMAGINATION

The action-conditioned nature of our predictor enables the use of the visuo-tactile world model as
a simulator within a Cross-Entropy Method (Rubinstein, 1997) (CEM). At each step, the planner
samples a population of action sequences {aik:k+H}Ni=1 over a horizon H . For each sequence, the
predictor autoregressively generates future latents (sk+1:k+H , tk+1:k+H). A cost function, defined
by energy minimization with respect to a goal image, assigns a score to each trajectory. In practice,
this cost can be as simple as an ℓ2 distance between the final predicted visual latent sk+H and the
latent of the goal image sgoal. CEM then selects the top-performing fraction of sequences, updates
the sampling distribution toward them, and iterates until convergence. The best sequence is then
executed on the real robot in an open-loop manner.

We do not provide the tactile modality as a goal signal, thus the planning objective remains purely
vision-based. The role of tactile in the VT-WM is to enhance the reliability of the learned world
model and, therefore, to improve planning indirectly. First, tactile feedback during training enables
the world model to capture contact physics that are difficult to infer from vision alone. Second, when
generating rollouts, tactile context in the initial state helps disambiguate visually identical observa-
tions (e.g., distinguishing whether the robot is already in contact with an object). This yields more
physically consistent imagined futures and more accurate cost evaluations, which we hypothesize
translate into higher-quality plans.

4 EXPERIMENTS

Our experimental framework evaluates the advantages of visuo-tactile world model (VT-WM) for
robot manipulation by addressing the key questions:

• Contact Perception: Do VT-WMs better capture object permanence and causal compliance
than vision-only WMs, and generate futures consistent with action conditioning?
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• Zero-shot Planning: Does improved contact perception lead to more reliable zero-shot plan
transfer in open-loop execution?

• Data Efficiency: Given limited demonstrations, how does fine-tuning a multi-task world
model for planning compare to behavioral cloning?

4.1 CONTACT PERCEPTION
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Figure 4: Object permanence. VT-WM
achieves an average reduction of ≈ 33% rela-
tive to V-WM (with 95% CI) of the normalized
Fréchet distances for objects in motion.

To evaluate the benefits of incorporating touch,
we compare rollouts from a multi-task vision-only
world model (V-WM) and our multi-task visuo-
tactile world model (VT-WM), conditioned on the
same actions and context. The action sequences
are drawn from successful demonstrations on the
real system, which enables a direct comparison be-
tween each model’s rollouts and the corresponding
ground-truth videos. This setup allows us to as-
sess how well the models capture motion dynam-
ics and the physical plausibility of object interac-
tions. We focus our evaluation on object perma-
nence, causal compliance, and action controllabil-
ity. These metrics are components of the World
Consistency Score (Rakheja et al., 2025), a proposed benchmark in the state-of-the-art to evaluate a
generative model’s ability to maintain coherent and physically plausible futures over time.

Object Permanence: This metric assesses a model’s ability to maintain a consistent representa-
tion of an object’s existence and state even when the object is temporarily occluded. As shown in
fig. 5, we evaluate whether objects remain represented during heavy occlusion (e.g., during a grasp)
and reappear in the correct state once revealed. In the cube-stacking task, VT-WM exhibits stronger
object permanence than V-WM: as the blue cube is occluded in the hand during transport and place-
ment, VT-WM preserves its representation, and upon release, the cube re-emerges in the imagined
scene at the correct location above the yellow target cube. In appendix B-fig. 13, we visualize the
tactile predictions generated by VT-WM, demonstrating the model’s ability to maintain congruent
visual and tactile representations of object contact.

For quantitative evaluation, we employ CoTracker (Karaev et al., 2024) to track keypoints on the
object, providing pixel-level visibility and trajectories. We then compare the normalized Fréchet
distance between the ground-truth visual trajectory and the one imagined by V-WM and VT-WM
under the ground-truth action conditioning. To ensure comparability, trajectories are expressed rela-
tive to the object’s initial image position and normalized by the length of the ground-truth trajectory.
A lower Fréchet distance indicates that the imagined trajectory more closely reflects the real motion
and state of the object, thereby capturing the physical coherence required for object permanence.

Fig. 4 reports normalized Fréchet distances across five tasks. To assess statistical significance, we
complement the Fréchet distance analysis with paired t-tests across tasks. VT-WM achieves consis-
tently lower distances than V-WM, with statistically significant improvements in place fruits (t =
4.38, p < 0.001), push fruits (t = 6.06, p < 10−6), and cube stacking (t = 2.40, p < 0.05). For
wipe with cloth and scribble with marker, the differences follow the same downward trend but do not
reach significance at the 5% level. Quantitatively, VT-WM reduces normalized Fréchet distance by
18–47% across all five tasks, corresponding to an average overall reduction of≈ 33%. These results
indicate that VT-WM produces more physically coherent rollouts, with statistically significant gains
in tasks requiring reliable object permanence, such as object pushing and stacking.

Causal Compliance: This metric evaluates whether changes in object state occur as physically
plausible consequences of the robot’s actions. A causally compliant model predicts that an object’s
state changes only when it is subject to external forces. Assessing causal compliance is essential
for developing physics-informed world models that respect the principles of contact dynamics and
avoid unrealistic motions or deformations.

For a quantitative measure of causal compliance, we use CoTracker to compute the trajectory error
of keypoints on objects in the scene that are not subject to any external force and should therefore

6
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Figure 5: VT-WM preserves object permanence and consistent hand–object interactions during
imagination, while V-WM often loses objects or produces severe deformations.

remain stationary. We again use the normalized Fréchet distance between ground-truth and imagined
rollouts as our metric. A higher Fréchet distance indicates that the world model hallucinates changes
in the position or deformation of these passive objects, thereby violating basic physical laws such as
Newton’s first law of motion. As shown in fig. 6, VT-WM consistently achieves lower distances than
V-WM across most tasks. Paired t-tests confirm statistically significant improvements at the 5% level
in place fruits (t = 3.66, p < 0.001), push fruits (t = 2.28, p < 0.05), and wipe with cloth (t =
2.99, p < 0.01), while differences in cube stacking (t = 1.75, p = 0.09), and scribble with marker
(t = −1.22, p = 0.23) are not significant. Quantitatively, VT-WM achieves relative reductions of
43.6%, 16.4%, and 66.1% in place fruits, push fruits, and wipe with cloth, respectively, alongside
a smaller improvement in cube stacking and a degradation in scribble with marker. Overall, VT-
WM reduces hallucinated motion by an average of ≈ 29% across tasks, reflecting stronger causal
compliance in most scenarios.
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Figure 6: Causal compliance evaluates WMs
adherence to the laws of motion. Normalized
Fréchet distance for static objects (95% CI)
shows that VT-WM outperforms V-WM, with
an overall improvement of ≈ 29%.

In fig. 7 we show snapshots of a trajectory where
the robot performs a wiping motion just above a
cloth, without making contact. In the ground-truth
sequence (top row), keypoints on the cloth remain
stationary. In contrast, the V-WM’s rollout (bot-
tom row), conditioned on the real actions, shows
significant displacement of keypoints and defor-
mations of the cloth. This highlights the V-WM’s
difficulty to distinguish between contact and non-
contact states based on visual input alone. The
VT-WM’s rollouts (middle row), however, exhibit
fewer artifacts and less variation, demonstrating
the advantage of tactile sensing in providing the
world model with critical physical grounding.

In appendix B we showcase the action controllabil-
ity of the world model. We compare ground-truth
trajectories with VT-WM rollouts under the same action sequences and illustrate what the world
model imagines in terms of contact.

4.2 ZERO-SHOT PLANNING TRANSFER TO REAL-WORLD

Does the improved contact perception of VT-WM translate into superior planning performance on a
real robot?. We hypothesize that VT-WM produces more effective plans for contact-rich tasks. For
example, in a cube-stacking task, a physically grounded model should avoid opening its hand while
transporting a cube. Similarly, for pushing, the model must recognize that contact is a prerequisite
for object motion.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

V
T
-W

M
V-
W
M

G
ro

un
d 

Tr
ut

h

VT-WM

V-WM

Ground 
Truth

t

VT-WM

V-WM

Ground 
Truth

t

VT-WM

V-WM

Ground 
Truth

t

No contact Above cloth 
No contact

Above cloth 
No contact

VT-WM

V-WM

Ground 
Truth

t

VT-WM

V-WM

Ground 
Truth

t

VT-WM

V-WM

Ground 
Truth

t

✅ No object motion ⚠ Slight 
deformation

VT-WM

V-WM

Ground 
Truth

t

VT-WM

V-WM

Ground 
Truth

t

VT-WM

V-WM

Ground 
Truth

t

🛑 Object motion 🛑 Object motion

Fingers open 
for grasping

Fingers closed. 
Marker remains in 

place.

✅ No object change

🛑 Object disappears

Hand moving above cloth without contact Hand fails object grasp

Figure 7: Comparison of rollouts, illustrating that VT-WM prevents spurious motion of objects not
subject to forces, whereas V-WM often hallucinates unintended displacements.

Goal 1

Goal 2 n/a n/a

Reach Button Push Fruits Reach&Push Wipe Cloth Stack Cubes BC Policy VT-WM

New task: 

Place plate 
in dish rack

Figure 8: Left: Success rate of plans via CEM with VT-WM and V-WM on real robot. For all
tasks the VT-WM achieves equal or better performance (blue labels), empirically demonstrating the
better planning capability with contact grounding via tactile sensing. Right: success rate on new task
highlights the data efficiency of VT-WM compared to classical behavioral cloning (BC) policies.

To evaluate this, we employ the Cross-Entropy Method (CEM) (Rubinstein, 1997; De Boer et al.,
2005) to solve a goal-conditioned energy minimization problem. The objective is to plan an optimal
action sequence over a fixed horizon H , where the cost is the distance in latent space between the
final predicted visual state sk+H and the goal image latent sgoal. The search space for CEM is R7,
consisting of 3D translation and 3D orientation of the wrist pose, plus a binary variable for the hand’s
open/closed configuration.

We evaluate open-loop zero-shot transfer of the generated plans on the real robot. To initialize
planning consistently, the initial RGB and tactile embeddings are passed as context to the world
model, indicating whether optimization should begin from an in-contact or no-contact state. Both
VT-WM and V-WM are tested on five tasks of increasing difficulty: reach button, push fruits, reach
& push, wipe cloth, and stack cubes. The first two are single-goal tasks, while the latter three involve
multiple subgoals.
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Fig. 8(left) reports success rates, averaged over five trials per task from distinct initial conditions.
The results confirm the superior planning capability of VT-WM across all tasks, supporting our
hypothesis that a contact-aware model generates more effective plans. On simple tasks such as
reach button, both models achieve 100% success, consistent with prior visual world models for
robot manipulation such as V-JEPA-2AC (Assran et al., 2025). However, the benefits of tactile input
become increasingly evident in contact-rich tasks: VT-WM improves success rates by 10% on push
fruits, 35% on reach & push, 31% on wipe cloth, and 11% on stack cubes. These gains are most
pronounced in multi-step tasks involving sustained contact, where vision alone is insufficient to
inform about the object state during planning. In appendix C, we describe the experimental setup
for each task and present a qualitative evaluation of the planned trajectories and their corresponding
real-world executions.

4.3 DATA EFFICIENCY

For a new task with a limited number of successful demonstrations, how does fine-tuning a multi-
task world model for planning compare to training a task-specific behavioral cloning (BC) policy?
We hypothesize that VT-WM can extract task structure even in low-data regimes, since it already
encodes contact dynamics from prior tasks. For example, insertion may involve a new object, but
concepts such as alignment and adjusting contact with a receptacle can be reused. In contrast, a BC
policy must learn both spatial and contact reasoning from scratch.

We collect 20 demonstrations of the task “place plate in the dish rack,” which requires transporting
the plate and inserting it between the racks. We augment our multi-task dataset (see appendix A.0.1)
with the new sequences and continue training VT-WM, while also training a task-specific BC policy
ACT (Zhao et al., 2023) that outputs action chunks over a fixed horizon. For VT-WM, we use CEM
planning and zero-shot transfer to the real robot. The task is divided into two subgoals: alignment
and insertion (see fig. 8). The BC policy is deployed in closed loop, where at each timestep it
receives the latest RGB and tactile inputs and executes the first action of the predicted chunk.

We evaluate both methods in nine real-robot trials, randomizing the initial plate-in-grasp pose. As
shown in fig. 8(right), VT-WM planning achieves a 77% success rate, compared to 22% with BC.
These results highlight the data efficiency of multi-task world models and their advantage over task-
specific policies. Moreover, failure modes differ, for instance, VT-WM mostly places the plate
beside the rack, whereas 57% of BC failures involve the robot never reaching the rack at all.

5 DISCUSSION AND CONCLUSION

Visuo-Tactile World Model (VT-WM) leverages tactile sensing to complement vision, enabling
world models for robot manipulation to be grounded in contact. While vision-only world models
(V-WMs) have shown promise in spatial reasoning and capturing robot kinematics, they are prone to
hallucinate object interactions, with failures such as object disappearance, teleportation, or unreal-
istic deformations. By integrating fingertip tactile sensing with exocentric vision, VT-WM grounds
imagination in the physics of contact, producing more accurate rollouts and capturing core concepts
such as object permanence under occlusion and compliance with physical laws.

We studied the gains of multimodality in VT-WM over V-WM through three key questions. First,
does adding touch improve a world model’s understanding of contact? Comparing autoregressive
rollouts under identical action sequences, we found that VT-WM preserved object permanence, even
when objects were occluded by the robot hand, and maintained resting states for objects not subject
to external forces. Quantitatively, VT-WM reduced normalized Fréchet distance by 33% on average
relative to V-WM, better reflecting true object dynamics.

Second, does contact grounding improve planning? Using CEM-based imagination for goal-
conditioned planning, we zero-shot transferred plans to a real robot under randomized initial con-
ditions. While both models performed similarly on free-space tasks such as reaching, VT-WM
achieved up to 35% higher success rates in contact-rich tasks requiring precise hand–object interac-
tion, including pushing, wiping, and stacking.

Third, is VT-WM data efficient when targeting a new task? To compare with task-specific behavioral
cloning (BC), we fine-tuned VT-WM on just 20 demonstrations of a plate-insertion task. VT-WM
reached a 77% success rate, over 3× higher than BC, by reusing priors from previously learned
contact-rich tasks such as alignment and insertion. This highlights its ability to efficiently adapt to
new tasks with limited data.

9
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APPENDIX

A TRAINING VISUO-TACTILE WORLD MODEL

A.0.1 TRAINING DATASET

Press button Place fruits on plate Push fruits

Wipe with cloth

Stack cubes Scribble with marker Insert lampshade

Insert table leg

Figure 9: Multitask Vision-Tactile Dataset.
Trajectories for training the world model
collected via teleoperation, including both
successful and failure sequences.

To train our multi-task visuo-tactile world model, we
collect a dataset of teleoperated robot arm trajecto-
ries performing fundamental contact-rich manipula-
tion actions, such as pick and place, pushing, and in-
sertion. Our hardware setup consists of a table-top
Franka Panda arm with an Allegro Hand as the end-
effector and a Digit 360 sensor mounted on each fin-
gertip. An exocentric view from a camera captures the
global context of the robot’s interaction with objects
on the table.

Through teleoperation, we collect a diverse set of tra-
jectories, without discriminating between successes
and failures, for eight distinct contact-rich tasks (see
Fig. 9): pick and place on a plate, reach and press a
button, push, wipe with a cloth, lampshade insertion,
table leg insertion, cube stacking, and scribbling with a marker. For each task, we recorded success-
ful and failure demonstrations. Each sequence contains multimodal data streams: proprioceptive
information (wrist pose, joint positions), exocentric video from the camera, and video from each
Digit 360 fingertip sensor. All data streams were synchronized using timestamps and downsampled
to 6 FPS for training the world model. Our training dataset for V-WM and VT-WM consists of
124 demonstrations totaling 112k datapoints, with each demonstration averaging 40 seconds. For
validation, we use 26 demonstrations spanning all tasks, comprising 17k datapoints.

A.1 TRAINING PARAMETERS

The model is optimized using AdamW (Loshchilov & Hutter, 2019) with parameters β1 = 0.9, β2 =
0.95 and a weight decay of 0.01. We use a learning rate scheduler with linear warmup for the first
10,000 gradient updates to a peak learning rate of 3e − 4, followed by cosine decay to 3e − 7 over
a total of 80,000 updates. We use an effective batch size of 64 distributed over 32 A100 GPUs. We
found that fine-tuning the Sparsh-X encoder was beneficial to account for sensor-specific variations,
such as those arising from manufacturing tolerances and elastomer wear, while the Cosmos Tok-
enizer (Agarwal et al., 2025) was kept frozen during training. Our visuo-tactile world model has a
total of 173M parameters, of which 96M were trained.

B CONTACT PERCEPTION WITH VISUO-TACTILE WORLD MODEL

We corroborate the world model’s capacity to generate future states that are a reliable and predictable
consequence of the given action conditioning. We study action controllability qualitatively by vi-
sualizing rollouts under simple, disentangled action commands: moving the end-effector along the
Cartesian axes (±x, ±y, ±z) and opening/closing the hand. Actions conditioning is given to the
VT-WM as deltas in the robot’s proprioceptive state.

We observe in Fig. 10 that the VT-WM produces coherent rollouts aligned with the commanded ac-
tions. Translations along each axis result in consistent directional displacements of the end-effector
in imagination (notice the reference frame in the figure), while hand open/close commands lead to
corresponding changes in finger configurations. Notably, these behaviors emerge from the learned
dynamics rather than explicit supervision of axis-aligned motion, indicating that the model internal-
izes the action-conditioned structure of the robot’s kinematics. We compare ground-truth trajectories
with VT-WM rollouts under the same action sequences and illustrate what the world model imagines
in terms of contact.
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Initial state

💭Move in 
-x

💭 Move in 
-y

💭Move in 
-z

💭Move in 
+x

💭Move in 
+y

💭Move in 
+z

Initial state
💭 Open hand

Initial state

+x
+y

+z

💭 Close hand

Figure 10: Visuo-Tactile World Model generates rollouts aligned with commanded actions along
reference axes (±x, ±y, ±z) and for hand open/close.

Figure 11: Visuo-Tactile World Model rollouts conditioned on ground-truth action sequences. Pre-
dicted visual states closely match the final RGB observations, while predicted tactile states capture
plausible contact events and finger–object interactions.

To illustrate the predictive capability of the visuo-tactile world model, we evaluate rollouts con-
ditioned on real robot action sequences. Specifically, we use held-out demonstrations from two
tasks in our dataset: press button and scribble with marker. For each task, the VT-WM is queried
autoregressively using the ground-truth sequence of control deltas.

Fig. 12 compares snapshots of a Visuo-Tactile World Model rollout for the insert table leg
task, when grasping the object. Fig. 11 compares the final predicted states with the corresponding
real-world outcomes. Since the model produces latent representations of future visual and tactile ob-
servations, we employ pretrained decoders to reconstruct these latents for visualization. Across both

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

tasks, the predicted visual states closely resemble the final RGB images of the real trajectories. The
predicted tactile states also capture the key interaction events: although slight differences appear in
the precise location of per-finger contacts, the rollouts consistently indicate whether contact occurs
and depict plausible patterns of hand–object interaction. This demonstrates that the VT-WM, when
guided by real action sequences, generates in imagination physically meaningful futures across both
visual and tactile modalities.

Tactile

VT-WM      
Vision Prediction

Ground 
Truth

GT VT-WM
Diff             

No Contact

Sample 0 Sample 6 Sample 9 Sample 11

Figure 12: Snapshots of a Visuo-Tactile World Model rollout for insert table leg task conditioned on
ground-truth action sequences for a 2s horizon. Top: ground truth vision state. Middle: predicted
vision state across rollout. Bottom: ground truth tactile signatures, predicted tactile and its difference
with respect the no contact state. Notice that fingers that are in contact match between ground truth
and VT-WM predicted signatures.

By producing consistent visuo-tactile rollouts under real control sequences, VT-WM demonstrates
the ability to represent both global visual context and local contact dynamics in a unified predictive
framework useful for planning.

C ZERO-SHOT PLANNING WITH WORLD MODELS

C.1 CEM ALGORITHM FOR PLANNING WITH WORLD MODELS

The algorithm 1 performs planning in a world model (WM) imagination using the Cross-Entropy
Method (CEM). Given a goal image and the current multimodal context (vision and tactile), the
algorithm first encodes these inputs into latent representations. CEM is then used to optimize a
sequence of actions over a finite prediction horizon by iteratively sampling action sequences (par-
ticles), rolling them out in the world model, and evaluating their predicted visual outcomes against
the goal latent state using an ℓ2 distance. The top-performing action sequences are used to update
the mean and variance of the action distribution, refining the search over multiple iterations. After
convergence, the best action sequence is executed on the robot, and the process can be repeated over
several trials with updated context.

Next, we describe the goal of each of the tasks we use to evaluate the planning capabilities of the
world models and discuss their results.

Reach Button: In this task, the robot must approach and press the center of a button starting from
varied initial poses directly above it. Success therefore requires planning a sequence of actions
that align the end-effector laterally with the button and then move downward to establish contact.
Fig. 14 illustrated the plans produced by each world model using CEM rollouts in imagination,
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Algorithm 1 Planning in WM imagination via CEM
Require: WM (world model)
Require: Goal Image Xgoal

rgb

Require: Context (current state) X0
rgb, X0

touch

f ← 6 ▷ WM frequency
H ← 2 ▷ Prediction horizon in seconds
P ← 36 ▷ Number of particles for CEM algorithm
N ← 10 ▷ Number of iterations for CEM algorithm
d← 7 ▷ Action dimensionality [X,Y,Z,roll,pitch,yaw,gripper]
max-trials← 3 ▷ Number of calls to CEM algorithm
for trials < max-trials do

Update context (current state) X0
rgb, X0

touch ▷ Read from sensors
Zgoal ← vision-encoder(Xgoal

rgb ) ▷ Encode goal image
Z0
rgb ← vision-encoder(X0

rgb) and Z0
touch ← touch-encoder(X0

touch) ▷ Encode context
▷ Initialize CEM action distribution parameters

µ← zeros(1, H ∗ f, d) and σ ← ones(1, H ∗ f, d)
best-cost←∞
best-action← None
for n < N do

▷ Generate action particles
actions← (µ.repeat(N) + σ.repeat(N)) ∗ rand(N,H ∗ f, d)
Ẑ1:H
rgb , Ẑ

1:H
touch ←WM.rollout(Z0

rgb, Z
0
touch, actions) ▷ Rollout WM

costs← ℓ2

(
Zgoal, ẐH

rgb

)
▷ Compute distance with target latent state

elite-actions← actions[topk(costs)] ▷ Choose top 5 particles with lowest cost
▷ Update distribution parameters

µ← elite-actions.mean() and σ ← elite-actions.std()
if costs.min() < best-cost then

best-action← actions[costs.argmin()] ▷ Found a new action that gets closer to goal
end if

end for
Execute sequence of robot commands from best-action

end for
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Tactile

VT-WM      
Vision Prediction
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GT VT-WM
Diff             

No Contact

t

Figure 13: Snapshots of a Visuo-Tactile World Model rollout for cube stacking task. Top: ground
truth vision state. Middle: predicted vision state across rollout. Bottom: ground truth tactile signa-
tures, predicted tactile and its difference with respect the no contact state. Notice that fingers that
are in contact match between ground truth and VT-WM predicted signatures.

alongside the corresponding executions on the real robot. We observe that both V-WM and VT-
WM generate feasible trajectories that transfer zero-shot to the real system. This is expected since
reaching primarily involves spatial reasoning and gross kinematic alignment, which vision alone can
capture reliably.

V-
W
M

💭  Plan in 
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🤖  Real execution

V
T
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💭  Plan in 
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Figure 14: Reach Button task. Plans generated by V-WM and VT-WM with CEM in imagination
(top) and their zero-shot executions on the real robot (bottom). Both models produce feasible trajec-
tories, as reaching relies mainly on spatial reasoning and kinematic alignment.

Push Fruits: In this task, the robot hand begins directly in front of a target object that must be
pushed downwards (toward the robot base). A successful plan requires maintaining persistent but
gentle contact, allowing the object to slide across the table rather than topple.

Fig. 15 compares imagined rollouts and real executions for both models. While both V-WM and
VT-WM produce plausible plans, we observe notable artifacts in the imagined rollouts, most promi-
nently visual distortions of the green fruit when the hand occludes it. These artifacts are less pro-
nounced in VT-WM, which better preserves the object’s geometry in imagination. The deployment
of the V-WM plan not only results in shorter object displacement but also lead to physical failures
in execution, where the object occasionally topples instead of sliding without orientation changes.
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Figure 15: Push Fruits task. VT-WM preserves object geometry in imagination and transfers to
stable sliding, while V-WM introduces distortions and often causes toppling in execution.

Reach & Push: This task requires a two-stage plan, first reaching the object to establish contact,
then pushing it downward toward the robot base. Both subgoals are illustrated in Fig. 16, which
shows the imagined plans and real executions.

In the V-WM rollout, the hand consistently hovers slightly above the object during the reach phase.
As a result, the subsequent push proceeds without contact, and the execution on the real robot fails to
move the object. By contrast, the VT-WM rollout explicitly brings the hand into contact during the
reach, enabling the push plan to apply move the object effectively. When deployed, this produces
the desired behavior, with both the reach and push subgoals successfully achieved. This highlights
how tactile grounding resolves cases of visual aliasing, ensuring reliable contact in imagination and
execution.
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V
T
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Reach Goal Push Goal

Figure 16: Reach & Push task. V-WM fails to establish contact, leading to ineffective pushes, while
VT-WM ensures contact in imagination and execution, successfully completing both subgoals.

Wipe Cloth: This task consists of two subgoals, first reaching the cloth to establish contact, and
then wiping it horizontally across the table. Both stages are illustrated in Fig. 17, which compares
imagined rollouts with real executions.
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In the V-WM rollout, the reach phase frequently results in the hand hovering slightly above the
cloth, leading to ineffective wiping during execution. Even when a wiping trajectory is imagined,
the visualizations exhibit noticeable artifacts such as geometric distortions of the cloth and hand.
These artifacts reflect the model’s uncertainty about contact dynamics and correspond to execution
failures where the cloth barely moves.

In contrast, the VT-WM rollout shows clearer geometry and maintains consistent contact with the
cloth in imagination. As a result, the subsequent wiping action produces a stable horizontal dis-
placement of the cloth when deployed on the real robot. This example underscores the advantages
of visuo-tactile world model in tasks that require sustained contact to manipulate objects.
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Reach Goal Wipe Goal

Figure 17: Wipe Cloth task. V-WM rollouts show artifacts and miss contact, leading to ineffective
wiping, while VT-WM maintains contact and produces consistent cloth displacement in execution.

Stack Cubes: This task requires transporting a blue cube to the stacking location and then placing
it stably on top of a yellow cube. Both subgoals are illustrated in Fig. 18, which shows imagined
rollouts alongside real executions.

While the V-WM generates reasonable transport trajectories, failures arise during placement. In
imagination, the cube intermittently disappears from the hand, revealing artifacts that indicate the
model is tracking only the hand–scene geometry (e.g., alignment with the target yellow cube) rather
than maintaining a consistent hand–object relationship. This disconnect leads to execution failures,
where the cube is not reliably placed.

However, visuo-tactile world model accurately captures the object–hand interaction, throughout both
transport and placement, the cube remains consistently represented in the rollout. When transferred
zero-shot to the real robot, these plans result in stable stacking, highlighting the advantage of VT-
WM for tasks that demand precise, contact-rich manipulation.

D LIMITATIONS

While our results demonstrate clear benefits of visuo-tactile world model, following limitations
point to promising directions for future research. First, our tactile modality is limited to vision-
based tactile sensing, specifically the Digit 360 sensor. However, the VT-WM framework applies to
other tactile modalities as well, provided that an appropriate pretrained tactile encoder is available.
Second, evaluation of contact perception uses unseen robot trajectories but only within tasks from the
training distribution, leaving open the question of how well the model generalizes to entirely novel
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Figure 18: Stack Cubes task. V-WM imagined rollouts during planning lose track of the cube for
the placement subgoal, leading to failed stacking, while VT-WM preserves hand–object interaction
and transfers to successful stacks.

manipulation tasks or object characteristics. Third, our planning experiments randomize initial robot
states but are limited to the same scene and objects, without testing generalization to objects with
different visual or physical properties such as size, shape, or color. Planning with world models via
CEM remains computationally expensive, as it requires generating many autoregressive rollouts per
particle. This leads to open-loop execution in trajectory chunks, unlike classical policies that operate
in closed-loop at higher control frequencies. Finally, our comparison against a single task behavior
cloning (BC) policy does not fully rule out the possibility that a multi-task BC policy could also
exhibit strong data efficiency for the new task.

E ADDITIONAL NOTES

About the use of large language models: Large Language Models (LLMs) were used exclu-
sively to assist with grammar correction and refinement of writing style (flow, academic tone, and
conciseness), based on drafts authored by the researchers. LLMs were not employed for data gener-
ation, or in any stage of the proposed model’s design, training, or evaluation.
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